

# ALGEBRA I

11.02.2026

2.5 hours

**Grading system:** 0-2 pt = "4", 3-5 pt = "3", 6-8 pt = "2", 9-11 pt = "1"

**EXERCISE 1 (1PT)** Prove that  $\sqrt{2} + \sqrt{3}$  is irrational.

**EXERCISE 2 (1PT)** Find the greatest common divisor of  $a = 11 + 3i$  and  $b = 1 + 8i$  and the corresponding Bézout coefficients in  $\mathbb{Z}[i]$  with Euclidean norm  $\nu(a + bi) = |a^2 + b^2|$ .

**EXERCISE 3 (1PT)** Let  $S_8$  be the group of all permutations on 8 elements and  $\sigma = (1\ 2) \in S_8$ . Describe the set of all elements  $\tau \in S_8$ , such that  $\tau\sigma = \sigma\tau$ . Is it a subgroup of  $S_8$ ?

**EXERCISE 4 (1PT)** Find all solutions of the following system of equations over  $\mathbb{Z}$ :

$$\begin{cases} x^2 + 2x + 6 \equiv 0 \pmod{7}, \\ 3x \equiv 2 \pmod{8}. \end{cases}$$

**EXERCISE 5 (1PT+1PT)** Let  $f \in \mathbb{Z}_p[x]$  be a polynomial where  $p$  is prime. We define a formal derivative  $f'$  in the usual way, e.g. if  $f = x^n$ , then  $f' = nx^{n-1}$ . Prove that:

- if  $(x - a)^2$  divides  $f$ , then  $f'(a) = 0$ ,
- $x^p - x$  has no multiple roots in any extension of  $\mathbb{Z}_p$ .

**EXERCISE 6 (2PT)** Let  $\mathbb{Z}_{(2)} = \left\{ \frac{a}{b} \in \mathbb{Q} : a, b \in \mathbb{Z} \text{ and } \text{GCD}(a, b) = 1 \text{ and } 2 \nmid b \right\}$  be a ring of all rational numbers, where the denominator is odd with the standard addition and multiplication. Prove that it is a Euclidean domain with the norm  $\nu\left(2^k \frac{a}{b}\right) = k \in \mathbb{Z}$ , where  $\text{GCD}(a, b) = 1$  and  $2 \nmid a, b$ .

*✓: dent by element*

**EXERCISE 7 (1PT)** Let  $G$  be a finite abelian group,  $p$  be a prime number and  $I_p = \{a \in G : a^p = 1\}$ . Show that  $I_p$  forms a subgroup of  $G$ .

**EXERCISE 8 (2PT)** Let  $M$  be a  $3 \times 2$  matrix with entries from the set  $\{0, 1, 2\}$ . Two matrices are considered equivalent if one can be obtained from the other through a sequence of row and column permutations. How many inequivalent matrices exist?