Ukazte, ze rovnice {: alt="exy=cos(x+y)+y" type="image/"} urcuje v jistem okoli bodu {: alt="(0,0)" type="image/"} implicitne zadanou funkci promenne {: alt="x" type="image/"}. Spoctete prvni a druhou derivaci teto funkce v bode 0.
Spoctete Tayloruv polynom stupne 6 se stredem v bode 0 funkce {: alt="f(x)=cos(x2cosx)−cos(x2)" type="image/"}. S jeho pomoci spoctete limitu {: alt="limx→0x6cos(x2cosx)−cos(x2)" type="image/"}. Teoreticke priklady
Dokazte z definice Riemannova integralu: je-li {: alt="f" type="image/"} riemannovsky integrovatelna na {: alt="[0,1]" type="image/"} a {: alt="g=f" type="image/"} na ![(0,1]](http://latex.codecogs.com/gif.latex?(0,1]){: alt="(0,1]" type="image/"}, potom {: alt="g" type="image/"} je riemannovsky integrovatelna na {: alt="[0,1]" type="image/"} a {: alt="∫01f=∫01g" type="image/"}.
Necht {: alt="f,g:R3→R" type="image/"} maji obe totalni diferencial v bode {: alt="a" type="image/"} a necht {: alt="Δf(a)=Δg(a)=(0,0,0)" type="image/"}. Plati, ze i funkce {: alt="h=f⋅g" type="image/"} ma totalni diferencial {: alt="L" type="image/"} v bode {: alt="a" type="image/"} a plati {: alt="[latex]" type="image/"}Δh(a)=(0,0,0)?