*ZZHmoty:
:DDt∫VρdV=0\frac{D}{Dt}\int_V \rho dV = 0DtD∫VρdV=0
:∂ρ∂t+Δ⋅(ρv)=0\frac{\partial \rho}{\partial t}+\Delta\cdot(\rho v) = 0∂t∂ρ+Δ⋅(ρv)=0
a
:
ParseError: KaTeX parse error: Undefined control sequence: \[ at position 1: \̲[̲\rho(v-\nu)]_-^…
*ZZHybnosti
:DDt∫VρvdV=∫VρgdV−2∫VρΩ×vdV−∫VρΩ×(Ω×r)dV+∫Sτ⋅ndS\frac{D}{Dt}\int_V\rho v dV = \int_V \rho g dV - 2\int_V \rho \Omega \times v dV - \int_V \rho \Omega \times(\Omega \times r)dV+ \int_S \tau \cdot n dS DtD∫VρvdV=∫VρgdV−2∫VρΩ×vdV−∫VρΩ×(Ω×r)dV+∫Sτ⋅ndS
:∇⋅τT+ρg−2ρΩ×v−ρΩ×(Ω×r)=ρDvDt=ρ(∂v∂t+v⋅∇v)\nabla \cdot \tau^T+\rho g-2\rho\Omega\times v-\rho\Omega\times(\Omega\times r)=\rho\frac{Dv}{Dt}=\rho(\frac{\partial v}{\partial t}+v\cdot \nabla v)∇⋅τT+ρg−2ρΩ×v−ρΩ×(Ω×r)=ρDtDv=ρ(∂t∂v+v⋅∇v)
a
ParseError: KaTeX parse error: Undefined control sequence: \[ at position 1: \̲[̲\rho v(v-\nu)-\…
*ZZMomentu hybnosti
:DDt∫Vr×ρvdV=∫Vr×ρgdV−2∫Vr×(ρΩ×v)dV−∫Vr×(ρΩ×(Ω×r))dV+∫Sr×τ⋅ndS\frac{D}{Dt}\int_V r\times\rho v dV = \int_V r\times \rho g dV - 2\int_V r\times(\rho \Omega \times v) dV - \int_V r\times( \rho \Omega \times(\Omega \times r))dV+ \int_S r\times \tau \cdot n dS DtD∫Vr×ρvdV=∫Vr×ρgdV−2∫Vr×(ρΩ×v)dV−∫Vr×(ρΩ×(Ω×r))dV+∫Sr×τ⋅ndS
:I×τ=0I\times \tau = 0I×τ=0 <=> τ=τT\tau = \tau^Tτ=τT
*ZZEnergie
:
ParseError: KaTeX parse error: Undefined control sequence: \q at position 215: … v dV - \int_S \̲q̲\cdot n dS + \i…
Gibbsova relace
:ρTDsDt=ρDϵDt+p∇⋅v\rho T\frac{Ds}{Dt}=\rho\frac{D\epsilon}{Dt}+p\nabla\cdot vρTDtDs=ρDtDϵ+p∇⋅v
a z toho
:ρTDsDt=∇⋅(k⋅∇T)+σ:∇v+H\rho T\frac{Ds}{Dt}=\nabla\cdot(k\cdot \nabla T)+\sigma : \nabla v+HρTDtDs=∇⋅(k⋅∇T)+σ:∇v+H
a
:
ParseError: KaTeX parse error: Undefined control sequence: \[ at position 1: \̲[̲k\cdot\nabla T]…
Dále tepelná rovnice ve stavových proměnných
:ρTDsDt=ρT∂s∂TVDTDt+ρT∂s∂VTDVDt=ρcVDTDt+μ∇⋅v\rho T \frac{Ds}{Dt} = \rho T\frac{\partial s}{\partial T}_V \frac{DT}{Dt}+\rho T\frac{\partial s}{\partial V}_T \frac{DV}{Dt}=\rho c_V \frac{DT}{Dt}+\mu\nabla\cdot vρTDtDs=ρT∂T∂sVDtDT+ρT∂V∂sTDtDV=ρcVDtDT+μ∇⋅v
kde
ParseError: KaTeX parse error: Undefined control sequence: \[ at position 85: …tial T})_V = T \̲[̲\frac{1}{V}(\fr…
kde termální expanze α=−1p(∂p∂T)p\alpha = -\frac{1}{p}(\frac{\partial p}{\partial T})_pα=−p1(∂T∂p)p a izotermální objemový modul KT=−V(∂p∂V)TK_T = -V(\frac{\partial p}{\partial V})_TKT=−V(∂V∂p)T
Pak získáme μ=TαKT=ρcVTγ\mu=T\alpha K_T = \rho c_V T \gammaμ=TαKT=ρcVTγ pro Grüneisenův parametr γ=αKT/ρcV\gamma = \alpha K_T / \rho c_Vγ=αKT/ρcV
a z toho plyne termální rovnice
:ρcV∂T∂t=∇⋅(k⋅∇T)−ρcVv⋅∇T−ρcVTγ∇⋅v+σ:∇v+H\rho c_V \frac{\partial T}{\partial t} = \nabla \cdot (k\cdot \nabla T)-\rho c_V v\cdot \nabla T - \rho c_V T\gamma \nabla\cdot v+\sigma: \nabla v+HρcV∂t∂T=∇⋅(k⋅∇T)−ρcVv⋅∇T−ρcVTγ∇⋅v+σ:∇v+H
*Termální rovnice v proměnných p,T
:ρcp∂T∂t=∇⋅(k⋅∇T)−ρcpv⋅∇T−αT(∂p∂t+v⋅∇p)+σ:∇v+H\rho c_p \frac{\partial T}{\partial t} = \nabla \cdot (k\cdot \nabla T)-\rho c_p v\cdot \nabla T - \alpha T(\frac{\partial p}{\partial t}+v \cdot \nabla p)+\sigma: \nabla v+Hρcp∂t∂T=∇⋅(k⋅∇T)−ρcpv⋅∇T−αT(∂t∂p+v⋅∇p)+σ:∇v+H
kde
:cp=cV(1+γαT)c_p = c_V(1+\gamma \alpha T)cp=cV(1+γαT)
a rovnice kontinuity
:∇⋅v=−1ρDρDt=−KT−1DpDt+αDTDt\nabla \cdot v = -\frac{1}{\rho}\frac{D\rho}{Dt}=-K_T^{-1}\frac{Dp}{Dt}+\alpha \frac{DT}{Dt}∇⋅v=−ρ1DtDρ=−KT−1DtDp+αDtDT
*Termální rovnice v kontinuu s dominantním hydrostatickým tlakem
platí
:∇p0=ρ0g0−ρ0Ω×(Ω×r)\nabla p_0 = \rho_0 g_0 - \rho_0\Omega \times(\Omega\times r)∇p0=ρ0g0−ρ0Ω×(Ω×r)
nechť tedy
:∂p∂t+vcdot∇p=−vrρg\frac{\partial p}{\partial t}+v cdot \nabla p = -v_r\rho g∂t∂p+vcdot∇p=−vrρg
v radiální složce, kde g je
:g=∣g⃗∣=g⃗0−Ω×(Ω×r)g=|\vec g| = \vec g_0-\Omega\times(\Omega\times r)g=∣g∣=g0−Ω×(Ω×r)
pak dostaneme obvyklou termální rovnici
:ρcp∂T∂t=∇⋅(k⋅∇T)−ρcpv⋅∇T−ρvrαTg+σ:∇v+H\rho c_p \frac{\partial T}{\partial t} = \nabla \cdot (k\cdot \nabla T)-\rho c_p v\cdot \nabla T - \rho v_r\alpha Tg+\sigma: \nabla v+Hρcp∂t∂T=∇⋅(k⋅∇T)−ρcpv⋅∇T−ρvrαTg+σ:∇v+H
kde figuruje adiabatický gradient / ohřívání
:(∂T∂r)s=−αTgcp(\frac{\partial T}{\partial r})_s = -\frac{\alpha Tg}{c_p}(∂r∂T)s=−cpαTg