
using System.Numerics;

namespace ExamPrep;

/*
interface I1
{
 public int X { get; }
}

class A1 : I1
{
 public virtual int X { get; set; } = 10;
}

class B1 : A1
{
 public override int X => 20;
 public int Special => base.X + 1;
}

class C1 : B1
{
 public override int X { get; set; }
}
*/
/*
class A6
{
 public int X { get; }

 public A6()
 {
 X = f();
 }

 public virtual int f() => 4;
}

class B6 : A6
{
 private int _y = 10;
 public override int f() => _y + 1000;
}

class C6 : B6
{
 public new virtual int f() => 20;
}

class D6 : C6
{
 public sealed override int f() => 2;
}
class Program

{
 static void Main(string[] args)
 {
 var d = new D6();
 Console.WriteLine(m1(d));
 Console.WriteLine(d.X);
 }

 public static int m1(A6 a) => m2((C6)a);

 public static int m2(C6 c) => c.f();
}
*/

/*
interface I1
{
 public char f();
}

class A1 : I1
{
 public virtual char f() => ’A’;
}

class B1 : A1
{
 public override char f() => ’B’;
}

class C1 : B1
{
 public virtual char f() => (char)(base.f() + 10);
}

class D1 : C1, I1 {}

class E1 : D1
{
 public new char f() => (char)(base.f() + 5);
}

class Program
{
 static void Main(string[] args)
 {
 E1? a1 = new E1();
 Console.WriteLine(a1.f());

 I1? i1 = a1;
 Console.WriteLine(i1.f());

 Console.WriteLine(a1 is B1);
 a1 = null;
 Console.WriteLine(a1 is A1);

 }

}
*/
/*
interface I5
{
 public int X { get; set; }
}

struct S(int a, int b, int c) : I5
{
 public int X { get; set; } = 5;
 public int Y { get; } = 5;

 public int f()
 {
 return a + b + c;
 }
}

class Program
{
 private static void Update(I5 i)
 {
 i.X *= 10;
 }
 static void Main(string[] args)
 {
 S s1 = new S(11, 12, 13);
 I5 i1 = s1; // boxed, so it has the normal overhead + only
 Update(i1);
 Console.WriteLine(s1.X);
 Console.WriteLine(i1.X);

 S[] sa = new S[3];
 Console.WriteLine(sa[0].X);

 }
}
*/
/*
class Program
{
 enum E
 {
 One = 1,
 Four = 4,
 Five
 }
 static void Main(string[] args)
 {
 E e1 = E.One;
 Console.WriteLine(e1);

 e1++;
 Console.WriteLine((e1));

 E e = E.Five;
 Console.WriteLine((int)e);
 }
}
*/
/*
class Prg8
{
 public static void Main()
 {
 var items = new List<int>();
 m1(items);
 Console.WriteLine(items.Count);

 m2(ref items);
 Console.WriteLine(items.Count);
 }

 static void m1(List<int> ints) // the reference in items is copied to the variable ints
 {
 ints.Add(6);
 ints = null!;
 }

 static void m2(ref List<int> ints) // modifies the original variable itself
 {
 ints.Add(7);
 ints = null!;
 }
}
*/
/*
interface I1
{
 int f();
}

class A1
{
 public int f()
 {
 return 4;
 }
}

class B1 : A1, I1
{
 public int f(int x) => x * 10;
}

class C1 : B1
{

 public new int f()
 {
 return 8;
 }
}

class Program
{
 static void Main()
 {
 I1 i1 = new C1();
 Console.WriteLine(i1.f());

 A1 a1 = (A1)i1;
 Console.WriteLine(a1.f());

 }
}
*/
/*
struct S3
{
 public int X;
 public int Y => X + 10;

 public void QuadrupleX()
 {
 X *= 4;
 }
}

class Program
{
 static void Main()
 {
 S3 s1 = new S3 { X = 10 };
 s1.QuadrupleX();
 Console.WriteLine(s1.Y);

 // Nullable<T>.Value is a property, hence it returns a copy of the struct and does not modify the
 // original one. The output will be 10.
 S3? s2 = new S3() { X = 10 };
 if (s2 is not null)
 {
 s2.Value.QuadrupleX();
 Console.WriteLine(s2.Value.X);
 }
 }
}
*/
/*
interface I1
{
 int f();
}

class A1
{
 public int f()
 {
 return 1;
 }
}

class B1 : A1, I1
{
 public int f(int x) => x * 2;
}

class C1 : B1
{
 public new int f()
 {
 return 3;
 }
}

class Program
{
 static void Main()
 {
 I1 i1 = new C1();
 Console.WriteLine(i1.f());

 A1 a1 = (A1)i1;
 Console.WriteLine(a1.f());
 }
}
*/
/*
class Program
{
 enum DayOfWeek {
 Monday, Tuesday, Wednesday, Thursday,
 Friday, Saturday, Sunday
 };

 static void Main()
 {
 var day = DayOfWeek.Sunday;
 day++;
 Console.WriteLine(day);
 }
}
*/
/*
interface I6
{
 public char f();
}

class A6
{
 public virtual char f() => ’A’;
}

class B6 : A6, I6 // !!! Interface looks at the signature, not implementation
{
 public override char f() => ’B’;
}

class C6 : B6
{
 public virtual char f() => ’C’;
}

class D6 : C6
{
 public override char f() =>
 (char)(base.f() + 1); // base forcefully calls the father object’s method (think about endless
recursion)
}

class E6 : D6
{
 public override char f() => (char)(base.f() + 1);
}

class Program
{
 static void Main()
 {
 C6 c6 = new E6();
 Console.WriteLine(c6.f());

 I6 i6 = new C6();
 Console.WriteLine(i6.f());
 }
}
*/
/*
class Prg6 {
 public ref int m(ref int a) {
 var x = 5;
 ref int r1 = ref x;
 return ref m(ref r1);
 }
}
*/
/*
public class X
{
 public void m(int i)
 {
 Console.WriteLine("X.f(int)");

 }
}

public class Y : X
{
 public void m(float f)
 {
 Console.WriteLine("Y.f(float)");
 }

 public void Test()
 {
 int i = 1;
 m(i); // Y.m(float) is called because int fits well into the new method.
 }
}

class Prg6
{
 static void Main(string[] args)
 {

 Y y = new Y();
 y.Test();
 }
}
*/
/*
abstract class A
{
 public virtual void m() => Console.Write("A");
}

class B : A
{
 public virtual void m(int i = 42)
 => Console.Write($"B-{i}");
}

class C : B
{
 public override void m() => Console.Write("C1");

 public virtual void m(int j = 333)
 => Console.Write($"C2-{j}");
}

class D : C
{
 public void m() => Console.Write("D");
}

class Prg7
{
 static void Main()

 {
 var x = new C();
 x.m();
 }
}
*/

interface I7
{
 public char f();
}

class A7 : I7
{
 public virtual char f() => ’A’;
}

class B7 : A7
{
 public override char f() => ’B’;
}

class C7 : B7
{
 public virtual char f() => (char)(base.f() + 5);
}

class D7 : C7
{
 public override char f() => ’D’;
}

class E7 : D7
{
 public override char f() => (char) (base.f() + 10);
}

class Program
{
 static void Main()
 {
 C7? c7 = new E7();
 Console.WriteLine(c7.f());

 I7 i7 = new D7();
 Console.WriteLine(i7.f());
 }
}

/*
class X1
{
 public int Value
 {
 get

 {
 Console.WriteLine("X");
 return 10;
 }
 }
}

class Program
{
 static void Main()
 {
 var x1 = new X1();
 if (x1.Value > 7 && x1.Value < 25 && x1.Value != 8)
 {
 Console.WriteLine("OK1");
 }

 Console.WriteLine("+");

 if (x1.Value is > 7 and < 25 and not 8)
 {
 Console.WriteLine("OK2");
 }
 }
}
*/
/*
struct S
{
 private int x = 7;
 private int y = 8;

 public S() { }
}

class Program
{
 static void Main()
 {
 S[] sField = new S[3]; // gets initialized to zeroes

 }
}
*/
/*
class Program
{
 public static void Main(string[] args)
 {
 var before = GC.GetAllocatedBytesForCurrentThread();
 var r1 = Calc([1, 2, 3, 4], 0);
 var after = GC.GetAllocatedBytesForCurrentThread();
 Console.WriteLine($"Allocated {after - before} B.");

 Console.WriteLine(r1);

 var r2 = Calc(null, 0);
 Console.WriteLine(r2);
 }

 static int Calc(int[] a, int b) => a switch
 {
 [] => b,
 [var x, .. var y] when x % 2 == 0
 => Calc(y, x + b),
 [_, .. var z] => Calc(z, b)
 };
}
*/
/*
class Prgram
{
 static void Main()
 {
 try
 {
 try
 {
 throw new ArgumentException();
 }
 finally
 {
 Console.WriteLine("A");
 try
 {
 try
 {
 throw new IndexOutOfRangeException();
 }
 finally
 {
 Console.WriteLine("B");
 try
 {
 try
 {
 throw new NotSupportedException();
 }
 finally
 {
 Console.WriteLine("C");
 }
 }
 catch (Exception ex)
 {
 Console.WriteLine($"{ex.GetType()}");
 throw;
 }

 Console.WriteLine("D");
 }

 }
 catch (Exception ex)
 {
 Console.WriteLine($"{ex.GetType()}");
 }

 Console.WriteLine("E");
 }
 }
 catch (Exception ex)
 {
 Console.WriteLine($"{ex.GetType()}");
 }
 }
}
*/

