
Chapter 3

Matroid algorithms

The notion of matroids generalizes that of graphs and it is natural to ask which
graph algorithms do have counterparts in the realm of matroids. The first issue
to settle when talking about matroid algorithms is how an input matroid is given.
The most common way of representing a matroid in an algorithm is using an oracle
function that answers queries whether a given set of elements is independent. In
this setting, we say that a matroid is given by an oracle and we assume that a
single oracle query consumes a constant amount of time. As this assumption is
often unrealistic (e.g., deciding independence for graphic matroids requires time
linear in the size of the corresponding graph), we sometimes include in estimates
on running times of algorithms the query time (see, e.g., Corollary 3.5). Then,
it is easy to compute the actual running time of an algorithm by plugging in the
query time to the estimate.

Let us also note that, in this lecture notes, we focus on establishing that
problems of interest to us can be efficiently solved (i.e., solved in polynomial-time)
without extensive optimization of the running time of the presented algorithms;
the reader can find faster algorithms in the references we provide.

3.1 Minimum/maximum-weight base

The most classical algorithm related to matroids is the one for finding a base with
the minimum or maximum-weight, the problem which includes the Minimum
Spanning Tree (MST) problem for graphs. In the maximum-weight base problem,
every element e of an input matroid M is assigned a weight w(e) and the goal
is to find a base B of M such that

∑

e∈B w(e) is maximal. Such a base can be
found by a greedy algorithm as shown in the next theorem.

Theorem 3.1. The maximum-weight base problem can be solved by an algorithm
running in time O(n logn + nτ) for an n-element oracle-given matroid M with
oracle query time τ .
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Proof. The problem can be solved by the following greedy algorithm: the elements
of M are first sorted in a decreasing order based on their weight. Let e1, . . . , en

be the obtained order of the elements of M.

The algorithm then constructs the base in n steps. At the beginning, set
A0 = ∅ and, in the i-th step, set Ai to Ai−1 ∪ {ei} if the set Ai−1 ∪ {ei} is
independent, and to Ai−1, otherwise. Clearly, the set An is an inclusion-wise
maximal independent set in M and thus An is a base of M. The running time
of the algorithm is bounded by O(n logn) needed for sorting the elements and
O(nτ) for constructing the sets A1, . . . , An. Hence, the total running time of the
algorithm is O(n logn+ nτ).

It remains to prove that the set An is a base of M with the maximum weight.
Assume that there exists a base B of M with weight larger than the weight of
An. Let r be the rank of M, ia1 < · · · < iar the indices of the elements contained
in An and ib1 < · · · < ibr the indices of the elements of B. Since

∑

e∈An

w(e) <
∑

e∈B

w(e) ,

there exists an index k such that iak < ibk. Otherwise, it would hold that w(eia
k
) ≥

w(eib
k
) for every k = 1, . . . , r and the sum of the weights of the elements of An

would be at least as big as the sum of the weights of the elements of B.

Since the set {eia
1
, . . . , eia

k−1
} is an independent set of size k− 1 in M and the

set {eib
1
, . . . , eib

k
} is an independent set of size k, there exists an index j, 1 ≤ j ≤ k,

such that the set {eia
1
, . . . , eia

k−1
, eibj

} is an independent set. However, the element

eibj
should then have been included to the set Aibj

(recall that ibj ≤ ibk < iak) which

did not happen. This implies that there is no k such that iak < ibk and thus An is
a maximum weight base of M.

The opposite problem, the minimum-weight base problem which asks for find-
ing a base B with a minimal sum

∑

e∈B w(e) can also be solved by a greedy
algorithm. Note that the minimum-weight base problem includes the minimum
spanning tree (MST) problem as a special case since spanning trees of a connected
graph correspond to bases of the corresponding graphic matroid.

Corollary 3.2. The minimum-weight base problem can be solved by an algorithm
running in time O(n logn + nτ) for an n-element oracle-given matroid M with
oracle query time τ .

Proof. Observe that if the weight of an element e of M is replaced with −w(e),
then a minimum-weight base with respect to the new weights is a maximum-
weight base with respect to the original weights. The assertion of the corollary
now follows from Theorem 3.1.
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Matroids are set systems for that the greedy algorithm finds a maximum-
weight set in the system. However, this turns out to be yet another characteriza-
tion of set systems that form independent sets of a matroid as stated in the next
theorem.

Theorem 3.3. Let I be a family of subsets of a set E that contains the empty set.
If the greedy algorithm described in the proof of Theorem 3.1 finds a maximum-
weight set in I for any non-negative weights w(e), e ∈ E, then (E, I) is a matroid.
a matroid with ground set E.

Proof. We verify that the family I satisfies the properties (I1), (I2) and (I3) given
in the definition of a matroid. The empty set is contained in I by the assumption
of the theorem which implies that (I1) holds.

We now show that (I2) also holds. Assume that (I2) fails and choose a set
I ∈ I with the smallest number of elements such that not every subset of I is
contained in I. By the choice of I, there exists I ′ ⊆ I with |I \ I ′| = 1 such
that I ′ 6∈ I. Again, by the choice of I ′, every subset of I ′ is also contained in I.
Consider the following weight function on the elements of E:

w(e) =







2 if e ∈ I ′,
1 if e ∈ I \ I ′,
0 otherwise.

One of the sets in I with maximum weight is the set I with weight 2|I| − 1.
Hence, the greedy algorithm first sorts the elements, putting the elements of I ′

first, then the element of I\I ′ and the elements not contained in I as the last ones.
If the greedy algorithm should output a set of weight of 2|I| − 1, then it must
include all elements of I ′ in the constructed maximum-weight set. Since I ′ 6∈ I,
the algorithm cannot include all these elements and thus it will not produce a
set of weight 2|I| − 1. We conclude that the set system I contains all subsets of
every set in I.

Assume now that the property (I3) does not hold and let I1 and I2 be the two
sets violating it. Since I contains all subsets of every set, we can assume that
|I2| = |I1| + 1. Consider the following weight function on the elements of E:

w(e) =







|I1| + 2 if e ∈ I1,
|I1| + 1 if e ∈ I2 \ I1,

0 otherwise.

Since the sum of the weights of the elements of I2 is at least |I2|(|I1| + 1) ≥
|I1|2 + 2|I1|+ 1, the sum of the weights of the elements of a maximum-weight set
is at least |I1|2 + 2|I1|+ 1. On the other hand, the greedy algorithm as described
in the proof of Theorem 3.1 first constructs a set I1 but it can then include no
element of I2\I1 to I1 as the set I1+e is not independent for any e ∈ I2\I1. Hence,
the weight of the set found by the greedy algorithm is |I1|(|I1|+2) = |I1|2 +2|I1|.
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This again contradicts the assumption that the greedy algorithm always finds a
set with maximum weight. Since I satisfies all the three properties (I1), (I2) and
(I3), (E, I) forms a matroid as claimed in the statement in theorem.

3.2 Matroid intersection problem

Another graph algorithm that has a counterpart for matroids is the algorithm for
constructing a maximum matching in bipartite graphs. Recall that a matching
in a graph is a set of edges such that no two of them share a vertex. The problem
of constructing a maximum-size matching in a bipartite graph can be formulated
using matroids as follows: let G be a bipartite graph with no isolated vertices
with parts V1 and V2 and edge set E. We define two matroids M1 and M2 with
the ground set E. A subset E ′ ⊆ E is independent in M1 if the end-vertices
of the edges contained in E ′ are different in V1. Analogously, E ′ is independent
in M2 if the end-vertices of its edges in V2 are different. The matroids M1 and
M2 are transversal matroids. Observe that if G has no isolated vertices, then
the rank of M1 is |V1| and the rank of M2 is |V2|.

A subset E ′ of edges of G is a matching if and only if E ′ is independent in both
M1 and M2. Hence, the problem of constructing a maximum-size matching can
be formulated as the problem of constructing a maximum-size set independent in
two given matroids with the same ground set. In the sequel, we show an efficient
algorithm for solving this problem and find a minimax characterization of the
size of such a maximum set. Let us start with the characterization (note that the
sets E1 and E2 in the statement of the theorem can be assumed to be disjoint).

Theorem 3.4 (Matroid Intersection Theorem). If M1 and M2 are two matroids
with the same ground set E and I1 and I2 are families of sets independent in M1

and M2, then the following equality holds:

max
E′∈I1∩I2

|E ′| = min
E1∪E2=E

rM1
(E1) + rM2

(E2) .

Proof. We prove the equality as two inequalities. Let us start with the inequality
“≤”. Consider two subsets E1 and E2 of E such that E = E1∪E2 and rM1

(E1)+
rM2

(E2) is minimized. We show that

|E ′| ≤ rM1
(E1) + rM2

(E2) (3.1)

for every set E ′ ⊆ E that is independent in both M1 and M2. As E ′ is indepen-
dent in M1, we have that

|E ′ ∩E1| ≤ rM1
(E ′ ∩ E1) ≤ rM1

(E1) (3.2)

Similarly, we derive that

|E ′ ∩E2| ≤ rM2
(E ′ ∩ E2) ≤ rM2

(E2) (3.3)
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Since E = E1∪E2, the estimates (3.2) and (3.3) yield (3.1) by the submodularity
of the rank function. Since the inequality (3.1) holds for every E ′ ⊆ E, the
inequality “≤” of the statement of the theorem is established.

We now focus on establishing the opposite inequality. Fix E ′ ⊆ E which
is independent in both M1 and M2; such a set E ′ exists as the empty set is
independent in both the matroids. We either establish the existence of a set E ′′

with |E ′′| > |E ′| that is independent in both M1 and M2 or find a partition of
E into subsets E1 and E2 such that

|E ′| = rM1
(E1) + rM2

(E2) (3.4)

In order to achieve this goal, we first construct an auxiliary directed bipartite
graph H .

One of the parts of H is formed by the elements of E ′ and the other part
by the elements of X = E \ E ′. The graph H contains an arc from y ∈ E ′ to
x ∈ X if the set (E ′ − y) + x is independent in M1 and an arc from x ∈ X to
y ∈ E ′ if the set (E ′ − y) + x is independent in M2. Set Xi to be the set of those
x ∈ X such that the set E ′ + x is independent in Mi, i = 1, 2. Our two cases
are determined by the existence of a directed path from an element of X1 to an
element of X2 in H .

Assume first that there is a directed path x0y1x1 · · · y`x` in H from x0 ∈ X1

to x` ∈ X2. Consider such a shortest path. We allow ` to be equal to 0 (in which
case X1 ∩ X2 6= ∅ and E ′ + x0 is independent in both M1 and M2). We argue
that the set E ′′ = (E ′ \ {y1, . . . , y`}) ∪ {x0, . . . , x`} is independent in both M1

and M2. By symmetry, it is enough to establish that E ′′ is independent in M1.
As the first step towards establishing the independence of E ′′ in M1, we prove

that all the sets Ek = (E ′ \ {yk, . . . , y`}) ∪ {xk, . . . , x`} are independent in M1

for k = 1, . . . , `. The proof proceeds by induction on k starting with k = `.
If k = `, then the set Ek = E` = (E ′ − y`) + x` is independent in M1 since

H contains an arc from y` to x`. Assume now that we have already established
that the sets Ek+1, . . . , E` are independent in M1 and we want to show that
the set Ek is also independent in M1. As Ek − xk ⊆ Ek+1, the set Ek − xk is
independent in M1 and its size is |E ′| − 1. Since H contains an arc from yk to
xk, the set (E ′ − yk) + xk is an independent set in M1 of size |E ′|. Hence, there
exists z ∈ (E ′ − yk) + xk such that z 6∈ Ek − xk and the set (Ek − xk) + z is
independent in M1. If z = xk, then Ek is independent in M1 and the proof is
finished. Suppose that z 6= xk, i.e., z = yi for i = k + 1, . . . , ` as

((E ′ − yk) + xk) \ (Ek − xk) = {xk, yk+1, . . . , y`} .

Since (Ek − xk) + yi is an independent set of size |E ′| in M1, there exists z′ ∈
(Ek − xk) + yi such that z′ 6∈ E ′ − yk and (E ′ − yk) + z′ is an independent set
in M1. Observe that z′ must be one of the elements xk+1, . . . , x` as all the other
elements of (Ek − xk) + yi are contained in E ′ − yk. In particular, H contains an
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arc from yk to z′ = xi′ , i
′ > k, contradicting the choice of the path from x0 to x`

as the shortest possible.
We have now derived that the set (E ′ \ {y1, . . . , y`})∪{x1, . . . , x`} is indepen-

dent in M1. Since the set E ′ + xi for i = 1, . . . , ` is not independent in M1 by
the choice of the path from x0 to x` as the shortest path from X1 to X2, the rank
of the set E ′ ∪ {x1, . . . , x`} in M1 is equal to |E ′|. Finally, the rank of the set
E ′ ∪ {x0, x1, . . . , x`} is equal to |E ′|+ 1 because the set E ′ ∪ {x0} is independent
in M1. Hence, the rank of the set E ′′ = (E ′ \{y1, . . . , y`})∪{x0, x1, . . . , x`} must
be |E ′|+1, i.e., the set E ′′ is independent in M1 as desired. As mentioned earlier,
a symmetric argument yields that E ′′ is independent in M2, too. This finishes
the case when there is a directed path from an element of X1 to an element of
X2 in the auxiliary graph H .

Assume now that there is no directed path from an element of X1 to an
element of X2. We aim to partition E into two subsets E1 and E2 such that
(3.4) holds. As there is no directed path from X1 to X2, the vertices of H (and
thus the corresponding elements of E) can be partitioned into two sets E1 and
E2 such that X1 ⊆ E2, X2 ⊆ E1 and there is no arc leading from E2 to E1. We
claim that

rM1
(E1) = |E ′ ∩ E1| (3.5)

and
rM2

(E2) = |E ′ ∩ E2| (3.6)

We focus on proving the equation (3.5). The equation (3.6) follows the lines of
the proof of (3.5) through replacing the roles of M1 and M2 and reversing the
orientation of the arcs of H .

Assume that rM1
(E1) > |E ′ ∩ E1|. Hence, there exists x ∈ E1 \ E ′ such that

the set (E ′ ∩ E1) + x is independent in M1. Clearly, the set (E ′ ∩ E1) + x can
be completed by elements of E ′ to a set of size |E ′| independent in M1. Observe
that the resulting set must be equal to (E ′ − y)+x for some y ∈ E ′ ∩E2. Hence,
H contains an arc from y to x that contradicts our choice of E1 and E2 as two
sets such that there is no arc from E2 to E1. This establishes (3.5). Since the
equality (3.6) follows from a symmetric argument, the desired equality (3.4) is
now established.

As a corollary of Theorem 3.4, we obtain that the problem of determining and
constructing the maximum-size set independent in two given matroids, which is
known as the matroid intersection problem, can be solved in polynomial-time.

Corollary 3.5. The matroid intersection problem is solvable in time O(r2nτ) for
two oracle-given matroids of rank at most r with at most n elements and with
oracle query time τ .

Proof. The proof of Theorem 3.4 suggests an algorithm for constructing a maxi-
mum-size set independent in both the input matroids starting with the empty
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set and augmenting it in each phase by one element. The number of phases
of such an algorithm is bounded by r. In each phase, the algorithm queries
2|E ′| · |E \E ′| ≤ 2rn = O(rn) times the oracles to construct the auxiliary graph
H and 2|E \ E ′| ≤ 2n times to construct the sets X1 and X2. The algorithm
then checks the existence of a directed path from X1 to X2 in time O(rn) and if
it exists it augments the constructed independent set. Otherwise, it stops. It is
straightforward to estimate the running time of this algorithm by O(r2nτ).

We remark here that there are faster algorithms for solving the matroid in-
tersection problem, e.g., there is one running in time O(r3/2nτ) [4].


