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WHERE DO WE STAND ON MAXIMUM ENTROPY?

Edwin T. Jaynes

A., Historical Rackground
B. Present F=atures and Applications
- C. Speculazicns for the Future

D. An Applicstion: Irreversible Statistical Mechanics

Summary. In Psrt A we place the Principle of Maximum Entropy
in its historical perspective as a natural extension and unifi-
cation of two sopgrate lines of development, both of which had
long, used special cases of it. The first line is identified
with the names Rernoulli, Laplace, Jeffreys, Cox; the second
with Maxwell. Teltzmann, Gibbs, Shannon.

Part B considers some general properties of - the present
maximum entropy fowrmalism, stressing its consistency and inter-
derivability with the other principles of probability theory.
In this conneciien we answer some published criticisms of the
principle.

In part C w: try to view the principle in the w1der context
of Statistical Deacision Theory in general, and speculate on
possible future applications and further theoretical develop-
ments. The Principle of Maximum Entropy, together with the
seemingly disparate principles of Group Invariance and Margina-
lization, may in time be seen as special cases of a still more
general principle for translating information into a probability
assignment.

Part D, whicti should logically precede C, is relegated to
the end becauss it is of a more technical nature, requiring
also the full formalism of quantum mechanics. Readers not
familiar with itlhis will find the first three Sections a self-
contained exposition.

In Part D we present some of the detalls and results of what
is at present the most highly developed application of the
Principle of Maxinmuw Entropy; the extension of Gibbs' formalism
to irreversible processks. Here we consider the.most general
application of the principle, without taking advantage of any
special features {(such as interest in only a subspace of states
0r a subset of opegrators) that might be found in particular

_Problems. An zlternative formulation, which does take such
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advantage-—and 1s thus closer to the spirit of previous "kinetic
equation” approaches at the cost of some generality, appears in
the presentation of Dr, Baldwin Robertsom.

A. Historical Background

The ideas to be discussed at this Symposium are found clearly
expressed already in ancient sources, particularly the 01d
Testament, Herodotus, and Ovennus. All note the vizrtue of
making wise decisions by taking into account all possibilities,
i.e., by not presuming more informatiom than we possess. But
probability theory, in the form which goes beyond these moral
exhortations and considers actual numerical values of probabil-
ities and expectations, begins with the Ludoc aleae of Gerolamo
Cardano, some time in the mid-sixteenth century. Wilks (1961)
places this "around 1520," although Cardanc’s Section "On Luck
in Play' contains internal evidence that shows the date of its
writing to be 1564, still 90 years before the Pascal-Fermat
correspondence. _

Already in these earliest works, special cases of the Prin-
ciple of Maximum Entropy are recognized intuitively and, of
necessity, used. For there is no application of probability
theory in which one can evade that all-important first step:
assigning some initial numerical values of probebilities so
that the calculation can get started. Even in the most elemen-
tary homework problems, such as "Find the probability of
getting at least two heads in four tosses of a coin,” we have
no basis for the calculaticn until we make some initial
judgment, usually that "heads"™ shall have the probability 1/2
independently at each toss. But by what reasoning does one
arrive at this initial assignment? If it is questioned, how
shall we defend it?

The basis underlying such initial assignments was stated as
an explicit formal principle in the Ars Conjectandi of James
(= Jacob) Bermoulli (1713). Unfortunately, it was given the
curious name: Principle of Insufficient Reason which has had,
ever since, a psychologically repellant quality that prevents
many from seeing the positive merit of the idea itself. Keymes
(1921) helped somewhat by renaming it the Principle of Indif-
ference; but by then the damage had been done. Had Bernoulli
called his principle, more appropriately, the Desideratum of
Consistency, nobody would have ventured to deprecate it. and
today statistical theory would be in considerably better shape
than it is. ’

The essence of the principle is just: (1) we recognize
that a probability assignment is a means of describing a
certain state of knowledge. (2) if the available evidence
gives us no reason to consider proposition A; either more or
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less likely than A, them the only honest way we can describe
that state of knowledge is to assign them equal probabilities:
P1=p2. Any other procedure would be inconsistent in the sense
that, by a mere interchange of the labels (1, 2} we could then
generate a new problem in which ocur state of knowledge is the
same but in which we are assigning different probabilities.

(3) Extending this reasoning, one arrives at the rule

(4) = M_ (Number of cases favorable to A)
P N (Total number of equally possible cases)

r(Al)

which served as the basic definition of probability for the
next 150 years.

The only valid criticism of this principle, it seems to me,
is that in the original form (enumeration of the "equally pos-
sible" cases) it cannot be applied to all problems. Indeed,
nobody could have emphasized this more strongly than Bernoulli
himself. After noting its use where applicable, he adds, "'But
here, finally, we seem to have met our problem, since this may
be done only in a very few cases and almost nowhere other than
in games of chance the inventors of which, in order to provide
equal chances for the players, took pains to set up so that the
numbers of cases would be known and —--— so that all these cases
could happen with equal ease.'" After citing some exzmples,
Bernoulli continues in the next paragraph, ''But what mortal
will ever determine, for example, the number of disezses ---
these and other such things depend upon causes completely
hidden from us =—-=-."

It was for the explicit]y stated purpose of finding proba-
bilities when the number of "equally possible" cases is infinite
or beyond our powers to determine, that Bernmoulli turns next to
his celebrated theorem, today called the weak law of large numbers.
Bis idea was that, if a probability p cannot be calculated in
the manner p=M/N by direct application of the Principle of
Insufficient Reason, then in some cases we may still reason
backwards and estimate the ratio M/N approximately by observing
frequencies in many trials.

That there ought to be some kind of connection between a
theoretical probability and an observable frequency was a
vaguely seen intuition in the earlier works; but Bernoulli,
seelng clearly the distinction between the concepts recognized
that the existence of a connection between them cannot be
merely postulated; it requires mathematical demonstration. If
in a binary experiment we assign a constant probability of
success p, independently at each trial, then we find for the
probability of seeing m successes in n trials the binomial
distribution




Jaynes

P(nf[n,p) = (3) pr(l-p)™ . - (A2)

Bernoulli then shows that as n + «, the observed frequency
f=m/n of successes tends to the probability p in the sense
that for all € > 0,

P(p-€ < £<p + g|p,n) =1 ' (A3)

and thus (in a2 sense made precise only in the later work of
Bayes and Laplace) for sufficiently large n, the observed
frequency is practically certain to be close to the number p
sought.

But Bernoulli's result does not tell us how large n must be
for a given accuracy. For this, one needs the more detailed
limit theorem; as n inecreases, f may be considered a continuous
variable, and the probability that (f <m/n< f+df) goes into a
gaugsian, or normal, distribution:

n % n(f-g!z
P(df[ln,p) v [wzwp(lup)J exp[-— 75 (1op) }df (A4)

.in the sense of the leading term of an asymptotic expansion.
For example, if p=2/3, then from (A4), in n=1000 trials,
there is a 98% probability that the observed f will lie in the
interval 0.667 +0.038, and an even chance that it will fall in
0.667 £+ 0,010, The result (A4) was first given in this generality
by Laplace; it had been found earlier by de Moivre for the case
p = %u And in turn, the de Moivre-Laplace theorem (A4) be-
came the ancestor of our present Central Limit Theorem.

Since these limit theorems are sometimes held to be the most
important and sophisticated fruits of probability theory, we
note that they depend crucially on the assumption of indepen-
dence of different trials. The slightest pesitive correlation
between trials i and j, if it persists for arbitrarily large
l1-j|, will render these theorems qualitatively incorrect.

Laplace's contributions to probability theory go rather far
beyond mere gnalytical refinements of other peoples' results.
Most important for statistical theory today, he saw the general
principle needed to solve problems of the type formulated by
Bernoulli, but left unfinished by the Bernoulli and de Moivre-
Laplace limit theorems. These results concern only the so-
called "sampling distribution.” That is, given p=M/N, what
is the probability that we shall see particular sample numbers
(m,n}? The results (Al)-{Aa4) describe a state of knowledge in
which the "population numbers'" (M,N) are known, the sample
number unknown. But in the problem Bernoulli tried to solve,
the sample is known and the population is not only unknown—-—
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its very existence is only a tentative hypothesis (what mortal
will ever determine the number of diseases, etc.).

We have, therefore, an inversion problem. The above theorems
show that, given (M,N) and the correctness of the whole con—
ceptual model, then it is likely that in many trials the
observed frequency f will be close to the probability p. _
Presumably, then, given the observed f in many trials, it is
likely that p is close tec £. But can this be made inte a
precise theorem like (A4)? The binomial law (A2) gives the
probability of m, given (#,N,n). Can we turn this around
and find a formula for the probability of M, given (m,N,n)?
This is the problem of inverse probabilities.

A particular inversion of the binomial distribution was
offered by a British clergyman and amateur mathematician,
Thomas Bayes (1763) in what has become perhaps the most famous
and controversial work in probability theory. His reasoning
was obscure and hard to describe; but his actual result is
easy to state. Given the data (m,n), he finds for the proba-
bility that M/N lies in the interval p< (M/N)<p +dp,

{(n+1)!
o! (n-m)!

P(dp|m,n) = pr (1-p)" " dp (45)
today called a Beta distribution. It is not a binomial distri-
bution because the variable is p rather than m and the numerical
coefficient is different, but it is a trivial mathematical
exercise '[expand the logarithm of (AS) in a power series about
its peak] to show that, for large n, (A5) goes asymptotically
into just (A4) with f and p everywhere interchanged. Thus, if
in n=1000 trials we observe m= 667 successes, then on this
evidence there would be.a 997 probability that p lies in

(0.667 +0.038), ete. _

In the gaussian approximation, according to Bayes' solution,
there is complete mathematical symmetry between the probability
of f given p, and of p given £. This would certainly seem to
be the neatest and simplest imaginable solution to Bernoulli's
inversion preblem.

Laplace, in his famous memoir of 1774 on the "'probabilities
of causes,' perceived the principle underlying inverse proba-
bilities in far greater generality. Let E stand for some
observable event and {C, ... Cy)} the set of its conceivable
causes. Suppose that we have found, according to some con—
ceptual model, the "sampling distribution' or "direct™ proba-
bilities of E for each cause: P(E]Ci), i=1,2,...,8. Then,
says Laplace, if initially the causes C; are considered equally
1ikely, then having seen the event E, the different causes are
indicated with probability proportional to P(E|Ci). That is,
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with uniform prior probabilities, the posterior probabilities
of the Ci are

N -1
p(c, [E) = [ > ?(EICj)J P(E[C) . (A6)
5=1

This is a tremendous generalization of the Bernoulli-Baves
results (A2}, (A5). If the event E consists in finding m suc-
cesses in n trials, and the causes C; correspond to the pessible
values of M in the Bermoulli model, then P(E|C4)is the binomial
distribution (A2); and in the limit N + = (A6) goes intc Bayes'
result (A5).

Later, Laplace generalized (A6) further by noting that, if
initially the C; are not considered equally likely, but have
prior probabilities P(Ci|I), where I stands for the prior in-
formation, then the terms in (&) should be welghted according
to P(Ci[I):

P(E[Cc)R(C, |T)

E:j P(E|Cj)P(Cj|I)

P(C, |E,I) = (A7)

——

but, following long-established custom, it is Laplace's result
{AT) that is a2lways called, in the modern literature, '"Bayes'
theorem.'

~ Laplace proceeded to apply (A6) to a variety of problems
that arise in astromnomy, meteorclogy, geodesy, population
statistics, ete. He would use it typically as follows. Com-
paring experimental observations with some existing thecory, or
calculation, one will never find perfect agreement. Are the
discrepancies so small that they might reasonably be attributed
to measurement errors, or are they so large that they indicate,
with high probability, the existence of some new systematic
cause? If so, Laplace would undertake to find that cause.

Such uses of inverse probability~-what would be called today
"significance tests" by statisticians, and "detection of signals
in noise" by electrical engineers-~led him to some of the most
important discoveries in celestial mechanies.

Yet there were difficulties that prevented others from fol-
lowing Laplace's path, in spite of its demonstrated usefulness.
In the first place, Laplace simply stated the results (A6), (A7)
as intuitive, ad ho¢ recipes without any derivation from compel-
ling desiderata; and this left room for much agonizing over
their logical justification and uniqueness. For an account
of this, see Keynes (1921). However, we now know that Laplace's
result (A7) is, in fact, the entirely correct and unique
golution to the inversion problem.
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More importantly, it became apparent that, in spite of first
appearances, the results of Bayes and Laplace did not, after
all, solve the problem that Bernoulli had set out to deal with.
Recall, Bernoulli's original motivation was that the Principle
of Insufficient Reason i1s inapplicable in so many real problems,
because we are unable to break things down into an enumeration
of "equally possible' cases. His hope~-left unrealized at his
death in 1705--had been that, by inversion of his theorem one
could avoid having to use Insufficient Reason. Yet when the
inversion problem was finally solved by Bayes and Laplace, the
prior probabilities P(Ci[I} that Bernoulli had sought te avoid,
intruded themselves inevitably right back into the picture!

The only useful results Laplace got came from (A6), based oa
the uniform prior probabilities P(C1|I) = 1/N from the Principle
of Insufficient Reasen. That is, of course, nct because Laplace
failed to understand the generalization (A7) as some have
charged—-—-it was Laplace who, in his Essai Philosophique, pointed
out the need for that generalization. Rather, Laplace did not
have any principle for finding prior probabilities in cases
where the prior information fails te render the possibilities
"equally likely."

At this point, the history of statistical theory takes a
sharp 90° turn away from the original goal, and we are only
slowly straightening out again today. One might hawve thought,
particularly in view of the great pragmatic success achieved
by Laplace with (A6}, that the next workers would try to build
constructively on the foundations laid down by him. The next
order of business should have been seeking new and more general
principles for determining prior probabilities, thus extending
the range of preoblems where probability theory is useful to
{A7). Instead, only fifteen vears after Laplace's death, there
started a2 series of increasingly violent attacks on his work.,
Totally ignoring the successful results they had yielded,
Laplace's methods based on {A6) were rejected and ridiculed,
aleng with the whole conception of probability theory expounded
by Bernoulli and Laplace. The main early references to this
councer-stream of thought are Ellis (1842}, Boole (1834), Venn
(1866), and von Mises (1928).

As already emphasized, Bernculli's definiticn of probability
(Al) was developed for the purpose of representing mathemat~
ically a particular state of knowledge; and the equations of
probability theory then represent the process of plausible, or
inductive, reasoning in cases where there is not enough informa-
tion at hand to permit deductive reasoning. In particular,
Laplace's result (A7) represents the process of "learning by
experilence,' the prior probability P(C[I) changing to the
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posterior probability P(C[E,I) as a result of obtailuing new
evidence E.

This counter-stream of thought, however, rejected the notion
of probability as describing a state of knowledge, and insisted
that by "probability' one must mean only "frequency in a randem
experiment.”" For a time this viewpoint dominated the field so
completely that those who were students in the period 1930-1960
were hardly aware that any other conception had ever existed.

If anyone wishes to study the properties of frequencies in
random experiments he is, of course, perfectly free to do so;
and we wish him every success. But if he wants to talk about
frequencies, why can't he just use the word "frequency?" Why
does he insist on appropriating the word “probability," which
had already a long-established and very different technical
meaning? '

Most of the debate that has been in progress for over a
century on "frequency vs. non-frequency definitions of proba-
bility" seems to me not concerned with any substantive issue
at all; but merely arguing over who has the right to use a
word. Now the historical priority belongs clearly to Bernoulli
and Laplace. Therefore, in the interests not only of respon-
sible scholarship, but also of clear exposition and to avodd
becoming entangled in semantic irrelevancies, we ought to use
the word "probability" in the original sense of Bernoulli and
Laplace; and if we mean something else, call it scmething else.

With the usage just recommended, the term "frequency theory
of probability" is a pure incongruity; just as much so as
"theory of square circles.”" One might speak properly of a
"frequency theory of inference,” or the better term "sampling
theory," now in general use among statisticians (because the
only distributions admitted are the ones we have called
sampling distributions). This stands in contrast to the
"Bayesian theory"” developed by Laplace, which admits the
notlon of probability of an hypothesis.

Having two opposed schools of thought about how to handle
problems of inference, the stage is set for an interesting
contest. The sampling theorists, forbiddem by their ideology
to use Bayes' theorem as Laplace did in the form (A6), must
seek other methods for dealing with Laplace’s problems. What
methods, then, did they invent? How do their procedures and
results compare with Laplace's?

The sampling theory developed slewly over the first half of
this Century by the labors of many, prominent names being
Fisher, "Student," Pearson, Neyman, Kendall, Cramér, Wald.
They proceeded through a variety of ad hoc intuitive principles,
each appearing reasonable at first glance, but for which
defects or limitations on generality always appeared. TFor
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example, the Chi-squared test, maximum likelihood, unbiased
and/or efficient estimators, confidence intervals, fiducial
distributions, conditioning on ancillary statistics, power
functions and sequential methods for hypothesis testing.
Certain technical difficulties ('"nuisance" parameters, non-
existence of sufficient or ancillary statistics, inability

to take prior infeormation into account) remained behind as
isolated pockets of resistance which sampling theory has never
been able to overcome. Nevertheless, there was discernible
progress over the years, accompanied by an unending stream of
attacks on Laplace's ideas and methods, sometimes degenerating
into personal attacks on Laplace himself [see, for example,
the biographical sketch by E. T. Bell (1937), entitled "From
Peasant to Snob"].

Enter Jeffreys. After 1939, the sampling theorists had another
target for their scorn. Sir Harold Jeffreys, finding in geo-
physics some problems of "extracting signals from noise" very
much like those treated by Laplace, found himself unconvinced
by Fisher's arguments, and produced a book in which themethods
of Laplace were reinstated and applied, in the precise, compact
modern notation that did not exist in the time of Laplace, to
a mass of current scientific problems. The result was a vastly
more comprehensive treatment of inference than Laplace's, but
with two points in common: (A) the applications worked out
beautifully, enceountering no such techmical difficulties as

the "nuisance parameters' noted above; and yielding the same
or demonstrably better results than those found by sampling
theory methods. For many specific examples, see Jaynes (1876).
(B} Unfortunately, like Laplace, Jeffreys did not derive his
principles as necessary consequences of any compelling desid-
erata; and thus left room to continue the same ©ld arguments
over their justification.

The sampling theorists, seizing eagerly upon point (B) while
again totalling ignoring point (A), proceeded to give Jeffreys
the same treatment as Laplace, which he had to endure for some
thirty years before the tide begam to turn,

As a student in the mid-1940's, I discovered the book of
Jeffreys (1939) and was enormously impressed by the smooth,
effortless way he was able to derive the useful results of
the theory, as well as the sensible philosophy he expressed.
But I too felt that something was missing in the exposition
of fundamentals in the first Chébter and, learming about the
attacks on Jeffreys' methods by virtually every other writer
on statistics, felt some mental reservatioms.

But just at the right moment there appeared a work that
removed all doubts and set the direction of my own life's
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work. An unpretentious little article by Professor R. T. Cox
(1946) turned the problem under debate around and, for the
first time, looked at it in a constructive way. Instead of
making dogmatic assertions that it is or is not legitimate
to use probability in the sense of degree of plausibility
rather rhan frequency, he had the good sense to ask a guestion:
Is 1t possible to construct a consistent set of mathematical
rules for carrying ocut plausible, rather than deductive,
reasoning? He found that, if we try to represent degrees of
plausibility by real numbers, then the conditions of consistency
can be stated in the form of functional equations, whose general
solutions can be found. The results were: out of all possible
monotonic functions which might in principle serve our purpose,
there exists a particular scale on which to measure degrees of
plausibility which we henceforth call probability, with par-
ticularly simple properties. Denoting various propositions by
A, B, etc., and using the notation, AB Z"Both A and B are true,”
= "A is false," p(A|B) Sprobability of A given B, the con-
sistent rules of combination take the form of the familiar
product rule and sum rule:

p(AB{C) = p(a]|BC) p(B[C) , (A8)
p(A|B) + p(&[B) = 1 . (A9)

By mathematical transformations we can, of course, alter the
form of these rules; but what Cox proved was that any altera-
tion of their content will enable us to exhibit inconsistencies
(in the sense that two methods of calculation, each permitted
by the rules, will yield different results). But (48), (A9)
are, in fact, the basic rules of probability theory; all other
equations needed for applications can be derived from them.
Thus, Cox proved that any method of inference in which we
represent degrees of plausibility by real numbers, is neces-
sarily either equivalent to Laplace's, or inconsistent.

For me, this was exactly the argument needed to clinch
matters; for Cox's analysis makes no reference whatsoever to
frequencies or random experiments. From the day I first read
Cox's article I have never for a moment doubted the basic
soundness and inevitability of the Laplace-Jeffreys methods,
while recognizing that the theory needs further development
to extend its range of applicability.

Indeed, such further development was started by Jeffreys.
Recall, in our narrative we left Laplace {(or rather, Laplace
left us) at Eq. (A6), seeing the need but not the means to
make the transitiom to (A7), which would open up an enormously
wider range of applications for Bayesian inference. Since the
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function of the prior probabilities is to describe the prior
information, we need to develop new or more general principles
for determination of these priors by logical analysis of prior
information when it does not consist of frequencies; just what
should have been the next order of business after Laplace.

Recognizing this, Jeffreys resumed the constructive develop-—
ment of this theory at the point where Laplace had left off.
If we need to convert prior information into a prior proba-
bility assignment, perhaps we should start at the beginning
and learn first how to express "complete ignorance” of a
continuously variable parameter, where Bernoulli's principle
will not apply.

Bayes and Laplace had used unifeorm prior demsities, as the
most obvious analog of the Bernoulli uniform discrete assign-
ment. But it was clear, even in the time of Laplace, that this
rule is ambiguous because it is not invariant under a change
of parameters. A uniform density for © does not correspond to
a uniform density for a=0% or B = log §; so for which choice
of parameters should the uniform density apply?

In the first (1939) Edition of his book, Jeffreys made a
tentative start on this problem, in which he found his now
famous rule: to express ignorance of a scale parameter J,
whose possible domain is 0< o<, assign uniform prior density
to its logarithm: P(do|I)=dd/o. The first arguments advanced
in support of this rule were not particularly clear or con-
vincing to others (including this writer). But other desid-
erata were found; and we have now succeeded in proving via
the integral equations of marginalization theory (Jaynes, 1979)
that Jeffreys' prior do/¢ is, in fact, uniquely determined as
the only prior for a scale parameter that is "completely un-
informative" in the sense that it leads us to the same conclu-
sions about other parameters & as if the parameter ¢ had been
removed from the model [see Eq. (C33) below].

In the second (1948) Edition, Jeffreys gave a much more
general "Invariance Theory" for determining ignorance priors,
which showed amazing prevision by coming within a hair’'s
breadth of discovering both the principles ¢f Maximum Entropy
and Transformation Groups. He wrote down the actual entropy
expression (note the date!), but then used it oaly to generate
a quadratic form by expansion about its peak. Jeffreys' in-
variance theory is still of great importance today, and the
question . of its relation to other methods thar have been
proposed is still under study.

In the meantime, what had been happening in the sampling
theory cawmp? The culmination of this approach came in the
late 1940's when for the first time, Abraham Wald succeeded
in removing all ad hockeries and presenting general rules of
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conduct for making decisions in the face of uncertainty, that
he proved to be uniquely optimal by certain very simple and
compelling desiderata of reasomable behavior. But quickly a
number of people——including I. J. Good {1950), L. J. Savage
(1954), and the present writerw-realized independently that,

if we just ignore Wald's entirely different vocabulary and
dismetrically opposed philosophy, and lock only at the specific
mathematical steps that were now to be used in solving specific
problems, they were identical with the rules given by Laglabe
in the eighteenth century, which generations of statisticians
had rejected as metaphysical nonsense!

It 1is one of those ironies that make the history of science
so interesting, that the missing Bayes—optimality proofs, which
Laplace and Jeffreys had failed to supply, were at last found
inadvertently, while trying to prove the opposite, by an early
ardent disciple of the von Mises "'collective' appreach. It is
also a tribute to Wald's intellectual honesty that he was able
to recognize this, and in his final work (Wald, 1950) he called
these optimal rules, '"Bayes strategies.'

Thus came the "Bayesian Revelution" in statistics, which is
now all but over. This writer's recent polemics (Jaynes, 1976)
will probably be one of the last battles waged. Today, most
active research in statistics is Bayesian, a good deal of it
directed to the above problem of determining priors by logical
analysis: and the parts of sampling theory which do not lie in
ruins are just the ones (such as sufficient statistics and
sequential analysis) that can be justified in Bayesian terms.

This history of basic statistical theory, showing how devel-
opments over more than two centuries set the stage naturally
for the Principle of Maximum Entropy, has been recounted at
some length because it is unfamiliar to most scientists and
engineers. Although the second line converging on this prin-
ciple is much better known to this audience, our account can
be no briefer because there is so much to be unlearned.

The Second Line: Maxwell, Beltzmann, Gibbs, Shannon. Over the
past 120 years another line of development was taking place,
which had astonishingly little contact with the "statistical
inference” line just described. In the 1850's James Clerk
Maxwell started the first serious work on the application of
probability analysis to the kinetic theory of gases. He was
confronted immediately with the problem of assigning initial
probabilities te various positions and velocities of molecules.
To see how he dealt with it, we quote his first (1839} words
on the problem of finding the probability distribution for
velocity direction of a spherical molecules after an impact:
"In order that a collision may take place, the line of motion
of one of the balls must pass the center of the other at a
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distance less than the sum of their radii; that is, 1t must
pass through a circle whose centre is that of the other ball,
and radius the sum of the radii of the balls. Within this
circle every position is equally probable, and therefore ---.

Here again, as that necessary first step in a probability
analysis, Maxwell had te apply the Principle cf Indifference;
in this case to a two-dimensional continuous variable. But
already at this point we see a new feature. As long as we
talk about some abstract quantity 8 without specifying its
physical meaning, we see no reason why we could not as well
work with «=8%, or B=1log §; and there is an unresolved
ambiguity. But as soon as we learn that our gquantity has the
physical meaning of position within the circular collision
cross-section, our intuition takes over with a compelling force
and tells us that the probability of impinging on any particular
region should be taken proportional to the area of that region;
and not te the cube of the area, or the logarithm of the area.
If we toss pennies onto a wooden floor, sowething inside us
convinces us that the probability of landing on any one plank
should be taken proportional to the width of the plank; and
not to the cube of the width, or the logarithm of the width.

In other words, merely knowing the physical meaning of ocur
parameters, already constitutes highly relevant prier informa-
tion which our intuiticn is zble to use at once; in favorable
cases its effect is to give us an inner conviction that there
is no ambiguity after all in applying the Principle of Indif-
ference. Can we analyze how our intuition does this, extract
the essence, and express it as a formal mathematical principle
that might apply in cases where our intuition fails us? This
problem is not completely solved today, although I believe we
have made a good start on it in the principle of transforma-
tion groups (Jaynes, 1968, 1973, 1979). Perhaps these remarks
will encourage others to try their hand at resolving these
puzzles; this is an area where important new results might
turn up with comparatively little effort, given the right in-
spiration on how to approach them.

Maxwell built a lengthy, highly non-trivial, and needless
te say, successful analysis on the foundation just quoted.

He was able to predict such things as the equation of state,
velocity distribution law, diffusion coefficient, viscosity,
and thermal conductivity of the gas. The case of viscosity
was particularly interesting because Maxwell's theory led to
the prediction that viscosity is Independent of density, which
gseemed to contradict common sense. But when the experiments
were performed, they confirmed Maxwell's prediction; and what
had seemed a difficulty with his theory became its greatest
triumph.

n
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Enter Boltzmann. So far we have considered only the problem
of expressing initial ignorance by a probability assignment.
This is the first fundamental problem, since "complete initial
ignorance" is the natural and inevitable starting point from
which to measure our positive knowledge; just as zero is the
natural and inevitable starting point when we add a column of
numbers. But in most real problems we do not have initial .
ignorance about the questions to be answered. Indeed, unless
we had some definite prior knowledge about the parameters to
be measured or the hypotheses to be tested, we would seldom
have either the means or the motivation to plan an experiment
to get more knowledge: 'But to express positive initial
knowledge by a probability assigoment is just the problem of
getting from (A6) to (A7), bequeathed to us by Laplace.

The first step toward finding an explicit solution to this
problem was made by Boltzmann, although it was stated in very
different terms at the time. He wanted to find how molecules
will distribute themselves in a comservative force field (say,
a gravitational or centrifugal field; or an electric field
acting on ions). The force acting on a molecule at position
x is then F=-grad ¢, where ¢§(x) is its potential energy. A
molecule with mass m, position x, velocity v thus has energy
E= %—mvl-+¢(x). We neglect the interaction energy of molecules
with .each other and suppose they are enclosed in a container
of volume V, whose walls are rigid and impermeable to both
molecules and heat., But Boltzmann was not completely ignorant
about how the molecules are distributed, because he knew that
however they move, the total number N of molecules present can-
not change, and the total energy

N1 2 :
E= ). [—mv +¢(x.)] (A10)
{=1-2 i i
must remain constant. Because of the energy constraint,
evidently, all positions and velocities are not equally likely.

At this point, Boltzmann found it easier to think about
discrete distributions than continuous ones (a kind of previ-
sicn of quentum theory); and so he divided the phase space
(position-momentum space) available to the melecules into
discrete cells. In principle, these could be defined in any
way; but let us think of the k'th cell as being a region Ry
so small that the energy Ei of 2 molecule does not vary ap-
preciably within it; but also so large that it can accommodate
a large number, Ny >> 1, of molecules. The cells {Rg, 1<k<s}
are to fill up the accessible phase space (which because of the
energy constraint has a finite volume} without overlapping.

The problem is then: given N, E, and ¢{x), what 1s the
best prediction we can make of the number of Ny of molecules
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in Ri? In Boltzmann's reasoning at this point, we have the
beginning of the Principle of Maximum Entropy. He asked first:
In how many ways could a given set of occupation numbers Ny
be tealized? The answer is the multinomial coefficient

W) = X Tt ... Ny (Al1)
This particular distribution will have total energy

S :
E = 1;1 N E (A12)
and of course, the Ni are also constrained by

5
N= ) N, . (A13)

k=1 K |

Now any set {Np} of occupation numbers for which E, N agree
with the given information, represents a possible distributicn,
compatible with all that is specified. Out of the millions of
such possible distributicns, which is most likely to be realized?
Boltzmann's answer was that the "most probable" distribution
is the one that can be realized in the greatest number of ways;
i.e., the one that maximizes (All) subject to the comstraints
(A12), (Al3), if the cells are equally large (phase volume).

Since the N are large, we may use the Stirling approxima-
tion for the factorials, whereupon (All) can be written

1)
k
N)log

The mathematical sclution by Lagrange multipliers is straight-
forward, and the result is: the "most probable'" wvalue of Ny
is

5

log W = ~N
BEN

Ny

= (A14)

‘ﬁk = -Z(N—B) exp ["‘BEk} (Al15)
where
2(B) = 121 exp [—BEk] (A16)

and the parameter B is to be chosen so that the energy con-
straint (Al2) is satisfied.

This simple result contains a great deal of physical in-
formation. Let us choose a particular set of cells Ry as
follows. Divide up the coordinate space V and the velecity
space into cells X,, Yy respectively, such that the potential

and kinetic energies ¢(x), %wnvz do not vary appreciably within
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them, and take Ry=X; & Yy. Then, writing Ny =Ngp»
Boltzmann's prediction of the number of molecules in X
irrespective of their velocity, is from (Al5)

N = % ﬁab = A(8) exp(-B9,} " (A17)

where the normalization constant A(B) is determined from

YNa =N. This is the famous Boltzmann distribution law. Tn

a gravitatiopal field, ¢(x) =mgz, it gives the usual "barometric
formula" for decrease of the atmospheric density with height:

p(z) = p(0) exp{-Bmgz) . (A18)

Now this can be deduced also from the macroscopic equation of
state: for one mole, PV=RT, or P(z) = (RT/mN,)p(z), where Ng
is Avogadro’'s number. But hydrostatic equilibrium requires
-dp/dz = gp(z), which gives on integration, for uniform
temperature, p(z)= p(0) exp(-Ngmgz/RT). Comparing with (A18),
we find the meaning of the parameter: B= (kT)~', where T is
the Kelvin temperature and k = R/N, is Beltzmann's constant.

We can, equally well, sum (Al5) over the space cells X, and
find the predicted number of molecules with velocity in the
cell Yy, irrespective of their position in space; but a far
more Iinteresting result is contained already in (A15) without
this summation. Let us ask, instead; What fraction of the
molecules in the space cell X, are predicted to have velocity
in the cell Y,? This is, from (Al5) and (Al7),

£, = N, /N = B(8) exp(-fuv?/2) (420)

b ab’ a

This is, of course, just the Maxwellian velocity distribution
law; but with the new and at first sight astonishing feature
that it is independent of position in space. Even though the
force field is accelerating and decelerating molecules as they
move from one region to another, when they arrive at their new
location they have exactly the same mean square velocity as
when they started! 1If this result is correct (as indeed it
proved to be) it means that a Maxwellian velocity distribution,
once established, is maintained automatically, without any
help from collisions, as the molecules move about in any con-
gervative force field.

From Boltzmann's reasoning, then, we get a.very unexpected
and nontrivial dynamical prediction by an analysis that,
seemingly, ignores the dynamics altogether! This 1s only the
first of many such examples where it appears that we are

"getting something for nothing,” the answer coming too easily
to bellieve. Poincaré, in his essays on "Sclence and Method,"

16
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felt this paradox very keenly, and wondered how by exploiting
our ignorance we can make correct predictions in a few lines
of caleulation, that would be quite impossible to obtain if we
attempted a detailed calculation of the 10%? individual
trajectories.

It requires very deep thought t¢ understand why we are not,
in this argument and others to come, getting something for
nothing. In fact, Boltzmann's argument does take the dynamics
into account, but in a very efficient manmner. Information about
the dynamics entered his equations at two places: (1) the con~
servation of total energy; and (2) the fact that he defined his
cells in terms of phase volume, which is conserved in the
dynamical motion (Liocuville's theorem). The fact that this was
enough to predict the correct spatial and velocity distribution
of the molecules shows that the millions of intricate dynamical
details that were not taken into account, were actually irrele-
vant to the predictions, and would have cancelled out anyway if
he had taken the trouble to calculate them.

Boltzmann's reasoning was super—efficient; far more so than
he ever realized. Whether by luck or inspiration, he put into
his equations only the dynamical information that happened to
be relevant to the questions he was asking. Obviously, it would
be of sowme importance to discover the secret of how this coxze
about, and to understand it so well that we can exploit it in
other problems.

If we can learnm how to recognize and remove irrelevant in-
formation at the beginning of a problem, we shall be spared
having to carry cut immense calculatiocns, only to discover at
the end that practically everything we calculated was irrele—
vant to the question we were asking. And that is exactly what
we are after by applying Information Theory [actually, the
secret was revealed in my second paper (Jaynes, 1957b); but to
the best of my knowledge no other person has yet noticed it
there; so I will explain it again in Section D below. The
point is that Boltzmann was asking only questions about experi-
mentally reproducible equilibrium properties].

In Boltzmann's "method of the most probable distribution,"”
we have already the essentizl mathematical content of the
Principle of Maximum Entropy. But in spite of the conventional
name, it did not really involve probability. Beltzmann was not
trying to calculate a probability distribution; he was estimating
some physically real occupation numbers Ny,'by a criterion
(value of W) that counts the number of real physical possibili-
ties; a definite nuwber that has nothing to do with anybody's
state of knowledge. The transition from this to our present
more abstract Principle of Maximum Entropy, although mathemat-
ically trivial, was so difficult conceptually that it required
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almost ancther Century to bring about. 1In fact, this required
three more steps and even today the development of irreversible
Statistical Mechanics is being held up as much by conceptual
difficulties as by mathematical ones.

Enter Gibbs. Curicusly, the ideas that we associate today with
the name of Gibbs were stated briefly in an early work of Boltz-
mann (1871); but were not pursued as Boltzmann became occupied
with his more specialized H-theorem. Further development of
the general theory was therefore left to Gibbs (1902).- The
Boltzmann argument just given will not work when the molecules
have appreciable interactions, since then the total erergy can-
not be written in the additive form (AlZ2). So we go to a much
more abstract picture. Whereas the preceding argument was
applied to an actually existing large collection of molecules,
we now let the entire macroscopic system of interest become, in
effect, a "molecule," and imagine a large collection of copies
of it.

This idea, and even the term ''phase" to stand for the col-
lection of all coordinates and momenta, appears also in a work
of Maxwell (1876). Therefore, when Gibbs adopted this notion,
which he called an "ensemble,' it was not, as is apparently
thought by those who use the term "Gibbs ensemble," an innova-
tion on his part. He used ensemble language rather as a con-
cession to an already established custom. The idea became as-
sociated later with the von Mises "Kollektiv'" but was actually
much older, dating back to Venn (1866); and Fechner's book
Kollektivmasslehre appeared in 1897.

It is important for our purposes to apprec1ate this little
historical fact and to note that, far from having invented the
notion of an ensemble, Gibbs himself (leo¢ cit., p. 17) de-
emphasized its importance. We can detect a hint of cynicism
in his words when he states: "It is in fact customary in the
discussion of probabilities to describe anything which is im-
perfectly known as something taken at random from a great number
of things which are completely described.'" He continues that,
if we prefer to aveid any reference to an easemble of systems,
we may recognize that we are merely talking about ''the proba-
bility that the phase of a system falls within certain limits
at a certain time ——-."

In other words, even in 1902 it was customary te talk about
a probability as if it were a frequency; even if It is ay
frequency only in an imaginary ad hoc collection invented just
for that purpose, Of course, any probability whatsoever can be
thought of in this way if one wishes to; but Gibbs recognized
that in fact we are only describing our imperfect knowledge
about 2 single system.
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The reason it 1s important to appreciate. this is that we
then understand Gibbs' later treatment of several topics, one
0f which had been thought to be a serious omission on his part.
If we are describing only a state of knowledge about 2 single
system, then clearly there can be nothing physically real about
frequencies in the ensemble; and 1t makes no sense to ask,
"which ensemble is the correct one?" 1In other words: different
ensembles are not in 1:1 correspondence with different physical
situations; they correspend only to different states of knowledge
about a single physical situation. Gibbs understood this
clearly; and that, I suggest, is the reason why he does not
say a word about ergodic theorems, or hypotheses, but instead
gives a totally different reason for his choice of the canonical
ensenbles.

Technical details of Gibbs' work will be deferred to Sec. D
below, where we generalize his algorithm. Suffice it to say
here that Gibbs introduces his canonical ensemble, and works
out its properties, without explaining why he chooses that
particular distribution. Only in Chap. XII, after its proper-
ties——including its maximum entropy property—--have been set
forth, does he note that the distribution with the minimum
expectation of log p (i.e., maximum entropy} for a prescribed
distribution of the counstants of the motion has certain desirable
properties. In fact, this criterion suffices to generate all
the ensembles-—canonical, grand canonical, microcanonical, and
rotational--discussed by Gibbs.

This is, clearly, just a generalized form of the Principle of
Indifference. The possibility of a different justification in
the frequency sense, via ergodic theorems, had been discussed
by Maxwell, Boltzmann, and others for some thirty years; as
noted in more detail before (Jaynes, 1967) if Gibbs thought
that any such further justification was needed, it is certainly
curious that he neglected to mention it.

After Gibbs' work, however, the frequency view of probability
took such abscolute control over mens' minds that the ensemble
became something physically rezl, to the extent that the fol-
lowing phraseclogy appears. Thermal equilibrium is defined as
the situation where the system is "in & canonical distribution.
Assignment of uniform prior probabilities was considered to be
not a mere description of a state of knowledge, but a basic
postulate of physical fact, justified by the agreement of our
predictions with experiment.

In my student days this was the kind of language always used,
although it seemed to me absurd; the individual system is not
"in a distribution," it is in a state. The experlments, more-
over, do not verify ""equal a prieri ori probabilities' or "random
a priori phases;" they verify only the predicted macroscopic

rt
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equation of state, heat capacity, etc., and the predictions for
these would have been the same for many ensembles, uniform or
nonuniform microscopically. Therefore, the reason for the
success of Statistical Mechanics must be altogether different
from cur having found the "correct' ensemble. '

Intuitively, it must be true that use of the canonical ensem-
ble, while sufficient to predict thermal equilibrium properties,
is very far from necessary; in some sense, "almost every' member
of 2 very wide class of ensembles would all lead to the same
predictions for the particular macroscopic quantities actually
observed, But I did not have any hint as to exactly what that
class is; and needless to say, had not the faintest success in
persuading anyone else of such heretical views.

We stress that, on this matter of the exact status of ensem-
bles, you have to read Gibbs' own words in order to know accu-
rately what his position was. For example, Ter Hzar (1954,

p. 128) tells us that "Gibbs introduced ensembles in order to
use them for statistical considerations rather than to illus-
trate the behavicr of physical systems —--." But Gibbs himself
(loc. cit. p. 1530) says, '-~- our ensembles are chosen to
illustrate the probabilities of events in the real world ---.

It might be thought that such questions are only matters of
personal taste, and a scientist ought to occupy himself with
more serious things. But one's personal taste determines which
research problems he believes to be the important ones in nead
of attention; and the total domination by the frequency view
caused all attention to be directed instead to the aforemen-
tioned "ergodic'" problems; to justify the methods of Statistical
Mechanics by proving from the dynamic equations of motion that
the canonical ensemble correctly represents the frequencies
with which, over a long time, an individual system coupled to
a heat bath, finds itself in wvarious states.

This problem metamorphosed from the original conception of
Boltzmann and Maxwell that the phase point of an isolated
(system + heat bath) ultimately passes through every state
compatible with the total energy, to the statement that the
time average of =zny phase function f(p,q) for a single system
is equal to the ensemble average of f; and this statement in
turn was reduced (by von Neumann and Birkhoff in the 1930's)
to the condition of metriec transitivity {i.e., the full
phase space shall have no subspace of positive measure that is
invariant under the motion). But here things become extremely
complicated, and there is little further progress. For example,
even if one proves that in a certain sense "almost every' con-
tinuous flow is metrically transitive, one would still have to
prove that the particular flows generated by a Hamiltonian are
not exceptions.

L
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Such a proof certainly cannot be given in generality, since
counter-examples are known. One such is worth noting: in the
writer's "Neoclassical Theory” of electrodynamics (Jaynes, 1973)
we write a complete classical Hamiltonian system of equations
for an atom (represented as a set of harmonic oscillators)
interacting with light. But we find [loc. cit. Eq. (52)] that
not only is the total energy a constant of the motion, the
quantity Enwn/vn is conserved, where W,, Vv, are the energy and
frequency of the n'th normal mode of oscillation of the atom.

Setting this new constant of the motion equal to Planck's
constant h, we have a classical derivation of the E=hv law
usually associated with quantum theory! Indeed, quantum theory
simply takes this as a basic empirically justified postulate;
and never makes any attempt to explain why such a relation
exists. In Neoclassical Theory it is explained as a consequence
of a new uniform integral of the motion, of a type never suspected
in classical Statistical Mechanics. Because of it, for example,
there is no Licuville theorem in the "action shell" subspace of
states actually accessible to the system, and statistical proper-
ties of the motion are qualitatively different from these of the
usual classical Statistical Mechanics. But all this emerges
from 2z simple, innocent~looking classical Hamiltenian, involvirg
only harmonic oscillators with a particular coupling law (linear
in the field oscillators, bilinear im the atom escillators).
Having seen this example, who can be sure that the same thing
is not happening more generally?

This was recognized by Truesdell (1960) in a work that I
recommend as by far the clearest exposition, carried to the
most far-reaching physical results, of any discussion of ergodic
theory. He comes up against, "-—— an old problem, one of the
ugliest which the student of statistical mechanics must face:
What can be said about the integrals of a dynamical system?"
The answer is, "Practically nothing.” 1In view of such simple
counter-examples as that provided by Neoclassical theory, con-
fident statements to the effect that real systems are almost
certainly ergodic, seem like so much whistling in the dark.
~ Nevertheless, ergedic theory considered as a topic in its
own right, does contain some important results. Unlike some
others, Truesdell does not confuse the issue by trying to mix
up probability notions and dynamical ones. Instead, he states
unequivocally that his purpose is to calculate time averages.
This is a definite, well posed dynamical problem having nothing
to do with any probability considerations; and ‘Truesdell pro-
ceeds to show, in greater depth than any other writer known to
me, exactly what implications the Birkhoff theorem has for this
question. Since we cannot prove, and in view of counter-
examples have no valid reason to expect, that the flow is
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metrically transitive over the entire phase space S, the original
hopes of Boltzmann and Maxwell must remain unrealized; but in
return for this we get something far more valuable, which just
misses being noticed. _

The flow will be metrically transitive on some (unknown)
sub-space S5' determined by the (unknown) uniform integrals of
the motion; and the time average of any phase function f{p,q)
will, by the Birkheff theorem, be equal to its phase space,
average over that subspace. Furthermore, the fraction of time
that the system spends in any particular region sin $' is equal
to the ratio of phase volumes: d(s)/o(S8').

These are just the properties that Boltzmann and Maxwell
wanted; but they apply only to some subspace S' which cannot
be known until we have determined all the uniform integrals
of the motion. That is the purely dynamical theorem; and I
think that if today we could resurrect Maxwell and tell it to
him, his reaction would be: "Of course, that is obviously
right and it is just what I was trying to say. The trouble
was that I was groping for words, because in my day we did not
have the mathematical vocabulary, arising out of measure theory
and the theory of transformation groups, that is needed to state
it precisely."

That more valuable result is tantalizingly close when
Truesdell considers '=-- the idea that however many integrals
2 system has, generally we shall not know the walue of any but
the energy, so we should assign equal a priori probability teo
the possible values of the rest, which amcunts to disregarding
the rest of them. Now an idea of this sert, by itself, is
just unsound.”" It is indeed unsound, in the context of Truesdell's
purpose to calculate correct time averages from the dynamics;:
for those time averages must in general depend on all the
integrals of the motion, whether or not we happen to know about
them.

The point that he just fails to see is that if, nevertheless,
we only have the courage to go ahead and do the calculation he
rejects as unsound, we can then compare its results with ex-
perimental time averages. If they disagree, then we have
obtained experimental evidence of the existence of new integrals
of the motion, and the nature of the deviation gives a clue as

to what they may be. So, if our calculation should indeed prove
to be "unsound " the result would be far more valuable to physics
than a "successful" calculation! ¥

Te all this, however, one proviso must be added Even if one
could prove tran51t1v1ty for the entire phase space, this result
would not explain the success of equilibrium statistical me-
chanics, for reasons expounded in great detail before (Jaynes,
1967). These theorems apply only to time averages over enormous
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(strictly, infinite) time; and an average over a finite time T
will approach its limiting value for T-« only if T is so long
that the phase point of the system has explored a ""representa-
tive sample" of the accessible phase volume. But the very
existence of time-dependent irreversible processes shows that
the "representative sampling time" must be very long compared
to the time in which our measurements are made. So the equality
of phase space averages with infinite time averages fails, on
two counts, to explain the equality of canonical ensemble
averages and experimental values. We can conclude only that
the "ergodic" attempts to justify Gibbs' statistical mechanics
foundered not only on impossibly difficult technical preblems
of integrals of the motion; but also on a basic logical defect
arising from the impossibly long averaging times.

Enter Shannon. It was the work of Claude Shannon (12948} on
Information Theory which showed us the way out of this dilenma.
Like all major advances, it had many precursors, whose full
significance could be seen only later. One finds them not only
in the work ¢f Boltzmann and Gibbs just noted, but also in that
of G. N. Lewis, L. Szilard, J. von Neumann, and W. Elsasser, to
mention only the most obvious examples.

Shannon's articles appeared just at the time when I was taking
a course in Statistical Mechanics from Professor Eugene Wigner;
and my mind was occupied with the difficulties, which he always
took care to stress, faced by the theory at that time; the
short sketch above notes only a few of them. Reading Shannon
filled me with the same admiration that all readers felt, for
the beauty and importance of the material; but alsc with a
growing uneasiness about its meaning. In a communication
process, the message Mj is assigned probability pj, and the
entropy H=-Ip; log p; is a measure of "information." But
whose information? It seems at first that if information is
being "sent," it must be possessed by the sender. But the
sender knows perfectly well which message he wants to send;
what could it possibly mean to speak of the probability that
he will send message M;?

We take a step in the direction of making sense out of this
if we suppose that H measures, not the information of the sender,
but the ignorance of the receiver, that is removed by recelpt
of the message. TIndeed, many subsequent commentators appear
to adopt this interpretation. Shannon, however; proceeds to
use H to determine the channel capacity € required to transmit
the message at a given rate. But whether a channel can or
caanot transmit message M in time T obviously depends only on
properties of the message and the chamnel--and not at all on
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the prior ignorance of the receiver! So this interpretation
will not work either.

Agonizing over this, I was driven to conclude that the dif-
ferent messages considered must be the set of all those that
will, or might be, sent over the channel during its useful
life; and therefore Shannon's H measures the degree of ignorance
of the communication engineer when he designs the technical
equipment in the channel. Such a viewpeint would, to say the
least, seem natural to an engineer employed by the Bell Tele-
phone Laboratories—-yet it is curious that nowhere does Shannon
see fit to tell the reader explicitly whose state of knowledge
he is considering, although the whele content of the theory
depends crucially on this.

It is the obvious importance of Shannon's theorems that
first commands our attention and respect; but as I realized
only later, it was just his vagueness on these conceptual
questions--allowing every reader to interpret the work in his
own way--that made Shannon's writings, like those of Niels
Bohr, so eminently suited to become the Scriptures of a new
Religion, as they so quickly did in both cases.

0f course, we do not for 2 moment suggest that Shannoen was
deliberately vague; indeed, on other matters- few writers have
achieved such clarity and precision. Rather, I think, a
certain amount of caution was forced on him by a growing para-
dox that Information Theory generates within the milieu of
probability theory as it was then conceived——a paradox only
vaguely sensed by those who had been taught only the strict
frequency definition of probability, and clearly visible only
to those familiar with the work of Jeffreys and Cox. What do
the probabilities p; mean? Do they stand for the frequencies
with which the different messages are sent?

Think, for a moment, about the last telegram you sent or
received. If the Western Union Company remains in business
for another ten thousand years, how many times do you think
it will be asked to transmit that identical message?

The situation here is not really different from that in
statistical mechanics, where our first jeb is to assign proba-
bilities to the various possible quantum states of a system.
In both cases the number of possibilities is so great that a
time millions of times the age of the universe would not suf-
fice to realize all of them. But it seems to be much easier
to thihk clearly about messages than quantum states. Here at
last, it seemed to me, was an example where the absurdity of
a frequency interpretation is so obvious that no cne can fail
to see it; but the usefulness of the probability approach was
equally clear. The probabilities assigned to individual mes-
sages are not measurable frequencies; they are only a means of
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describing a state of knowledge; just the original sense in
which Laplace and Jeffreys interpreted a probability distribu-
tion.

The reason for the vagueness is then apparent; to a person
who has been trained to think of probability only in the sense
of frequency in a random experiment {(as was surely the case for
anyone educated at M.I.T. in the 1930's!), the idea that a
probability distribution represents 2 mere state of knowledge
is strictly taboo. A probability distribution would not be’
"objective" unless it represents a real physical situation.
The question: "Whose information are we describing?" doesn't
make sense, because the notion of a probability for 2 person
with a certain state of knowledge just doesn't exist. So
Shannon is forced to do the most careful egg-walking, speaking
of a probability as if it were a real, measurable frequency,
while using it in a way that shows clearly that it is not.

For example, Shannon considers the entropies Hy calculated
from single letter frequencies, Hy from digram frequencies,
H3 from trigram frequencies, etc., as a sequence of successive
approximations to the 'true"” entropy. of the source, which is
H=1lim H, for n—+«. Application of his theorems presupposes
that all this is known. But suppase we try to determine the
"true" ten-gram frequencies of English text. The number of
different ten-grams is about 1.4x10'; to determine them all
to something like five percent accuracy, we should need a
sample of English text containing about 10'7 ten-grams. That
is thousands of times greater than all the English text in the
Library of Congress, and indeed much greater than all the
English text recorded since the invention of printing.

If we had overcome that difficulty, and could measure those
ten-gram frequencies (by scanning the entire text) at the rate
of 1000 per second, it would require about 4400 years to take
the data; and to record it on paper at a rate of 1000 entries
per sheet, would require a stack of paper about 7000 miles
high. Evidently, then, we are destined never to know the
"true' entropy of the English language; and in the application
of Shannon's theorems to real communication systems we shall
have to accept some compromise.

Now, our story reaches its c¢limax. Shannon discusses the
problem of enceding a message, say English text, into binary
digits in the most efficient way. The essential step is to
assign probabilities to each of the conceivable messages in
a way which incorporates the prior knowledge we have about the
structure of English. Having this probability assignment, a
construction found independently by Shannon and R. M. Fano
yvields the encoding rules which minimize the expected trans-
mission time of a message.
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But, as noted, we shall never know the "true' probabilities
of English messages; and so Shannon suggests the principle by
which we may construct the distribution pj actually used for
applications: '-=~ we may choose to use some of our statis-
tical knowledge of English in constructing a code, but not all
of it. TIn such a case we consider the source with the maximum
entropy subject to the statistical conditions we wish to retain.

The entropy of this source determines the channel capacity ,
which is necessary and sufficient.” [emphasis mine].

Shannon does not follow up this suggestion with the equations,
but turns at this point to other matters. But if you start to
solve this problem of maximizing the entropy subject to certain
constraints, you will soon discover that you are writing dowm
some very familiar equations. The probability distribution
over messages is just the Gibbs canonical distribution with
certain parameters. Teo find the values ¢f the parameters, you
must evaluate a certain partition function, etc.

Here was a problem of statistical inference~~or what is the
same thing, statistical decision theory--in which we are to
decide on the best way of encoding a message, making use of
certain partial information about the message. The solution
turns out to be mathematically -identical with the Gibbs forma-
lism of statistical mechanics, which physicists had been trying,
long and unsuccessfully, to justify in an entirely different
way.

The conclusion, it seemed to me, was inescapable. We can
have our justification for the rules of statistical mechanics,
in a way that 1s incomparably simpler than anyone had thought
possible, if we are willing to pay the price. The price is
simply that we must loosen the connections between probability
and frequency, by returning to the original viewpoint of
Bernoulll and Laplace. The only new feature is that their
Principle of Insufficient Reason is now generalized to the
Principle of Maximum Entropy. Once this is accepted, the
general formalism of statistical mechanics——partition functions,
grand canonical ensemble, laws of thermodynamics, fluctuation
laws--can be derived in a few lines without wasting a minute
on ergodic theory. The pedagogical implications are clear.

The price we have paid for this simplification is that we
cannot interpret the canonical distribution as giving the
frequencies with which a system goes into the various states.

But nobody had ever justified or needed that interpretation
anyway. In recognizing that the canonical distribution repre-
sents only our state of knowledge when we have certain partial
information derived from macroscepic measurements, we are not
losing anything we had before, but only frankly admitting the
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situation that has always exlsted; and indeed, which Gibbs had
recognized. '

On the other hand, what we have gained by this change in
interpretation is far more than we bargained for. Even if one
had been completely successful in proving ergodic theorems, and
had continued to ignore the difficulty about length of time
over which the averages have t¢ be taken, this still would have
given a justification for the methods of Gibbs only in the
equilibrium case. But the principle of maximum entropy, being
entirely independent of the equations of motion, contains no
such restriction. If one grants that it represents a valid
method of reasoning at all, one must grant that it gives us
also the long-hoped-for general formalism for treatment of
Irreversible processes!

The last statement above breaks into mnew ground, and claims

for statistical mechanics based on Information Theory, a far
wider range of validity and applicability than was ever claimed
for conventional statistical mechanics. Just for that reason,
the issue is no longer cne of mere phileosophical preference
for one viewpoint or ancother; the issue is now one of definite
mathematical fact. For the assertion just made can be put to
the test by carrying out specific calculations, and will prove
to be either right or wrong.

Some Personal Recollectiouns. All this was clear to me by 1951;
nevertheless, no attempt at publication was made for another
five years. There were technical problems of extending the
formalisw to continuous distributions and the density matrix,
that were not sclved for many years; but the reason for the
initial delay was quite different.

In the Summer of 1951, Professor G. Uhlenbeck gave hls
famous course on Statistical Mechanics at Stanford, and fol-
lowing the lectures I had many conversations with him, over
lunch, about the foundations of the theory and current progress
on it. I had expected, naively, that he would be enthusiastic
about Shannon's work, and as eager as 1 to exploit these ideas
for Statistical Mechanics. Instead, he seemed to think that
the basic prohlems were, in principle, sclved by the then
recent work of Bogoliubov and van Hove (which seemed to me
fi1ling in details, but not touching at all on the real basic
problems)-—and adamantly rejected all suggestions that there
is gzny connection between entropy and information.

His initial reaction to my remarks was exactly like my
initial reaction to Shannon's: "Whose information?" His
position, which I never succeeded in shaking one ilota, was:
"Entropy cannot be a measure of 'amount of ignorance,' because
different people have different amounts of ignorance; entropy
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is a definite physical quantity that can be measured in the
laboratory with thermometers and calorimeters.’ Alrhough the
answer to this was clear in my own mind, I was unable, at the
time, to convey that answer to him. In trying to explain a
new idea I was, like Maxwell, groping for words because the
way of thinking and habits of language then current had to be
broken before I could express a different way of thinking.

Today, it seems trivially easy to answer Professor Uhlen-
beck’s objection as follows: ''Certainly, different people -
have different amounts of ignorance. The entropy of a thermo-
dynamic system is a measure of the degree of ignorance of a
person whose sole knowledge about its microstate consists of
the values of the macreoscopic quantities Xj which define its
thermodynamic state. This is a completely 'objective' quantity,
in the sense that it is a function only of the Xj, and does not
depend on anybody's personality. There is then no reascn why
it cannot be measured in the laboratory.”

It was my total inability to communicate this argument to
Professor Uhlenbeck that caused me to spend another five years
thinking over these matters, trying to write down my thoughts
more clearly and explicitly, and making sure in my own mind
that I could answer all the objections that Uhlenbeck and
others had raised. Finally, in the Summer of 1956 I collected
this into two papers, sending the first off to the Physical
Review on August 29.

Now another irony takes place; it is left to the Reader to
guess to whom the Editor (S. Goudsmit) sent it for refereeing.
That Unknown Referee's comments (now framed on my office wall
as an encouragement to young men who today have to fight for
new ldeas against an Establishment that wants only new mathe-
matics) opine that the work is clearly written, but since it
expounds only a certain philosophy of interpretation and has
no application whatsoever in Physics, it is out of place in a
Physics journal. But a second referee thought differently,
and so the papers were accepted after zll, appearing in 1957.
Within a vear there were over 2000 requests for reprints.

Needless to say, my own understanding of the technieal
problems continued to evolve for many years afterward. A
schoolboy, having just learned the rules of arithmetic, does
not see immediately how to apply them to the extraction of
cube roots, although he has in his grasp all the principles
needed for this.  Similarly, I did not see how to set down the
explicit equations for irreversible processes bBecause 1 simply
could not believe that the solution to such a complicated
problem could be as simple as the Maximum Entropy Principle
was giving; and spend six more years (1956-1%62) trying to
mutilate the principle by grafting new and more complicated
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rococo embellishments onte it. In my Brandeis lectures of 1962,
tongue and pen somehow managed to state the right rule [Eq.
(50)); but the inner mind did not fully assent; it still seemed
like getting something for nothing.

The final breakthrough came in the Christmas wvacation period
of 1962 when, after all else had failed, I finally had the
courage to sit down and work out all the details of the calcu-
lations that result from using only the Maximum Entropy Prin-
ciple; and nothing else. Within three days the new formalism
was in hand, masses of the known correct results of Onsager,
Wiener, Kirkwood, Callen, Kubo, Mori, MacLenncn, were pouring
out as special cases, just as fast as I could write them down;
and it was clear that this was it. Twe months later, my
students were the first to have assigned homework problems to
predict irreversible processes by solving Wiener~Hopf integral
equations. .

As it turned out, no more principles were needed beyond
those stated in my first paper; one has merely to take them
absolutely literally and apply them, putting into the equations
the macroscopic information that one does, . in fact, have about
a nonequilibrium state; and all else fellows imevitably.

From this the reader will understand why I have considerable
sympathy for those who today have difficulty in accepting the’
Principle of Maximum Entropy, because (1) the results seem to
come too easily to believe; and {2) it seems at first glance as
1f the dynamics has been ignored. 1In fact, I struggled for
eleven years with exactly the same feeling, before seeing
¢learly not only why, but also in detail how the formalism is
able to function so efficiently.

The point is that we are not ignoring the dynamics, and we
are not getting something for nothing, because we are asking
of the formalism only scme extremely simple questions; we are
asking only for predictions of experimentally reproducibie
things; and for these all circumstances that are not under the
experimenter's control must, of necessity, be irrelevant.

If certain macroscopically controlled conditions are found,
in the laboratory, to be sufficient to determine a reproducible
outcome, then it must follow that information about thosemacro-
scopic conditions tells us everything about the microscopic
state that is relevant for theoretical prediction of that out-
come. It may seem at first "umsound" to assign equal a priori
probabilities to all other details, as the Maximum Entropy ¥
Principle does; but in fact we are assigning udiform probabili-
ties enly to details that are irrelevant for questions about
reproducible phenomena.

Yo assume further information by putting some additional
fine~grained structure into our ensembles would, in all
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probability, not lead to incorrect predictions; it would only
force us to calculate intricate details that would, in the end,
cancel cut of our final predictions. Solutieon by the Maximum
Entropy Principle is so unbelievably simple just because it
eliminates those irrelevant details right at the beginning of
the calculation by averaging over them.

To discover this argument requires only that one think, very
carefully, about why Boltzmann's method of the most probable
distribution was able to predict the correct spatial and veloc-
ity distribution of the molecules; and this could have been
done at any time in the past 100 years. Whether or not one
wishes to recognize it, this——and not ergodic properties—-is
the real reason why all Statistical Mechanics works. But once
the argument is understood, it is clear that it applies equally
well whether the macroscopic state is equilibrium or non- :
equilibrium, and whether the observed phenomenon is- reversihle
or irreversible.

I hope that this historical account will also convey to the
reader that the Principle of Maximum Entropy, although a power-—
ful tool, is hardly a radical innovation. Its philoscophy was
clearly foreshadowed by Laplace and Jeffreys; its mathematics
by Boltzmann and Gibbs.

B. Present Features and Applicatioms.

Let us set down, for reference, a bit of the basic Maximum
Entropy formalism for the finite discrete case, putting off
generalizations until theyv are needed. There are n different
possibilities, which would be distinguished adequately by a
single index (i=1,2,...,n). HNevertheless we find it helpful,
both for notation and for the applications we have in mind, to
introduce in addition a real variable x, which can take on the
discrete values (xj, 1§:ifr0, defined in any way and not neces-
gsarily all distinct. If we have certain information I about x,
the problem is to represent this by a probability distribution
{Pi} which has maximum entropy while agreeing with I.

Clearly, such a preoblem cannot be well-posed for arbitrary
information; T must be such that, given any proposed distribu~
tion {p{}, we can determine unambiguously whether I does or
does not agree with {pj}. Such information will be called
testable. For example, consider:

I1 = "It Is certain that tanh x < 0.7."
I, = "There is at least a 90% probability that tanh x < 0.7."
I, = "The mean value of tanh x 1s 0.675."
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I, = "The mean value of tanh x is probably less thanr 0.7."

"There is some reason to believe that tanh x = 0.675."

I,
>

Statements I, Is, I4 are testable, and may be used as con-
straints in maximizing the entropy. I, and I5, although
clearly relevant to inference about X, are too vague to be
testable, and we have at present no formal principle by which
such information can be used in a mathematical theory. How-
ever, the fact that our intuitive common sense does make use
of nontestable information suggests that new principles for
this, as yet undiscovered, must exist.

Since n is finite, the entropy has an absclute maximumvalue
log n, and any constraint can only lower this, If we think of
the {pi} as cartesian coordinates of a point P in an n-dimensional
space, P is constrained by pq >0, Zp;j =1 to lie on a domain D
which is a "triangular" segment of an (n-1)-dimensional hyper-
plane. On D the entropy varies continuously, taking en all
values in 0<H<log n and reaching its absolute maximum at the
center, Any testable information will restrict P to some sub-
region D' of D, and clearly the entropy has some least upper
bound H € log n on D'. So the maximum entropy problem must
have a solution if D' is a closed set.

There may be more than one solution: for example, the in-
formarion Ig = "The entropy of the distribution {Pi} is not
greater than log{n-1)}" is clearly testable, and if n> 2 it
ylelds an infinite number of sclutiocns. Furthermore, strictly
speaking, if D' is an open set there may not be any solution,
the upper bound being approached but not actually reached on
D'. Such a case is generated by I = ”pi+—p%‘<n‘%” However,
since we are concerned with physical problems where the dis-
tinction between open and closed sets cannot matter, we would
accept a point on the c¢losure of D' (in this example, on its
boundary)} as a valid solution, although corresponding strictly
only to Ig = ”pf-+p§ < i,

- But these considerations are mathematical niceties that one
has to wmention only because he will be criticized if he does
not. In the real applications that matter, we have not yet
found a case which does not have a unique solutieca.

In principle, every different kind of testable information
will generate a different kind of mathematical problem. But
therg is one important class of problems for which the general
solution was given once and for all, by Gibbs. If the con-
straints consist of specifying mean values of certain functions

{£10(x),E0(x), ., £ (%) )4
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Il .
), p, £ 0(x)=TF l1<k<m (B1)
i=1

where {F, }are numbers given in the statement of the problen,
then if © < n, entropy maximization is a standard variational
problem solvable by stationarity using the Lagrange multiplier
technique. It has the formal sclution:

—— l -— -— -—
Py = T exp[ ME ) = e }\mfm(xi)] (32)
where
Il
Z0geeeh) 2 Y emp[-h () = e = A£G (83)

is the partition function and {A,} are the Lagrange multipliers,

which are chosen so as to satisfy the constraints (BLl). This
is the case if

F o= - 2 log 2 l<k<m (B4)
k7T <k<

a set of m simultaneocus equations for m unknowns. The value
of the entropy maximum then attained is, as noted in my
reminiscences, a function only of the given data:

S(F,...F ) = log Z +§ A Fy (B5)

~ and if this function were known, the explicit solution of (B4)
would be

_ _85

Given this distribution, the best prediction we can make (in
the sense of minimizing the expected square of the error) of
any quantity q{x), is then

ii t
<q{x)> = p, 9(x,)
= 001
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and numerous covariance and reciprocity rules are contained in
the identity

<qfk> - <q><fk> ) {B7)

[note the special cases q(x) = fj(x), and j=k]. The functions
fr{x) may contain alsc socme parameters 0y '

a_)

f. = fk(x;al e O

k
(which in physical applications might have the meaning of volume,
magnetic field intensity, angular velocity, etec.}; and we have
an important variational property; 1f we make an arbitrary
small change in all the data of the problem {SFy,d0,}, we may
compare two slightly different maximum-entropy solutions. The
difference in their entropies i1s found, after some calculation,
to be

8s =), Ay 69, | (B8)
k
where
= 8<f > - < > . '
6Qk e 5fk | (B3)
The meaning of this identity has a familiar ring: there is no
such functiom as Q _(F; ... Fgj0q ... &g) because 6Qy is not an

exact differential. Hewever, the Lagrange multiplier Ak is an
Integrating factor such that IA) 6Qy is the exact differential
of a "state function' S5(F; ... Fpi0y -..0g).

I believe that Clausius would recognize here an interesting
echo of his work, although we have only stated some general
rules for plausible reasoning, making no necessary reference to
physics. This is encugh of the bare skeleton of the formalism
to serve as the basis for some examples and discussion.

The Brandeis Dice Problem. First, we illustrate the formalism
by working out the numerical solution to a problem which was
used in the Introduction to my 1562 Brandeis lectures merely as
a qualitarive illustration of the ideas, but has since become a
cause cél®bre as some papers have been written attacking the
Principle of Maximum Entropy on the grounds of this very example.
S50 2 close look at it will take us straight to the heart of sonme
of the most common misconceptions and, I hope, give us some
appreciation of what the Principle of Maximum Entropy dees and
does not (indeed, should not) accomplish for us.
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When a die is tossed, the number of spots up can have any
value 1 in 1< i< 6. Suppose a die has been tossed N times and
we are told only that the average number of spots up was not
3.5 as we might expect from an "honest'" die but 4.5, Given
this information, and nothing else, what probability should
we assign to i spots on the next toss? The Brandeis lectures
started with a gqualitative graphical discussion of this problem,
which showed (or so I thought) how ordinary common sense forces
us to a result with the qualitative properties of the maximum-
entropy solution. )

Let us see what solution the Principle of Maximum Entropy
gives for this problem, if we interpret the data as imposing
the mean wvalue constraint

6
P py = 45 . (B10)
=1
The partition function is
Z() = Y e ™ = x1-0 " a-xb (B11)
i |

where x = e . The constraint (BlO)-then becomes

1 - ?x6 + Sx?

3
- =T log Z = = 4.5
3 (1-%) (1-x)
or
3% = 5x° +9x -7 =10 . (B12)

By computer, the desired root of this is x = 1.44925, which
ylelds A = -0.37105, Z = 26.66365, log Z = 3.28330. The
maximum-entropy probabilities are p4i = Z—lxl, or

‘[pl.. 'Pé} ={0.05435, 0.07877, 0.11416, 0.16545, 023977, 0.34749}
(B13)

From (B5), the entropy of this distribution is
§ = 1.61358 natural units {B14)

as compared to the maximum of log.6 = 1.79176, corresponding
to no constraints and & uniform distribution.

Now, what does this result mean? 1In the first place, it is
a distribution {py, 1<r<6} on a space of only six points;
the sample space S of a single trial. Therefore, our result
as it stands is only a mean of describing a state of knowledge
about the outcome of a single trial. It represents a state of
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knowledge in which one has only (1) the enumeration of the six
possibilities; and (2) the mean value constraint (B10); and no
other information. The distribution is "maximally noncommittal’
with respect to all other matters; it is as uniform (by the
criterion of the Shannon information measure) as it can get
without violating the given constraint,

Any probability' distribution over some sample space S
enables us to make statements about (i.e., assign probabilities
to) propositions or events defined within that space. It does
not——and by its very nature cannot--make statements about any
event lying outside that space. Therefore, our maximum-
entropy distribution does not, and cannot, make any statement
about frequencies.

Anything one says about a frequency in n tosseg 1s a state-
ment about an event in the n-fold extension space SP=S®&® S @
... ® S of n tosses, containing 6% points (and of course, in
any higher space which has SU as a subspace).

It may be common practice to jump to the conclusion that a
probability in one space is the same as a frequency in a dif-
ferent space; and indeed, the level of many expositions is
such that the distinction is not recognized at all. But the
first thing ome has to learn about using the Principle of
Maximum Entropy in real problems is that the mathematical
rules of probability theory must be obeyed strictly; all con-—
ceptual sloppiness of this sort must be reccgnized and expunged.

There is, indeed, a connection between a probability pi in
space S and a frequency g4 in S%; but we are justified inusing
only those connections which are deducible from the mathematical
rules Q£ probability theory. As we shall see in connection
with fluctuation theory, some common attempts to identify
probability and frequency actually stand in conflict with the
riles of probability thecory.

Probability and Freguency. To derive the simplest and most
general connection, the sample space S® of n trials may be
labeled by {ry,x2,...,rgq}, where 1< 7k <6, and 1y is the
number of spots up on the k'th toss. The most general proba-
bility assignment on SP is a set of non-negative real aumbers
P(rj...ry) such that

_ P(g, ... 1) =1 . . (B15)

In any given sequence {rj...r;} of results, the frequency with
which i spots occurs is
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-1 2
g (ry---x ) = n kgl JCHPES T (B16)
This can take on (n+l) discrete values, and 1ts expectation is
6 3 '
l 1
<g>=_z Z - . Z P(r s+ s L )(S(r ’i)
1 TS or =1 r_=1 1 n k
1 n
=1 :
= 2[p, (0 + 2, () + v+ p_(1)] (317)

where p, (i) is the probability of getting i spots on the k'th
toss, regardless of what happens in other tosses. The expected
frequency of an event is always equal to its average proba-
bility over the different trials.

Many experiments fall into the category of exchangeable
sequences; i.e., it is clear that the underlying "mechanism"
of the experiment, although unknown, is not changing from one
trial to another. The probability of any particular sequence
of results {rl...rn} should then depend only on how many times

a particular outcome r =i happened; and neot on which particular

trials. Then the probability distribution P{rk} is invariant

under permutations of the labels k. In this case, the proba-

bility of i spots is the same at each trial: p,(i)=p,(1) =
- -y = 1 2

e = pn(l) =Py and (B1l7) becomes

<g4> =Py - (B18)
In an exchangeable sequence, the probability of an event at one
trial is not the same as its frequency in many trials; but it
1s numerically equal to the expectation of that frequency; and
this connection holds whatever correlations may exist between
different trials.

The probability is therefore the '""best" estimate of the
frequency, in the sense that it minimizes the expected square
of the error. But the result (Bl8) tells us nothing whatscever
about whether this is a reliable estimate; and indeed nothing
in the space § of a single trial can tell us anything about
the reliability of (B18).

To investigate this, note that by a similar calculation, the
expected product of two frequencies is

n
<g;84> = @ 2 Z Py (1) p{i,m}i,k) (B19)
k,m=1 )
where p(j,mli,k) is the conditional probability that the m'th
trial gives the result j, given that the k'th trial had the
outcome i. Of course, if m=k we have simply p(jk|ik) = Gij'
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In an exchangeable sequence p(jm]ik) is independent of m,k
for m # k; and so p (i) p(im|ik) = Pijs the probability of
getting the outcomes 1,j respectively at any two different
tosses. The covariance of gi,gj then reduces to

g 8> ~ <By7<E.> = (pij -pipj) +%[Gij pi~pij], . (B20)
If the probabilities are not independent, Pij # PiPjs this -
deoes not go to zero for large n.

Let us examine the case i=j more closely. Writing pi{ =
0§ Pis O3 is the conditional probability that, having obtained
the result i on one tess, we shall get it at some other spec-—
ified toss. The variance of gy is, from (B20), dropping the
index i,

2 2 1
<g"> -~ <g>" = pla~-p) + T pl-0a) . (B21)

Two extreme cases of inter-trial correlations are contained in
(B21). TFor complete independence, ¢ =p, the variance reduces
to n"lp(1-p), just the result of the de Moivre-Laplace limit
theorem (A4). 3ut as cauticned before, in any other case the
variance does not tend to zero at all:; there is no "law of
large numbers.”" For complete dependence, =1 (i.e., having
seen the result of one toss, the die is certazin to give the
same result at all others), (B2l) reduces to p(l-p) which
again makes excellent sense; in this case our uncertainty
about the frequency in any number of tosses must be just our
uncertainty about the first toss.

Note that the variance (B21l) becomes zerc for a slight
negative correlation:

- p - 2P
G =P T3 . (B22}
Due to the permutation invariance of P(rj...rp) it is not pos-
sible to have a negative correlation stronger than this; as
n-+e« it is not possible to have any negative correlation in
an exchangeable sequence. This corresponds to the famous de
Finetti (1937) representation theorem; in the literature of
pure mathematics it is called the Hausdorff moment problem.

An almost unbelievably simple proof has just been found by
Heath and Sudderth (1978).

To summarize; given any probability assigmment P{ry...rp)
on the space SI', we can determine the probability distriburion
Wi(t) for the frequency g; to take on any of its possible
values gy = {(t/n), 0<t<mn. The (mean) * (standard deviationm)
over this distribution then provide a reasonable statement of
our ""best" estimate of g; and its accuracy. In the case of
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an exchangeable sequence, this estimate is

. l—Ri%
(gi)est =Dy ‘1/1’1(1“1’1) [Ri +— J (B23)

where Ry = (ai-pi)/(l-—pi) is a measure of the inter-trial
correlation, ranging from R=0 for complete independence to
R=1 for complete dependence. ‘

Evidently, then, to suppose that a probability assignment
at a single trial is also an assertion about a frequency in
many trials in the sense of the Bernoulli and de Meivre-Laplace
l1imit theorems, is in general unjustified unless (1) the suc-
cessive trials form an exchangeable sequence, and (2) the
correlation of different trials is strictly zero. However,
there are other kinds of connections between probability and
frequency; and maximum-entropy distributions have an exact
and close relation to frequencies after all, as we shall see
presently. ”

Relation to Bayes' Theorem. To prepare us to deal with some
objections to the maximum—entropy scolution (B1l3) we turn dback
to the basic product and sum rules of probability theory (AS8),
(A9) derived by Cox from requirements of consistency. Just
as any argument of deductive logic can be resclved ultimately
into many syllogisms, so any calculation of inductive logic
{i.e., probability theory) is reducible to many applications
of these rules.

We stress that these rules make no reference to frequencies;
or to any random experiment. The numbers p(A[B) are simply a
convenient numerical scale on which to represent degrees of
plausibility. As noted at the beginning of this work, it is
the problem of determining initial numerical values by logical
analysis of the prior information in more general cases than
solved by Bernoulli and Laplace, that underlies our study.

Furthermore, in neither the statement nor the derivation of
these rules is there any reference to the notion of a sample
space. In a formally qualitative sense, therefore, they may
be applied to any propositions A, B, C,... with unambiguous
meanings. Their complete qualitative correspondence with
ordinary common sense was demonstrated in exhaustive detail
by Polya (1954).

But in quantitative applications we find at once thatmerely
defining two propositions, A, B is not sufficient to determine
any numerical value for p(A|B). This numerical value depends
not only on A, B, but also on which alternative propositions
A', A", etc. are to be considered if A should be false; and
the problem is mathematically indeterminate until those alter-
natives are fully specified. 1In other words, we must define
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our '"sample space" or "hypothesis space' before we have any
mathematically well—-posed problem.

In statistical applications (parameter estimation, hypothesis
testing), the most important constructive rule is just the
statement that the product rule is consistent; i.e., p(AB|C)
is symmetric in A and B, so p(A|BC)p(B|C)==p(B|AC)p(A|C). 1f
p(B|C) # 0, we thus obtain )

(Bl AC)
p(B[C)

in which we may call C the prior information, B the condi-
tioning information. In typical applications, C represents
the general background knowledge or assumptions used to
formulate the problem, B is the new data of some experiment,
and A is some hypothesis being tested. For example, in the
Millikan oil-drop experiment, we might take A as the hypothesis:
"the electronic charge lies in the interval 4.802<e< 4.803,"
while C represents the general assumed known laws of electro-
statics and viscous hydrodynamics and the results of previcus
measurements, while B stands for the new data belng used to
find a revised "best" value of e. Equation {B24) then shows
how the prior probability p(A|C) is changed to the posterior
probability p(A|BC) as a result of acquiring the new informa-
tion B.

In this kind of application, p(B|AC) is a "direct" or
"sampling' probability, since we reason in the directicn of
the causal influence, from an assumed cause A to a presumed
observable result B: and p(A|BC) is an "inverse" probability,
in which we reason from an observed result B to an assumed
cause A, On comparing with (A7) we see that (B24) is a more
general form of Laplace’s rule, in which we need not have an
exhaustive set of possible causes. Therefore, since (A7) is
always called "Bayes' theorem," we may as well apply the sanme
name to {(B24).

At the risk--or rather the certainty--of belaboring it, we
stress again that we are concernmed here with inductive rea-
soning of any kind, not necessarily related to random experi-
ments or any repetitive process. On the other hand, nothing
prevents us from applying the theory to a repetitive situation
(i.e., n tosses of a die); and propesiticns about frequencies
g4 are then just as legirimate pieces of data or objects of
inquiry as any other privpositions. Various kinds of counection
between probability and frequency then appear, as mathematical
consequences of (A8), (A9). We have just seen one of them.

But now, could we have solved the Brandeis dice problem by
applying Bayes' theorem instead of maximum entropy? If so,
how do the results compare? Friedman and Shimony (1271);

p(A|BC) = p(A]Q) (B24)
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(hereafter denoted FS) claimed to exhibit an inconsistency in
the Principle of Maximum Entropy (hereafter denoted PME) by

an argument which introduced a proposition dg, so ill-defined
that they tried to use it as (1) a constraint in PME, (2) a
conditioning statement in Bayes' theorem; and (3) an hypothesis
whose posterior probability is calculated. -Therefore, let us
note the following. '

If 2 statement d referring to a probability distributiom in
space S is testable (for example, if it specifies a mean value
<f> for some function f{i) defined on S}, then it can be used
as a constraint in PME; but it cannot be used as a conditioning
statement in Bayes' theorem because it is not a statement about
any event in S or any other space.

Conversely, a gtatement D about an event in the space so
(for example, an observed frequency) can be used as a condi-~
tioning statement in applying Bayes' theorem, whereupon it
yields a posterior distribution on S% which may be contracted
to a marginal distribution on S; but D cannot be used as 2
constraint in applying PME in space 5, because it is not a
statement about any event in S, or about any probability dis-
tribution over $; i.e., it is mot testable information in S.

At this point, informed students of statistical mechanics
will be astonished at the suggestion that there is any incon-
sistency between application of PME in space S and of Bayes'
theorem in ST, since the former vields acanonical distribution,
while the latter is just the Darwin-Fowler method, criginally
introduced as a rigorous way of justifying the canonical dis-
tribution! The mathematical fact shown by this well-known
calculation (Schrodinger, 1948) is that, whether we use
maximum entropy in space 'S with a constraint fixing an average
<f> over a probability distribution, or apply Bayes' theorem
in 80 with a conditioning statement fixing a numerically equal
average f over sample values, we obtain for large n identical
distributions in the space 8. The result generalizes at once
to the case of several simultaneous mean-value constraints.

This not only illustrates—-contrary to the claims of ¥FS-—-—
the consistency of PME with the other principles of probability
theory, but it shows what a powerful tool PME is; i.e., how
much simpler and more convenient mathematically it is to use
PME in statistical calculations if the distribution on S is
what we are seeking. PME leads us directly to the same final
result, without any need to go into athigher space ST and carry
out passage to the limit n—+« by saddle-point integration.

0f course, it is as true in probability theory as in caz-
pentry that introduction of more powerful tools brings with
it the cbligation to exercise a higher level of understanding
and judgment in using them. If you give a carpenter a fancy
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new power tool, he may use 1t to turn out meore preclse work in
greater quantity; or he may just cut off his thumb with it.
It depends on the carpenter.

The FS article led to considerably more discussion (see the
references collected with the FS one) in which severed thumbs
proiiferated like hydras; but the level of confusion about the
points already noted is such that it would be futile to attémpt
any analysis of the F$ arguments.

FS suggest that a possible way of reselving all this is "to
deny that the probability of dg can be well-defined. Of course
it cannot be; however, to understand the situation we need no
"deep and systematic analysis of the concept of reasonable
degree of belief." We need only raise our standards of exposi-
tion to the same level that is required in any other applica-
tion of probability theory; i.e., we must define our proposi-
tions and sample spaces with enough precision to make a
determinate mathematical problem.

There is a more serious difficulty in trying to reply to
these criticisms. If FS disiike the maximum—entropy solution
(B13) to this problem strongly enough to write three articles
attacking it, then it would seem to follew that they prefer a
different solution. But what different solution? One cannot
form any clear idea of what is really troubling them, because
in all these publications F§ give no hint as to -how, in their
view, a more acceptable solution ought to differ from (B13).

The Rowlinson Criticism. 1In sharp contrast to the FScriticisms
is that of J. S. Rowlinson (1970), who considers the same dice
problem but does offer an altermative solution. For this
reason, it is easy to give a precise quantitative reply to his
criticism.

He starts with the all too familiar line: '"Most scientists
would say that the probability of an event is (or represents)
the frequency with which it occurs in z given situation.” Like-
wise, a critic of Columbus could have written (after he had
returned from his first voyage): "Most geographers would say
that the earth is flat.™

Clarification of the centuries-old confusion about proba-
bility and frequency will not be achieved by taking votes;
much less by gquoting the philosophical writings of Leslie Ellis
(1842). Rather, we must examine the mathematical facts con-
cerning the rules of probability theory and the different sample
spaces in which probabilities and frequencies are defined. We
have seen, in the discussion following (B14) above, that anyone
who glibly supposes that z probability in one space can be
equated to a frequency in another, is assuming something which
is not only not generally deducible from the principles of
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probability theory; it may stand in conflict with those prin-
ciples.

There 1s no stranger experience than seeing printed crit-
icisms which accuse one of saying the exact opposite of what
he has said, explicitly and repeatedly. Thus my bewilderment
at Rowlinson's statement that I reject "the methods used by
Gibbs to establish the rules of statistical mechanics." I
believe I can lay some claim to being the foremost current
advocate and defender of Gibbs' methods! Anyone who takes
the trouble to read Gibbs will see that, far from rejecting
Gibbs' methods, I have adopted them enthusiastically and
(thanks to the deeper understanding from Shannon) extended
their range of applicatiom.

One of the major unsolved riddles of probability theory is:
how to explain to ancther person exactly what is the problem
being solved? It is well established that merely stating this
in words does not suffice; repeatedly, starting with Laplace,
writers have given the correct solution to a problem, only to
have it attacked on the grounds that it is not the solution to
some entirely different problem. This is at least the tenth
time it has happened to me. A4s I tried t¢ stress, the maximum-
entropy solution (B13) describes the state of knowledge in
which we are given the enumeration of the six possibilities,
the mean value <i> = 4.5, and nothing else.  But Rowlinson
proceeds to introduce modelswith an urn containing seven white
and three black balls {or a population of urns with varying
contents) from which one makes various numbers of random draws
with replacement. One expects that different problems will
have different sclutioms.

In Rowlinson's Urn model, we perform Bernoulli trials five
times, with constant probability of success p=0.7. Then the
numbers s of successes is in 0£s<5, and the expected number
is <s>=5%0.7=3.5. Setting <i>EZs+1, we have 1<1i<§,
<i> = 4.5, the conditions stated in my dice problem. Thus he
offers as a counter-proposal the binomial distributiom

v _ ] s
Py |1~

These nuwbers are

. ¢S A 1<i<6 . (B25)

{p}...pL} = {0.00243,0.02835, 0.1323, 0.3087, 0.36015, 0.16807% (B26)

and they yield an entropy $'=1.413615, 0.2 unit lower than
that of (B13). This lower entropy indicates that the urn
model puts further constraints on the solution beyond that
used in (B1l3). We see that these consist in the extreme values
(1=1,6) receiving less probability than before (only one of

42



Where do we Stand on Maximum Entropy?

25 = 32 possible outcomes can lead to i = 1, while ten of them
yield £ = 3, etc.).

Now if we knew that the experiment consisted of drawing
five times from an urn with just the composition specified by
Rowlinson, the result (B25) would indeed be the correct solu-
tion. But by what right does one assume this elaborate model
structure when it is not given in the statement of the problem?
One could, with equal right, assume any one of 2 hundred other
specific models, leading to a hundred other counter-proposals.
But it is just the point of the maximum—-entropy principle that
it achieves "objectivity" of our inferences, in the sense that
we base our predictions only on the information that we do, in
fact, have; and carefully avoid introducing any such gratuitous
assumptions neot warranted by our data. Any such assunption is
far more likely to impose false constraints than te happen, by
luek, onto an unknown correct one (which would be like guessing
the combination to z safe).

At this point, Rowlinson says, ''Those who favour the automatic
use of the principle of maximum entropy would observe that the
entropy of f[our Eq. (825}], 1.4136, is smaller than that of
[B13], and so say that in proposing [B25) as a solution, 'in-
formation' has been assumed for which ther3151u33ust1r1catlon
We do indeed say this, although Rowlinson simply rejects it out
of hand without giving a reason. So to sustain cur claim, let
us calculate explicitly just how much Rowlinson's solution
assumes without justification.

To clarify what is meant by "assuming informatiom," suppose
that an economist, Mr. A, is tryimng to forecast future price
trends for some commodity. The condition of next week'smarket
cannot be known with certainty, because it depends on intentions
to buy or sell hidden in the minds of many different individuals.
Evidently, a rational method of forecasting must somehow take
account of all these unknown possibilities. Suppose that Mr.
A's data are found to be equally compatible with 100 different
possibilities. If he arbitrarily picked out 10 of these which
happened to suit his fancy, and based his forecast only on them,
ignoring the other 90, we should certainly consider that Mr. A
was guilty of an egregious case of assuming information without
justification. Our present problem is similar in concept, but
quite different in numerical values.

We have stressed that, fundamentally, the maximum—entropy
solution (B13) describes only a state of knowledge about a
single trial, and is not an assertion about frequencies. But
Rowlinson, as noted, also rejects this distinction and wants
to judge the issue on the grounds of frequencies. Very well;
let us now bring out the frequency connection that a maximum-
entropy distribution does, after all, have (and which, incidentally,

n
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was pointed out in my Brandeis lectures, from which Rowlinson
got this dice problem).

In N tosses, a set of observed frequencies {g;} = {N;/N}
{called g to avoid collision with previous notation) can be
tealized in

N!
= ! ¥ 1
(Ngl) - (Ngz) L S (Ng6) - ‘
different ways. As we noted from Boltzmamnn's work, Eq. (Al4),

the Stirling approximation to the factorials yields an asymp-
totic formula

W (B27)

log W A NS (328)
where

6
S = - £§£ g; log g (B29)

1s the entropy of the observed frequency distribution. Given
two different sets of frequencies {g;} and {g;'} the ratio:
(number of ways gi can be realized)/(number of ways g;' can be
realized) is given by an asymptotic formula

ﬁgrmkexp[ﬂ(s—s')]{l +%+ O(H_?)} (B30)

where

A= 7;( (s, /8" | (B31)
iy 1

B =15 %(gi. gi) (B32)

are independent of N, and represent corrections from the higher
terms in the Stirling azpproximation. We write them down only
to allay any doubts about the accuracy of the numbers to follow.
In all cases considered here it is easily seen that they have
no effect on our conclusions, and only the exponential factor
matters,

Rowlinson mentions an experiment involving 20,000 throws of
a die, to which we shall return later; but in ghe present com-
parison this leads to numbers beyond human comprehension. To
keep the results more modest, let us assume only N= 1000 throws.
If we take {gj} as the maximum-entropy distribution (Bl3) and
{g1'} as Rowlinson's solution (B26), we find A = 0.2, B = 50,
S~5' = 0.200; and thus, with N = 1000,
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Fo= 152 x 1089 . | (B34)
Both distributions agree with the datum <i>=4,5; but for every
way in which Rowlinson's distribution can be realized, there
are over 1086 ways in which the maximum entropy distribution
can be realized (the age of the universe is less than 10l
seconds). It appears that information was indeed "assumed for
which there is no justification.” -

This example should help to give us a proper respect for
just what we are accomplishing when we maximize entropy. It
shows the magnitude of the indiscretion we commit if we accept
a distribution whose entropy is 0.2 unit less than the maximum
value compatible with our data. In this example, te accept any
distribution whose entropy is as much as 0.005 below the maxi-
mum value, would be to ignore over 99 percent of all possible
"ways in which the average <i>= 4.5 could be realized.

For reasons unexplained, Rowlinson seizes upon the particular
value p1 = 0.05435 from the maximum-entropy solution (B13), and
asks: '"But what basis is there for trusting in this last
number?" but fails to ask the same question about his own very
~diffexent result pi = (.00243. Since it is so seldom that one
is able to give a quantitative reply to a rhetorical question,
we should not pass up this opportunity. -

Answer to the Rhetorical Question. Let us, as before, count up
the number of possibilities compatible with the given data. 1Im
the original problem we were to find {pj...py} s0 as to maximize

=-Lpy log p; subject to the constraints Lp; =1, <i>=7Zipj, a
_ specified numerical value. If now we impose the additional
constraint that pj is specified, we can define conditional
probabilities

v oA i=2,3,...n (B35)
Pi l—Pl > E R B
with entropy
n
B' =- ) p/logp - (B36)

i=2

These quantities are related by Shannon's basic functional
equation

H(Pl' . 'Pn) = H(Pl’l "'Pl) + (l = Pl)H| (Pz. o pn‘) (BBT)

and so, maximizing H with p. held fixed is equivalent to maxi-
mizing H'. We have the reduced maximum entropy problem:
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maximize H' subject to

2. p) =1 (B38)
=2 _
4 <i>-1
LI T = =
<i> E% 1p. 1+ T-5, . (B39)

The solution proceeds as before, but now the maximum attainable
entropy is a function Hyppx = S(p;,<i>) of the specified value
of p;, as well as <i>. The maximum of S(p,,4.5) is of course
the previous value (Bl4) of 1.61358, attained at the maximum-~
entropy value py=0.053435. Evaluating this also for Rowlinson's
Py, 1 find S(p1,4.5) = 1.55716, lower by 0.05642 units., By
(B30) this means that, in 1000 tosses, for every way in which
Rowlinson's value could be realized, regardless of zll other
frequencies except for the constraint <i> = 4.5, there are
over lDIF_ways in which the maximum—entropy frequency could be
realized.

We may give a more detailed answer: expanding S(pj,4.5)
about its peak, we find that as we depart from 0.05435, the
number of ways in which the frequency glcould be realized drops
off 1ike

exp[-14,200(g, - 0.05435)] (B40)

and so, for example, for 997 of all possible ways in which the
average <i> = 4.5 can be realized, gy lies in the interval
(0.05435 * 0.0153).

This would seem to be an adequate answer to the questiom,
"But what basis is there for trusting in this number?”™ I
stress that the numerical results just given are theorems,
involving only a straightforward counting of the possibilities
allowed by the given data. Therefore they stand independently
of anybody's personal opinions about either dice or probability
theory.

However, it is necessary that we understand very clearly the
meaning of these frequency connections. They concern only the
number of possible ways in which certain frequencies {gi} could
be realized, compatible with our constraints. They do not
assert that the maximum-entropy fregquencies will be observed
in a2 real experiment; indeed, neither the Principle of Maximum
Entropy nor any other principle of probability theory can pre-
dict with certainty what will happen in a real experiment.

The correct statement is rather: the frequency distribution
{gi} with maximum entropy calculated from certain constraints
1s overwhelmingly the most likely one to be observed in a real
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experiment, provided that the physical constraints operative in
the experiment are the same as those assumed in the calcula-
tion.

In our mathematical formalism, a "comstraint™ is some piece
of information that leads us to modify a probability distribu-
tion; in the case of a mean value constraint, by inserting an
exponential factor exp[~Af(x)] with an adjustable Lagrange
multiplier A. It is perhaps not yet clear just what we mean
by "eonstraints' in a physical experiment. Of course, by these
we do not mean the gross constraining linkages by levers,
"cables, and gears of a mechanics textbook, but something more
subtle. 1In our applications, a "physical constraint" is any
physical influence that exerts a systematic tendency--however
slight=-~on the outcome of an experiment. We give some specific
examples of physical constraints in die tessing below.

From the above numbers we can understand the success of the
work of J. C. Keck and R. D. Levine reported here. I am sure
that theilr results must seem like pure magic to those who have
not understood the maximum-entropy formalism. To find a dis-
tribution of populations over 20 molecular energy levels might
seem to require 19 independent pieces of data. But if one
knows, from approximate rate coefficients or from past expe-
rience, which constraints exist {in practice, even if only the
one or two most important ones are taken into account), one can
make quite confident predictions of distributions over many
levels simply by maximizing the entropy.

In fact, most frequency distributions produced in real ex-
periments are maximum-entropy distributions, simply because
these can be realized in so many more ways than can any other,
As N -+ «, the combinatorial factors become sc sharply peaked
at the maximum entropy point that to produce any appreciably
different distribution would require very effective physical
constraints. Any statistically significant departure from a
maximum-entropy prediction then constitutes strong--and if it
persists, conclusive--evidence of the existence of new con-
straints that were nmot taken into account in the calculation.
Thus the maximum~entropy formalism has the further "magical"
property that it provides the most efficient procedure by
which, if unknown constraints exist, they can be discovered.
But this is only an updated version of the process noted in
Section A by which Laplace discovered new systematic effects.

It is, perhaps, sufficiently clear from this how'much a
Physical Chemist has to gain by understanding, rather than
attacking, maximum entropy methods.

But we still have not dealt with the most fundamental mis-
understandings in the Rowlinson article. He turns next te the
shape of the maximum-entropy distribution (B1l3), with another
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rhetorical question: "--- is there anything in the mechanics
of throwing dice which suggests that if a die is not true the
probabilities of scores 1,2,...6, should form the geometrical
progression [our Eq. (B13)]?" He then cites some data of Wolf
on 20,000 throws of a die which gave amn average <i> = 3.5883,
plots the observed frequencies against the maximum-entropy dis-—
tributicn based on that constraint, and concludes that 'depar-
tures from the random value of 1/6 bear no resemblance to those
calculated from the rule of maximum entropy. What is clearly
wrong with the indiscriminate use of this rule, and of the
older rules from which it stems, is that they ignore the physics
of the problem.”

We have here a total, absolute misconception about every point
I have been trying to explain above. If Wolf's data depart
significantly from the maximum-entropy distribution based only
on the constraint <i> = 3.5983, then the proper conclusion is
not that maximum entropy merhods "ignore the physics' but
rather that the maximum entropy method brings out the physics
by showing us that another physical constraint exists beyond
that used in the calculation. Unable to see the new physical
information here revealed, he lashes out blindly against the
principle that has revealed it.

Therefore, let us now give an analysis of Wolf's dice data
showing just what things maximum entropy can give us here, if
we only open our eyes to them.

Wolf's Dice Data. In the period roughly 1850-18%0, the Zurich
astronomer R. Wolf conducted and reported a mass of "random
experiments.” An account is given by Czuber (1%08). Our
present concern is with a particular die (identified as'Weiszer
Worfel" in Czuber's two-way table, loc. cit p. 149) that was
tossed 20,000 times and yielded the aforementioned mean value
<i> = 3,5983. We shall look at all details of the data pres-
ently, but first let us note a few elementary things about
that "ignored" physics.

We all feel intuitively that a perfectly symmetrical die,
fairly tossed, ought to show all faces equally often (but
that statement is really circular, since there is no other way
to define a "fair" method of tossing; so, suppose that by ex-
perimenting on a die known to be true, we have found such a
fair method, and we continue to use it). The uniform frequency
distribution {g; = 1/6, 1<1<6} then represents the nominal ¥
"unconstrained" situation of maximum possible entropy S=1lcg 6.
Any imperfection in the die may then give rise to a "physical
constraint" as we have defined that term. A little physical
common sense can anticipate what these imperfections are likely
to be.
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The most obvious imperfection is that different faces have
different numbers of spots. This affects the center of gravity,
because the weight of ivory removed from a spot is obviously not
(in any die I have seen) compensated by the paint then applied.
Now the numbers of spots on opposite faces add up to seven.
Thus the center of gravity is moved toward the "3" face, away
from "4", by a small distance € corresponding to the one spot
discrepancy. The effect of this must be a slight frequency
difference which is surely, for very small €, proportional to€!

'34 -8y < QE (B4l)

where the coefficient ¢ would be very difficult to calculate,
but could be measured by experiments on dies with known . But
the (2«5) face direction has a discrepancy of three spots, and
(1-6) of five. Therefore, we anticipate the ratios: g

(34 - 83):(35 - 82):(36 = gl) = 1:3:5 . (B42)

But this says only that the spot frequencies vary linearly with
io

_1 .
B, =% + ot fl(l) s 1<1i<6 (B43)
where
f (1) (1 - 3.5 . (B44)

The spot imperfections should then lead to a small linear
skewing favoring the "6." This is the most obvious "physical
constraint,” and it changes the expected number of spots to

<i>=)1 g = 3.5+ 1750 (B4S)

or, to state it more suggestively, the function f (1) acquires
a non—zero expectation

<f,> = i7.5¢e . (B46)

Now, what is the next most obvious imperfection to be ex~
pected? Evidently, it will involve departure from a perfect
cube, the specific kind depending on the manufacturing methods;
but let us consider only the highest gquality die that a
factory would be likely to make. If you were assigned the job
of making a perfect cube of ivory, how would you do it with
equipment likely to be available in a Physics Department shoP
or a small factory?
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I think you would head for the milling machine, and mount
your lump of ivory on a dividing head clamped to the work table
with axis vertical. The first cut would be with an end mill,
making the '"top" face of the die. The construction of the
machine guarantees that this will be accurately plane. Then
you use side cutters to make the four side faces. TFor the
finish cuts you will move the work table only in the direction
of the cut, rotating the dividing head 90° from one face to the
next. The accuracy of the equipment guarantees that you now
have five of the faces of your cube, all very accurately plane
and all angles accurately 90°, the top face accurately square.

But now the trouble begins; to make the final "bottom' face
vyou have to remove the work from its mount, place it upside
down on the table, and go over it with the end mill. Again,
the construction of the machine guarantees that this final
face will be accurately plane and parallel to the "top;' but
it will be practically impossible to adjust the work table
height so o accurately that the final dimension is exactly equal
to the other two. Of course, a skilled artisan n with a great
deal more time and equipment could do better; but this would
run up the cost of manufacture for something that would never
be detected in use. TFor factory production, there would be no
motivation to do better than we have described.

Thus, the most likely geometrical imperfection in a high
quality die is not lack of parallelism or of true 90° angles,
but rather that one dimension will be slightly differeat from
the other two.

- Again, it is clear what kind of effect this will have on
frequencies. Suppose the die comes out slightly "oblate,” the
(1-6) dimension being shorter than the (2-5) and (3-4) by some
small amount 8. TIf the die were otherwise perfect, this would
evidently increase the frequencies gy, g¢ by some small amount
B8, and decrease the other four to keep the sum equal to unity,
where B is another coefficient hard to calculate but measurable.
The result can be stated thus: the function

42, i=1,6 . '
'{-1, 1= 2,3,4,5} (B47)

defined on the sample space, acquires a non-zero expectation

£,(1)

<f5> = 688 _ (B48)

and the frequencies are
1

]

1

1
= g[l + 3RS f3(i)] . | (B49)
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If now both imperfections are present, since the perturba-
tions are so small we can In first approximation just superpose
their effects:

L1 .
31—6{1 + 60 fl(i)][l + 388 f3(1)] . (B50)
But this ishardly different from
1 . . ;
-gi = E—axp[Gae fl(l) + 3RS f3(1)] (B51)

and so a few elementary physical common-sense arguments have
led us to something which begins to look familiar.

If we had done maximum entropy using the constraints (B&6),
(B48), we would find a distribution proportiocnal to exp[- Alf (i)
- A3f43(1}], so that (B51) is a maximum-entropy distrlbutlon
based on those constraints. We see that the Lagrange multiplier
by which any information constraint is coupled into our proba-
bility distribution, is just a measure of the strength of the
physical constraint required to realize a2 numerically equal
frequency distribution:

ll = =pOE (B52)

AB = ~3R§ (B53)
.and if our die has no other imperfections beyond the two noted,
then it 1s overwhelmingly more likely to produce the distribu-

tion (B51} than any other.

If the cobserved frequencies show any statistlcally signif-
fcant departure from (B51), then we have extracted from the
data evidence of a third imperfection, which probably would
have been totally invisible in the raw data; i.e., only when
we have used the maximum entropy principle to "subtract off"
the effect of the stronger influences, can we hope to detect
a weaker one.

Qur program for the maximumentropy analysis of the die--or
any other random experiment--is now defined except for the final
step; how we decide whether a discrepancy is '"statistically
significant?"

The reader is cautioned that in all this discussion relating
to Rowlinson we are being careless about distinctions between
probability and frequency, because Rowlinson himselft makes no
distinction between them, and trying to correct this at every
point quickly became tedious. The following analysis should
be restated much more carefully to bring out the fact that it
is only a very special case, although to the "frequentist" it
appears to be the general case.



Jaynes

We have some "null hypothesis" H, about ocur die, that leads
us to assign the probabilities {Pl"°?6}° We obtain data from
N tosses, in which the observed frequencies are {gi==Ni/N,
1<1<6}. If the numbers {gl...ge} are sufficiently close to
{py...pg} we shall say the fir is satisfactory; the null
hypothesis is consistent with our data, and so there is no
need, as far as this experiment indicates, to seek a better
hypothesis. But how close is "close?" How do we measure the
"distance" between the two distributions; and how large may
that distance be before we begin to doubt the null hypothesis?

Early in this Century, Karl Pearscn invented an intuitive,
ad hoc procedure, called the Chi-squared test, to deal with
this problem, which has been since widely adopted. Here we
calculate the quantity

6 (s,-p,)°
=5 ) — & - (B54)
i=1 P
and if it is greater than a certain "ecritical value" given in
Tables, we reject the null hypothesis. In the present case
{six categories,. five "degrees of freedom" after normalization),
the critical wvalue at the conventional 5% significance level is

X2 = 11.07 (B55)

which means that, if the null hypothesis is true there is only
a 5% chance of seeing a value greater than xé. The critical
value is independent of N, because for a frequentist who be-
lieves that p; is an assertion of a2 limiting frequency in the
sense of the de Moivre-Laplace limit theorem (A4), if Hy is
true, then the deviations should fall off as |gi-pi|==O(N
A more careful approach shows that this holds only if our model
is an exchangeable sequence with zero correlations; and even in
this case the ¥ criterion of "closeness" has no theoretical
justification (i.e., no unigueness property) in the basic prin-
¢iples of probability theory.

In fact, for the case of independent exchangeable trials,
there is a criterion with a direct information-theory justifica-
tion (Kullback, 1959) in the "minimum discrimination information
statistic”

6
¥ E N _{g}_ g; log (gi/pi] (B56)

and the numerical wvalue of ¥, rather than XZ, will lead us to
inferences directly justifiable by Bayes' theorem. If the de-
viations(gi-pi) are large, these criteria can be very different.

-
.
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However, by a lucky mathematical accident, if the devia-
tions are small (as we already know them to be for our dice
problem) an expansion in powers of {gi pl) {in the logarithm,
write g!p 1+ (g-p)}/g+ (g-p)?%/gp] yields

=5 % + o) (B57)

the neglected terms falling off as indicated, provided that
[gi Pi[ ( ‘4). The result is that in our problem, from a
pragmatic standpeint 1t doesn't matter whether we use x or Y.
So I shall apply the ¥? test to Wolf's data, because it is so
much more familiar to most people.

Wolf's empirical frequencies {gi} are given in the second
column of Table 1. As a first orientation, let us test them
against the null hypothesis {H(':,:pi = 1/6, 1<i<6}of 2a miform
die. We find the result

xﬁ = 271 (B58)

over twenty times the eritical value (B55). The hypothesis
H, is decisively rejected.

Next, let us follow Rowlinson by considering a new hypothesis
H] which prescribes the maximum-entropy sclution based onbblf'
average <i>» = 3.5983, or,

<fl(i)> = 0.0983 . ~ (B59)

This will give us a distribution pj vexp[-Af;(i)]. From the
partition function (Bll) with this new datum we find A ={.03373
and the probabilities given in the third column of Table 1.
The fourth column gives the differences 4 =gi~-p4, while in
the £ifth we list the partial contributions to Chi-squared:

_ 2
_ 8~ Py)
Ci = 20,000 P,
which add up to the wvalue
o= 199.4 . (B60)

The fit is improved only slightly; and Hl is also decisively
rejected.
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Tzble 1. OCne Constraint

i By Py By €1
1 0.16230 0.15294 + 0.003%4 11.46
2 0.17245 0.15818 + 0.0143 25.75
3 0.14485 0.16361 - {.0188 53.02
4 0.14205 0.16922 - 0.0272 87.25
5 0.18175 0.17502 + 0.0067 5.18
6 0.19660 0.18103 + 0.0156 26.78

199.43

At this point, Rowlinson wants to reject not only Hy, but
also the whele principle of maximum entropy. But now I stress
still another time what the principle is really telling us: a
statistically significant deviation is evidence of a new physical
constraint; and the nature of the deviation gives us a clue as
to what that constraint is. After subtracting off, by maximum
entropy, the deviation attributable to the first ceonstraint,
the nature of the most important remaining one is revealed.
Indeed, from a glance at the deviations Ay =gy - p; the answer
leaps out at us; Wolf's die was slightly "prolate," the (3-4)
dimension being greater than the (2-3) and (1-6) ones. So,
instead of (B47), the new constraint is

41, i=1,2,56
{-2 1= 3.4 (B61)

and Wolf's data yield the result

i

£,(1)

<f2> = 0.1393 . ' (B62)
S0 now let us subtract off, by maximum entropy, the effect of
both of these constraints; and thus discover whether Wolf's
die had a third imperfection.

With the two constraints (B59), (B62) we have twec Lagrange
multipliers and a partition function
' 6

Z(hy o)) = igl exp[ -3 £, () = Ay, (1))
= paenarxtetyd (B63)

L
where x = exp(-A ), y = exp(- l ). The maximum-entropy proba-
bilities are then

2-3 3-3 4 5} (B64)

{pltooPG}:"z_l x‘-sxz y{l'x,x y ) Y ’x !x
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Writing out the constraint equations (B4) and eliminating y
from them, we find that x is determined by -

(6Fl - 4F, - ll)x5 + (6Fl - 4F, -~ 5)2:4 + (6F1 + 4F2 + 5)x

2 2

+ (6F, + 4F, + 11) = 0 (B65)
or, with Wolf's numerical values (B59), (862),

5.4837%° + 2.4837x" - 3.0735% - 6.0735 = 0 (B66)

This has only one real root, at x=1.032233, from which we have
A1 = -0.0317244, y = 1.074415, Ay = ~0.0717764. The new maximum-
entropy probabilities are given in Table 2, which contains the
same information as Table 1, but for the new hypothesis Hj.

. Table 2. Two Constraints

1 84 Py &y €y

1 0.16230 0.16433 - 0.0002  0.502
2 0.17245 0.16963 + 0.0028  0.938
3 0.14485 0.14117 +0.0037  1.919
4 0.14205 0.14573 ~ 0.0037 - 1.859
5 0.18175 0.18656 - 0.0048  2.480
6 0.19660 0.19258 + 0.0040  1.678

9.375

We see that the second constraint has greatly improved the
fit. Chi-squared has been reduced to

xg - 9.375 . (BET)

This 1s less than the critical value 11.07, so there is now no
statistically significant evidence for any further imperfections
i.e., if the given p; were the "exact™ values, it is reasonably
likely that the distribution g4 would deviate from p{ by the
observed amount, by chance alone. Or, to put it in a way
perhaps more appropriate to this problem, if the die were
tossed another 20,000 times, we would not expect the frequencies
g4 to be repeated exactly; the new frequencies g;, might rea-
sonably be expected to deviate from the first set g; by about
as much as the distributions g4s pj differ.

That this is reasonable can be seen directly without calcu-
lating Chi-squared. For if the result i 1s obtained ny times
in N tosses, we might expect this to fluctuate in successive
repetitions of the whole experiment by about +/_— Thus the
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observed frequencies g; = nj/N should fluctuate by about

Agy = i/ﬁ/ﬂ; for g4 = 1}6, N= 20,000, this gives Agyq = 0.0029.
But this 1s just of the order of the observed deviations 4j.
Therefore, it would be futile to search the {Aj} of Table 2
for a third imperfection. Not only does their distribution
faill to suggest any simple hypothesis; if the die were tossed
another 20,000 times, in all probability the new af would be
entirely different. With our two-parameter hypothesis E, we
are down "in the noise" of random variations, and any further
systematic influences are too small to be seen unless we go up
to 2 million tosses, by which time the die will be changed any-
way by wear. _

A technical point might be raised by Statisticians: "You
have estimated two parameters Aj,As from the data; therefore
vou should use the test for three degrees of freedom rather
than five." This reduction is appropriate if the parameters
are chosen by the criterion of minimizing xz. That is, if we
choose them for the express purpose of making xz small and
still fail to de so, it does not speak well for the hypothesis
and a penalty is in order. But our parameters were chosen by
a criterion that took no note of ¥?; and therefore the proper
question is only; ''How well does the result fit the data?"
and not: ‘'"How did you £ind the parameters?”" Had we chosen
our parameters to minimize xz, we would have found a still
lower value; but onethat is not relevant to the point being
made here, which is the performance of the maximum entropy
criterion, as advocated long before this die problem was thought
of.

The maximum entropy method with two Lagrange multipliers
thus successfully determines a distribution with five indepen-
dent quantities., The "ensemble" canonical with respect to the
constraints £1(i), £,(i) describing the two imperfections that
common sense leads us to expect in a die, agrees with Wolf's
data about as well as can be hoped for in a statistical problem.

It was stressed above that in this theory the connections
between probability and frequency are loosened and we noted,
in the discussion following (B40), that the connections re-
maining are now theorems rather than ¢conjectures. As we now
see, they are not loosened enough to hamper us in dealing with
real random experiments. If we had been given only the two
constraints (B59), (B62) we could have reproduced, by maximum
entropy, all of Wolf's frequency data.

This is an interesting caricature of the results of Keck and
Levine, and shows again how much our critics would gain by
understanding, rather than attacking, this principle. Far from
"ignoring the physics,” it leads us to concentrate our attentiomn
on the part of the physics that 1s relevant. Success in using
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it does not require that we take into account all dynamical
details; it is enough if we can recognize, whether by common-
sense analysis or by inspection of data, what zre the systematic
influences at work, that represent the ''physical constraints?"
If by any means we can recognize these, maximum entropy then
takes over and supplies the rest of the solution, which does
not depend on dynamical details but only on counting the pos-
sibilities.

In effect, then, by subtracting off the systematic effects

.we reduce the problem to Bernoulli's "equally possible" cases;
the deviations Ay from the canonical distribution that remain
in Table 2 are the same as the deviations from pi=1/6 that we
would expect if the die had no imperfectioms.

Success of our predictions is not guaranteed in advance, as
Rowlinson supposed it should be when he wanted to reject the
entire principle at the stage of Table 1. But this supposition
merely reflects his rejection, at the very outset, of the dis~
tinection between probability and frequency that I keep stressing
1f one is not moved by theoretical arguments for that distinec-—
tion, we now see a pragmatic reason for it. The probabilities
p4{ In Table 1 are an entirely correct description of our state
of knowledge about a single toss, when we know about only the
constraint f3(i). It is a theorem that they are also numeri-
cally equal to the frequencies which could happen in the greatest
number of ways if no other physical constraint existed. But
our probabilities will agree with measured frequencies only
when we have recognized and put into our equations the con-
straints representing all the systematic influences at work in
the real experiment.

This, I submit, is exactly as it should be in a statistical
theory; at no point are we ever justified ian claiming that our
predictions must be right; only that, in order to make any
better ones we should need more information than was given.

It is when a theory purports to do more than this (by failing
to recognize the distinction between probability and frequency)
that it may be charged with promising us something for nothing.

Since the fit is now satisfactory, the above values of A4,
A2 give us the numerical values of the systematic influences in
Wolf's experiment: from (B52), {(B53) we have

ae = M:(,ill? = 0.0053 , (B68)
gs = 178 L g gy | (569)

So, if today some enterprising person at Monte Carlo or Las
Vegas will undertake to measure for us the coefficients o, 8,
then we can determine--100 years after the fact—-just how far
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{(in terms of its nominal dimensions) the center of gravity of
Wolf's die was displaced (presumably by excavation of the
spots), and how much longer it was in the (3-4) direction than
in the (2-5) or (1-6). We can also certify that it had no
other significant imperfections (at least, none that affected
its frequencies). Note, however, that a, B are not, strictly
speaking, physical constants only of the diej; a little further
common-sense reasoning makes it clear that they must depend
alsc on how the die was tossed; for example, tossing it with

a large angular momentum about a (3-4) axis will decrease the
effect of the f,;(i) constraint, while if it spins about the
(1-6) axis the effect of f5(i) will be less; and with a (2-5)
spin axis both constraints will be weakened.

Indeed, as soon as the die is unsymmetrical, all sorts of
physical conditions that were irrelevant for a perfectly sym-
metrical one, become relevant., The frequencies will surely
depend not only on its center of gravity but also on all the
second moments of its mass distribution, the sharpness of its
edges, the smoothness, elasticity, and coefficient of friction
-of the table, etc.

However, we conjecture that o, B depend very little on these
factors within the small range of conditions usually emploved
(i.e., small angular momentum in tossing, etc.); and suspect
that in that range the coefficient o is already well known to
those who deal with loaded dice,

T really must thank Rowlinson for giving us (albeit ininten-
tionally) such a magnificent test case by which the nature and
power of the Principle of Maximum Entropy can be demonstrated,
in a context entirely removed from the conceptual problems of
quantum theory. And indeed, all the criticisms he made were
richly deserved; for he was not, after all, criticizing the
Principle of Maximum Entropy; only a gross misunderstanding of
it. Rowlinson's criticisms were, however, taken up and extended
by Lindhard (1974); in view of the long commentary above we may
leave it as an exercise for the reader todealwith his arguments.

The Constraint Rule., There is a further point of logic about
our use of maximum entropy that has troubled some who are able
to see the distinction between probability and frequency. In
imposing the mean-value constraint (B1) we are simply appro-
priating a sample average obtained from N measurements that
ylelded £5 on the j'th observation:
N
=_1

Faf=gy ) £

i=1
and equating it to a probabillity average

{B70)
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<f> = Z Py f(x) . ' (B71)
i=1

Is there not an element of arbitrariness about this? A cynic
might say that after all these exhortations about the distinc-
tion between probability and frequency, we proceed to confuse
them after all, by using the word “average' in two quite dif-
ferent senses.

Our rule can be justified in more than one way; in Section
D below we argue in terms of what it means to say that certain
information is "contained" in a probability distribution. Let
us ask now whether the constraint rule (Bl) is consistent with,
or derivable from, the usual principles of Bayesian inference.

If we decide to use paximum entropy based on expectations of
certain specified functions {fy(x)...fL(x)}, then we know in
advance that our final distribution will have the mathematical
form

p(x IH) Ezjziiji—y exp[ A £ (x.) cae - k fm(xiﬂ (B72)

and nothing prevents us from thinking of this as deflnlng a
class of sampling distributions parameterized by the Lagrange
multipliers Ay, the parameter space consisting of all values
of {A1...Ag} which lead to normalizable distributions (B72).
Choosing a specific distribution from this class is then
equivalent to making an estimate of the parameters Ag. But
parameter estimation is a standard problem of statistical in-
ference.

The class C of hypothesis being considered is thus spec1fle¢
any particular cheice of the {A1...Ay} may be regarded as
defining a partieular hypothesis HeC. However, the class C
does not determine any particular choice of the functions
{f (x),...,£ (x)}. For, if A is any nonsingular (mxm) matrix,
we can carry "out a linear transformation

Z A, £ (x) = Ao ) (B73)

k=1 KK 3';1 3

where

A; E};, A Akj (B74a)

£5G) 2L K Dy £ (B74D)
k

and the class of distributlons (B72) can be written equally
well as
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1
*
2(a] ...

P(xilﬁ) = )_*] exp{-?x;‘_ fz(xi) - e. - ?\; f:(xi)]f . (B75)
m

As the {A*... 2*} vary over their range, we generate exactly
the same %amilymof probability distributions as (B72). The
class C is therefore characteristic, not of any particular
choice of the {fl(x)...fm(x)}, but of the linear manifold M{{)
spanned by them.

If the f; (x) are linearly independent, the manifold M(C) has
dimensionality m. Otherwise, M(C) is of some lower dimension-
ality m' <m; the set of functions {'fl(x)...fm(x)} is then
redundant, in the sense that at least one of them could be
removed without changing the class C. While the presence of
redundant functions f(x) proves te be harmless in that it does:
not affect the actual results of entropy maximization (Jaynes,
1968), it is a nuisance for present purposes [Eq. (B81l) below].
In the following we assume that any redundant functions have
been removed, so that m' =m.

Suppose now that x4y is the result of some random experiment
that has been repeated r times, and we have obtained the data

D= {xl true r. times, x, true r, times, ..., x, true rn.times}.

2 2z
' (B76)

Of course, Irj=r. Out of all hypotheses HeC, which is most
strongly supported by the data D according to the Bayesian, or
likelihoed, criterion? To answer this, choose any particular
hypothesis H, = {ll(o}...lmﬁu)} as the "null hypothesis" and
test it against any other hypothesiinE{kl...km} in C by
Bayes' theorem. The log-likelihood ratioc in favor of H over
Hp is

1

- PODH) _ ¢ @Y
L = log 5(—]3-{%0‘) = igl r, 10g[_pi/1)i ]
= rrlog(Z /z) + ﬁ% [A(O) - A }E‘ } (B77)
|78 &y Vi kiTk
where
—_ 1 L1
£ 3T ) r, £,(x) (878)

is the measured average of fk(x), as found in the experiment.
Cut of all hypotheses in class C the one most strongly supported

by the data D is the one for which the first variation vanishes:
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= ~r Z [ log Z + £, ]67\ . (B79)
But from (B4), this yields just our constraint rule (Bl):
<t >=74% 1<k<mt . (B80)

To show that this yields a true maximum, form the second varia-
tion and note that the covariance matrix

azlog Z
Bljakk
is positive definite almost everywhere on the parameter space
if the fy(x) are linearly independent.

Evidentiy, this result is invariant under the aforementioned
linear transformations (B74); i.e., we shall be led to the same
final distribution satisfying (B80) however the fy(x) are
defined. Therefore, we can state our conclusion as follows:

= <fjfk> - <fj><fk> (B81)

Qut of all hypotheses in class C, the data D support

most strongly that one for which the expectation (B82)
<E(x)> is equal to the measured average f(x) for every
funection f(x) in the linear manifold M(C).

This appears to the writer as a rather complete answer to some
objections that have been vaised to the constraint rule. We
are not, after all, confusing two averages; it is a derivable

consequence of probability theory that we should set them equal.

Maximizing the entropy subject to the constraints (B80), is
equivalent to (i.e., it leads to the same result 2s8) maximizing
the likelihood over the manifold of sampllng distributions
picked out by maximum entropy.

Forney's Question. An interesting question related to this
was put to me by G. David Forney in 1963. The procedure (31)
uses only the numerical value of F, and it seems to make no
difference whether this was a measured average over 20 observa~
tions, or 20,000. Yet there is surely a difference in our state
of knowledge-—our degree of confidence in the accuracy of F—
that depends on N. The maximum-entropy method seems to ignore
this. Shouldh’t our final distribution depend on N as well as
r?

It 1s better to answer a question 15 vears late than not at
all. We can do this on both the philosophical and the technieal

level. Philosophically, we are back to the question: '"What is
the specific problem being solved?”
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In the problem I am considering F is simply a number given
to us In the statement of the problem. Within the context of
that problem, F is exact by definition and it makes ne dif-
ference how it was obtained. It might, for example, be only
the guess of an idiot, and not obtained from any measurement
at all. Nevertheless, that is the number giwven to us, and our
job is not to question it, but to do the best we can with it.

This may seem like an inflexible, cavalier attitude; I am
convinced that nothing short of it can ever remove the ambiguity
.of "What is the problem?" that has plagued probability theory
for two centuries.

Just as Rowlinson was impelled to invent an Urn Model that
was not specified in the statement of the problem, you and I
might, in some cases, feel the urge to put more structure inte
this problem than I have used. Indeed, we demand the right to -
do this. But then, let us recognize that we are considering a
different problem than pure "classical" maximum entropy; and it
becomes a technical gquestion, not a philosophical one, whether
with some new model structure we shall get different results.
Clearly, the answer must be sometimes yes, sometimes no, depen-
ding on the specific model structure assumed. But it turns out
that the answer is '"mo" far more often than one might have
expected. '

Perhaps the first thought that comes to one's mind is that
any uncertainty as to the value of F ought to be zllowed for
by averaging the maximum-entropy distribution p4(F) over the
possible values of F. But the maximum-entropy distribution is,
by coastruction, already as "uncertain" as it can get for the
stated mean value. Any averaging can only result in a distri-
bution with still higher entropy, which will therefore neces-
sarily violate the mean value number given to us. This haxdly
seems to take us in the direction wanted; i.e., we are already
up against the wall from having maximized the entropy in the
first place.

But such averaging was only an ad hoc suggestion; and in
fact the Principle of Maximum Entropy already provides the
proper means by which any testable information can be built
into our probability assignments.. If we wish only to incorporate
information about the accuracy with which £ is known, no new
model structure is needed; the way to do this is to impose:
another constraint. In addition to <f> we may specify <f2>;
or indeed, any number of moments <f%> or more general functions
<h({f)>. Each such constraint will be accompanied by its

Lagrange multiplier A, and the general maximum—entropy formalism

already allows for this.
0f course, whenever information of this kind is available it
should in principle be taken into account in this way. I would
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"hold it to be self-evident' that for any problem of inference,
the ideal toward which we should aim is that all the relevant
information we have ought to be incorporated explicitly into
our equations; while at the same time, "objectivity" requires
that we carefully avoid assuming any information that we do not
possess. The Principle of Maximum Entropy, like Ockham, tells
us to refrain from inventing Urn Models when we have no Urn.

But in practice, some kinds of information prove to be far
more relevant than others, and this extra information about
the accuracy of F usually affects our actual conclusions so
little that it is hardly worth the effort. This is particu-
larly true in statistical mechanics, due to the enormously
high dimensionality of the phase space. Here the effect of
specifying any reasonable accuracy in T is usually completely
negligible. However, there are occasionzl exceptions; and
whenever this extta information does make an appreciable dif-
ference it would, of course, be wrong to ignore it.

C. Speculations for the Future

The field of statistical Inference--in or out of Physies--is so
wide that there is no hope of guessing every area in which new
advances might be made. But we can indicate a few areas where
progress may be predicted rather safely because it is already
underway, with useful xesults being found at a rate proportional
to the amount of effort invested.

Current progress is taking place at several different levels:

I Application of existing techniques to existing problems

II Extension of present theory to new problems.

IIT More powerful mathematical methods.

IV Further development of the basic theory of inference.
However, I shall concentrate on I and IV, because II is so
enveloped in fog that nothing can be seen clearly, and III seems
to be rather stagnant except for development of new specialized
computer techniques, which I am not competent even to describe,
much less predict.

There are important current areas that seem rather desperately
in need of the same kind of house-cleaning that statistical
mechanics has received. What they all have in common is:

(a) long-standing problems, still unsolved after decades of
mathematical efforts, (b) domination by a mental outlook that
leads one to concentrate all attention on the analogs of ergodic
theory. That is, in the belief that a probability is not re-
spectable unless it is also a frequency, one attempts a direct
caleulation of frequencies, or tries to guess the right "sta-
tistical assumption" about frequencies, even though the avail-
able information does not consist of frequencies, but consists
rather of partial knowledge of certain “macroscopic’ parameters
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{ai},and the predictions desired are not frequencies, but
estimates of certain other parameters {6 }. It is not yet
realized that, by looking at the problems this way one is not
making efficient use of probability theory; by restricting its
meaning one is denying himself nearly all its real power.

The real problem is not to determine frequencies, but to
describe one's state of knowledge by a probability distribu-
tion. If one does this correctly, he will find that whatever
frequency connections are relevant will appear automatically,
not as "statistical assumptions' but as mathematical conse-
quences of probability theory.

Exawples are the theory of hydrodynamic turbulence, optical
coherence, quantum field theory, and surprisingly, communication
theory which after thirty years has hardly progressed beyond
the stage of theorems which presuppose all the ten~gram fre-
quencies known in advance.

In early 1978 I attended a Seminar talk by one of the current
experts on turbulence theory. He noted that the basic theory
is in a quandary because "Nobody knows what statistical assump-
tions to make.'" Yet the objectives of turbulence theory are
such things as: given the density, compressibility, and vis-
cosity of a fluid, predict the conditions for omset of turbulence,
the pressure difference required to maintain turbulent flow, the
rate of heat transfer in a turbulent fluid, the distortion and

scattering of sound waves in a turbulent medium, the forces
exerted on a body in the fluid, etc. Even if one's objective
were only to predict some frequencies g. related to turbulence,
statements about the best estimate of gj and the reliability of
that estimate, can only be derived from probabilities that are
not themselves frequencies.

We indicated a little of this above [Equatlons (B15)-(B23)1];
now let us see in a more realistic case why the frequencies
with which various things happen in a time-dependent process
are not the same as their probabilities; but that, nevertheless,
there are always definite connections between probability and
frequency, derivable as consequences of probability theory.

Fluctuations. Consider some physical gquantity £(t). What
follows will generalize at once to field quantities £(x,t);

but to make the present point it is sufficient to consider only
time variations. Therefore, we may think of f(t) as the net
force exerted on an area A by some pressure P(xX,t):

£(L) = JlP(x t) da (C1})

or the net force in the x-direction exerted by an electric field
on a charge distributed with density p(x): f(t)-—fE (x,t)p(x)d*x
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or as the total magnetic flux passing through an area A, or the
nunmber of molecules in an observed volume V; or the difference
in magnetic and electrostatic energy stored in V:

£(t) = g% I (8% (x,t) ~ E%(x,t)]dx (c2)
v

and so on! For any such physical meaning, the following con—
siderations will apply. '

Given any probability distribution (which we henceforth call,
for brevity an ensemble) for f(t), the best prediction of f(t)
that we can make from it--"best" in the sense of minimizing the
expected square of the error--is the ensemble average

<E(t)> = <f> (€3)

which is independent of t if it is an equilibrium ensemble, as
we henceforth assume. But this may or may not be a reliable
prediction of f(t) at any particular time. The mean square
expected deviation from the prediction (€3) is the variance

[a£(t)]% = <g%> - <>? (ca)
again independent of t by our assumption. Only if |Af/<f>] <<l
is the ensemble making a sharp prediction of the measurable
value of f£.

Basically, the quantity Af just defined represents only the
uncertainty of the prediction; i.e., the degree of ignorance
about f expressed by the ensemble. Yet Af is held, almost
universally in the literature of fluctuation theory, to repre-
sent also the measurable RMS fluctuations in f. Clearly, this
is an additional assumption, which might or might not be true;
for, obviously, the mere fact that Iknow f only to *17% accuracy,
is not enough to make it fluctuate by #*1%Z! Therefore, we note
there is logically no room for any postulate that Af is the
measurable RMS fluctuation; whether this is or igs not true is
mathematically determined by the probability distribution. To
understand this we need a more careful analysis of the relation
between <f>, Af, and experimentally measurable quantities.

More generally, we can consider a large class of functionals
of f(t) in some time interval (0< t<T); for example,

o PT T
K[£(t)] = T ‘fdtl...J1 dtﬁ G[f(tl)"°f(tn)] ) (C5}
0 o

with G(fj...f,) a real function. For any such functional, the
ensemble will determine some probability distribution P(K)dK,
and the best prediction we can make by the mean-square-error
criterion is its expectation <K>, What is the necessary and
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sufficient condition that, as T > «, the ensemble predicts a
sharp value for K? It is, as always, that

2 - <K2> - <K>2 + 0 . ' (C6)

(AK)
For any such functional, this condition may be writtenm out
explicitly; let us give two examples that will surprise some
readers.

Ome of the sources of confusion in this field is that the
word "average' is used in several different senses. We try to
avoid this by using different notations for different kinds of
average. For the single system that exists in the laberatery,
the observable average is not the ensemble average <f>, but a
time average, which we denote by a bar (reserving the anguliar
brackets to mean only ensemble averages):

f E‘f f(cydc : (C7)
o

which corresponds to (C53) with G = £(ty). The averaging time

T is left arbitrary for the time being because the results (C8),

(C11), (C18), to be derived next, being exact for any T, then

"provide a great deal of insight that would be leost if we pass

to the limit Loo .soon.

In the state of knowledge represented by the ensemble, the
best prediction of f by the mean square error critericn, is

- 1 T 1 [t

<E> = <—T-I f(r)de > = TJ’ <f>dt
0 0

or, for an equilibrium ensemble,

, (c8)

<f> = <f>

an example of a very general rule of probability theory; an
ensemble average <f> is not the same as a measured value f(t)
or a measured average f; but it is equal to the expectations
of beoth of those quantities.

But (C8), like (C3), tells us mothing about whether the pre-
diction is a reliabie one; to answer this we must again con-
slder the variance

B2 = <(EF-<)> .

1 T T :
”?{ dt1£ at, L<f (£ DE(e,)> = <E(£)><E(E,)>] . (C9)
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Only if [Af/<f>|<< 1 is the ensemble making a sharp prediction
of the measured average f. Now, however, the time averaging
can help us; for Af may become very small compared to Af, if
we average over a long enough time.

Now in an equilibrium ensemble the integrand of (C9) is a
function of (tz-tl) only, and defines the covariance function

¢ ()

<E(E)E(t+T)> - <E(e)><Ef{t+T)>
2

= <F(OE(T)> — <f> (C10)
from which (C9) reduces to a single integral:
@’ =% f - ns(ar . | (c11)

A sufficient (stronger than necessary) condition for Af to tend
to zero is that the integrals

rMT}Tdr ) r¢(r)dr (C12)
o 0

conpverge; aud then the characteristic correlation time

T -1
T = [fm ¢(T}dT] [IWT ¢(T}dTJ (C13)

Q0
is finite, and we have asymptotically,
D% ~ 2 [[m o(r)dT . (C14)

Af then tends to zero like 1//T, and the situation is very much
as if successive samples of the function over non~overlapping
intervals of length T, were independent. However, the slightest
positive correlation, if it persists indefinitely, will prevent
any sharp prediction of f. For, if ¢(T) - ¢(®) > 0, then from
{Cl1) we have

(AE) ~ &) (C15)

and the ensemble can never make a sharp prediction of the
measured average; i.e., any postulate that the ensemble average
equals the time average, violates the mathematical rules of
probability theory. These results correspond to (B23).

Now everything we have said about measurable values of f can
be repeated mutatis mutandis for the measurable fluctuations
8£(t); we need only take a step up the hierarchy of successively
higher order correlations. For, over the observation time T,
the measured mean-square fluctuation in f(t)--i.e., deviation
from the measured mean--is
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662

Mt
]

T =2
j [£¢t) - £]° dt (c16)
o

which corresponds to the choice G = fz(tl)-f(tl)f(tz) in (C5}.
The "best'" prediction we can make of this from the ensemble,
is 1ts expectation, which reduces to

<(6f)2> = (ﬂf)2 + (AE)Z (c18)

as a short calculation using (C4), (Cll) will verify. This is
in itself a very interesting (and I am sure to many surprising)
result, The predicted measurable fluctuation &f is not the
same as the ensemble fluctuation Af unless the ensemble is such,
and the averaging time so long, that Af is negligible compared
to Af.

But (C18) tells us nothing about whether the prediction
<(8£)2%> is a reliable one; to answer this we must, once more,
examine the wvariance

Vo= <(s8)% - <(s5)%2 . (c19)

Unless (C19) is small compared to the square of (C18), the
ensemble is not making any definite prediction of (8f)%. After
some computation we £ind that (Cl9) can be written in the form

1 T T T T
V= T_Z‘J dt]_jI dtzf dtSI dt4 ¢(tl,t2,t3,t4) (C20)
o 0 o 0
where § 1s a four~point correlation function:
#<g e e, - n? + 1H %’ (c21)

which we have written in reduced form, taking advantage of the
symmetry of the domain of integration in (C20).

As we see, the person who supposes that the RMS fluctuation
Af in the ensemble is also the experimentally measurable RMS
fluctuation &f, is inadvertently supposing some rather non-
trivial mathematical properties of that ensemble, which would
seem to require some nontrivial justification! "Yet to the best
of my knowledge, no existing treatment of fluctuation theory
even recognizes tha distinction between 6f and Af.
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Iz almost all discussions of random functions in the existing
literature concerned with physical applications, it is taken
for granted that (C6) holds for all functionals. One can
hardly avoid this 1f ome postulates, with Rowlinson, that
"the probabllity of an event is the frequency with which it
cceurs in a given situation.'" But if it requires the computa-
tion (C20) to justify this for the mean-square fluctuation,
what would it take to justify it in general? That is just
the “ergodic" problem for this model.

Future progress in a number of areas will, I think, require
that the relation between ensembles and physical systems be
more carefully defined. - The issue is not merely one of "phi-
losphy of interpretation' that practical people may ignore;
for not only the quantitative details, but even the qualitative
kinds of physical predictions that a theory can make, depend on
how these conceptual problems are resolved. For example, as
was pointed out in my 1962 Brandeis Lectures, [loc.cit. Egs.
(83)~(93)], one cannot even state, in terms of the underlying
ensemble, the criterion for a phase transition, or distinguish
between laminar and turbulent flow, until the meaning of that
ensemble is recognized.

A striking example of the need for clarifications in fluc-
tuation theory is provided by quantum electrodynamics. Here
one may calculate the expectation of an electric field at a
point: <E(x,t)> =0, but the expectation of its square diverges:
<E2(x,t)>==m; Thus AE =<¢; in present quantum theory one inter-
prets this as indicating that empty space is filled with 'vacuum
fluctuations,” yielding an infinite ''zero-point" energy density.
But when we see the distinction between AE and 8E, a different
interpretation suggests itself. If AE=« that does not have to
mean that any physical quantity is infipite; it means only that
the present theory is totally unable to predict the field at a
point, i.e., the only thing which is infinite is the uncertainty
of the prediction.

It had been thought for 30 years that these vacuum fluctua-
tions had to be real, because they were the physical cause of
the Lamb shift; however it has been shown {Jaynes, 1978) that
a classical calculation leads to just the same formula for this
frequency shift without invoking any field fluctuations. There-
fore, it appears that a reinterpretation of the "fluctuatien
laws" of quantum theory along these lines might clear up at
least some of the paradoxes of present quantum theory.

The situation just noted is only one of a wide class of
connections that might be called "generalized fluctuation-—
dissipation theorems,” or "fluctuation-response theorems."
These include all of the Xubo-type theorems relating transport
coefficlents to various "thermal fluctuations." I believe that
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‘relations of this type will become more general and more use-
ful with a better understanding of fluctuation theory.

Biology. Perhaps the largest and most obvious beckoning new
field for application of statistical thermodynamics is biology.
At present, we do not have the input information needed for a
useful theory, we do not know what simplifying assumptions are
appropriate; and indeed we do not know what questions te ask:
Nevertheless, molecular biology has advanced to the point
where some preliminary useful results do not seem any furthér
beyond us now than the achievement of an integrated circuit
computer chip did thirty years ago.

In the case of the simplest organism for which a great deal
of bilochemical information exists, the bacterium E. coli,
Watson (1965) estimated that "one-fifth to one-third of the
chemical reactions in E.coli are known," and noted that addi-
tions to the list were coming at such a rate that by perhaps
1985 it wight be possible to describe "essentially all the
metabolic reactions involved in the life of an E. coli cell.”

As a pure speculation, then, let us try to anticipate a
problem that might just possibly be amenable to the bicchemical
knowledge and computer technology of the year 2000: Given the
structure and chemical composition of E. coli, predict its
experimentally reproducible. properties, i.e., the range of
environmental conditions (temperature, pH, concentrations of
food and other chemicals) under which a cell can stay alive;
the rate of growth as a function of these factors., Given a
specific mutation (change in the DWA code), predict whether
it can survive and what the reproducible properties of the
new form will be.

Such a program would be a useful first step. It seems, in
my very cloudy crystal ball, that (1) its realization might be
a matter of decades rather than centuries, (2) success in one
instance would bring azbout a rapid increase in our ability to
deal with more complicated problems, because it would reveal
what simplifying assumptions are permissible.

At present one could think of several thousand factors that
might, as far as we know, be highly relevant for these predic-
tions. If a single cell contains 20,000 ribosomes where
protein synthesis is taking place, are they performing 20,000
different functions, each one essential to the life of the
cell? This just seems unlikely. I would conjecture that of
all the complicated detail that can be seqn in a cell, the
overwhelmingly greatest part is--like every detail of the hair
on our heads, or our fingerprints--accidentzal to the history
of that particular individual; and not at all essential for
its bilological function.
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The problem seems terribly complicated at present, because
in all thils detail we do not know what is relevant, what is
irrelevant. But success in one instance would show us how to
judge this. It might turn out that prediction of biological
activity requiresinformation about only a dozen separate
factors, instead of a millieon. If so, then one would have
both the ccurage and the insight needed to attack more com-
plicated problems. .

This has been stated so as to bring out the close analogy
with what has happened in the theory of irreversible processes.
In the early 1950's the development of a general formalism for
irreversible processes appeared to be a hopelessly complicated
program, not to be thought of in the next thousand years, if
ever. Thus, van Hove (1956) stated: "... in view of the
unlimited diversity of possible nonequilibrium situations,
the existence of such a set of equations seems rather doubtful."
Yet, as noted in Section A above, the principle which has
solved this problem already existed, unrecognized, at that
time. And today it seems that our major problem is not the
complications of detail, but the conceptual difficulty in
understanding how such a complicated problem could have such
a (formally) simple solution. The amswer is that, while full
dynamical information is extremely complicated, the relevant
Information is not.

Perhaps there is a general principle——which we are concep-
tually unprepared to recognize today because it is toc simple—-
that would tell us which features of an organism are its
essential, relevant biological features; and which are not.

0f course, applications of statistical mechanics to biology
may be imagined at many different levels, sc widely separated
that they have nothing to do with each other. Thus, while T
have been speculating about complexities within a single cell,
the contribution of E. H. Kerner to this Symposium goes after
the opposite extreme, interaction of many organisms. At that
level the relevant information is now so much simpler and more
easlly obtained that many interesting results are already
available.

Basic Statistical Thecry. From the standpoint of statistical
theory in general, the principle of maximum entropy is only
one detail, which arose in connection with the problem of
generalizing Laplace's statistical practice from (A6), and we
have examined it above only in the finite discrete case. As

n + @ a new feature is that for some kinds of testable informa
tion there is no upper bound to the entropy. For mean-value
constraints, the partition function may diverge for all real A,
or the constraint equaticns (B4) may neot have a solution. In
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this way, the theory signals back to us that we have not put
enough information into the problem to determine any definite
inferences. In the finite case, the mere enumeration of the
possibilities {£=1,2,...n} specifies engugh to ensure that a
solution exists. If n=+o, we have specified far less in the
enumeration, and it is hardly surprising that this must be
compensated by specifying more information in our constraints.

Rowlinson quotes Leslie Ellis (1842) to the effect that
"Mere ignorance is no ground for any inference whatever. Ex
nihilo nihil.” I am bewildered as to how Rowlinson can con-
strue this as an argument against maximum entropy, since as
we see the maximum entropy principle immediately tells us the
same thing. Indeed, it is the principle of maximum entropy—
and not Leslie Ellis-—that tells us precisely how much informa-
tion must be specified before we have a normalizable distribu-
tion so that rational inferences are possible. Once this is
recognized, I believe that the case n—+=presents no difficulties
of mathematics or of principle.

It is very different when we generalize to continuous dis-
tributions. We noted that Boltzmann was obliged to divide
his phase space into discrete cells in order to get the
entropy expression (Al4) from the combinatorial factor (All).
Likewise, Shannons uniqueness proof establishing -Ipj log pj
as a consistent information measure, goes through only for a
discrete distribution. We therefore approach the continuous
case as the limit of a discrete one. This leads (Jaynes, 1%63b,
1968) to the continuous entropy expression

S = - fp(x)ulog jde3) dx (C22)

m{x)

where the "measure function"” m(x) is proportional to the
limiting density of discrete points (all this theory is readily
restated in the notation of measure theory and Stielties
integrals; but we have never yet found a problem that needs it).
So, it is the entropy relative to some '‘'measure' m(x) that is
te be maximized. Under a change of wvariables, the functions
p{x), m(x) transform in the same way, so that the entropy so
defined is invariant; and in consequence it turns out that the
Lagrange multipliers and all our conclusions Ifrom entropy
maximization are independent of our choice of variables. The
maximum=entropy probability density for prescribed averages

jfk(x)p(x)dx = Fk » l<kem (C23)
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. 1is
(x)
p(x) = st exp{— A £ (x)J - c24)
ZQye e A) %; k Tk (

with the partition function

z(;\l...km) = Idx m(x) exp[—% }‘k fk(XJJ . (C25}

An interesting fact, which may have some deep significance not
yet seen, is that the class of maximum—-entropy functions (C24)
is, by the Pitman-Koopman theorem, identical with the class of
functions admitting sufficient statistics; that is, if as in
(B72)-(B81) we think of (C24) as defining a class of sampling
distributions from which, given data D = "N measurements of x
yielded the results {xj...xy}," we are to estimate the
{A. . Ay} by applying Bayes' theorem, we find that the posterior
distribution of the A's depends on the data eonly through the
observed averages:

1 N

E =g £§£ £ (x) (C26)
all other aspects of the data being irrelevant. This seems to
strengthen the point of view noted before in (B72)-{(B8l). For
.many more details, see Huzurbazar (1976).

But now let us return to our usual viewpeoint, that {C24) is
not a sampling distribution but a prior distribution from
which we are to make inferences about X, which incorporates any
testable prior information. If the space S, in which the con-
tinuous variable x is defined, is not the result of any obvious
limiting process, there seems to be an ambiguity; for what now
determines m{x)?

This problem was discussed in some detail before (Jaynes,
1968). If there are no constraints, maximization of (C22)
leads to p{x) =Am(x) where A is a normalization constant: thus
m(x)} has the intuitive meaning that it is the distxribution
Tepresenting "cowmplete ignorance'” and we are back, essentially,
to Bernoulli's problem from where it all started. In the con-
tinuous case, then, before we can even apply maximum entreopy
we must deal with the problem of complete ignorance.

Suppose a man is lost in a rowboat in the middle of the
ocean. What does he mean by saying that he is "completely
ignorant' of his position? He means that, if he were to row
a mile in any direction he would still be lost; he would be
just as ignorant as before. In other words, ignorance of one’s
location is a state of knowledge which is not changed by a
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. small change in that location. Mathematically, "complete
ignorance" is an invariance property.

The set of all possible changes of location forms a group
of translations. More generally, in a space Sy of any strue-
ture, one can define precisely what he means by "complete
ignorance"” by specifying some group of transformations of Sy
onto itself under which an element of probability m(x)dx is
to be invariant. If the group is transitive on S, (i.e.,
from any point x, any other point x' can be reached by some
element of the group), this determines m{x}, to within an
irrelevant multiplicative constant, on S4.

This criterion follows naturally from the basie desideratum
of consistency: In two problems where we have the same state
of knowledge, we should assign the same probabilities. Any
transformation of the group defines a new problem in which a
"completely ignorant' person would have the same state of
prior knowledge. If we can recognize a group of transforma-
tions that clearly has this property of transforming the
problem into one that is equivalent in this sense, then the
ambiguity in m(x) has been removed. Quite a few useful
"{gnorance priors' have been found in this way; and in fact
for most real problems that arige the solutions are now well--
if not widely--known.

But while the notion of transformation groups greatly
reduces the ambiguity in m{x), it does not entirely remcve
it in all cases. In some problems no appropriate group may
be apparent:; or there may be more than one, and we do not see
how to choose between them. Therefore, still more basic
principles are needed; and active research is now underway
and I1s yielding promising results. :

One of these new approaches, and the one on which there is
most to report, is the method of marginalization (Jaynes, 1879).
The basic facts pointing to it were given already by Jeffreys
{(1939; §3.8), but it was not realized unril 1976 that this
provides a new, constructive method for defining what is meant
by "ignorance," with the advantage that everything follows
from the basic rules (A8), (A9) of probability theory, with
no need for any such desiderata as entropy or group invariance.
We indicate the basic idea briefly, using a bare skeleton
notation to convey only the structure of the argument.

Marginalization. We have a sampling distribution p(x|8) for
some observahle gquantity x, depending on a parameter %9, both
nultidimensional. From an observed value x we can make in-
ferences about 6; with prior information I, prior probability
distribution p(6|I;) Bayes' theorem (B24) yields the posterior
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distribution
p(8]xI,) = Ap@lIpx{®) . . (c27)

In the following, A always stands for a normalization constant,
not necessarily the same in all equations.

But now we learn that the parameter € can be separated inte
two components: 8 = (Z,n) and we are to make inferences only
about 7. Then we discover that the data x may also be sepa-
rated: x= {y,z) in such a way that the sampling distributiocn
of 2z depends only on Z: '

p(z|zn) = Ip(y2|nc)dy = p(zln) . {c28)

Then, writing the pricr distribution as p(B|Il)='n(c)w(n),
(C27) gives for the desired marginal posterior distribution

p(tly,z Il) = A ﬁ(c)fp(y,ZICn)Tr(n)dn (C2%)

which must in general depend on our prior information about n.
This is the solution given by a "conscientious Bayesian' Bj.

At this point there arrives on the scene an "ignorant
Bayesian' By, whose knowledge of the experiment consists only
of the sampling distribution (C28); i.e., he is unaware of the
exlstence of the components (y,n). When told to make inferences
about Z, he confidently applies Bayes' theorem to (C28), getting
the result

p(clz1,) = 4 7(Op(z|0) . (C30)

This is what was called a "pseudoposterior distribution"” by
Geisser and Cornfield (1963).

By and By will in general come to different conclusions be-
cause By is taking into account extra information about (y,n).
But now suppose that for some particular prior m(n), By and By
happen to agree after all; what does that mean? Clearly, Bj is
not incorporating any information about n; he deoesn't even know
it exists. If, nevertheless, they come tc the same conclusions,
then it must be that B; was not incorporating any information
about n either. In other words, a prior m(n) that leaves By
and B> in agreement must be, within the context of this model,
2 completely uninformative prior; it contains no information
relevant to guestions about Z.

Now the condition for equality of (C29), (C30) is just a
Fredholm integral equation:

jp(y,ZIC,n)ﬂ(n)dn = A(y,2)p{z|Z) {C31)
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' where A(y,z) is a function to be determined from (C31). There-
fore, the rules of probability theory already contain the
criterion for defining what is meant by "completely uninforma-
tive."

Mathematical analysis of (C31) proves to be quite involved;
and we do not yet know a necessary and sufficient condition on
p(y,z|Zn) for it to have solutions, or unique solutions, al-
though a number of isolated results are now in (Jaynes, 1979).
We indicate one of them. )

Suppose vy and n are positive real, and n is a scale para-
meter for y; i.e., we have the functional form

P(Y,Zfiaﬂ) = ﬂ“l £(z,Z3y/m) (€32)

for the sampling density function. Then, (C31l) reduces to
y_l j}(z,a;a)[g-W{gj}du = %(y,Z)If(z,c;a)da (033)-

where we have used (C28). It is apparent from this that the
Jeffreys prior

-l (€34)

m{n) = n
is always a solution, leading to A(y,z)==y-l. Thus (C34) is-
"completely uninformative" for all models in which n appears

as a scale parameter; and it is easily shown (Jaynes, 1979)
that one can invent specific models for which it is unique.

We have therefore, the result that the Jeffreys prior is
uniquely determined as the only prior for a scale parameter
that is "completely uninformative' without qualifications. We
can hardly awvoid the Inference that it represents, uniquely,
the condition of "complete ignorance'" fora scale parameter.

This example shows how marginalization is able to give
results consistent with those found hefore, but in a way that
springs directly out of the principles of probability theory
without any additional appeal to intuition {(as is involved in
choosing a transformation group). At the moment, this approach
seems very promising as a means of rigorizing and extending the
basic theory. However, there are enough complicated technical
details. not noted here, so that it will require quite a bit
more research before we can assess its full scope and power.

In fact, the chase is at present quite exciting, because it
is still mathematically an open question whether the integral
&quations may in some cases become overdetermiped, so that na
uninformative prior exists. If so, this would call for some
deep clarification, and perhaps revision, of present basic
statlistical theory.
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D. An Application: Irreversible Statistical Mechandics.

The calculation of an irreversible process usually involves
three distinct stages; (1) Setting up an "ensemble,” i.e.,
choosing a density matrix p(0), or an N-particle distribution
function, which is to describe our initial knowledge about the
system of interest; (2) Solving the dynamical problem; i.e.,
applying the microscopic equations of motion to obtain the
time-evolution of the system p{t}; (3) Extracting the final
physical predictions from the time-developed ensemble p(t).

Stage (3) has never presented any procedural diffieculey; to
predict the quantity F from the ensemble p, one follows the
practice of equilibriunm theory, and computes the expectation
value <F>=Tr(pF). While the ultimate justification of this
rule has been much discussed (ergodic theory), mno alternative
procedure has been widely used,

In this connection, we note the following. Suppose we are
to choose a number £, representing our estimate of the physical
quantity F, based on the ensemble p. A reasonable criterion
for the "best” estimate is that the expected square of the
error, <(F—f)2} shall be made a wminimum. The solution of this
simple variational problem is: f£=<F>., Thus, if we regard
statistical mechanics, not in the "classical" sense of a means
for calculating time averages in terms of ensemble averages,
but rather as an example of statistical estimation theory
based on the mean square error criterion, the usual procedure
is uniquely decermined as the optimal one, independently of
ergodic theory. A justification not depending on ergodic
theory is in any event necessary as soon as we {ry to predict
the time variation of some quantity F(t); for the physical
phenomenon of interest then consists just of the fact that
the ensemble average <F{t)> is mot equal to a time average.

The dynamical problem of stage (2) is the most difficult to
carry out, but it is also the one in which most recent progress
has been booked (Green's function methods)}. While the present
work is not primarily concerned with these techniques, they are
available, and needed, in carrying out the calculations in-
dicated here for all but the simplest problems.

Tt is curious that stage (1), which must logically precede
all the others, has received such scant attention since the
piloneering work of Gibbs, in which the problem of ensemble
construction was first recognized. Most recent discussions
of irreversible processes concentrate all attention on stage
(2); many fail to note even the existence of stage gl). One
consequence of this is that the resulring theories apply un-
ambiguously only to the case of "response functions,” inm
which the nonequilibrium state is one resulting from a
dynamical perturbation (i.e., an explicitly given term in the
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Hamiltonian), starting from therual equilibrium at some time
in the past; the initial density matrix is then given by con-
ventional equilibrium theory, and so the problem of ensemble
construction is evaded.

I1f, however, the nonequilibrium state is defined (as it
usually is from the experimental standpoint) in terms of
temperature or concentration gradients, rate of heat flow,
shearing stress, sound wave amplitudes, etc., sucha procedure
does not apply, and one has resorted to various ad hoc devices.
An extreme example is provided by some problems in astrophysics
in which it is clear that the system of interest has never, in
the age of the universe, been in a state approximating thermal
equilibrium. Such cases have been well recognized as presenting
special difficulties of principle.

We show here that recognition of the existence of the stage
(1)} problem, and that its general sclution is available, can
remove such ambiguities and reduce the labor of stage (2). 1In
the case of the nonequilibrium steady state, stage (2) can be
dispensed with entirely if stage (1) bhas been properly treated.

Background. To achieve a certain unity within the present
volume, we shall take the review article of Mori, Oppenheinm,
and Ross (1962)-~hereafter denoted MOR--as indicating the

level to which nonequilibrium theory had been brought before
the introduction of Information Theory notions. This work is
virtually unique in that the Stage 1 problem, and even the

term "ensemble construction" appear explicitly. The earlier
work of Kirkwood, Green, Callen, Kubo and others, directly
related to ours, is noted in MOR, Sec. 6.

To fix ideas, consider the calculaticn of transport proper-
ties in systems close to equilibrium (although our final
results will be far more general). In the treatments discussed
by MOR, dissipative-irreversible effects did not appear in the
ensemble initially set up. For example, a system of Nparticles
of mass m, distributed with macroscopic density p(x), local
temperature T(x), is often described in classical theory by
an N-particle distribution function, or Liouville function,
of the form: 2
pxy) 3/2 Py
[2ﬁka(xi)] exp -Eﬁﬂszﬁzj-

N
ApGeypy gy =TT (1)
where x4, p; denote the (vector) position and momentum of the
ith particle. But, although this distribution represents non-
vanishing density and temperature gradients Vp, VI, the dif-
fusion current or heat flow computed from (D1} 1s zero.
Likewise, in quantum theory MCOR described such a phy51cal

situation by the "local equilibrium," or "frozen-state"
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density matrix:

o, = % epod"*x B(x) [H(x) - u(x)n(x)l} - (D2)

where H(x), n(x) are the Hamiltonian density and number density
operators. Again, although (D2) describes gradients of temper-—
ature, concentration, and chemical potential, the fluxes
computed from (D2) are zero.

Mathematically, it was found that dissipative effects anpear
in the equations only after one has carried out the following
operations: (a) approximate forward integration of the equa-
tions of motion for a short "induction time," and (b) time
smoothing or other coarse-graining of distribution functions
or Heisenberg operators.

Physically, it has always been somewhat of z mystery why
elther of these operations is needed; for one can argue that,
in most experimentally realizable cases, irreversible flows
(A) are already "in progress' at the time the experiment is
started, and (B) take place slowly, so that the low-order
distribution functions and expectation values of measurable
quantities must be already slowly-varying functions of time
and position; and thus not affected by coarse-graining. In
cases where this is not true, coarse-graining would result in
loss of the physical effects of interest.

The real nature of the forward integration and ceoarse-
graining operations is therefore obscure; in a correctly
formulated theory neither should be required. We are led to
suspect the choice of initial ensemble; i.e., that ensembles
such as (D1) and (D2) do not fully describe the conditions
under which irreversible phenomena are observed, and therefore
do not represent the correct solution of the stage (1)
problem. ({[We note that (D1) and (D2) were not "derived" from
anything more fundamental; they were written down intuitively,
by analogy with the grand canonical ensemble of equilibrium
theory.] The forward integration and coarse-graining opera-
tions would, on this wview, be regarded as corrective measures
which in some way compensate for the error in the initial
ensemble,

This conclusion 1s in agreement with that of MOR., These
authors never claimed that py in (P2) was the correct density
matrix, but supposed that it differed by only a small amount
from another matrix p(t), which they designate as the "actual
distribution." They further supposed that after a short in-
duction time, p, relaxes into p(t), which would explain the
need for forward integratiom.

Such relaxation undoubtedly takes place in the low-order
distribution functions derived from p, as was first suggested
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" by Bogoliubov for the analogous classical problem. However,
this 1s not possible for the full "global" density matrix; if
pt and p(t) differ at t=0 and undergo the same unitary trans-
formation in their time development, they cannot be equal at
any other time. Furthermore, p(t) was never uniquely defined;
given two different candidates pj(t), Po(t) for this role, MOR
give no criterion by which one could decide which is indeed
the "actual" distribution. _
For reasons already explained in earlier Sections and in
Jaynes (1967), we believe that such criteria do not exist;:
i.e., that the notion of an "actual distribution is illusory,
since different density matrices connote only different states
of knowledge. In the fellowing Section we approach the problem
in a different way, which yields a definite procedure for con=-
structing a density matrix which is to replace py, and will
play approximately the same role in our theory as the p(t)
of MOR. : :

The Gibbs Algorithm. If the above reasoning is correct, a re-
examination of the procedures by which ensembles are set up in
statistical mechanics is indicated. If we can find analgorithm
for comstructing density matrices which fully describe non-
equilibrium conditions, we should find that transport and other
dissipative effects are obtainable by direct gquadratures over
the initial ensemble.

This algorithm, we suggest, was given already by Gibbs (1902).
The great power and scope of the methods he introduced have not
been generally appreciated to this day; until recently it was
scarcely possible to understand the raticnale of his method for
constructing ensembles. This was (loc. cit., p. 143) to assign
that probability distribution which, while agreeing with what
is known, "gives the least value of the average index of proba-
bility of phase,” or as we would describe it today, maximizes
the entropy. ' This process led Gibbs to his canonical ensemble
for describing closed systems in thermal equilibrium, the graad
canonical ensemble for open systems, and {(loc. cit., p. 38) an
ensemble to represent a system rotating at angular velocity w
in which the probability density is proportiomal to

exp[-B(H-0-M)] (D3)

where H, M are the phase functions representing Hamiltonian and
total angular momentum. _

Ten yvears later, the Ehrenfests (1912) dismissed these
ensembles as mere "analytical tricks,” devoid of any real sig-
ificance, and asserted the physical superiorvity of Boltzmann's
methods, thereby imitiating a school of thought which dominated



Where do we Stand on Maximum Entropy?‘

statistical mechanics for decades. It is one of the major
tragedies of science that Gibbs did not live long enough to
answer these objections, as he could have so easily.

The mathematical superiority of the canonical and grand
canonical ensembles for calculating equilibrium properties has
since become firmly established. Furthermore, although Gibbs
gave no applications of the rotational ensemble (D3), it was
shown by Heims and Jaynes (1962) that this ensemble provides
a straightforward method of calculating the gyromagnetic
effects of Barnett and Finstein-de Haas. At the present time,
therefore, like Gibbs methods--like the Laplace methods and
the Jeffreys methods--stand in a position of proven success
in applications, independently of 211 the conceptual problems
regarding their justification, which are still being debated.

The development of Information Theory made it possible to
see the method of Gibbs as a general procedure for inductive
reasoning, independent of ergodic theory or any other physmcal
hypotheses, and whose range of validity is therefore not re-
stricted to equilibrium problems; or indeed to physics. In
the following we show that the Principle of Maximum Entropy
ig sufficient to construct ensembles representing a wide
variety of nonequilibrium conditicns, and that these new
ensembles yield transport coefficients by direct quadratures.
Indeed, we shall claim——for reasons already explained in
Jaynes {1957b), that this is the only principle needed to
construct ensembles which predict any experimentally repro-
ducible effect, reversible or irreversible.

The general rule for constructing ensembles is as follows.
The available information about the state of a system consists
of results of various macroscopic measurements. Let the

quantities measured be represented by the operators Fi,Fz,...Fp.

The results of the measurements are, of course, simply a set
of numbers: {f,,...,£y}. These numbers make no reference to
any probability distribution. The ensemble is then a mental
construct which we invent in order to describe the range of
possible microscopic states compatible with those numbers, in
the following sense.

If we say that a density matrix p "contains” or "agrees
with" certain information, we mean by this that, if we com-
municate the density matrix to another person he must be able,
Ly applying the usual procedure of stage (3) above, to recover
this information from it. In this sense, evidently, the
density matrix agrees with the given infeormation if and only
if it is adjusted to yield expectation values equal to the
measured numbers:

fk = Tr(ka) = <F,> , k=1,c0e,m (D&4)
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and in order to ensure that the density matrix describes the
full range of possible microscopic states compatible with (D4),
and not just some arbitrary subset of them (in other words,
that it describes only the information given, and contains no
hidden arbitrary assumptions about the microscopic state), we
demand that, while satisfying the constraints {(D4), it shall
maximize the quantity

SI = =Tr{p log p)} . (D5)
A great deal of confusion has resulted from the fact that,
for decades, the single word "entropy' has been used inter-
changeably to stand for either the quantity (D5) or the quantity
measured experimentally (in the case of closed systems) by the
integral of dQ/T over a reversible path. We shall try to
maintain a clear distinction here by following the usage in-
troduced in my 1962 Brandeis lectures (Jaynes, 1963b); refer-
ring to Sy as the "information entropy" and denoting the
experimentally measured entropy by Sg. These quantities are
different in general; in the equilibrium case (the only one
for which Sg is defined in conventional thermodynamics) the
relation between them was shown (loc. cit.) to be: for all
density matrices p which agree with the macroscopic informa-
tion that defines the thermodynamic state; i.e., which satisfy
(D4),

kS, < 5 (26)

I E
where k is Boltzmann's constant, with equality in (D6) if and
only if St is computed from the canonical density matrix

p = E?X_T%TX_T exp[llFl + i.. + lmFm] (D7)
1 m

where the A, are unspecified real constants. In the nonequi-

librium thedry we find it easier to change our sign convention,

so that all A's here are the negative of the usual ones; other-

wise, from this point on it would be invariably (-A) rather

than } that we need. For normalization (Tr p=1) we have

Z(A ...Am) = Tr exp[AlFl + ...+ kmFm] (D8)

1
which quantity will be called the partition function. It
remains only to cheoose the }A; [which appear as Lagrange multi-
pliers in the derivation of (D7) from a variational principle]
so that (D4) is satisfied. This 1s the case of

3
fk = <Fk>=m log Z , k=1,2,.00,mm . (D9)
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If enough constraints are specified to determine a normalizable
density matrix, it will be found that these relations are just
sufficient to determine the unknowns Ay in terms of the given
data {fl...fm}; indeed, we can then solve (D9) explicitly for
the Ak as follows. The maximum attainable value of Sy is, from
(D7}, (D8),

]
I)max = log Z - kzl Ak<Fk> . (D10)

If this quantity is expressed as a function of the given data,
S(fy...fg), it is easily shown from the above relations that

{5

a$
Ak = - 3y, . (D11}

It has been shown (Jaynes, 1963b, 1965) that the second law
of thermodynamics, and a generalization thereof that tells
which nonequilibrium states are accessible reproducibly from
others, follow as simple comsequences of the inequality (Dé)
and the dynamical invariance of 3j.

We note an important property of the maximum entropy ensemble,
which is helpful in gaining an intuitive understanding of this
theory. Given any density matrix p and any € in 0<eg<1, one
can define a "high-probability linear manifold"” (HPM) of finite
dimensionality W(g), spanned by all eigenvectors of p which
have probability greater than a certain amount &(€), and such
that the eigenvectors of p spanning the complementary manifold
have total probability less than €. Viewed in another way, the
HPM consists of all state vectors ¥ to which p assigns an'array
probability"” as defined in Jaynes (1957b), Sec. 7, greater than
§{g). Specifying the density watrix p thus amounts to asserting
that, with probability (1 -€), the state vector of the system
lies somewhere in this HPM. As £ varies, any density matrix
p thus defines a nested sequence of HPM's,

For a macroscopic system, the information entropy Sy may be
related to the dimensionality W(e) of the HPM in the following
sense: if N is the number of particles in the system, then as
N-+= with the intensive parameters held constant, N“ISI and
N }log W(g) approach the same limit independently of €. This is
a form of the asymptotic equipartition theorem of Information
Theory, and generalizes Boltzmann's S=k log W. The process of
entropy maximization therefore amounts forall practical purposes,
to the same thing as finding the density matrix which, while
agreeing with the available information, defines the largest
possibke HPM; this is the basis of the remark .following (D4).
An analogous result holds in classical theoxry (Jaynes, 1965),
in which W(eg) becomes the phase voluwe of the "high-probability
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. region' of phase space, as defined by N-particle distribution
function.

The above procedure is sufficient to construct the density
matrix representing equilibrium conditions, provided the
quantities F, are chosen to be constants of the motion. The
extension to nonequilibrium cases, and to equilibrium problems
in which we wish to incorporate information about quantities
which are not intrinsic constants of the motion (such as stress
or magnetization) requires mathematical generalization which
we give in two steps. :

It is a common experience that the course of a physical
process does not in general depend only on the present values
of the observed macroscopic quantities; it depends also on the
past history of the system. The phenomena of magnetichysteresis
and spin echoes are particularly striking examples of this.
Correspondingly, we must expect that, if the Fp are not con-
stants of the motion, an ensemble constructed as above using
only the present values of the <F,> will not in general suffice
to predict either equilibrium or nonequilibrium behavior. As
we will see presently, it is just this fact which causes the
error in the "local equilibrium" density matrix (D2).

In order to describe time variations, we extend the Fy to
the Heisenberg operators :

F () = U_l(t)Fk(O)U(t) (012)

in which the time-development matrix U(t) is the solution of
the Schrodinger equation

$/U(t) = H(L)U(L) (p13)

with U(0) =1, and H(t) is the Hamiltonian. If we are given
data fixing the <Fp(t4)>at various times tj, then each of these
nust be considered a separate piece of information, to be given
its Lagrange multiplier Ayj and included in the sum of (7).

In the limit where we imagine information given over a continuous
time interval, -1 <t <0, the summation over the time index i
becomes an integration and the canonical density matrix (D7)
beconres

o =% exp Z f A (O (t) dt} (D14)

Z
k=1 -t

where the partition function has been generalized to a partition

functional ¢

2[11(t)...km(t)] = Tr exp{ f A (t)F (t) dt} {D15)
” . k=1 -
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' and the unknown Lagrange multiplier functions Ak(t) are deter-—
mined from the condition that the density matrix agree with the
given data <Fp(t)> over the "information-gathering" time in-
terval:

<Fk(t)> = Tr[ka(t)] = fk(t) , ~t<t <0 . (D16)

By the perturbation methods developed below, we find that (D16)
reduces to the natural generalization of (D9):

<Fk(t)>= log Z_ B -t <t < 0 (D17)

_8
SKk(t)
where & denotes the functional derivative.

Finally, if the operators Fy depend on position as well as
time, as in {(D2), Eq. (D12) is changed to

B, (x,t) = U1 (6)F, (x,0)U(t) (D18)

and the values of these quantities at each point of space and
time now constitute the independent pieces of information,
which are coupled into the density matrix via the Lagrange
multiplier function Ap(x,t). 1If we are given macroscopic in—
formation about Fy (x,t) throughout a space-time region Ry
(which can be a different region for different quantities Fy),
the ensemble which incorporates all this information, while
locating the largest possible HPM of microscopic states, is

p -1 exp E: j dt d3x A (x,£)F (x,t) (D19)
z T k 4
Ry
with the partition functiomal
7 = Ty exp{?:f dt d3x Ak(x,t)Fk(x,t)} (D20)
k
Ry

and the Ap{x,t) determined from

<Fk(x,t)>== log Z , (x,t) in Rk . (D21)

S
Gkk(x,t)

Prediction of any quantity J(x,t) is then accomplished by
calculating

<J{z,t)> = TrpJ(x,t)] (D22)

The form of equations (D19)-(D22) makes it appear that
stages (1) and (2), discussed in the Introduction, are now
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fused into a single stage. However, this is only a consequence
of our using the Heisenberg representation. According to the
usual conventions, the Schrodinger and Heisenberg representa-
tions coincide at time t=0; thus we may regard the steps
(D19)-(D21) equally well as determining the density matrix

0(0) in the Schrédinger representation; i.e., as solving the
stage (1) problem. If, having found this initial ensemble, we
switch to the Schrodinger representation, Eq. (D22) is then.
replaced by

<T@ = Tr{I)e(t)] ) (D23)

in which the problem of stage (2) now appears explicitly as
that of finding the time-evolution of p{t). The form (D23)
will be more convenient if several different gquantities
Jl’JZ"" are to be 'predicted.

Discussion. 1In equations (D19)-(D23) we have the generalized
Gibbs algorithm for calculating irreversible processes. They
- represent the three stages: (1) finding the ensemble which
has maximum entropy subject to the given information about
certain quantities {Fp(x,t)}; {(2) Utilizing the full dynamics
by working out the time evolution from the wmicroscopic equa-
tions of motion; (3) making those predictions of certain other
quantities of interest {Jj(x,t)} which take all the above into
account, and minimize the expected square of the error. We do
not claim that the resulting predictions must be correct; only
that they are the best (by the mean-square error criterion)
that could have been made from the information given; to do any
better we would require more initial information.

- Of course this algorithm will break down, as it should, and
refuse to give us any solution if we ask a foolish, unanswerable
question; for example, if we fail to specify enough information
to determine any normalizable density matrix, {f we specify
logically contradictory constraints, or if we specify space-
time variations incompatible with the Hamiltonian of the system.

The reader may find it instructive to work this out in
detail for a very simple system involving only a (2x 2) matrix;
a single particle of spin 1/2, gyromagnetic ratio Y, placed in
a constant magnetic field B in the z-direction, Hamiltonian
H = =(1/2) ¥(G*B). Then the only dynamically possible be-
havior is uniform precession about B at the Larmor frequency
wg =YB. TIf we specify any time variation for <0,> other thamn
ginusoldal at this frequency, the above equatiobns will break
down; while if we specify <ox(t}> = a cos wyt+b sin wyt, we
find a unigue solution whenever (a® +1b2) < 1.
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Mathematically, whether the ensemble p 1s or is not making
a sharp prediction of some quantity J 1s determined by whether
the variance <J2>-<J>? is sufficiently small. In general,
information about a quantity F would not suffice to predict
some other quantity J with deductive certainty (unless J is
a function of F). But in inductive reasoning, Information
Theory tells us the precise extent to which information about
F is relevant to predictions of J. In practice, due to the
enormously high dimensionality of the spaces involved, the '
variance <J%> - <JF>2 ysually turns out to be very small compared
to any reasonable mean-square experimental error; and there-
fore the predictions are, for all practical purposes, deter-—
ministic. :

Experimentally, we impose various constraints (volume,
pressure, magnetic field, gravitational or cemntrifugal forces,
sound level, light intensity, chemical enviromment, etc.) on
a system and observe how it behaves. But only when we reach
the degree of control where reproducible response is observed,
do we record ocur datea and send it ¢ff for publication. Be-
cause of this sociclogical conventicn, it is not the business
of statistical mechanics to predict everything that can be
observed in nature; only what can be observed reproducibly.
But the experimentally imposed macroscopic constraints surely
do not determine any unique microscopic state; they ensure
only that the state vector is somewhere in the HPM. If effect
A is, nevertheless, reproducible, then it must be that A is
characteristic of each of the overwhelming majority of possible
states in the HPM; and so averaging over those states will not
change the prediction.

To put it another way, the macroscopic experimental condi-
tions still leave billions of microscopic details undetemmined.
If, nevertheless, some result is reproducible, then those
details must have been irrelevant to the phenomenon; and so
with proper understanding we ought to be able to eliminate
them mathematically. This is just what Information Theory
does for us; it removes irrelevant details by averaging over
them, while retaining what is relevant to the particular
question being asked [i.e., the particular quamtity J(x,t)
that we want to predict].

It is clear, then, why the maximum entropy prescription
works in such generality. 1If the constraints used in the
calculation are the same as those actually operative in the
experiment, then the maximum~entropy densiiy matrix will
locate the samd HPM as did the experimental conditions; and
will therefore make sharp predictions of any reproducible
effect, provided that our assumed microscopic physics (enum-
eration of possible states, equations of motion) is correct.
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For these reasons--as stressed in Jaynes (1957b),--if the
class of phenomena predictable from the maximum entropy prin-
ciple is found to differ in any way from the class of repro-
ducible phenomena, that would constitute evidence for new
microscopic laws of physics, not presently known. Indeed
(Jaynes, 1968) this is just what did happen early in this
Century; the failure of Gibbs' classical statistical mechanics
to predict the correct heat capacities and vapor pressures
provided the first clues pointing to the quantum theory. Any
successes make this theory useful in an "engineering" sense;
but for a research physicist its failures would be far more
valuable than its successes.

We emphasize that the basic physical and conceptual formula-
tion of the theory is complete at this point; what follows
represents only the working out of various mathematical con-
sequences of this algorithm.

Perturbation Theory. ©For systems close to thermal equilibrium,
the following general theorems are useful. We denote an "un~
perturbed" density matrix Py? by

eA A

Py = E—‘ s Zo = Tr[e ] . (D24)
o _

a "perturbed one by
A+EB '

p =5——, z: 1r (2155) (D25)

where A, B are Hermitian. The expectation values of any
operator C over these ensembles are respectively

<C>o = Tr(poC) . <C> = Tr{pC) . ~ (D26)

The cumulant expansion of <C> to all orders in £ is derived
in Heims and Jaynes (1962), Appendix B. The n'th order temm
may be written as a covariance in the unperturbed ensemble:

L
-— n -
<C> - <C>_ ;Z% £ [<an>o <Qn>o<c>°] ) (D27)
Here Qn isnfifined by Ql = Sl’ and
Q =S - kz=:1 Q>0 Spok , a>1 (D28)

in which S are the operators appearing in the well-kaown
expansion

AteD eA[1 + 9 &8 sn] . (D29)
n=1 '
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*More explicitly,

s = [lax, [ ol gy Bx,) ... B(x) 30
. J’ x) xZI % B(x) ... BGx (D30)
o Q o -

where
B(x) = e *A g A . (D31)
The firét—order term is thus

- 1
<C> = <C>_ = ef dx[<e-m3em C> - <B> <C> ] (D32)

(o3 Q Q o
(4}

and it will appear below that all relations of linmear transport
theory are special cases of (D32).

For a more condensed notation, define the average of amny
operator B over the sequence of similarity transformations as

1

5z ax e gt (033)
O -

- which we will call the Kubo transform of B. Then (D32) becomes
<C> = <C> =g K.y (D34)
in which, for various choices of C, B, the quantities'

KCB = <]:‘sC:>o - <B>O<C>O {D35)

are the basic covariance functions of the linear theory.

We list a few useful properties of these quantities; in all
" cases, the result is proved easily by writing out the expres-
sions in the representation where A is diagonal. Let F, G be
any two operators; then

<F> = <F> {D36)
. Qo Q

KFG KGF ' (D37)

If F, G are Hermitian, then

KI"G is real , K‘FF > 0 . (D38)

If p, 1s a projection operator representing a pure state, then
Krg = 0. 1If £, is not a pure state density matrix, then with
Hermitian F, G,
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2
Krree ~ Kpe 2 0 | (p39)

with equality if and only if F=qG, where q is a real number.
If G is of the form '

) = e A g0y ™ (D40)
then

. .

du Kpg = <[F.61>, . ' (D41)

This identity, with u interpreted as a time, provides a general
connection between statistical and dynamical problems.

Near-Equilibrium Ensembles. A closed system in thermal equi-
- librium is described, as usual, by the density matrix

e-BH
Py = EETE) _ (D42)
which maximizes S; for prescribed <H>, and is a very special
case of (D19). The thermal equilibrium prediction for any
quantity F is, as usual,

<F>° = Tr (poF) . ' , . (D43)

But suppose we are now given the value of <F(t)> throughout
the "information-gathering" interval -T £ t < 0. The ensemble
which includes this new information is of the form (D19), which
maximizes Sy for prescribed <H> and <F(t)>. It corresponds to
the partition functional

Z[B,A(t)] = Tx exp[—BH + jo A(t) F(e) del . (D44)
-T
If, during the information-gathering interval, this new in-

formation was simply <F(t)> = <F> , it is easily shown from
(D17) that we have identically °

G
I A(E) F(t) de = Q . {D45)
~T

In words: if the new information is redundant (in the sense
that it is only what we would have predicted from the old
information), then it will drop ocut of the equations and the
ensemble is unchanged. This is a general property of the
formalism here presented. 1In applications it means that there
is never any need, when setting up an ensemble, to ascertain
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. whether the different pieces of information used are independent;
any redundant parts will drop out automatically.

If, therefore, we treat the integral in (D44) as a small
perturbation, we are expanding in powers of the departure from
equilibrium. For validity of the perturbation scheme it is
not necessary that A(t)F(t) be everywhere small; it is suf-
ficient if the integral is small. First-order effects in the
departure from equilibrium, such as linear diffusion or heat
flow, are then predicted using the general formula (D32), with
the choices A=-fH, and :

0
eB = [ (o) F(e) ac . (D46)
=T
With constant H, the Heisenberg operator F(t) reduces to

F(t) = exp(iHt/R) F(0) exp(—iﬂffﬁ) . (D4T)

and its Kubo transform (D33) becomes

3]

F(t) = -flé-f du F(t-ifiv) (D438)
0

the characteristic gquantity of the Kubo (1957, 1858) theory.

In the notation of (D34), the first-order expectation value
of any quantity C(t) will then be given by

)
<C(t)> - <C>0 = ITKCF(t,t') Me')yde! (D49)

where Kop is now indicated as a function of the parameters t,t'
contained in the operaters:

= _
<F(t )C(t)>o <F>O<C>o {D50Q)

KcF(t,t')

Remembering that the parameters t,t' are part of the operators
¢, F, the general reciprocity law (D37) now becomes

T _ 1
KCF(t,t ) = KFC(t ,t) . {D51)
Whent H is constant, it follows also from (D47) that

1y = - !
KCF(t,t ) = KCF(t t') (D52)
and (D41) becomes

o K (6,t") = <[C(e), e > (D53)
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« Integral Equations for the Lagrange Multipliers. We wish to
find the Ap(x,t) to first order in the given departures from
equilibrium, <Fy(x,t}>—<Fr(x,t)>,. This could be done by
direct application of the formalism; by finding the perturba-
tion expansion of log Z to second order in the A's and taking
the functional derivative explicitly according to (D21). It
will be sufficient to do this for the simpler case described
by Equations (D44)-(D53); but on carrying through this calcula-
tion we discover that the result is already contained in our
perturbation-theory formula (D4%3). This is valid for any
operator C(t); and therefore in particular for the choice
C{t) =F(t). Then (P49) becomes

o
I K.FF(t,t')A(t‘)dt' = <F(t)> - <F>, {D54)
-T

If t is in the "information-gathering interval™ (=t <t < 0)
this is identical with what we get on writing out (D17) ex-
plicitly with log Z expanded to second order. In lowest order,
then, taking the functional derivative of log Z has the effect
of constructing a linear Fredholm integral equation for A(t),
in which the "driving force' is the given departure from
equilibrium. '

However, from that direct manner of derivation it would
appear that (D54) applies only when (-7 < t £ 0); while the
derivation of (D49) makes it clear that (D54) has a definite
- meaning for all t. When t is in -T £ t £ 0, it represents the
integral equation from which A(t) is to be determined; when
t >0, it represents the predicted future of F(t); and when
t < ~T, it represents the retrodicted past of F(t).

If the information about <F(t)> is given in the entire past,
T = ®, (D54) becomes a Wiener-Hopf equation. Techniques for the
solution, involving matching functions on strips in the complex
fourier transform space are well known; we remark only that the
solution A(t) will in general contain a §-function singularity
at t=0; it is essential to retain this in order to get correct
physical predictions. 1In other words, the upper limit of in-
tegration in (D54) must be taken as {0+). The case of finite
7, where we generally have d-functions at both end-points, is
discussed by Middleton (1960).

For example, with a Lorentzian correlation function

Kppt-t') = % exp[-alt-t']|] (D55)
and T=%, the solution is found to be *
2
A(t) = (1—i2 d—z)f(t) + 13 £(0) [ad (E) - 8" ()] (D56)
a dt a
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‘where
<F(t)>_<F>o t <0
f(t) = 0 £ >0 (D57}
Then we find
J0+ f(ey t <0
(e-t"HAeH)de' = _ (D58)
e “FE £(0)e 2T, ¢ > 0 |

ir which it is necessary to note the §-functions in f"(t) at
the upper 1imit. The nature and need for these S-functionsbe-
comes clear if we approach the solution as the limit of the
solutions for a sequence {f,} of "good" driving functions each
of which satisfies the same boundary conditions as Kpp at the
upper limit:

e N - U ST IS IR
The result {D58) thus predicts the usual exponential ap-
proach back to equilibrium, with a relaxation time T=a"'.
The particular correlation function (D53) is "Markoffian" in
that the predicted future decay depends only on the specified
departure from equilibrium at t =0; and not on information
about its past history. With other forms of correlation
function we get a more complicated prediction, w1th in general

more than one relaxation time.

Relation to the Wiemer Prediction Theory. This problem is so
gsimilar conceptually to Wienmer's (1949) problem of optimal
predicticon of the future of a random function whose past is
glven that one would guess them to be mathematically related.
However, this is not obvious from the above, because the Wiener
theory was stated in entirely different terms. In particular,
it contained no quantity such as A(t) which enables us to
express both the given past and predicted future of F(t) in a
single equation {(D54). To establish the connection between
these two theories, and to exhibit an alternative form of our
theory, we may eliminate A{t) by the following purely formal
manipulations.

If the resolvent Kgpp~ l(t t') of the integral equation (D54}
can be found so that

0
j KFF(t,t")KFF- (e",£")de" = §(e-t'), -t<t,t'<0 (D603
-T -

0
I I(FF"l(t,t”)KFF(t",t:')dr." = §(t-t") , -T<t,t'<0 {D61)
-T ;
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then

0 -1 .
At} =I_TKFF (e, e [<F(t")> ~ <F>o]dt' » =T<t<0 (D62}
and the predicted value (D49) of any quantity C(t) can be ex-

pressed directly as a 1inear combimation of the given departures
of F from equilibrium: _

0 _ .
— — ' T L '
<C(t)> <c>o f_TRCF(t,t YIKF(t")> <F>°]dt (qﬁa)
in which
0 .
t - 1 -1 it ] tH
RCF(t,t )y = I_T KCF(t,t )KE’F (£",£")dt (D64)

will be called the relevance function.
In consequence of (D6l), the relevance function is itself
‘the solution of an integral equation:

0
KCF(t) =J:TRCF(t,t')_KFF(t')dt' , =<t (D65)

50 that, in some cases, the final prediction formula (D63) can
be obtained directly from (D65) without the intermediate step
of calculating A(t).

In the Wiener theory we have a random function f(t)} whose
past is known. For any "lead time" h > 0, we ‘are to try to
predict the value of £(t+h) by a linrear cperation on the past
of £(t), 1.e., the predictiocn is :

%(t+h) = rf(t-t')W(t')dt' {D66)

) .
and the problem is to find that W(t)} which minimizes the mean

square error of the prediction:
T
IVl = lim - | £ (t+h) - f(t+h)|2 de . (D67)
2T
Ty -T
We readily find that the optimal W satisfies the Wiener-Hopf

integral equation

p{t+h) = J‘an)(t-t')W(t')dt' , t>0 (D68)

where © T

¢{t) = 1im ‘Z%J‘ fe+t ") £ (e )de! (D69)
Tro =7 4T -

is the autocorrelation function of £{t), assumed known.
Evidently, the response function W(t) corresponds to our
relevance function RFF(t,t'); and to establish the formal
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identity of the two theories, we need only show that R also
satisfies the integral equation (D68). But, with the choice
C(t) =F(t), this is included .in (D65) making the appropriate
changes in notatior; our "quantum covariance function" Kpp(t)
corresponding to Wiener's autocorrelation function ¢(t). 1In
the early stages of this work, the discovery of the formal
identity between Wiener's prediction theory and this special
case of the maximum-entropy prediction theory was an important
reassurance. '
The relevance function RCF(t,t') summarizes the precise,
extent to which information about F at time t' is relevant to
prediction of C at time t. It is entirely different from the
physical impulse-response function ¢CF(t—t') discussed, for
example, by Kubo (1958), Eq. (2.18). The latter represents
the dynamical response <C(t}> — <C>, at a time t>t', to an
impulsive force term in the Hamiltonian applied at t=t':
H(t) =H,+F &(t-t'), while in (D63) the "input" <F(t')>---<F>0
consists only of information concerning what the system, with
a fixed Hamiltonian but in a nonequilibrium state, was doing
in the interval -T<t'<0. This distinction is perhaps brought
out most clearly by emphasizing again that (D63) is valid for
an arbitrary time-t, which may be before, within, or after this
information-gathering interval. Thus, while ocur conception of
causality is based on the postulate that a force applied at
time t' can exert physical influences only at later times,
there is no such limitation in (D63). It therefore represents
an explicit statement of the fact that, while physical in-—
fluences propagate only forward in time, logical inferences
propagate equally well in either direction; i.e., new informa-
tion about the present affects our knowledge of the past as
well as the future., Although relations such as (D63) have
been rather rare in physics, the situation is, of course,
commonplace in other fields; sciences such as geology depend
on logical connections of this type.

Space~Time Variations. Suppose the particle density n(x,t)
departs slightly from its equilibrium value in a space~time
region R. Defining én(x,t) Zn(x,t) - <n(x)>,, the ensemble
containing this information corresponds to the partition
functional

Z{B,A{x,t)] = Tr e[—&ﬂ+f k(x,t)ﬁn(x,t)dsxdt] (D70)
R

and (D34) becomes %

<Sn(x,t)> = I Knn(x—x';t—t')l(x',t')d3x'dt' . (D71)

R
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‘When (x,t) are in R this represents the integral equation
determining A(x',t'); when (x,t) are outside R it gives the
predicted nonequilibrium behavior of <n(x,t)> based on this
information, and the predicted departure from equilibrium of
any other quantity J(x,t) is

<J(x,t)> - <J> = I K (x—x';t-t')l(x’,t')d3x'dt' . (D72)
') R Jn

To emphasize the generality of (D72), note that it contains
no limitation on time scale or space scale. Thus it encompasses
both diffusion and ultrasonie propagation.

In (D71) we see the deviation <0n> expressed as a linear super-
position of basic relaxation functions Kj,(x,t) = <&i{0,0)8nk t)>
with A(x',t"') as the "source'" function. The class of different
nonequilibrium ensembles based on information about <&n> is in
1:1 correspondence with different functions A(x,t). In view of
the linearity, we may superpose elementary selutions in any way,
and while to solve a problem with specific given information
would require that we solve an integral equation, we can extract
the general laws of nonequilibrium behavier from (D71), (D72)
without this, by considering A(x,t) as the independent variable.

For example, let J be the OG-component of particle current,
and for brevity write the covariance function in (D72) as

- 1 1 - JUPS SV
<8n (x ,t')Ja(x,t)>o Ka(x x'it-t") . (b73)
Now choose R as all space and all time t <0, and take
AG,E) = uxqe) , £<0 (D74)

where u(x), q(t) are "arbitrary" functions (but of course,
sufficiently well-behaved so that what we do with them makes
sense mathematically}. In this ensemble, the current is

<J_(x,£)> =J‘d3x' u(x')fo dr' §(eHK (x=x",t-t') . (D7S)

Integrate by parts on t and use the identity n+V+.J=0: the
RHS of (D75) becomes

0
Id3x' u(x')[q(O)KG(x-x',O)-+a;18 f dt’ q(t)KaB(x-x',t-t'i}(D?ﬁ)

where Ku is the current—current covariance:

B
KaB(x—x',t—t')

1]l

JEB(x',t')Ja(x,t)>o . (D77)

But from symmetry K (x-x',0) =0. Another integration by parts
then yilelds o
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: O
<J (x,t)> = -f dt'q(t')Ide' K (x—x',t—t') BH (D78)
Q. o (o1] .3}:8
and thus far no approximations have been made.

Now let us pass to the '"long wavelength" limit by supposing
H(x) so slowly varying that ou/9x'B is essentially a comstant
over distances in which KaB is appreciable:

axB

"and in the same approximation (D71) becomes

<Ja(x,t)> JﬂLf dt' q(t")|d x' Kas(x-x',t—t') (??9)

<8n(x,t)> = g{Ou(x) dsx' Knn(x',O) . ~ (D80)

Therefore, the theory predicts the relation
3

<Jd> = -DGB SEE <gn> (D81) -
with ..
%! (t") d3x' K . (x—x',e-t")
_tﬁm q f g .
DﬁB = . (D82)

q(O)fd3x' K (ex',0)

If the ensemble is also quasi-stationary, q(t) very slowly
varying, only the walue of q(t) near the upper limit matters,
and the choice q(t) = exp(et) is as good as any. This leads
to just the Kubo expression for the diffusion coefficient.

If instead of taking the long-wavelength limit we choose a
plane wave: p(x) = exp(ik-x), (D75), (D71) become

o .
<Ja(x,t)> eik xf de! i(t‘)Ka(k;t-t') (D83)

<Bn(x,t)> = eik“‘r at’ q(eMK__(k,t-t") (D84)

where Ka(k,t), K (k,t) are the space fourier transforms. These
represent the decay of sound waves as linear superpositions of
many characteristic decays v K (k,t}, K ,(k,t) with various
"starting times" t'. If we ta%e time fourier transforms, (D84)
becomes

<tnlx,t)> = oKX f W g wewe (D85)

which shows how the exact detalls of the decay depend on the
method of preparation (past history) as summarized by Q{w).
Now, however, we find that K, (k,w) usually has a sharp peak at
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‘some f£requency w==wo(k), which arises mathematically from a
pole near the real axis in the complex w-plane. Thus if
wp = wg ~ i and Kpn{k,w) has the form

~1K, .
R o (kw) = —u;:a;i- + K{k,w) _ (D86)
where ﬁ(k,w} is analytic in a neighborhood of wy, this pole
will give a contribution to the integral (D86) of

1(k*x~w,t) _-at
Ky Qw) e e

, t>0. (D87)

Terms which arise from parts of Kyn(k,w)Q(w) that are not
sharply peaked as a function of w, decay rapidly and represent
short transient effects that depend on the exact method of
preparation. If o is small, the contribution (D87) will quickly
dominate them, leading to a long-term attenuation and propaga-—
tion velocity essentially independent of the method of prepara-.
tion.

Thus, the laws of ultrasonic dispersion and attenuation are
contained in the location and width of the sharp peaks in

Knn(k,m).

Other Forms of the Theory. Thus far we have considered the
application of maximum entropy in its most general form: given
some arbitrary initial infermation, to answer an arbitrary
question about reproducible effects. Of course, we may. ask any
gquestion we please; but maximum entropy can make sharp predic-
tions only of reproducible things (that is in itself a useful
property; for maximum entropy can tell us which things are and
are not reproducible, by the sharpness of its predictions).
Maximum entropy separates out what is relevant for predicting
reproducible phenomena, and discards what is irrelevant (we saw
this even in the example of Wolf's die where, surely, the only
reproducible events in his sample space of 6%%%%?% points were
the six face frequencies or functions of them; just the things
that maximum entropy predicted).

. Likewise, in the stage 2 techniques of prediction from the
maximum entropy distribution, if we are not interested in gvery
question about reproducible effects, but only some 'relevant
subset'" of them, we may seek a further elimination of details
that are irrelevant teo those particular questions. But this
kind of problem has come up before in mathematical physics; and
Dicke (1946) introduced an elegant projection operator technique
for calculating desired external elements of a scatteringmatrix
while discarding irrelevant internal details. OQOur present
problem, although entirely different in physical and mathematical
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, details, is practically identical formally; and so this same
technique must be applicable.

Zwanzig (1962) introduced projection operators for dealing
with two interacting systems, only one of which is of interest,
the other serving only as its "heat bath.'" Robertson {1964)
recognized that this will work equally well for any kind of
separation, not necessarily spatial; i.e., if we want to
predict only the behavior of a few physical quantities {Fl...Fm}
we can introduce a projection operator P which throws away
everything that is irrelevant for predicting those particular
things; allowing, in effect, everything else to serve as a kind
of "heat bath" for them. ’

In the statistical theory this dichotomy may be viewed in
another way: instead of "relevant" and "irrelevant” read
"systematic'" and "random." Then, referring to Robertson's
presentation im this volume, it is seen that Eq. (9.3}, which
could be taken as the definition of his projection operator
P(t), is formally just the same as the solution of the problem
of "reduction of equations for condition'' given by Laplace for
the optimal estimate of systematic effects. A wmodern version
can be found in statistics textbooks, under the heading:
"multiple regression.” Likewise, his formulas (9.8), (9.9)
for the "subtracted correlation functions' have a close formal
correspondence to Dicke's final formulas.

0f course, this introduction of projection operators is not
absolutely required by basic principles; it is in the reaim of
art, and any work of art may be executed in more than one way.
All kinds of changes in detail may still be thought of; but
needless to say, most of them have been thought of already,
investigated, and quietly dropped. -Seeing how far Robertson
has now carried this approach, and how many nice results he
kas uncovered, it is pretty clear that anyone who wants to do
it differently has his work cut out for him.

Finally, I should prepare the reader for his contribution.
When Baldwin was a student of wine in the early 1960's, I
learned that he has the same trait that Lagrange and Fermi
showed in their early works: he takes delight in inventing
tricky variational arguments, which seem at first glance totally
wrong. After long, deep thought it always developed that what
he did was correct after all. A beautiful example is his
derivation of (4.3), where most readers would leave the track
witheout this hint from somecne with experience in reading his
works: you are not allowed to take the trace and thus prove
that a=1, invalidating (4.4), because this ik a formal argument
in which the symbol <F> stands for Tr(FJ)even when ¢ is not
normalized teo Tr(g)=1. ¥For a similar reason, you are not
allowed to protest that if Fj =1, then 5<F0> = 0. One of my



- Jaynes

mathematics professors once threw our class inte an uproar by
the same trick; evaluating an integral, correctly, by dif-
ferentiating with respect to w. For those with a taste for

subtle trickery, variational mathematies is the most fun of
all.
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