using System.Numerics;
namespace ExamPrep;

/*
interface |11

{
public int X { get; }

}

class Al: 11

{
public virtual int X { get; set; } = 10;

}

class B1: Al
{

public override int X => 20;
public int Special => base.X + 1,

}

class Cl1l:B1
{

public override int X { get; set; }

}

*/

/*

class A6

{
public int X { get; }

public A6()

{
X =1();

}

public virtual int f() => 4;
}

class B6 : A6

{
private int _y = 10;
public override int f() => _y + 1000;

}

class C6 : B6
{

public new virtual int f() => 20;

}

class D6 : C6

public sealed override int f() => 2;

}

class Program

static void Main(string[] args)

{

var d = new D6();
Console.WriteLine(mZ1(d));
Console.WriteLine(d.X);

}
public static int m1(A6 a) => m2((C6)a);

public static int m2(C6 c) => c.f();

}
*

/~k
interface 11

public char f();
}

class Al: 11
{

public virtual char () =>'A’;

}

class B1: Al
{

public override char f() => 'B’;

}

class Cl1l:B1

{
public virtual char f() => (char)(base.f() + 10);

}

class D1 :C1, 11 {}

class E1: D1

{
public new char f() => (char)(base.f() + 5);

}

class Program
{
static void Main(string[] args)
{
E1? al = new E1();
Console.WriteLine(al.f());

1?11 =al;
Console.WriteLine(i1.f());

Console.WriteLine(al is B1);
al = null;
Console.WriteLine(al is Al);

}

*/

/~k

interface 15

public int X { get; set; }
}

struct S(int a, int b, intc) : I5
{
public int X { get; set; } = 5;
public int Y { get; } = 5;

public int f()
{

returna+ b +c;
}
}

class Program

{
private static void Update(I5 i)

{
i.X *=10;
}
static void Main(string[] args)
{
S sl =new S(11, 12, 13);
1511 = s1; // boxed, so it has the normal overhead + only
Update(il);
Console.WriteLine(s1.X);
Console.WriteLine(i1.X);

S[] sa = new S[3];
Console.WriteLine(sa[0].X);

}
}
*/
/~k
class Program

{

enum E
{
One =1,
Four =4,
Five
}
static void Main(string[] args)
{
E el = E.One;
Console.WriteLine(el);

el++;
Console.WriteLine((el));

E e = E.Five;
Console.WriteLine((int)e);

}
}
*/
/~k
class Prg8

{

public static void Main()

{

var items = new List<int>();
ml(items);
Console.WriteLine(items.Count);

m2(ref items);
Console.WriteLine(items.Count);

}

static void m1(List<int> ints) // the reference in items is copied to the variable ints

ints.Add(6);
ints = null';

}

static void m2(ref List<int> ints) // modifies the original variable itself

ints.Add(7);
ints = null!;
}

}

*/

/~k

interface 11

int f();
}

class Al

public int f()
{

}
}

class B1: Al, I1

{
public int f(int x) => x * 10;

}

class C1: B1
{

return 4;

public new int f()

{
return 8;
}
}

class Program

{

static void Main()

{
11 = new C1();
Console.WriteLine(i1.f());

Al al = (Al)i1;
Console.WriteLine(al.f());

}
}
*/
/*
struct S3
{
public int X;
public int Y => X + 10;

public void QuadrupleX()
{
X *=4;
}
}

class Program

{

static void Main()

{
S3sl=newS3{X=10}
s1.QuadrupleX();
Console.WriteLine(s1.Y);

// Nullable<T>.Value is a property, hence it returns a copy of the struct and does not modify the
/ original one. The output will be 10.
S3?7s2=new S3(){X=10}
if (s2 is not null)
{
s2.Value.QuadrupleX();
Console.WriteLine(s2.Value.X);

}
}
}
*/
/~k
interface |1

int f();
}

class Al

{
public int f()

{
return 1;
}
}

class B1: A1, I1

public int f(int x) => x * 2;
}

class Cl1l:B1
{

public new int f()

{
return 3;
}
}

class Program

{

static void Main()

{
[1i1 = new C1();
Console.WriteLine(i1.f());

Al al = (Al)i1;
Console.WriteLine(al.f());
}
}
*/
/~k
class Program
{
enum DayOfWeek {
Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday, Sunday

I3

static void Main()
{
var day = DayOfWeek.Sunday;
day++;
Console.WriteLine(day);
}
}
*/
/~k
interface 16

public char f();
}

class A6

{

public virtual char f() =>'A’;

}

class B6 : A6, 16 // !l Interface looks at the signature, not implementation

{

public override char f() => 'B’;

}

class C6 : B6
{

public virtual char f() =>'C’;

}

class D6 : C6
{
public override char f() =>
(char)(base.f() + 1); // base forcefully calls the father object’'s method (think about endless
recursion)

}

class E6 : D6

{
public override char f() => (char)(base.f() + 1);

}

class Program

{

static void Main()

{
C6 c6 = new E6();
Console.WriteLine(c6.f());

16 i6 = new C6();
Console.WriteLine(i6.f());
}
}
*/
/~k
class Prg6 {
public ref int m(ref int a) {
var X = 5;
refint rl = ref x;
return ref m(ref rl);

}
}
*/
/*
public class X
{
public void m(int i)

{
Console.WriteLine("X.f(int)");

}
}

public class Y : X

public void m(float f)

{
Console.WriteLine("Y .f(float)");

}

public void Test()

{
inti=1;
m(i); // Y.m(float) is called because int fits well into the new method.

}
}

class Prg6

{

static void Main(string[] args)

{

Yy =new Y();
y.Test();

}
}
*/
/*
abstract class A

{

public virtual void m() => Console.Write("A");

}

classB: A

{
public virtual void m(int i = 42)
=> Console.Write($"B-{i}");

}

classC: B

{

public override void m() => Console.Write("C1");
public virtual void m(int j = 333)
=> Console.Write($"C2-{j}";
}

classD: C

public void m() => Console.Write("D");
}

class Prg7

{

static void Main()

{

var X = new C();
x.m();

}

}
*

interface 17

{
public char f();

}

class A7 : 17
{

public virtual char f() =>'A’;

}

class B7 : A7
{

public override char f() => 'B’;

}

class C7 : B7

{
public virtual char f() => (char)(base.f() + 5);

}

class D7 : C7
{

public override char f() => 'D’;

}

class E7 : D7

{
public override char f() => (char) (base.f() + 10);

}

class Program

{

static void Main()

{
C7? c7 = new E7();
Console.WriteLine(c7.1());

1717 = new D7();
Console.WriteLine(i7.f());

}
}

/*
class X1

{

public int Value

{
get

{
Console.WriteLine("X");

return 10;

}
}
}

class Program

{

static void Main()
{
var x1 = new X1();
if (x1.Value > 7 && x1.Value < 25 && x1.Value != 8)

{
Console.WriteLine("OK1");

}

Console.WriteLine("+");

if (x1.Value is > 7 and < 25 and not 8)
{

}
}
}
*/
/~k
struct S
{
private int x = 7,
private inty = 8;

Console.WriteLine("OK2");

public SO {}
}

class Program

{

static void Main()

{

S[] sField = new S[3]; // gets initialized to zeroes

}
}
*/
/~k
class Program

{

public static void Main(string[] args)

{
var before = GC.GetAllocatedBytesForCurrentThread();
var rl = Calc([1, 2, 3, 4], 0);
var after = GC.GetAllocatedBytesForCurrentThread();
Console.WriteLine($"Allocated {after - before} B.");

Console.WriteLine(rl);

var r2 = Calc(null, 0);
Console.WriteLine(r2);

}

static int Calc(int[] a, int b) => a switch

{
[1=>b,

[var X, .. varyl when x % 2 ==0
=> Calc(y, x + b),
[,..varz] =>Calc(z, b)

I3
}
*/
/*
class Prgram

{

static void Main()

{
try
{
try
{

throw new ArgumentException();

}
finally

{

Console.WriteLine("A");

try
{

try

{
}

throw new IndexOutOfRangeException();

finally

{

Console.WriteLine("B");
try
{

try

{

throw new NotSupportedException();

}
finally

{

}
}

catch (Exception ex)

{
Console.WriteLine($"{ex.GetType()}");

throw;

}

Console.WriteLine("D");

Console.WriteLine("C");

}

catch (Exception ex)

{
Console.WriteLine($"{ex.GetType()}"):

}

Console.WriteLine("E");

}
}

catch (Exception ex)

{
Console.WriteLine($"{ex.GetType()}"):

