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Themes

Theory of GA revisited — (in)finite populations, Markov
chains

Black box optimization
Evolutionary programming
Genetic programming
Scatter search, Tabu search

Neuroevolution — grammatical encoding, cellular encoding,
NEAT, HyperNEAT

Artificial life, PSO, ants, and similar algorithms
Differential evolution

Memetic algorithms

Tuning, control, meta-evolution, co-evolution
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Everything can be changed

TUNING, CONTROL, META-EVA



General EVA scheme

A. Init

1. Create initial population
P(0) (more or less
randomly)

2. Evaluate

B. In cycle create P(t+1) from
P(t):

Parental selection

Recombinations

Mutations

Evaluate new individuals

Environmental selection
creates P(t+1) based on P(t)
and new individuals

S
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Tuning vs. control

EA has various parameters (population size, probability
of operators, tournament size, elitism rate, ...)

Common practice is to tune those parameters for a
task at hand

— Trial and error, grid search

— Experience and good luck

They are not independent & it is usually not possible to
do exhaustive search really

One possible solution is to not consider them static but
dependent on time or other algorithm properties (e.g.
fitness variance in population), and change them —
control.

ROMAN NERUDA: EVA2 - 2013/14



How?

* Fixed strategy
— Time-dependent change of parameter

— Deterministic
* Decrease mutation probability 0.1% each generation

— Stochastic
* Simmulated annealing

* Adaptive strategy

— Based on information about the quality of solution,
statistical properties of population, ...

e Self-adaptive
— Evoluion of evolution
— Mutation variances in genome of ES
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Ex 1: Reprezentation

e Adaptive change of representation (encoding of
individual) based on population diversity:

— GA with binary encoded real numbers, unknown precision
is needed, so start with small number of bits per real

— Run GA iteratively, every run is stopped when population
diversity goes bellow 1

 Measured by Hamming distance between the best and the worst
individual in the population.

— Save the best individual as reference, and run GA again

— |If the second run produces the same best individual,
increase number of bits per real and start again
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Ex 2: Mutation

e Gaussian mutation of real vectors:

— x(t+1) = x(t) + N(O,s), where s is variance
* Deterministic change:

— s(t)=1-0.9 (t/T), where t=0, ... T
e Evolutionary strategies — first kind:

— Heuristic observation from Berlin — the optimal success
rate of mutation is 1/5,
 If the current rate is bigger, increase s about 10%,
e |f the current rate is smaller, decrease s about 10%

e Evolutionary strategies — second kind (sebe-adaptace):
— Put s (for every x(t)) into the genom and evolve
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Ex 3: Selection

e Boltzman tournament:

— Probabilty that the worse individual can win will
depend exponentially on the ratio of fitness
difference and temperature

— Temperature decreases with time

— If we stuck in local optima, increase the
tempurature

* Simmulated annealing as local search:

— Like hill climbing, but with boltzman probability of
acceptance of worse solution
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Ex 4: Population

* |Indirect control of population size depending
on the fitness of individuals

— When new individual is generated, we define its
life span proportional to its fitness

— After the defined number of generations, the
individual dies

— Better individuals live longer, thus the system
supports spread of successful individuals

— Population size is thus only a derived, dynamic,
and not so important thing
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Beyond schemata

THEORY REVISITED



Exact models of simple GA

* 90s: Vose, Lepins, Nix, Whitley, ...
e Attempt to mathematically study:

— How exactly the population looks like

— Describe mapping of transition from one
population to the next

— Properies of this mapping
— Asymptotic behavior of simple GA

* |nfinite populations
* Finite populations
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Let us simplify the (already simple)
plain vanilla GA - SGA

 Random initial population of length | binary
strings X

— Compute Fitness f(x)

— Repeat until new population is filled:
e Select 2 individuals,
* Cross them over with probability p_
* Discard one of them (!) <- this is the simplification
* Mutate each bit with probability p,,

* Insert new (one) individual to new population

* Repeat until a good enough individual x is found
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Formalize the SGA

* Each binary string is represented by a number
from 0..2/

— 00000111 is 7

* Population in time tis represented:
— By two vectors: p(t) a s(t) of lenght 2/

— p, (t) represents the part of population t occupied by a
string (relative frequency)

— s, (t) is probability of selection of string i
* p(t) defines the population composition
s(t) defines selection probabilities
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The capital G operator

We have fitness f, define matrix F(i,j):
— F(i,i) = f(i); F(i,j) = 0 pro i<>j
Then s(t) = F p(t)/(2 F(j,j) p;(t))
— (that’s in fact a definition of fitness-proportional selection)

Our dream is to define operator G that would realize
the SGA iteration:

— i.e. p(t+1) = G p(t), or similarly s(t+1) = G s(t)

If we have G, we iterate it from initial population, and
we know everything about SGA (!)

Let us decompose G = F°M (F fitness, M mutation and
crossover)
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First let G=F

* E(x) expected value

* E(p(t+1)) = s(t)

s(t+1) ~ F p(t+1) (just multiplicative constant c)
Thus: E(s(t+1)) ~ F s(t)

— In case of (small) finite population, the statistical
errors can cause deviations from expected values E(.)

— The bigger population, the smaller deviation
— Inifite populations are exact, albeit a bit impractical
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Now let G=M

* M is a recompination operator (including both
crossover and mutation)
The derivation requires some probability skills and lots

of time:
— Let us use a handy function r(i,j,k)
— r(i,j,k) ... Probability that offspring k is created from
parentsiand j
— When we have r(i,j,k), we can compute p(t+1)

— Well, one part of vector after another, and also in expected
values, but that’s why we now consider infinite

populations:
* E(py(t+1)) = 2:2; 5i(t) s;(t) r(i,j,k)
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A zbytek analogicky

e Derivation of r(i,j,k) is possible, this is r(i,j,0)
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Results

* SGA works by applying G to each population in
time, it is a dynamical system, and vectors p(t) or
s(t) are points of the trajectory of such a system.

 What are the fixed points)? (well, that exactly we
still do NOT know)

— Fixed points of F are poplations with identical fitness
— Stable fixed point of F: maximal identical fitness

— (The only) fixed point of M: identical probabilities s
(or, the same relative frequencies of individuals p)

— Combination of shaking by M and focusing by F -
punctuated equilibria (known from biology)
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Finite populations

 Markov chains:
— Stochastic process in discrete time

— System has states, the probability of going from
one state to another depends only on the first
state (no memory of previous states)

— Table of transition probabilities between all states
represents a complete description of such a
system

* Wow, let us define SGA over fitine populations
as Markov chain
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States

e Each state of our Markov chain is one particular
populations.

* There is quite a lot of populations

* N = number of populations containing n individuals of
length |:

— N = (n+2'-1) over (2'-1)
* Matrix Z
— Columns are populations
— Z(y,i) = number of individuals y in population i
* (thus, columns of Z are states of our Markov chain)
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Transition matrix

e Qis a matrix of transition between
populations, it has NxN elements

* So, e.g. for n=1=8, Q has 10%° numbers!
* Q can be derived, but seldom used

ROMAN NERUDA: EVA2 - 2013/14

24



What have we achieved, really?

e Exact analysis of SGA, given f
* |n practice intractable, though

* Asymptotical results — provide insight into
convergence and SGA behavior, although the
composition of F and M into G is still open.

* A correspondence exists between infinite
pop. SGA and finite pop. SGA (limit approach)

ROMAN NERUDA: EVA2 - 2013/14 25



Genotype is phenotype, crossover is evi

EVOLUTIONARY PROGRAMMING



Evolutionary programming

* L. Fogel, 60s (older than Holland GAs)

* The ultimate goal was to evolve ,artificial
intelligence®:

* Agentis situated in an environment
* Agent should predict environment state

* Agent should derive a suitable action w.r.t the
environment state

* Agent was repsented by a finite automaton

* Environment was: sequence of finite alphabet
symbols
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Finite automaton

Table 3-1 The Response of the Finite-State Machine Shown in Figure 3-2 to a String of
Symbols. In This Example, the Machine Starts in State C.

Present State C B C A
Input Symbol 0 1 1
Next State B : A A
Output Symbol J&; 0% 5]
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EP over FA

e Population of finite automata — (remember,
genotype = phenotype)
* |nputs are presented to automaton

e Outputs are compared to next symbol in the
sequence

e Fitness: success of the prediction (measured
differently)

— Absolute error
— Mean square error
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EP over FA cont.

* Creating new automata: mutation
— Change output symbol
— Change successor state
— Add a state
— Remove state
— Change initial state

* No crossover (!)
* Half of population replaced by new automata
e Fitness often considers the size of automaton
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Famous Ex.: Primes prediction

The goal is to predict a sequence of 0Os and 1s

— Where 0 means that number corresponding to this position is
not a prime.

— i.e. learning the sieve of Erathosthenes
— 111010100010100010100010000010 ...
Iteratively:
— Sequence of fixed length is learned,
— Then, increase the size by one symbol ...
* Fitness:
— Point for each guessed symbol in sequence
— Negative fitness part : - 0.01 * N (=number of states)

Automata were evolving simpler and simpler, ultimately
being 1-state and generating O all the time
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Primes cont

Experiment 15

:
s
g
g

Primeness of the increasing integers
0.01 complexity cost/state

5 machines selected/generation
Single mutation, random series |

10 generations/prediction
0 20 40 60 80 100 120 140 160 180 200 220

Number of symbols experienced

Figure 3-3. The cumulative percentage of correct predictions in the first 200 prime num-
bers (from Fogel et al., 1966, p. 37).
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EP today

* Benevolent to encoding of individuals
— Encoding should be natural for the problem at hand
— Often Genotype = Phenotype

e A collection of “smart”mutations, tailored to
problem and encoding

* No crossover
e Parental selection: every is selected once

* Environmental selection: from parents and
offsprings, new population is selected by
tournament
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EP over reals

* Encoding
— Vector of reals
— Contains variances of mutations

e Mutation

— Small random change according to normal distribution
with corresponding variance

e Meta-evolution

— Parameters that are used in algorithm, are modified
by the algorithm

e Selection: all are parents, then tournament
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EP over reals

procedure Meta-EP
t<0
Inicializuj P, N ndhodné vygenerovanymi realnymi vektory X", =(X;;,«-eX, )01+, 0pt)
Ohodnot’ jedince v populaci P,
while (neplati kritérium ukonceni) do
fori<1,...,Ndo
k rodi¢i x”, vygenruj potomka y~, mutaci:

forj< 1,...,ndo
o/ €0, -(1+a:N(0,1)) x' & x,+0/-N(0, 1)
end for
Vloz y~, do kandidatské populace potomka P’,
end for
Turnajovou selekci vyber P,,, z rodicu P, a potomku P,
Zahod’ P,a P,/
t<t+l
end while
end procedure
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EP vs GA

* Crossover:
— Exchange of building blocks — ideal case

— Strange big random mutation — not respecting the
encoding

* Jones 1995: headless chicken experiment:

— The success of crossover was tested by comparing the
traditional crossover with random crossover (crossing
the individual over with random string)

— There is no crossover without the idea of crossover,
do not call headless chicken a chicken, although it has
many chicken features.
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Headless chicken

* |In cases with clear idea of building blocks, the
crossover is better than random crossover

* In cases, where the random crossover is better, it
is in fact a macro-mutation

* In such a case there are no clear building blocks
— Wrong encoding?
— Wrong crossover for this encoding?
— Difficult problem for crossover?

e The moral: Is our chicken headless?
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GA vs EP: experiment

£6: F(x,y)=x2+ 2y — 0.3cos(37x) — 0.4cos(4my) + 0.7,

Table 4.1 The Number of Parameters, The Binary Coding Length, and The Functions f7: F(x,y) = x>+ 2% — 0.3(cos(3mx)cos(4my)) + 0.3,
Studied in Schraudolph and Belew (1992). These Follow Previous Efforts By De Jong £8: F(x, y) = x2 + 2y2 — 0.3(cos(37x) + cos(4my)) + 0.3.
(1975). The Operation [x,] in /3 Returns The Greatest Integer Less Than or Equal To x,. The '
MO0, 1) in /4 Represents A Standard Gaussian Random Variable.
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GA vs EP exp pokr

Table 4-3 Results for the Best Score in the Population and the Mean of All Parents’ Scores

After 10,080 Function Evaluations, Averaged Over 10 Trials With the Genetic Algorithm
Techniques (Both With And Without Dynamic Parameter Encoding) and 500 Trials With
“Evolutionary Programming” (after Fogel and Stayton, 1994). Evolutionary Programming
Outperforms Both Genetic Methods On Functions /1, /2, and f6-/8, and Yields Comparable
Performance on f3-/5. The Values in Parentheses Indicate the Standard Deviations
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Average Best

3.149 x 1096 (2.344 x 107'%9)
1.056 x 107" (1.072 x 10°21)
2.836 x 10 (4.587 x 10°%)
1.215 x 10 (3.357 x 10°2%)
2.035 x 102 (3.315x 107
2.914 % 102 (6.280 x 10%)
0.0 (0.0)

0.0 (0.0)

0.0 (0.0)

~2.575 x 10° (7.880 x 10°1)
2,980 x 109 (1.009 x 10°")
-4.599 x 107" (4.265 x 10°")
4.168 x 10°(9.928 = 10°)
3.502 x 10 (1.265 x 10")
0.980 x 1071 (3.553 x 10°'9)
5.193 % 1077 (1.348 x 1010'%%)
1.479 % 107 (1.460 x 10'%)
2.629 < 10 *(1.103 x 10°%)
8.332 % 10 191 (3.449 x 10 '9%)
2084 < 107 (6.831 < 10 '%)
L7811 <10 (2146 < 1010 7)
1,366 =< 10 ' (4.479 = 10 %)
P21 < 107 (5176 < 10 ')
YA = 10 T STE 210

Average Mean

1.087 x 10795 (1.794 x 107'28)
3.618 x 10719 (1.060 x 1071%)
6.135 x 1071 (1.627 x 107")
8.880 x 10714 (2.399 x 102%)
8.785 x 1072 (8.090 x 10°3)
1.722 x 10° (2.576 x 10°)

0.0 (0.0)

0.0 (0.0)

1.307 x 10°(1.172 x 107")
4.274 x 107! (3.206 x 102)
4.704 x 107" (1.283 x 10°1)
1.312 % 10" (2.941 x 10Y)
4.194 x 10°(1.022 = 10")
1.642 x 10 (7.101 x 10?)
1.021 x 10! (7.165 x 10")
0.392 x 10794 (4.410 x 10°%%)
8.340 x 1077 (4.649 x 10109
4.022 = 10" (6.467 = 10°%)
2495 x 1077 (3.095 x 10 1%)
6.520 x 107 (7.868 x 1010 %)
3.541 % 10" (2.922 x 10%)
3.031 % 10 '3 (2.122 % 1010293)
3.764 < 10 ' (9,145 < 1010 ")
288 < 1010 " (1368 < 10Y
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Skip the middle man

GENETIC PROGRAMMING



Evolution of programs

* 1950s — Alan Turing proposes evolution of
programs

e 1980 — Forsyth — BEAGLE: A Darwinian Approach
to Pattern Recognition

* Late 1980s — Tree representations were discussed
among Holland PhD students

e 1985 Nichael Cramer — first description of tree
individuals,

e 1989 — John Koza — tree based GP as we know it
now (publication, patent)
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Evolution of programs

* General structure of the GP algorithm:
— Generate initial population of random programs

— Evaluate the programs by running them and test
on data
— Generate new population of programs:
 Selection based on fitness
e Crossover of two programs
* Mutation of programs

— As usual, repeat until a good enough solution is
found
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Tree based GP

* John Koza, late 80s-early 90s:

 Programs are represented as syntactic trees
 Terminals are variables and constants

* Non-terminals are operations

e Crossover is a subtree exchange, non-terminals have
typically bigger probability to be a crossover point

 Mutation replaces a subtree with random one
* Fitness is determined by running the program
e Selection is standard, often tournament

* First examples in Lisp
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Variations of GP

e Mutations:

* |tis good (almost necessary) to use more mutation types:

— Random or systematic mutation of constants
e GP traditionally had problems fine-tuning numerical values
* Thus, a specialized mutations of constants speed-up the algorithm
* Either (any) arithmetic mutation on constants

e Or iterations of hill-climbing or other optimization methods on one or all
constant set of the tree

— Random exchange of a node for the same arity one
— Permutations
— Swap non-terminal for terminal

— Mutations that decrease the size of the tree (smaller sub-tree, new
individual from a sub-tree, ...)

e (Crossover:
— Uniform crossover on a sub-tree

ROMAN NERUDA: EVA2 - 2013/14
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Variations of GP

e |nitialization:

— Random procedure how to generate trees from
two sets — terminals and non-terminals

— Grow: Generate random trees from both sets till a
limit on number of nodes is reached

— Full: Generate random trees from non-terminal till
certain depths, then only terminals are added

— Ramped half-and-half: half of population by grow,
half by full
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ADF

Automatically defined functions

— Subprograms — necessary to achive modularity, higher complexity,
represent symmetries in the problem

Characterized by their arity,
Have limited (or different) terminal and non-terminal sets

A program typically has main() routine and one or more ADF
subtrees

— ADF call becomes a new non-terminal in the main program

GP operators work on mains and ADFs separately, the routines are
not mixed together

Specialized code constructs have been proposed based on ADF
approach: automatically defined loops, iterations, recursions ...

Alternative approach — co-evolution of population of mains and
ADFs
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Bloat of GP programs

* Programs in GP have tendencies to grow in size -
bloat

* |In nature, the extensive growth hits some
ohysical limit that prevents excesses

* In GP we must fight bloat explicitly:

— Limit tree size (no. of nodes), limit tree depth:
* Penalize it as a negative term in fitness
* Or, check and repair/eliminate new individuals

— Anti-bloat operators:

* Watch mutation and crossover so that do not enlarge much
* Or, special mutations making trees smaller
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Way dowm: linear GP

 Linear GP:

— Program is represented in a linear way, most often in
some machine/byte code

— Simpler, some claim more natural representation

— Simpler operators (crossover, mutation work on linear
vectors)

— Faster emulation of the run

— But high risk of creating nonsense programs by
mutations and crossovers

— Favourite representation in artificial life, evolution of
bots and control code in games
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Way up, graph GP

 Graph-based GP:

— Program is not a tree, but a more general graph, often
acyclic (DAG)

— First considered as extensions of tree GP to parallel
programs

— Later it was discovered, that graph structures are really
useful to describe lots of things
* Evolution of circuits
* Finite automata, you guessed it
* Neural networks
e Reinforcement learning for robots, planning ...

— Complicated genetic operators — how to cross over general
graphs (EP made it illegal)
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NEUROEVOLUTION
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A rollercoaster of hopes and obstacles
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Learn NN by EA

* First attemptsin late 1980s
— Learn parameters (weights)
— Learn architecture (topology, connections)
— Learn both architecture and weights at once
— Learn other things (activation function, ...)

* Panacea for reinforcement learning — where it is
not possible to use supervised learning (robotics)

* Hybrid methods — combine EA with local search,
back propagation, ...
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Learn weights by EA

e Straightforward
— Encode weights into fixed-length vector
— Use floating point GA, evolutionary strategies, ...
— Standard operators, well known approaches

 Still, will be slower than specialized gradient based
local search algorithms, such as back propagation

* + can be parallelized
e + can be used for reinforcement tasks

* Recent renewal of interest for evolution of weights
— Actually works quite comparatively
— use mini batches training strategy for fitness
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Learn the architecture

* Fitness = performance estimation of the network

— build the network, initialize, try to learn (by BP, or another EA,
maybe), better to do it more times,

* Direct encoding

— The structure of connections is represented as binary matrix or
similar natural representation

— Then the individual is either linearized matrix —i.e. long binary
vector (standard operators), or the matrix itself (special 2D
operators)

e Grammatical encoding

— Kitano, 1990 proposed to represent binary matrices by means of
simple formal 2D grammars that will induce the matrix. EA then
evolves the grammar rules

— compact, logarithmic, but too indirect
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Grow the architecture

 Simmulated growth of network connections in 2D
planes
— Early attempts in evolutionary robotics
— Not scalable

* Celular encoding
— Gruau proposed to use GP to represent architecture

— GP is a program how to grow a network by means of
operations:

* Add neuron, split neuron in a serial way, split neuron in a
parallel way, swap synapse, ...

ROMAN NERUDA: EVA2 - 2013/14 54



NEAT

e K. Stanley, 2002 —
Neuroevolution of
augmenting topologies 0.0 (e

* NN is represented as a 0.2, 0

list of edges, each edge: -ﬁll

— Information about its
vertices,

— Weights, disabled flag,
and

— Globally maintained
Edge ID.

Network (Phenotype)

0,0 (fixed)
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NEAT cont.

* Crossover edges with the same ID only, the rest remains
unchanged

— This crosses over only edges with the same evolutionary origin,
does not mess the overall structure, no headless chicken here

e Define similarity measure on vectors of edge IDs (how
much two network architectures differ)

— Niching — similar networks are considered to be the same
species. Fitness is computed as relative in each species.

— This solves the problem that structural changes disrupt the
fitness, but are necessary for exploration.

— Niching allows to protect newly created topologies before the
weights are tuned.

* Later the same principles were applied in HyperNEAT.
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MEMETIC ALGORITHMS
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Urban legends and fake news
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R. Dawkins of Selfish gene

* Meme
— (neo)-Darwinist look at cultural and social areas

— Evolution, spread and survical of various ideas, thoughts,
concepts, ... in human society

— Something like biological evolution, but without DNA

 Two types of memetic algorithms

— Simulation of memes in society

* Bordering with psychology, literature (urban legends), religionism,
cultural anthropology

— Utilizing the concept of memetic (sometimes called
cultural) space for meta-heuristics in EA

* Let us take a closer look on this memetic algorithm
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Memetic algorithm

t = 0;

initialize(P (t=0)):

P (t=0).localSearch();

evaluate(P(t=0));

while isNotTerminated() do
P(t) = selectIndividuals();

mutate(P(t)):
P(t).localSearch();
evaluate(P(t));

P(t+1) = buildNextGenerationFrom(P(t));

t =t +1;
end
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Memetic algorithm

* |In fact, it is a local search nested inside
classical EA cycle

* Local search:
— Hill climbing
— Simmulated annealing

— Gradient search (such as back propagation for
learning neural networks)
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How to handle a result

* Lamarckism
— When local search finds a better individual, let us take
it
— This is not kosher from darwinistic point of view, we
have changed genotype based on phenotype changes

e Baldwinism

— When local search finds a better individual, let us take
the fitness of the better one, and assign it to the
orifinal — unchanged — individual

— So, no genotype change, Darwin-wise correct, yet the
fitness is better, can be interpreted as a potential of
the original individual
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When the world is changing

DYNAMIC FITNESS LANDSCAPES



Fitness landscape

* First introduced by Sewall Wright, 1932

* Graphical representation of fitness dependent
on:
— Genotype
— Allele frequency
— (some feature of) phenotype

* They are popular in EA
— Theretical tool to explore EAs

— Clear illustration of relation genotype-fitness
* But higher-dimensions are not intiuitive
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Static fitness landscape

Population size, N = 2,304
Mutation rate, py = 0.05 per trait @ Randy Olson and Bjern @stman
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Dynamic fitness landscape

Population size, N = 2,304
Mutation rate, g = 0.5 per trait @ Randy Olson and Bjern @stman
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Changing fitness

e Why? — actually quite common
— Robot in the room, somebody turns on the light

— |t starts raining, but Google car was tested only in
California

— A crisis on stock exchange
— Turnaments of agents playing some game

e Solution:
— Human changes something, restart, ... very offline

* Can we continue our EA when fitness changes?
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Classical GA with dynamic fitness

e Usually nothing special, it redefines the task
e Typically we want to find an optimal solution of a
static task:

— First explore, but then converge to local extreme
which is good enough

— During the GA run we are losing diversity

* With dynamic fitness we want generality and
possibility to change

* Kenneth de Jong:
— Comparison of (1+10) ES a GA with 10 individuals
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Simple fitness landscape with 2
alternating states
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Reaction to fitness change
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Modification of EA for dynamic f.1.

* Goldberg, Smith

— Diploid representation works as a long term memory when
fitness oscilates

* Nevertheless, most of our EAs is haploid

 Cobb, Grefenstette

— Hypermutation

 When average fitness in population goes down (probably fitness
has changed), increase mutation rate quite a lot.

— Random migration

 When fitness goes down, generate a relevant amount of new
random individuals and put them to population

e Comma ES, makes them more prone to landscape
changes
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More modifications

* Keep population diverse
— Decrease selection pressure
— Crowding, niching

* Protects population to be overthrown by few fit (at the
moment) individuals

— Sub-populations

* The island model — very good just for distributed EA
— Dynamic species —

» Utilizing tag-bits for differentiating species

* Mating only within species
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How dynamic landscape are

When fitness changes rapidly, no solution might be
ideal, remember the No-free-lunch theorem

Small changes are reasonable

— Robots hardware worns out

— Slight changes of chemicals in a factory ...
Relevant morphological changes

— The hills of fitness emerge or disappear, “emerging
markets”

Cyclic changes
— Times of the year, electricity consumption, ...

Non-continuous catastrophic changes
— Powerplant explosion, traffic accident, war, ...
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Nature is complicated, engineers don’t care

BIOLOGICALLY ACCURATE EA



Species

* Even small selection pressure leads to
vanishing diversity of population
— C.f. also Flegr — Frozen evolution concept

* To introduce species or some other
mechanism of non-random mating might save
the diversity

* Goals:
— Better reaction to changes in fitness (old Darwin)
— Parallel exploration of search space
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Niching

* Goals:
— Slow the convergence towards one optimum

— Create parallel sub-populations, exploring and
converging in different areas

 Recombination is limited to similar genomes
only

 Fitness is considered relative for the niche —
group of similar individuals

* Crowding: tournaments of similar individuals
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Pros and cons

* |t works, the declared goals are improved
* |t is sensitive to parameter setting:

* How to compute similarity of individuals?

— Hamming for binary
— Cf. NEAT and edge IDs

 What is one niche?
— Dynamic situation
— Requires a threshold on similarity
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Non-random mating

* General mechanism where mating is allowed
for individuals that are “close”

* |tis necessary to define topology for the
individuals
— Artificial life simulations like this
— Usually individuals are on a 2D (3D) mesh

— Island model of GA — usually sub-populations on
different machines

* Explicit species and only intra-species mating
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Co-evolution

Evolution of strategies for games — from Tic-tac-toe to
checkers ...

Collective type of task

— Cooperation in team

— predator-prey

Context fitness

— Depends on other individuals in population

— Or on other species

— Relationships between co-population can have complex
dyamics — deterministic chaos

ADF in GP
Sorting networks and evil number sequences — classical
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More bio-ideas

* Morphogenetics and generative
representations

— Neuroevolution
— Celullar automata
— |-systems
 Agen-based approaches
— Holland a ECHO
— Artificial life
 Lamarck — mentioned many times
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Mixed bag of — what is also interesting

SEVERAL SEARCH ALGORITHMS



Taboo search

* Approach to local search which tries to not go where it

CEERAYES
e Algorithm (hill-climbing plus taboo):

— Current solution is x(t),

— Generate at random x(t+1) from neighbourhood N(x(t))

— If f(x(t))<=f(x(t+1)), continue with x(t+1),

— Else continue with x(t)

— N(x) is neighbourhood of x,

— Moreover, | keep a buffer of several last x(t) that will be
excluded from N(x)

— | call this a Taboo list

* Taboo set cen be customized to task at hand, may
represent more complex constrains
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Tabu set

e Short-time memory
— List of recent previously visited solutions

— Cannot revisit them while they are in the time span of
the list

* Mid-term memory

— Rules guiding the search towards areas of the search
space that have good chance of finding a solution

° Long-term memory

— Diversification rules pointing to new non-explored
areas
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Ex: Taboo search and TSP

e Efficient graph structure exploration — ejection
chain method
* Simple:
— Random (or nearest neighbor) initial solution
— Random swaps of two cities
— Take better
— Remember good visited solutions in taboo list
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Scatter search

 The motivation was to improve global search by
focusing on diversity of individuals

e Algorithm:

— Generate initial population P(0)

— Select reference set R(0) as subset of P(0)
* Cycleintime:

— Generate new candidate solutions P(t) by arithmetic
crossover of individuals from R(t-1)

— Apply local changes (mutation, hill-climbing, taboo
search) to P(t)

— Update R(t) by (some) members of P(t)
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Reference set

 Can be created and updated in various ways

e Criterium to be in R is typically some combination of
good fitness and diversity (members of R have to be
good and not similar to each other)

* maximize minimal distances of newly added x from the
rest of R

e Can be updated:
— incrementally (1 or more individuals per population),
— Or completely renewed every population,

— Or created in the inner cycle, new individuals are already
members of R and recombination is performed with them.
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Diferential evolution

* Inicialization: random

 Mutation: ,shift“ based on other individuals
* Crossover: uniform

* Parental selection: all indivs, very fair

* Environmental selection: comparison of

parent, replacing if the offspring is better
* INITIALIZATION->MUTATION->CROSSOVER->SELECTION
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Algorithm

Initialize all agents x with random positions in the search-space.

Until a termination criterion is met (e.g. number of iterations
performed, or adequate fitness reached), repeat the following:
For each agent in the population do:

— Pick three agents a,b,c from the population at random, they must be
distinct from each other as well as from agent

— Compute the agent's potentially new position y as follows:
* y=a+F*(b-)
— If f(y)>f(x) then replace x with y.

Pick the agent from the population that has the highest fitness or
lowest cost and return it as the best found candidate solution.
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Mutation

* Each individual undergoes mutation, crossover
and (environmental) selection

* Forindiv x; , choose three different indivs x,, ,

Xb,p' Xc,p

e Define a donor v: v,

ip+l ~ Xa,p Tt F'(Xb,p-xc,p)

* Fis mutation parameter, real number from
<0;2>
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Crossover

Uniform crossover of original individual with
donor

Parameter C definies a probability of change

In the new offspring, at least one part of donor
Trial vector uip+1 :

u. iff rand; <= C or j=I

j,i,p+1 jI p+1 , rand
Upipeg =X peg s iff rand >Candj#l .4

rand; is random number from <0;1>
| .., 1S @ random integer from <1;2; ... ; D>
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Selection

 Compare fitness of x and v, and take the
better one:
= X; 501 = U g s 1T flu; 1) <= f(X; )

— X .1 = X;,; €lse
—fori=1,2, ..., N

* Mutation, crossover and selection is repeated
until some termination criterion is satisfied,

but you saw that coming
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