19

spidoosho at 2019-10-05 19:55:02

Pocetni priklady

  • Ukazte, ze rovnice http://latex.codecogs.com/gif.latex?$e%5E%7Bxy%7D%20=%20cos%28x+y%29+y${: alt="exy=cos(x+y)+ye^{xy} = cos(x+y)+y" type="image/"} urcuje v jistem okoli bodu http://latex.codecogs.com/gif.latex?$%280%2C0%29${: alt="(0,0)(0,0)" type="image/"} implicitne zadanou funkci promenne http://latex.codecogs.com/gif.latex?$x${: alt="xx" type="image/"}. Spoctete prvni a druhou derivaci teto funkce v bode 0.

  • Spoctete Tayloruv polynom stupne 6 se stredem v bode 0 funkce http://latex.codecogs.com/gif.latex?$f%28x%29%20=%20cos%28x%5E2cosx%29%20-%20cos%28x%5E2%29${: alt="f(x)=cos(x2cosx)cos(x2)f(x) = cos(x^2cosx) - cos(x^2)" type="image/"}. S jeho pomoci spoctete limitu http://latex.codecogs.com/gif.latex?$%20%5Clim_%7Bx%5Cto%200%7D%20%5Ccfrac%7Bcos%28x%5E2cosx%29%20-%20cos%28x%5E2%29%7D%7Bx%5E6%7D${: alt="limx0cos(x2cosx)cos(x2)x6 \lim_{x\to 0} \cfrac{cos(x^2cosx) - cos(x^2)}{x^6}" type="image/"}.
    Teoreticke priklady

  • Dokazte z definice Riemannova integralu: je-li http://latex.codecogs.com/gif.latex?$f${: alt="ff" type="image/"} riemannovsky integrovatelna na http://latex.codecogs.com/gif.latex?$%5B0%2C1%5D${: alt="[0,1][0,1]" type="image/"} a http://latex.codecogs.com/gif.latex?$g%20=%20f${: alt="g=fg = f" type="image/"} na ![(0,1](0,1]](http://latex.codecogs.com/gif.latex?(0,1](0,1]){: alt="(0,1](0,1]" type="image/"}, potom http://latex.codecogs.com/gif.latex?$g${: alt="gg" type="image/"} je riemannovsky integrovatelna na http://latex.codecogs.com/gif.latex?$%5B0%2C1%5D${: alt="[0,1][0,1]" type="image/"} a http://latex.codecogs.com/gif.latex?$%5Cint_%7B0%7D%5E%7B1%7D%20f=%20%5Cint_%7B0%7D%5E%7B1%7D%20g${: alt="01f=01g\int_{0}^{1} f= \int_{0}^{1} g" type="image/"}.

  • Necht http://latex.codecogs.com/gif.latex?$f%2Cg:%5Cmathbb%7BR%7D%5E3%20%5Crightarrow%20%5Cmathbb%7BR%7D${: alt="f,g:R3Rf,g:\mathbb{R}^3 \rightarrow \mathbb{R}" type="image/"} maji obe totalni diferencial v bode http://latex.codecogs.com/gif.latex?$a${: alt="aa" type="image/"} a necht http://latex.codecogs.com/gif.latex?$%5CDelta%20f%28a%29%20=%20%5CDelta%20g%28a%29%20=%20%280%2C0%2C0%29${: alt="Δf(a)=Δg(a)=(0,0,0)\Delta f(a) = \Delta g(a) = (0,0,0)" type="image/"}. Plati, ze i funkce http://latex.codecogs.com/gif.latex?$h%20=%20f%20%5Ccdot%20g${: alt="h=fgh = f \cdot g" type="image/"} ma totalni diferencial http://latex.codecogs.com/gif.latex?$L${: alt="LL" type="image/"} v bode http://latex.codecogs.com/gif.latex?$a${: alt="aa" type="image/"} a plati [latex]{: alt="[latex]" type="image/"}Δh(a)=(0,0,0)\Delta h(a) = (0,0,0)?