

ALGEBRA I

22.01.2026

2.5 hours

Grading system: 0-2 pt = “4”, 3-5 pt = “3”, 6-8 pt = “2”, 9-11 pt = “1”

EXERCISE 1 (1PT) Let \mathbf{A} be a ring with 1 and let $a, b \in A$. Show that

$$(1 - ab)c = 1 = c(1 - ab) \implies (1 - ba)d = 1 = d(1 - ba),$$

where $d = 1 + bca$, that is, $1 - ba$ is invertible in \mathbf{A} whenever $1 - ab$ is invertible. Calculate the value of $1 + adb$.

EXERCISE 2 (1PT) Find a graph G with an automorphism group $\text{Aut } G \cong \mathbb{Z}_3$.

EXERCISE 3 (1PT) Find the greatest common divisor of $f = 6x^3 - 18x^2 - 156x - 84$ and $g = 4x^3 - 16x^2 - 88x + 28$ in $\mathbb{Z}[x]$.

EXERCISE 4 (1PT+1PT) For two subgroups \mathbf{H}, \mathbf{K} of a group \mathbf{G} , prove that $\mathbf{H} \cdot \mathbf{K} \leq \mathbf{G}$ if and only if $\mathbf{H} \cdot \mathbf{K} = \mathbf{K} \cdot \mathbf{H}$. Give an example of a group \mathbf{G} and its subgroups \mathbf{H}, \mathbf{K} such that $\mathbf{H} \cdot \mathbf{K}$ is not a subgroup of \mathbf{G} .

EXERCISE 5 (2PT) Show that every ring, where each element x satisfies $x^2 = x$, is commutative.

EXERCISE 6 (1PT+1PT) Show that a ring $\mathbf{A} = \mathbb{Z}_3[x]/(x^3 + 2x + 1)$ is a field and compute $(x + 2)^{80}$ in \mathbf{A} .

EXERCISE 7 (2PT) Determine all subgroups of \mathbf{D}_8 and their sizes. Draw a poset of subgroups ordered by inclusion.