Hladík 3.2.

geckon at 2009-02-03 18:57:09
  1. Napsat a dokázat větu o dimenzi podprostoru

  2. Rozšířit systém (1,2,3,4), (0,2,1,4) na bázi ortogonálního doplňku k prostoru generovanému vektorem (4,3,-2,-1) a zdůvodnit

  3. Najít matici lin. zobr., kdy 1.zobr. bodu x z R^n přiřadí nejbližší bod na přímce se směrnicí p a procházející počátkem a 2.zobr. pak tento bod otočí o 180°kolem přímky procházející počátkem a bodem q

  4. rozhodnout o pravdivosti a dokázat:
    a) pro každé těleso T a prvek x z T platí X^2=0 => x=0
    b) existuje matice A a vektory b,c tž. soustava Ax=b má 2 řešení a soustava Ax=c má 3
    c) pro matici A (4 1 3, 2 1 5) je řádkový prostor isomorfní sloupcovému
    d) U,V,W jsou podprostory nějakého prostoru, pak U + (V průnik W) je podmnožinou (U + V) sjednoceno (U + W)

Velyger at 2009-02-04 00:21:34

vie niekto tu trojku?
napisal by niekto podrobny postup?

al-Quaknaa at 2009-02-09 15:05:10

Taky jsem nevěděl, ale teď si pročítám lineární zobrazení ve skriptech od Tůmy a je to tam - http://www.karlin.mff.cuni.cz/~tuma/NNlinalg.htm - 7, Lineární zobrazení, v podstatě přesně tyhle příklady od strany 12, jinak ta skripta doporučuju obecně.
al-Quaknaa