
EVA II
NAIL 086 - 2014/15

Roman Neruda

INTRODUCTION

Themes, outlines, resources.

ROMAN NERUDA: EVA2 - 2013/14 2

Literature

• Mitchell, M.: Introduction to Genetic Algorithms. MIT
Press, 1996.

• Eiben, A.E and Smith, J.E.: Introduction to Evolutionary
Computing, Springer, 2007.

• Michalewicz Z.: Genetic Algorithms + Data Structures =
Evolution Programs (3ed), Springer, 1996

• Holland, J.: Adaptation in Natural and Artificial
Systems, MIT Press, 1992 (2nd ed).

• Goldberg, D.: Genetic Algorithms in Search,
Optimization and Machine Learning, Addison-Wesley,
1989.

ROMAN NERUDA: EVA2 - 2013/14 3

Themes

• Theory of GA revisited – (in)finite populations, Markov
chains

• Black box optimization
• Evolutionary programming
• Genetic programming
• Scatter search, Tabu search
• Neuroevolution – grammatical encoding, cellular encoding,

NEAT, HyperNEAT
• Artificial life, PSO, ants, and similar algorithms
• Differential evolution
• Memetic algorithms
• Tuning, control, meta-evolution, co-evolution

ROMAN NERUDA: EVA2 - 2013/14 4

TUNING, CONTROL, META-EVA

Everything can be changed

ROMAN NERUDA: EVA2 - 2013/14 5

General EVA scheme

A. Init
1. Create initial population

P(0) (more or less
randomly)

2. Evaluate

B. In cycle create P(t+1) from
P(t):

3. Parental selection
4. Recombinations
5. Mutations
6. Evaluate new individuals
7. Environmental selection

creates P(t+1) based on P(t)
and new individuals

ROMAN NERUDA: EVA2 - 2013/14 6

Tuning vs. control

• EA has various parameters (population size, probability
of operators, tournament size, elitism rate, ...)

• Common practice is to tune those parameters for a
task at hand
– Trial and error, grid search
– Experience and good luck

• They are not independent & it is usually not possible to
do exhaustive search really

• One possible solution is to not consider them static but
dependent on time or other algorithm properties (e.g.
fitness variance in population), and change them –
control.

ROMAN NERUDA: EVA2 - 2013/14 7

How?

• Fixed strategy
– Time-dependent change of parameter
– Deterministic

• Decrease mutation probability 0.1% each generation

– Stochastic
• Simmulated annealing

• Adaptive strategy
– Based on information about the quality of solution,

statistical properties of population, …

• Self-adaptive
– Evoluion of evolution
– Mutation variances in genome of ES

ROMAN NERUDA: EVA2 - 2013/14 8

Ex 1: Reprezentation

• Adaptive change of representation (encoding of
individual) based on population diversity:
– GA with binary encoded real numbers, unknown precision

is needed, so start with small number of bits per real

– Run GA iteratively, every run is stopped when population
diversity goes bellow 1
• Measured by Hamming distance between the best and the worst

individual in the population.

– Save the best individual as reference, and run GA again

– If the second run produces the same best individual,
increase number of bits per real and start again

ROMAN NERUDA: EVA2 - 2013/14 9

Ex 2: Mutation

• Gaussian mutation of real vectors:
– x(t+1) = x(t) + N(0,s), where s is variance

• Deterministic change:
– s(t) = 1 – 0.9 (t/T), where t=0, ... T

• Evolutionary strategies – first kind:
– Heuristic observation from Berlin – the optimal success

rate of mutation is 1/5,
• If the current rate is bigger, increase s about 10%,

• If the current rate is smaller, decrease s about 10%

• Evolutionary strategies – second kind (sebe-adaptace):
– Put s (for every x(t)) into the genom and evolve

ROMAN NERUDA: EVA2 - 2013/14 10

Ex 3: Selection

• Boltzman tournament:
– Probabilty that the worse individual can win will

depend exponentially on the ratio of fitness
difference and temperature

– Temperature decreases with time

– If we stuck in local optima, increase the
tempurature

• Simmulated annealing as local search:
– Like hill climbing, but with boltzman probability of

acceptance of worse solution

ROMAN NERUDA: EVA2 - 2013/14 11

Ex 4: Population

• Indirect control of population size depending
on the fitness of individuals
– When new individual is generated, we define its

life span proportional to its fitness

– After the defined number of generations, the
individual dies

– Better individuals live longer, thus the system
supports spread of successful individuals

– Population size is thus only a derived, dynamic,
and not so important thing

ROMAN NERUDA: EVA2 - 2013/14 12

THEORY REVISITED

Beyond schemata

ROMAN NERUDA: EVA2 - 2013/14 13

Exact models of simple GA

• 90s: Vose, Lepins, Nix, Whitley, ...

• Attempt to mathematically study:
– How exactly the population looks like

– Describe mapping of transition from one
population to the next

– Properies of this mapping

– Asymptotic behavior of simple GA

• Infinite populations

• Finite populations

ROMAN NERUDA: EVA2 - 2013/14 14

Let us simplify the (already simple)
plain vanilla GA - SGA

• Random initial population of length l binary
strings x

– Compute Fitness f(x)

– Repeat until new population is filled:

• Select 2 individuals,

• Cross them over with probability pc

• Discard one of them (!) <- this is the simplification

• Mutate each bit with probability pM

• Insert new (one) individual to new population

• Repeat until a good enough individual x is found

ROMAN NERUDA: EVA2 - 2013/14 15

Formalize the SGA

• Each binary string is represented by a number
from 0..2l

– 00000111 is 7

• Population in time t is represented:
– By two vectors: p(t) a s(t) of lenght 2l

– pi (t) represents the part of population t occupied by a
string (relative frequency)

– si (t) is probability of selection of string i

• p(t) defines the population composition

• s(t) defines selection probabilities

ROMAN NERUDA: EVA2 - 2013/14 16

The capital G operator

• We have fitness f, define matrix F(i,j):
– F(i,i) = f(i); F(i,j) = 0 pro i<>j

• Then s(t) = F p(t)/(Σ F(j,j) pj(t))
– (that’s in fact a definition of fitness-proportional selection)

• Our dream is to define operator G that would realize
the SGA iteration:
– i.e. p(t+1) = G p(t), or similarly s(t+1) = G s(t)

• If we have G, we iterate it from initial population, and
we know everything about SGA (!)

• Let us decompose G = F°M (F fitness, M mutation and
crossover)

ROMAN NERUDA: EVA2 - 2013/14 17

First let G=F

• E(x) expected value

• E(p(t+1)) = s(t)

• s(t+1) ~ F p(t+1) (just multiplicative constant c)

• Thus: E(s(t+1)) ~ F s(t)

– In case of (small) finite population, the statistical
errors can cause deviations from expected values E(.)

– The bigger population, the smaller deviation

– Inifite populations are exact, albeit a bit impractical

ROMAN NERUDA: EVA2 - 2013/14 18

Now let G=M

• M is a recompination operator (including both
crossover and mutation)

• The derivation requires some probability skills and lots
of time:
– Let us use a handy function r(i,j,k)
– r(i,j,k) ... Probability that offspring k is created from

parents i and j
– When we have r(i,j,k), we can compute p(t+1)
– Well, one part of vector after another, and also in expected

values, but that’s why we now consider infinite
populations:

• E(pk(t+1)) = ΣiΣj si(t) sj(t) r(i,j,k)

ROMAN NERUDA: EVA2 - 2013/14 19

R(i,j,0)

• Derivation of r(i,j,k) is possible, this is r(i,j,0)

ROMAN NERUDA: EVA2 - 2013/14 20

Results

• SGA works by applying G to each population in
time, it is a dynamical system, and vectors p(t) or
s(t) are points of the trajectory of such a system.

• What are the fixed pointsJ? (well, that exactly we
still do NOT know)
– Fixed points of F are poplations with identical fitness
– Stable fixed point of F: maximal identical fitness
– (The only) fixed point of M: identical probabilities s

(or, the same relative frequencies of individuals p)
– Combination of shaking by M and focusing by F -

punctuated equilibria (known from biology)

ROMAN NERUDA: EVA2 - 2013/14 21

Finite populations

• Markov chains:
– Stochastic process in discrete time

– System has states, the probability of going from
one state to another depends only on the first
state (no memory of previous states)

– Table of transition probabilities between all states
represents a complete description of such a
system

• Wow, let us define SGA over fitine populations
as Markov chain

ROMAN NERUDA: EVA2 - 2013/14 22

States

• Each state of our Markov chain is one particular
populations.

• There is quite a lot of populations

• N = number of populations containing n individuals of
length l:
– N = (n+2l-1) over (2l-1)

• Matrix Z
– Columns are populations

– Z(y,i) = number of individuals y in population i

• (thus, columns of Z are states of our Markov chain)

ROMAN NERUDA: EVA2 - 2013/14 23

Transition matrix

• Q is a matrix of transition between
populations, it has NxN elements

• So, e.g. for n=l=8 , Q has 1029 numbers!

• Q can be derived, but seldom used

ROMAN NERUDA: EVA2 - 2013/14 24

What have we achieved, really?

• Exact analysis of SGA, given f

• In practice intractable, though

• Asymptotical results – provide insight into
convergence and SGA behavior, although the
composition of F and M into G is still open.

• A correspondence exists between infinite
pop. SGA and finite pop. SGA (limit approach)

ROMAN NERUDA: EVA2 - 2013/14 25

EVOLUTIONARY PROGRAMMING

Genotype is phenotype, crossover is evil

ROMAN NERUDA: EVA2 - 2013/14 26

Evolutionary programming

• L. Fogel, 60s (older than Holland GAs)
• The ultimate goal was to evolve „artificial

intelligence“:
• Agent is situated in an environment
• Agent should predict environment state
• Agent should derive a suitable action w.r.t the

environment state
• Agent was repsented by a finite automaton
• Environment was: sequence of finite alphabet

symbols

ROMAN NERUDA: EVA2 - 2013/14 27

Finite automaton

ROMAN NERUDA: EVA2 - 2013/14 28

EP over FA

• Population of finite automata – (remember,
genotype = phenotype)

• Inputs are presented to automaton

• Outputs are compared to next symbol in the
sequence

• Fitness: success of the prediction (measured
differently)
– Absolute error

– Mean square error

ROMAN NERUDA: EVA2 - 2013/14 29

EP over FA cont.

• Creating new automata: mutation
– Change output symbol

– Change successor state

– Add a state

– Remove state

– Change initial state

• No crossover (!)

• Half of population replaced by new automata

• Fitness often considers the size of automaton

ROMAN NERUDA: EVA2 - 2013/14 30

Famous Ex.: Primes prediction

• The goal is to predict a sequence of 0s and 1s
– Where 0 means that number corresponding to this position is

not a prime.
– i.e. learning the sieve of Erathosthenes
– 111010100010100010100010000010 …

• Iteratively:
– Sequence of fixed length is learned,
– Then, increase the size by one symbol …

• Fitness:
– Point for each guessed symbol in sequence
– Negative fitness part : - 0.01 * N (=number of states)

• Automata were evolving simpler and simpler, ultimately
being 1-state and generating 0 all the time

ROMAN NERUDA: EVA2 - 2013/14 31

Primes cont

ROMAN NERUDA: EVA2 - 2013/14 32

EP today

• Benevolent to encoding of individuals
– Encoding should be natural for the problem at hand
– Often Genotype = Phenotype

• A collection of “smart”mutations, tailored to
problem and encoding

• No crossover
• Parental selection: every is selected once
• Environmental selection: from parents and

offsprings, new population is selected by
tournament

ROMAN NERUDA: EVA2 - 2013/14 33

EP over reals

• Encoding
– Vector of reals

– Contains variances of mutations

• Mutation
– Small random change according to normal distribution

with corresponding variance

• Meta-evolution
– Parameters that are used in algorithm, are modified

by the algorithm

• Selection: all are parents, then tournament

ROMAN NERUDA: EVA2 - 2013/14 34

EP over reals

procedure Meta-EP
t←0
Inicializuj Pt N náhodně vygenerovanými reálnými vektory x⃗t =(x1t,...,xnt,σ1t,...,σnt)
Ohodnot’ jedince v populaci Pt

while (neplatí kritérium ukončení) do
for i ← 1, . . . , N do

k rodiči x⃗t vygenruj potomka y⃗t mutací:
for j ← 1,...,n do

σj′ ←σj ·(1+α·N(0,1)) xj′ ← xj + σj′ · N (0 , 1)
end for
Vlož y⃗t do kandidátské populace potomků P′t

end for
Turnajovou selekcí vyber Pt+1 z rodičů Pt a potomků Pt′
Zahod’ Pt a Pt′

t←t+1
end while
end procedure

ROMAN NERUDA: EVA2 - 2013/14 35

EP vs GA

• Crossover:
– Exchange of building blocks – ideal case
– Strange big random mutation – not respecting the

encoding

• Jones 1995: headless chicken experiment:
– The success of crossover was tested by comparing the

traditional crossover with random crossover (crossing
the individual over with random string)

– There is no crossover without the idea of crossover,
do not call headless chicken a chicken, although it has
many chicken features.

ROMAN NERUDA: EVA2 - 2013/14 36

Headless chicken

• In cases with clear idea of building blocks, the
crossover is better than random crossover

• In cases, where the random crossover is better, it
is in fact a macro-mutation

• In such a case there are no clear building blocks
– Wrong encoding?

– Wrong crossover for this encoding?

– Difficult problem for crossover?

• The moral: Is our chicken headless?

ROMAN NERUDA: EVA2 - 2013/14 37

GA vs EP: experiment

ROMAN NERUDA: EVA2 - 2013/14 38

GA vs EP exp pokr

ROMAN NERUDA: EVA2 - 2013/14 39

GENETIC PROGRAMMING

Skip the middle man

ROMAN NERUDA: EVA2 - 2013/14 40

Evolution of programs

• 1950s – Alan Turing proposes evolution of
programs

• 1980 – Forsyth – BEAGLE: A Darwinian Approach
to Pattern Recognition

• Late 1980s – Tree representations were discussed
among Holland PhD students

• 1985 Nichael Cramer – first description of tree
individuals,

• 1989 – John Koza – tree based GP as we know it
now (publication, patent)

ROMAN NERUDA: EVA2 - 2013/14 41

Evolution of programs

• General structure of the GP algorithm:
– Generate initial population of random programs

– Evaluate the programs by running them and test
on data

– Generate new population of programs:
• Selection based on fitness

• Crossover of two programs

• Mutation of programs

– As usual, repeat until a good enough solution is
found

ROMAN NERUDA: EVA2 - 2013/14 42

Tree based GP

• John Koza, late 80s-early 90s:

• Programs are represented as syntactic trees

• Terminals are variables and constants

• Non-terminals are operations

• Crossover is a subtree exchange, non-terminals have
typically bigger probability to be a crossover point

• Mutation replaces a subtree with random one

• Fitness is determined by running the program

• Selection is standard, often tournament

• First examples in Lisp

ROMAN NERUDA: EVA2 - 2013/14 43

Variations of GP

• Mutations:
• It is good (almost necessary) to use more mutation types:

– Random or systematic mutation of constants
• GP traditionally had problems fine-tuning numerical values
• Thus, a specialized mutations of constants speed-up the algorithm
• Either (any) arithmetic mutation on constants
• Or iterations of hill-climbing or other optimization methods on one or all

constant set of the tree

– Random exchange of a node for the same arity one
– Permutations
– Swap non-terminal for terminal
– Mutations that decrease the size of the tree (smaller sub-tree, new

individual from a sub-tree, …)

• Crossover:
– Uniform crossover on a sub-tree

ROMAN NERUDA: EVA2 - 2013/14 44

Variations of GP

• Initialization:

– Random procedure how to generate trees from
two sets – terminals and non-terminals

– Grow: Generate random trees from both sets till a
limit on number of nodes is reached

– Full: Generate random trees from non-terminal till
certain depths, then only terminals are added

– Ramped half-and-half: half of population by grow,
half by full

ROMAN NERUDA: EVA2 - 2013/14 45

ADF

• Automatically defined functions
– Subprograms – necessary to achive modularity, higher complexity,

represent symmetries in the problem

• Characterized by their arity,
• Have limited (or different) terminal and non-terminal sets
• A program typically has main() routine and one or more ADF

subtrees
– ADF call becomes a new non-terminal in the main program

• GP operators work on mains and ADFs separately, the routines are
not mixed together

• Specialized code constructs have been proposed based on ADF
approach: automatically defined loops, iterations, recursions …

• Alternative approach – co-evolution of population of mains and
ADFs

ROMAN NERUDA: EVA2 - 2013/14 46

Bloat of GP programs

• Programs in GP have tendencies to grow in size -
bloat

• In nature, the extensive growth hits some
physical limit that prevents excesses

• In GP we must fight bloat explicitly:
– Limit tree size (no. of nodes), limit tree depth:

• Penalize it as a negative term in fitness
• Or, check and repair/eliminate new individuals

– Anti-bloat operators:
• Watch mutation and crossover so that do not enlarge much
• Or, special mutations making trees smaller

ROMAN NERUDA: EVA2 - 2013/14 47

Way dowm: linear GP

• Linear GP:
– Program is represented in a linear way, most often in

some machine/byte code
– Simpler, some claim more natural representation
– Simpler operators (crossover, mutation work on linear

vectors)
– Faster emulation of the run
– But high risk of creating nonsense programs by

mutations and crossovers
– Favourite representation in artificial life, evolution of

bots and control code in games

ROMAN NERUDA: EVA2 - 2013/14 48

Way up, graph GP

• Graph-based GP:
– Program is not a tree, but a more general graph, often

acyclic (DAG)
– First considered as extensions of tree GP to parallel

programs
– Later it was discovered, that graph structures are really

useful to describe lots of things
• Evolution of circuits
• Finite automata, you guessed it
• Neural networks
• Reinforcement learning for robots, planning …

– Complicated genetic operators – how to cross over general
graphs (EP made it illegal)

ROMAN NERUDA: EVA2 - 2013/14 49

NEUROEVOLUTION

A rollercoaster of hopes and obstacles

ROMAN NERUDA: EVA2 - 2013/14 50

Learn NN by EA

• First attempts in late 1980s

– Learn parameters (weights)

– Learn architecture (topology, connections)

– Learn both architecture and weights at once

– Learn other things (activation function, …)

• Panacea for reinforcement learning – where it is
not possible to use supervised learning (robotics)

• Hybrid methods – combine EA with local search,
back propagation, …

ROMAN NERUDA: EVA2 - 2013/14 51

Learn weights by EA

• Straightforward
– Encode weights into fixed-length vector
– Use floating point GA, evolutionary strategies, …
– Standard operators, well known approaches

• Still, will be slower than specialized gradient based
local search algorithms, such as back propagation

• + can be parallelized
• + can be used for reinforcement tasks
• Recent renewal of interest for evolution of weights

– Actually works quite comparatively
– use mini batches training strategy for fitness

ROMAN NERUDA: EVA2 - 2013/14 52

Learn the architecture

• Fitness = performance estimation of the network
– build the network, initialize, try to learn (by BP, or another EA,

maybe), better to do it more times,

• Direct encoding
– The structure of connections is represented as binary matrix or

similar natural representation
– Then the individual is either linearized matrix – i.e. long binary

vector (standard operators), or the matrix itself (special 2D
operators)

• Grammatical encoding
– Kitano, 1990 proposed to represent binary matrices by means of

simple formal 2D grammars that will induce the matrix. EA then
evolves the grammar rules

– compact, logarithmic, but too indirect

ROMAN NERUDA: EVA2 - 2013/14 53

Grow the architecture

• Simmulated growth of network connections in 2D
planes
– Early attempts in evolutionary robotics

– Not scalable

• Celular encoding
– Gruau proposed to use GP to represent architecture

– GP is a program how to grow a network by means of
operations:
• Add neuron, split neuron in a serial way, split neuron in a

parallel way, swap synapse, …

ROMAN NERUDA: EVA2 - 2013/14 54

NEAT

• K. Stanley, 2002 –
Neuroevolution of
augmenting topologies

• NN is represented as a
list of edges, each edge:
– Information about its

vertices,

– Weights, disabled flag,
and

– Globally maintained
Edge ID.

ROMAN NERUDA: EVA2 - 2013/14 55

NEAT cont.

• Crossover edges with the same ID only, the rest remains
unchanged
– This crosses over only edges with the same evolutionary origin,

does not mess the overall structure, no headless chicken here

• Define similarity measure on vectors of edge IDs (how
much two network architectures differ)
– Niching – similar networks are considered to be the same

species. Fitness is computed as relative in each species.
– This solves the problem that structural changes disrupt the

fitness, but are necessary for exploration.
– Niching allows to protect newly created topologies before the

weights are tuned.

• Later the same principles were applied in HyperNEAT.

ROMAN NERUDA: EVA2 - 2013/14 56

MEMETIC ALGORITHMS

Urban legends and fake news

ROMAN NERUDA: EVA2 - 2013/14 57

R. Dawkins of Selfish gene

• Meme
– (neo)-Darwinist look at cultural and social areas
– Evolution, spread and survical of various ideas, thoughts,

concepts, … in human society
– Something like biological evolution, but without DNA

• Two types of memetic algorithms
– Simulation of memes in society

• Bordering with psychology, literature (urban legends), religionism,
cultural anthropology

– Utilizing the concept of memetic (sometimes called
cultural) space for meta-heuristics in EA
• Let us take a closer look on this memetic algorithm

ROMAN NERUDA: EVA2 - 2013/14 58

Memetic algorithm

ROMAN NERUDA: EVA2 - 2013/14 59

Memetic algorithm

• In fact, it is a local search nested inside
classical EA cycle

• Local search:

– Hill climbing

– Simmulated annealing

– Gradient search (such as back propagation for
learning neural networks)

– …

ROMAN NERUDA: EVA2 - 2013/14 60

How to handle a result

• Lamarckism
– When local search finds a better individual, let us take

it
– This is not kosher from darwinistic point of view, we

have changed genotype based on phenotype changes

• Baldwinism
– When local search finds a better individual, let us take

the fitness of the better one, and assign it to the
orifinal – unchanged – individual

– So, no genotype change, Darwin-wise correct, yet the
fitness is better, can be interpreted as a potential of
the original individual

ROMAN NERUDA: EVA2 - 2013/14 61

DYNAMIC FITNESS LANDSCAPES

When the world is changing

ROMAN NERUDA: EVA2 - 2013/14 62

Fitness landscape

• First introduced by Sewall Wright, 1932

• Graphical representation of fitness dependent
on:
– Genotype

– Allele frequency

– (some feature of) phenotype

• They are popular in EA
– Theretical tool to explore EAs

– Clear illustration of relation genotype-fitness
• But higher-dimensions are not intiuitive

ROMAN NERUDA: EVA2 - 2013/14 63

ROMAN NERUDA: EVA2 - 2013/14 64

ROMAN NERUDA: EVA2 - 2013/14 65

Changing fitness

• Why? – actually quite common

– Robot in the room, somebody turns on the light

– It starts raining, but Google car was tested only in
California

– A crisis on stock exchange

– Turnaments of agents playing some game

• Solution:

– Human changes something, restart, … very offline

• Can we continue our EA when fitness changes?

ROMAN NERUDA: EVA2 - 2013/14 66

Classical GA with dynamic fitness

• Usually nothing special, it redefines the task

• Typically we want to find an optimal solution of a
static task:
– First explore, but then converge to local extreme

which is good enough

– During the GA run we are losing diversity

• With dynamic fitness we want generality and
possibility to change

• Kenneth de Jong:
– Comparison of (1+10) ES a GA with 10 individuals

ROMAN NERUDA: EVA2 - 2013/14 67

Simple fitness landscape with 2
alternating states

ROMAN NERUDA: EVA2 - 2013/14 68

Reaction to fitness change

ROMAN NERUDA: EVA2 - 2013/14 69

Modification of EA for dynamic f.l.

• Goldberg, Smith
– Diploid representation works as a long term memory when

fitness oscilates
• Nevertheless, most of our EAs is haploid

• Cobb, Grefenstette
– Hypermutation

• When average fitness in population goes down (probably fitness
has changed), increase mutation rate quite a lot.

– Random migration
• When fitness goes down, generate a relevant amount of new

random individuals and put them to population

• Comma ES, makes them more prone to landscape
changes

ROMAN NERUDA: EVA2 - 2013/14 70

More modifications

• Keep population diverse
– Decrease selection pressure

– Crowding, niching
• Protects population to be overthrown by few fit (at the

moment) individuals

– Sub-populations
• The island model – very good just for distributed EA

– Dynamic species –
• Utilizing tag-bits for differentiating species

• Mating only within species

ROMAN NERUDA: EVA2 - 2013/14 71

How dynamic landscape are

• When fitness changes rapidly, no solution might be
ideal, remember the No-free-lunch theorem

• Small changes are reasonable
– Robots hardware worns out
– Slight changes of chemicals in a factory …

• Relevant morphological changes
– The hills of fitness emerge or disappear, “emerging

markets”

• Cyclic changes
– Times of the year, electricity consumption, …

• Non-continuous catastrophic changes
– Powerplant explosion, traffic accident, war, …

ROMAN NERUDA: EVA2 - 2013/14 72

Oscilating changes

ROMAN NERUDA: EVA2 - 2013/14 73

Fast oscilating changes

ROMAN NERUDA: EVA2 - 2013/14 74

BIOLOGICALLY ACCURATE EA

Nature is complicated, engineers don’t care

ROMAN NERUDA: EVA2 - 2013/14 75

Species

• Even small selection pressure leads to
vanishing diversity of population
– C.f. also Flegr – Frozen evolution concept

• To introduce species or some other
mechanism of non-random mating might save
the diversity

• Goals:
– Better reaction to changes in fitness (old Darwin)

– Parallel exploration of search space

ROMAN NERUDA: EVA2 - 2013/14 76

Niching

• Goals:
– Slow the convergence towards one optimum

– Create parallel sub-populations, exploring and
converging in different areas

• Recombination is limited to similar genomes
only

• Fitness is considered relative for the niche –
group of similar individuals

• Crowding: tournaments of similar individuals

ROMAN NERUDA: EVA2 - 2013/14 77

Pros and cons

• It works, the declared goals are improved

• It is sensitive to parameter setting:

• How to compute similarity of individuals?

– Hamming for binary

– Cf. NEAT and edge IDs

• What is one niche?

– Dynamic situation

– Requires a threshold on similarity

ROMAN NERUDA: EVA2 - 2013/14 78

Non-random mating

• General mechanism where mating is allowed
for individuals that are “close”

• It is necessary to define topology for the
individuals
– Artificial life simulations like this

– Usually individuals are on a 2D (3D) mesh

– Island model of GA – usually sub-populations on
different machines

• Explicit species and only intra-species mating

ROMAN NERUDA: EVA2 - 2013/14 79

Co-evolution

• Evolution of strategies for games – from Tic-tac-toe to
checkers …

• Collective type of task
– Cooperation in team
– predator-prey

• Context fitness
– Depends on other individuals in population
– Or on other species
– Relationships between co-population can have complex

dyamics – deterministic chaos

• ADF in GP
• Sorting networks and evil number sequences – classical

ROMAN NERUDA: EVA2 - 2013/14 80

More bio-ideas

• Morphogenetics and generative
representations
– Neuroevolution

– Celullar automata

– l-systems

• Agen-based approaches
– Holland a ECHO

– Artificial life

• Lamarck – mentioned many times

ROMAN NERUDA: EVA2 - 2013/14 81

SEVERAL SEARCH ALGORITHMS

Mixed bag of – what is also interesting

ROMAN NERUDA: EVA2 - 2013/14 82

Taboo search

• Approach to local search which tries to not go where it
already was

• Algorithm (hill-climbing plus taboo):
– Current solution is x(t),
– Generate at random x(t+1) from neighbourhood N(x(t))
– If f(x(t))<=f(x(t+1)), continue with x(t+1),
– Else continue with x(t)
– N(x) is neighbourhood of x,
– Moreover, I keep a buffer of several last x(t) that will be

excluded from N(x)
– I call this a Taboo list

• Taboo set cen be customized to task at hand, may
represent more complex constrains

ROMAN NERUDA: EVA2 - 2013/14 83

Tabu set

• Short-time memory
– List of recent previously visited solutions

– Cannot revisit them while they are in the time span of
the list

• Mid-term memory
– Rules guiding the search towards areas of the search

space that have good chance of finding a solution

• Long-term memory
– Diversification rules pointing to new non-explored

areas

ROMAN NERUDA: EVA2 - 2013/14 84

Ex: Taboo search and TSP

• Efficient graph structure exploration – ejection
chain method

• Simple:

– Random (or nearest neighbor) initial solution

– Random swaps of two cities

– Take better

– Remember good visited solutions in taboo list

ROMAN NERUDA: EVA2 - 2013/14 85

Scatter search

• The motivation was to improve global search by
focusing on diversity of individuals

• Algorithm:
– Generate initial population P(0)
– Select reference set R(0) as subset of P(0)

• Cycle in time :
– Generate new candidate solutions P(t) by arithmetic

crossover of individuals from R(t-1)
– Apply local changes (mutation, hill-climbing, taboo

search) to P(t)
– Update R(t) by (some) members of P(t)

ROMAN NERUDA: EVA2 - 2013/14 86

Reference set

• Can be created and updated in various ways

• Criterium to be in R is typically some combination of
good fitness and diversity (members of R have to be
good and not similar to each other)

• maximize minimal distances of newly added x from the
rest of R

• Can be updated:
– incrementally (1 or more individuals per population),

– Or completely renewed every population,

– Or created in the inner cycle, new individuals are already
members of R and recombination is performed with them.

ROMAN NERUDA: EVA2 - 2013/14 87

Diferential evolution

• Inicialization: random

• Mutation: „shift“ based on other individuals

• Crossover: uniform

• Parental selection: all indivs, very fair

• Environmental selection: comparison of
parent, replacing if the offspring is better

• INITIALIZATION->MUTATION->CROSSOVER->SELECTION

ROMAN NERUDA: EVA1 - 2013/14 88

Algorithm

• Initialize all agents x with random positions in the search-space.
• Until a termination criterion is met (e.g. number of iterations

performed, or adequate fitness reached), repeat the following:
• For each agent in the population do:

– Pick three agents a,b,c from the population at random, they must be
distinct from each other as well as from agent

– Compute the agent's potentially new position y as follows:
• y = a + F* (b-c)

– If f(y)>f(x) then replace x with y.

• Pick the agent from the population that has the highest fitness or
lowest cost and return it as the best found candidate solution.

ROMAN NERUDA: EVA2 - 2013/14 89

Mutation

• Each individual undergoes mutation, crossover
and (environmental) selection

• For indiv xi,p choose three different indivs xa,p,
xb,p, xc,p

• Define a donor v: vi,p+1 = xa,p + F.(xb,p-xc,p)

• F is mutation parameter, real number from
<0;2>

ROMAN NERUDA: EVA1 - 2013/14 90

Crossover

• Uniform crossover of original individual with
donor

• Parameter C definies a probability of change

• In the new offspring, at least one part of donor

• Trial vector ui,p+1 :

• uj,i,p+1 = vj,i,p+1 ; iff randji <= C or j=Irand

• uj,i,p+1 = xj,i,p+1 ; iff randji > C and jǂIrand

• randji is random number from <0;1>

• Irand is a random integer from <1;2; ... ; D>

ROMAN NERUDA: EVA1 - 2013/14 91

Selection

• Compare fitness of x and v, and take the
better one:

– xi,p+1 = ui,p+1 ; iff f(ui,p+1) <= f(xi,p)

– xi,p+1 = xi,p ; else

– for i=1,2, ... , N

• Mutation, crossover and selection is repeated
until some termination criterion is satisfied,
but you saw that coming

ROMAN NERUDA: EVA1 - 2013/14 92

