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1 Categories & Morphisms

The notion of ‘category’ first appeared in 1945 in an article of S. MacLane and
S. Eilenberg: On Natural Equivalences in the publication Transactions of AMS.

Definition 1.1 (Category). Let Obj K be a class and K(a, b) be a set for any
a,b € ObjKC. The former is termed a class of objects and the latter a set of
morphisms or arrows from a to b. For any a € K(a,b), a is termed the domain
of a and b the codomain of o, denoted Dom a and Cod « respectively.

Put
Mor K = lJ  Kb).
(a,b)e(Obj K)2

A category is any interpretation of K = (Obj IC, Mor K) which in addition meets
the following axioms:

(1) Morphism Disjointness.

(Va,b,a’,b' € ObjK) (a,b) # (a’,b) = K(a,b) n K(d',b') = &.

(2) Composition.
(Va e K(a,b),8 € K(b,c)31B) foae K(a,c).

(3) Associativity.
(Va € K(a,b),8 € K(b,c),y € K(e,d))yo(Boa)=(yop)oa.

(4) Unit Law.

(Va e Obj K31, € K(a,a)Vp € K(a,b)¥Vy € K(c,a)) (Boly = B)A(lg0y = 7).

Remark 1.2. The morphism 1, from ?? is uniquely determined by its proper-
ties. If 1/, were another such morphism, then 1/, 01, = 1/.

Definition 1.3 (Locally Small Category). Sometimes the defnition admits
K(a,b) being a class, and not just a set. The kinds of categories satisfying
our restricted definition is then called locally small.

Notation 1.4. If K is clear from context, instead of a € K(a,b) we sometimes
write @ : @ — b. Another standard notation is {«, a, b).

Example 1.5.
(1) SET denotes the category of all sets. Here objects are sets and morphisms

are set mappings with a specified domain and codomain.
Let A,B* < Bbesets, f: A— B, f*: A— B* and (Va € A) f*(a) =
f(a).



Then f # f* in the category SET (SET (A, B) n SET (A, B*) = J even
though f = f* componentwise.

(2) Structured Sets.

o POSET is a category whose objects are posets, i.e. partially ordered
sets; and whose morphisms are monotonic maps.

This means that « : (a,<) — (b,<) implies that for each z,y € a,
<y = alr) < aly).

o QOSET is a category whose objects are quasiordered sets and whose
morphisms are as above.

o GRAPH is a category whose objects are oriented graphs (i.e. the set
V of all vertices and a relation A of two vertices being connected by
an oriented edge) and whose morphisms are graph-homomorphisms.

To clarify: let G = (V,A), G'(V',A), o : G - G, a: (Yv,w e V).
Then
(v,w) € A) = (a(v),a(w)) e A'.

e GRP is a category whose objects are groups and morphisms are
group-homomorphisms.
Let (G,-),(H,#) be groups. Then « : (G,-) — (H,#) implies a(g; -
92) = a(g1) = a(gz).

e SMQG is a category of semigroups (sets equipped with an associative
operation): its objects are semigroups and its morphisms are semig-
roup homomorphisms

e RNG is a category whose objects are unitary rings and whose morph-
isms are ring-homomorphisms.

e TOP is a category whose objects are topological spaces and whose
morhpisms are continuous maps.

(3) Arbitrary Examples.

e Let Obj K be the elements of R? and Mor K be finite polygonal lines
connecting its two arguments.

Remark 1.6. Given a general category K it is not meaningful to consider the
elements of the objects of a category K.

Definition 1.7. A category K is said to be thin if for every a,b e Obj K,
| K(a,b)| < 1.
Remark 1.8. Thin categories correspond one-to-one with quasiordered classes:
Suppose K is a category. Define the ordering < on Obj K by
a<be |K(a,b)| =1



Then
K — (Obj K, <).

Conversely, given a quasiordering @, let Obj K = @ and for any two a,b € Q,
let there exist a single morphism between them if a < b. If —(a < b), then let
there be no such morphism.

Clearly
K< (Q2).

Definition 1.9 (Discrete Category). A category K is said to be discrete if it
contains only identity-morphisms. Symbolically

| K(a,b)| = da.p-

Definition 1.10 (Small Category). A category K is said to be small if Obj K
is a set (as opposed to a class).

Remark 1.11. Singleton categories correspond one-to-one with monoids. For
any category K with a single object A, the set (A, A) of morphisms A — A is
a monoid. with unit element Id4 and a binary operation given by composition;
conversely for any monoid (M, -, e), there is a one-object category K with a single
object Obj K = {M} whose morphisms are the elements of M, with Idy = e
and such that composition is given by ‘- .

K— (K(A,A),0,1d4)
({M}vM)(_)(M"ve)

Definition 1.12 (Monomorphism, Epimorphism, Bimorphism, Isomorphism).
A morphism « € K(a,b) is called a monomorphism if, given any two morphisms
v,8:c—a; aof =aoyimplies 8 = .

Dually, « € K(a, b) is called an epimorphism if, given 8,y € K(b,c), foa = yo«
implies 8 = ~.

If o is both monic and epic, then it is termed a bimorphism.

Lastly, a € K(a, b) is called an isomorphism if there exists 8 € K(b, a) such that
Boa=1,, aof =1,

Definition 1.13 (Balanced Category). A category is called balanced if a morph-
ism is epic and monic iff it is an isomorphism.

Theorem 1.14 (Heredity of Moncity & Epicity).
(1) If ay € K(a,b), az € K(b,c) are monic, then oy o as is likewise monic.
(2) Conversely, if as o ay are monic, then so is a.

(8) Dually, the analogous propositions hold for epimorphisms.



Proof. Trivial. Only point (2) shall be shown. Assume

AP~
c a——b
Ny A

and let ay 0 8 = a3 0. Then (ag0oay) o = (az 0 ay)o~. Since ag o g is
monic, 8 = . QED

Definition 1.15 (Opposite Category). The category K°P denotes a category
dual to K, also called opposite. We have Obj K := Obj KC, K°P(a,b) = K(b, a),
for all a,b e Obj K.

Remark 1.16. Monomorphisms in K°P correspond 1-to-1 with epimorphisms
in C.

Theorem 1.17 (Duality Priniciple). Isomorphisms are monic and epic.'

Proof. Let a € K(a,b) be an isomorphism and let S € K(b,a) be a morphism
witnessing the isomorphic property of «.

If v,6 : ¢ — a are any morphisms such that cod = ao~, then (Soa)od = (Soa)oy
implying 1,06 = 1, oy whence v = 4. That is to say, « is epic. To see it is also
monic, let 7,9 : b — ¢ and argue by analogy. QED

Definition 1.18 (Section, Retraction). A morphism « € K(a, b) for which there
exists 8 € K(b, a) such that Soa = 1, is called a split monomorphism or section;
if o8 =1y, it is termed a split epimorphism or retraction.

More bluntly, a section is a right inverse and a retraction a left inverse of a
morphism.

b--——1,--—-3b
Section i[ / & i[ Retraction
a4---1la —--- a

Definition 1.19 (Witness). Let A be a first-order language, ¢(v) be an A-
formula, and A be an interpretation of £. An A-witness, or simply a witness if
A is clear from context, for the sentence 3o ¢(7) is an element @ € A'*®¢ such

that A = ¢(a).

For our purposes, by a witness we shall understand any object, morphism,
category, etc. whose existence proves a particular property. Given a map « €
K(a,b), the morphism 8 € (b, a) is a witness of a being a section if Soa = 1;.

1Observe the converse does not generally hold; in view of this theorem, one could define
balanced categories as those categories which satisfy such (converse) implication.



Remark 1.20. Clearly any section is monic and conversely any retraction is
epic. A morphism which is both a section and a contraction is an isomorphism.

Example 1.21.

(1)

(2)

()

In SET, morphisms are monic iff they are injective and epic iff they are
surjective. The category SET is balanced.

One may prove that the Axiom of Choice holds iff every epimorphism in
SET is split (a retraction).

In the balanced categories, GRP, AB, and the category of right R-modules,
monomorphisms are precisely injective homomorphisms and epimorphisms
are surjective homomorphisms.

Showing this for GRP is nontrivial.

In the category of polygonal lines, a morphism if monic iff it is epic iff it
is the identity-morphism 15 for B € R2.

The category of divisible Abelian groups DAB and the category of tor-
sionfree Abelian groups 7 F.AB whose morphisms are homomorphisms of
Abelian groups.

The category DAB is not balanced and neither is 7F.AB since the monic
canonical embedding v : Z — Q is an epimorphism.

T
7Z 2= Q BeTFAB
~_

aov = fov implies a — 3 | Z = 0, which means there exists = : @/Z —
B; then v = 0 since Cod~y is torsionfree and Dom+ is not, and hence
*yow=a—ﬁ=0f0r7r:(@—>(@/z.

In RNG, Z — Q is also an epimorphism (exercise).

Remark 1.22. The homomorphic image of a divisible group is divisible and
any subgroup of a torsionfree group is torsionfree.

Moreover, in DAB the map 7 : Q — Q /7 is a monomorphism.

Suppose m o« = 7o 3, then mo (o — §) = 0. This implies that Im(a — ) <
Ker(m) = Z. Since Im(a — j3) is divisible, then Im(a — ) being a subset of Z
implies Im(a — B) = {0}.



N

The fact DAB is not balanced follows hence given that 7 : Q — Q /7 is not an
isomorphism.

Notation 1.23. Recall — denotes a monomorphism and — an epimorphism.

2 Functors

Definition 2.1 (Covariant Functor). Let K, H be categories. It is said F': K —
H is a covariant functor from K to H if for each a € ObjK and o € K(a,b),
B e K(b,c):

(1) F(a)e ObjH (3) F(Boa)=F(B)oF(a)
(2) F(a) e H(F(a), F(b)) (4) F(la) = 1r(@)

Definition 2.2 (Contravariant Functor). Let K, H be categories. It is said
F : K — H is a contravariant functor from K to H if for each a € Obj K and
a € K(a,b), p e K(b,c):

(1) F(a) e ObjH (3) F(Boa)= F(a)o F(B)
(2) F(a) e H(F(b), F(a)) (4) F(1a) = 1p(@)

Note that contravariant functors reverse the direction of composition.

Remark 2.3. In the topological category 7 OP monomorphisms are injective
morphisms and epimorphisms are surjective morphisms. A morphism which is
monic and epic is a continuous bijection, which is not the same as a homeo-
morphism, which is an isomorphism in the categorical sense.

To illustrate this consider a set X with at least two elements, consider the map
(X, dlscrete) (X indiscrete).

Definition 2.4 (Parallel Morphism). Let a, 8 € K(a,b), then «, 3 are termed
parallel morphisms.
¥
a
~ B A



Definition 2.5 (Homfunctor). Let K be a (locally small) category, a,b € Obj K
and « € (b, ¢). We introduce the functions

K(a,a) : K(a,b) — K(a,c) K(a,a): K(c,a) > K(b,a)
B aop B Boa.

Then K(a,—) is said to be a covariant homfunctor of K if

(1) K(a,=) : b— K(a,b).

(2) K(a,—-) : a— K(a,a).
Likewise, I(—, a) is said to be a contravariant homfunctor if

(1) K(—,b) : a— K(a,b).

(2) K(—,b) : a— K(av,a).
Remark 2.6. The covariant and contravariant functors are naturally related.
Let a,b,a’,b' € Obj K and f € K(a,a’), h € K(b,0'). Then

K(a,b) — K(h,b)— K(a’,b)

K(a,f) K(a',f)
K(a,b') —Kmp)— K(a',b)
We shall learn more about this later when discussing natural transformations.

Example 2.7.

(1) Forgetful Functors. Functors are termed forgetful if they, in a sense, ‘for-
get’ part of the structure they are defined on, e.g.

F:TOP —SET (X,7) > X
F:GRP — SET (G,") — G.
Another example

F:TOPGRP — TOP
F:TOPGRP — GRP.

(2) Let K be a category and a € ObjK. Let F, : K — SET; for some
b e ObjKC, F,(b) := K(a,b) € ObjSET. Likewise for a : ¢ — b, Fy(a) :
K(a,c) = K(a,b) defined by 8 — a o j.

Such a covariant functor is usually denoted K(a, —), then indeed F,(«) =
K(a, ).

Then by F* : K — SET; for b € ObjK and F*(b) := K(b,a) and for
a:c—b F*(a:K(ba) = K(c,a) defined by §— o«

Likewise, such a covariant functor is usually denoted K(—,a).



(3) Define P*, P~ : SET — SET. Then for s € ObjSET: P*(s) = P~ (s) =
P(s) and for as — t, PT(a) : P(s) — P(t), defined by P(s) 3y — aly] =
{a(z)|s ey}

P~(a) : P(t) — P(s) defined by y — a~![y] = {z € s|a(z) € y}, this is
the complete preimage of the set y.

Definition 2.8 (Full, Faithful, One-to-One Functors). Let F : K — H be
functor. It is said F' is

(1) full if for every a,b e Obj K, F maps K(a,b) onto H(F(a), F(b)) as given
by a— F(«).

(2) faithful, if for each a,b € ObjK, F maps K(a,b) into H(F(a), F(b)) as
given by a — F(«). Hence F(a) = F(b) = a = b.

(3) fully faithful if it is faithful and full.

Remark 2.9. A mnemonic for remembering the term full is that the image of
the function fills the codomain; a mnemonic for remembering the term faithful
is that one can have faith F(a) = F(b) implies a = b.

Definition 2.10 (Subcategory, Embedding Functor). Let K, H be categories.
It is said that IC is a subcategory of the category H, written K < H, if the
following conditions are met:

(1) ObjK < ObjH
(2) (Va,be ObjK) K(a,b) < H(a,b)

(3) Id : K — H, where Id(a) = a for a € Obj K, Id(a) = @ for o« € Mor K, is a
functor, termed an embedding functor of I into H.

Moreover, K is called a full subcategory of H if Id is full; that is, it inherits all
morphisms from H it can:

(Va,b e ObjK) K(a,b) = H(a,b).

Lemma 2.11 (Functors Preserve Split Morphisms). Let F : K — H, « €
K(a,b). Then

(1) If « is a section, then F(a) is a section.

(2) If « is a retraction, then F(a) is a retraction.

(3) If « is an isomorphism, then F(«) is an isomorphism.
Proof. Clear since functors preserve the existence of inverse-mappings between
their domains and codomains with respect to individual morphisms.

In greater detail, suppose o € K(a,b) is a section with a witness 5. It follows
from the definition of a functor that

Oéoﬂzlb:}F(Oz)OF(B):lF(b)

10



Hence F(f) is a witness of F(«) being a section. By analogy, we deduce being a
retraction is likewise preserved under functors. Since any isomorphism is both a
section and a retraction, it follows trivially the image of an isomorphism under
a functor is isomorphic. QED

Remark 2.12. Functors need not preserve monomorphisms nor epimoroph-
isms.

Definition 2.13 (Projective Object). It is said a € Obj K is projective in K
if K(a,—) preserves epimorphisms: given any epimorphism a € K(b,c), the
following map is surjective
K(a,a) : K(a,b) - K(a,c)
fraof

Simply put, given any epimorphism « € K(b, ¢) and any morphism v € K(a, ¢),
there exists a morphism S € K(a,b) such that ao § = .

YT—— C

i

[e3%

d

Remark 2.14. Definition 2.13 generalises the notion of a projective module.
The diagram from Definition Definition 2.13 should be familiar from Module
Theory.

S R

Example 2.15.

(1) In SET all sets are projective objects and all nonempty sets are injective.

a
AN
v 3.
/ A
be——a—c¢

(2) In TOP projective objects are discrete spaces; injective objects are nonempty
indiscrete spaces.

(3) In AB (Abelian groups) projective objects are free groups; that is groups
isomorphic to a direct sum over some index-family of any cardinality of
cyclic groups.

Injective objects are precisely divisible Abelian groups.

(4) CHTOP (Complete Hausdorff spaces) projective objects are extremely
disconnected, that is those closure of an open set is open, complete and
Hausdorff topological spaces.

11



(5) The category of vectorspaces has only objects are both injective and pro-
jective.

(6) F: AB - DAB, G — maximal divisible subgroup is a functor (exercise).

Definition 2.16 (Generator, Cogenerator). a € Obj/C. It is said that a is
a generator or a cogenerator in K if K(a,—) is faithful or K(—,a) is faithful
respectively.

In practice, this means that given any morphism « € K(b,¢), the assignment
a— (B +— aop), where 8 € K(a,b), is unique.
More simply still, given any two distinct morphisms f, g, there is another morph-

ism h such that f oh # go h, provided the functions are composable. For this
reason, generators are sometimes called separators.

Example 2.17.

(1) In SET, generators are all nonempty sets and cogenerators are sets with
at least two elements.

(2) In SET, an example of a generator is Z and of a cogenerator is Q/Z.
(3) In GRP, an example of a generator Z, cogenerators do not exist.

Definition 2.18 (Concrete Category). By a concrete category we understand
the pair (IC,U), where K category U : K — SET is a faithful functor.

Since U is faithful, we may identify each morphism f of K with the function
U(f). In these terms, a concrete category may be described as a category K in
which each object ¢ comes equipped with an ‘underlying’ set U(c), each morph-
ism b — ¢ is an actual function U(b) — U(c), and composition of morphisms is
composition of functions.

Definition 2.19 (Mac Lane’s Represention). Let I be small. Its Mac Lane’s
representation is the functor M : K — SET defined in the following fashion:

M:K— SET
Obj K — Mor K Mor K — Mor K
a— U K(b,a) a— (F:M(a) > M) x—aox)
beObj K

Theorem 2.20. Mac Lane’s representation functor is injective on K.

Proof.

(1) Let a,a’ € ObjK be distinct. Then M(a) n M(a’) = &, both of which
are nonempty since 1, € M(a) and 1, € M(a’). Hence it is injective on

Obj K.

(2) Let o, 8 : @ — o' be distinct. Then M(a)(1l,) = o and M(B8)(1,) = 5,
which implies M («) # M (). Thus, it is faithful.

12



QED
Corollary 2.20.1. Every small category IC is concretisable; i.e. there exists a
faithful functor U : IC — SET such that (K,U) is concrete.

Exercise 2.21. Show that there exist categories which are not concretisable;
that is, there exists no faithful functor therefrom to SET.

Notation 2.22.

(1) If a € K(a,d’) is an isomorphism, then a~! € K(a’, a) denotes a morphism
inverse to it. It is uniquely determined (exercise).

(2) Functors may be composed; F : K > H, G:H — I, then Go F, or GF,
denotes a functor from K to Z defined by G o F(a) := G(F(a)).

Definition 2.23 (Category Product). Let IC,H be categories. Then I xH is
defined by

Obj(K xH) = (ObjK) x (ObjH)  Mor(K xH) = (MorK) x (MorH)

where all operations are performed componentwise.

Definition 2.24 (Hombifunctor). A functor F' is said to be a hombifunctor if
F=K(——):K?xK— SET and

K(—,—): (ObjK)*> - Mor K F(a, B) : K(a,b) — K(a', V)
F(aab):K(aab) F(a,ﬁ)(x):ﬁoxoa.
a a—a - v>b——p—Y

3 Natural Transformations & Yoneda’s Lemma

Definition 3.1 (Natural Transformation, Mono-, Epi-, Natural Equivalence).
Let F,G : K — H be functors. By a natural transformation from F to G we
understand the family of morphisms 7 = {7, |a € Obj K} where each component
T € H(F(a), G(a)) satisfies

F(a) L), F(d)

Tal f@’

G(a) G(d

~—

G(e)

These properties are referred to as compatibility-conditions. A natural trans-
formation is said to be a monotransformation or an epitransformation if all its
coponents are mono- or epimorphisms respectively. By a natural equivalence or
sometimes natural isomorphism we understand such a natural transformation
whose components are isomorphisms.

13



Observe that if 7 is a natural equivalence, then 77! = {(Ta)71 ‘a € Obj IC} is

likewise a natural transformation. In diagrams, we indicate K, H having natural
transformation 7 thus

Example 3.2. Let a,c€ Obj K, a € K(a, ), and consider the following covari-
ant homfunctors K(a,—),K(c,—) : K — SET.
Let o € K(a,c) and set 7 := K(o,—) : K(¢,—) — K(a,—), a contravariant
homfunctor, and for each b € Obj C put

T = K(o,b) : K(c,b) — K(a,b)

Tp : T — T O Q.

We need to check 7 satisfies the compatibility-conditions. Let b € Obj K and
B:b— V. Then
K(e,b) —— K(a,b)

K(C,B)J JK(a,B)

Ty

K(c,b') —— K(a,V)
as for any x € K(c, b)

[K(a,B) o] (2) = Bowoa=[noK(cp)](z).

Definition 3.3 (Conglomerate). By a conglomerate, we understand a collection
of classes. This is an informal term that, though it may be formalised, is to be
understood in the intuitive sense.

Notation 3.4. Let F,G : K — H be functors. By Nat(F,G) we understand
the conglomerate of all natural transformations from F' to G.

Moreover, H* denotes the conglomerate of all covariant functors from K to
H. It itself said to be a quasicategory, whose objects are functors and whose
morphisms are natural transformations. It behaves exactly like a category but
is not one due to the unbounded size of its collections of objects and morphisms.
Its identity (natural transformation) is given by Id : F' — F, Id, = 1p(4)

Remark 3.5.

(1) Natural transformations may be composed. Let 7: F' - G and 0 : G —
H,then o o7 : F — H where (6 07), := 0407, € H(F(a), H(a)).



(2) HT: HF — HG, (HT1), € Z(HF(a), HG(a)), a := H(1,).
TJ:FJ— GJ, (1J)e H(FJ(c),GJ(c),GJ(c)), where ¢ := T ().

J%IC

3.1 Yoneda’s Lemma

Yoneda’s Lemma is arguably the most important result in category theory. It is
an abstract result on functors of the type morphisms into a fized object; a vast
generalisation of Cayley’s Theorem from Group Theory (viewing a group as a
miniature category with just one object and only isomorphisms). It allows the
embedding of any locally small category into a category of contravariant functors
defined thereon. It also clarifies how the embedded category of representable
functors and their natural transformations relates to the other objects in the
larger functor-category. It is named after a Japanese mathematician Nobuo
Yoneda.

Lemma 3.6 (Yoneda I). Let K be a category, a € ObjK and F : K — SET.
Then the following map is bijective.

y : Nat(K(a,—),F) — F(a) T = T4(1,) € F(a).

Proof. Set for each b € Obj IC,

z: F(a) - Nat(K(a,—), F) Ty K(a,b) —
. o [F(a)](2)

x x
Th iy

! |

F(b) —F(B)— F(V')

To verify z is well-defined, we need to check 7% satisfies compatibility-conditions.
Put a € K(a,b), then

15



[FB)m1(a) = [F(B) o F()](x) = F(B o a)(x)

O
[ 0 K(a, B)](a) = 77(B 0 o) = F(B o a)(x)

We shall now check in two steps that z is the inverse map to y and vice versa,
thus proving the claim.

z oy = Idat(k(a,—), ) We wish to verify z(y(7)) = 2(74(1a)) = 77*(1,) = 7. Let b € Obj and

a € K(a,b). Then

K720 @) = [F(0)](ra(1a) = 7 0 K(a,0)(1a) = T(a).

e

K(a,a) —“— F(a)

Ko |F@

K(a,b') — F(1)

yoz=1Idpy) Let x € F(a). Then

ye 2 =Tdpg : y(=(@) = y(r) = 7 (L) = [FL)] (@) = Lp(a) () = .
QED

Remark 3.7. A natural transformation is, formally speaking, a formula defin-
ing a class of morphisms.

Remark 3.8. In Lemma 3.6, we fixed an object a and a functor F. We shall
investigate what would happen if we allowed these be variable. It follows then
we need to introduce new notation: we donote the a and F whereupon y from
Lemma 3.6 depends by writing y, r.

Lemma 3.9 (Yondeda II). Lety = {yavp ’ a € Obj KL AF € Obj S&"T’C}, a nat-
ural equivalence of the functors N, E : K xSET® — SET defined thus

N(a, F) :=Nat(K(a,—),F) «aeK(a,b) N(a,p): N(a,F) — N(b,G)
N(va) = Nat(lc(bvf)vG) pENat(FaG) [N(O(,p)](l/) :=pOI/O’C(0¢77)

K(a,—) v—s F

|

K(a,—) P
|

K (b, —) G
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E(a,F):=F(a) Eb,G):=G(b) E(a,p):=ppoF(a) =G(aop,)

Proof. The following proof shall not be examined. From theorem [3.6], we
already know y, r is a bijection, and hence an isomorphism in SET, for every
a € ObjK, F : K — SET. Hence, it only remains to show it satisfied the
compatibility-conditions.

Let 7 € N(a, F). Then E(«, p)(Ya,7 (7)) = E(a, p)(7a(1a)) = ppopoK(a, a)(1,) =
[y © 7] ().

To see the lower triangle in the following diagram is correct, write:

Yo.c (N * (a, p) (7)) = ypc(poToK(a, =) = (poToK(a,=))s(1s) = [pp om0 K(a,b) [(1p) = [pp 0 7] ()
—_— —_——

eN(b,G) =K(a,—)p
N(a, F) Ya,F E(a,F) = F(a)
N(I,p) SET E(Ip)
N(,G) v E@®,G) =G(b)
QED

Remark 3.10. In practice, Yoneda’s lemma allows us, given a formula defining
a natural transformation and a set, to uniquely assign an element of the set; it
gives us a twofold way of doing this constructively.

Definition 3.11 (Yoneda’s Embedding). Let K be a category. Then Yondeda’s
embedding is a functor Y : K°P — SET™ defined by a € Obj K, a € K(b, a),

Y:a— K(a,—) a— K(a,—): K(a,—) - K(b,—).

Remark 3.12. Sometimes, Yondeda’s embedding is defined as Y K- SETR™
by Y (a) := K(—,a). This is done so because SET®" is rather important; it is
called the quasicategory of presheaves.

Remark 3.13. Yoneda’s embedding is a vast generalisation of Cayley’s theorem
from Group Theory
G — S(@G).

Theorem 3.14 (Yoneda’s Embedding Is an Embedding). Yoneda’s Embedding
Y is a full and injective.

Proof.

17



(1) Y is injective on objects, since given any two distinct a,b, K(a,a) n
(K(b,a) = ¢, the former of which is nonempty since 1, € K(a, a). Recall

Y(a) = K(a, -) Y(b) = Kb, -)

(2) Y is faithful, since given any 8 # « € K(b, a)

because [K(o, —)]o = K(a,a) and K(a,a)(1,) = 14 0 o = o and likewise
for 5. Hence Y(a) # Y (5).

(3) Y is full. We shall show that for any 7 : K(a,—) — K(b,—) there is a
suitable « € (b, a) such that 7 = K(a, —). From the proof of Theorem
3.6, take 7 = 7% for some a € F(a) = K(b, a).

7o (B) = [F(B)l(@) = [K(, B)](e) = Boa,
where 8 € K(a,c).
Note
[K(e, =)]e : K(a,c) — K(b,¢)
b— [3 o«

QED

Definition 3.15 (Universal Pair). Let F':  — SET be a functor. Then (a,z),
where a € Obj K and = € F(a) is said to be a universal pair? of the functor F if
for each (b,y) where b € Obj K, y € F(b) there exists a unique a € K(a,b) such
that [F(a)](z) = y.

a----- a---3b
I
F
rl
T ------ Ty

Theorem 3.16 (Representable Functor Equivalent Conditions). Let F : K —
SET be a functor. Then the following are equivalent:

(1) F has a universal pair.

(2) There exists a € Obj K such that K(a,—) is naturally equivalent with F.

2The term used on Wikipedia and Categories for the Working Mathematician is universal
element.
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Proof. (1) = (2) Let (a,x) be a universal pair of F : K — SET. Set for each
be Obj K,

z: F(a) - Nat(K(a,—), F) Ty« K(a,b) — F(b)

T o

as we have in the proof of Lemma 3.6, whence we know it is a well-defined
natural transformation. We will show 7% : K(a, —) — F is the desired natural
equivalence. To this end, we need to prove 73 is an isomorphism for each b €
Obj K. The target-category of F,K(a,—) is SET and thus from Example 1.21,
we know this occurs iff 7% is bijective.
w— Fla)sx 1o x
v a v

Let b€ Obj K and v € F(b). Then

Note 72(1,) = [F(14)](z) = x. By virtue of (a,z) being a universal pair, there
exists a unique « € K(a,b) such that F(«)(x) = v. Rephrased, v € F(b) has a
unique preimage « € K(a,b) under 77. In either case, 7; is bijective.

1, € K(a,a)

—_—
K(a,b) —_—

w—— F(b) 3

(2) = (1). Recall the following bijection from Lemma 3.6.
y : Nat(K(a,—), F) — F(a) 7 14(1,) € F(a)

and let 7 : K(a, —) — F be a natural equivalence. Then (a,y(7)) = (a,7.(1,))
is a universal pair. To see this, let (b,v) € Obj K x ObjSET. Then the desired
unique morphism is o = 7, L(w). QED

Definition 3.17 (Representable Functor). A functor F : K — SET is said to
be representable if it has a universal pair.
Example 3.18.

(1) Consider the forgetful functor U : TOP — SET. Its universal pair is
({¥}, ).

(2) Consider the forgetful functor U : GRP — SET. Its universal pair is
((Z,+,—-,0),1). Observe U(—) ~ GRP((Z,+,—,0),—).

—
—
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(3) Let U : Rng — SET be a forgetful functor. Its universal pair is (Z[z], z)

Definition 3.19 (Essentially Surjective Functor). Let F': K — H be a functor.
It is said F' is essentially surjective or dense if for each b € ObjH there exists
a € Obj K such that F'(a) ~ b.

Theorem 3.20 (Split Image Implies Split Preimage under Functors). Let F :
K — H is faithful and full. Then whenever F(«) is a split morphism for some
a € Mor K, then a is a like split morphism.

Proof. Let a € K(a,b). Suppose F(«) is a section; it is the right inverse of some
BeH(F(b), F(a)) — BoF(a) = 1p(). Since F is full, there is some v € K(b, a)
such that F(y) = 3,

F(la) = 1p@) = F(y) o F(a) = F(yoq)

and since F is also faithful, we have 1, = v o« whence « is a section. The dual
statement about retractions follows by the symmetry of our argument. QED

Remark 3.21. Theorem 3.20 is a complementary statement to Lemma 2.11.

Definition 3.22 (Skeleton). Let K be a category and S € Obj K. It is said S
is a skeleton of K if

(1) (Ya,be S)(a#b—a#b).
(2) (Vae ObjK)(Ibe S)(a ~b).
Example 3.23. In SET, the class of all cardinal numbers is a skeleton.

Remark 3.24. The proposition ‘every category has a skeleton’ is equivalent to
the Aziom of Global Choice. This axiom if consistent with ZFC and Goedel-
Bernay’s Axiomatisation.

Remark 3.25. If /' : K — H is a full, faithful, and essentially surjective
functor, then for any skeleton S € Obj K, the class F(S) = {F(s),|s€ S} is a
skeleton of the category H.

Proof. The first condition in the definition of a skeleton follows from The-
orem 3.20 and the second from F' being essentially surjective. QED

Definition 3.26 (Category Equivalence). Let K, H be categories. It is said
KC is equivalent with H, written K ~ H if there exist functors F' : K — H and
G:H — K such that Go F ~Idx and F oG ~Idy.3

Remark 3.27. We have now two notions of ‘~’. One sense is the one we
have just now defined, and the second as isomorphism between two objects of
a category. If we considered then a category of categories, these two notions
would merge.

3¢~ denotes a natural equivalence.
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Theorem 3.28 (Category Equivalence). Let IC,H be categories. Then K ~ H
iff there exists F' : IC — H which is faithful, full and essentially surjective.

Proof. (<) We shall need to assume the existenece of a skeleton S. Assume
then S is a skeleton of Obj/C. Let F' : K — H be faithful, full and essentially
surjective, by Theorem (above supershort proof). For each b € Obj#H, let s, € S
be the only objects for which F(s;) ~ b. Fix an isomorphism ¢, : b — F(sp).
Define G : H — K as follows

(1) For b e ObjH we put G(b) = sp.

(2) For B e H(b,c) let G(B) : sp — sc be the only one such that F o G(8) =
teofo L;l.

F(8b> <

A——

F(SC) —te

Is G a functor? G(1p) is the only one such that F(G(1p)) = tp 0 1p 0 L;l =1
and therefore G(1p) = 1gp) = 1s,-

Lié{fa;vise G(yopB) = G(7)oG(B) iff FoG(yof) = F(G(v)oG(B)) = FoG(y)Fo
G(B).
th b > FoG(b) and ¢ := {1p|be ObjH}. We claim that ¢ is a natural

rquivalence. ¢ : Idy — F oG. We know ¢, are isomorphisms for each b € Obj H.
It remains to verify the natural transformation conditions.

Lty ——> FOG(b)

FoG(B)=tc0Bup !

b
ﬁ
|
c

e — FoG(c)

Upper Triangle: ¢, 0 o 4;1 oty = tc o . Lower Triangle: ¢, o 3.

It remains to define natural equivalence 7 : Id, — G o F'. The map 7, is defined
as the only morphism from K(a, GF(a)) for which F(7,) = tp@) : F(a) —
F(Sf(a)) = F(G ¢} F(a)), Ta := Fﬁl(LF(a)).

Ta —> GoF(a) = SF(a)

—eR——¢8
<




The fact this diagram commutes shall be proven by applying F' and showing
this new square commutes, this works because F' is full and faithful.

F(a) tr@) — F (Sp(a))

F(a) FoG(F(a))

l

F(a') —trw)— F (sp@))

Which commutes since ¢ is a natural transformation.

(=) Let F: K - H, G: H — K satisfy the conditions from the definition. of
K ~ H. We need to show F' is full, faithful and essentially surjective.

Faithful.

Ta —> GOF(Q)

a
j GoF(a)=T,0a0T,

a T — G o F(a)

1

7 :Idg — G o F' is a natural equivalence. Recall then 7,, 7, are isomorphisms.
Then Go F(a) = 7 oaor, !t and 7, 0 Bo7, ! implies Go F(a) # Go F(B) =
F(a) # F(B).

Esssentially Surjective. ¢ : Idyy — F o G is a natural equivalence. (Vb €
ObjH) : b — F(G(b)) mapped by ¢p is an isomorphism.

By symmetry, G is faithful and G is essentially surjective.

Full.
a Ta Go F(a)

Ta GoF(7q)

l |

Go F(a) —7eor@ — GoFoGoF(a)

G o F(74) © Ta = TgoF(a) © Ta- This implies G o F(74) = Tgop(a)-

Let a,a’ € Obj K, v € H(F (a), F(a')). We are looking for a € K(a,a’) such that
F(a) =1. Set a = 7,,' o G(y) o 7,. It suffices to show G o F(a) = G(v). Since
G is faithful, this implies F'(a) = 7.
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a e — G o F(a)
| |

a? G(v)

l l

a’ T — G o F(d)

o

GoF(a)=GoF(r,' oG(7) 07,) = Go F(1,') o GFG(7 0 GF(1,) = 71
GFG(W’) OTGF(a) = G(’Y)~

(a’)

G o F(a) —7gora)— Go F oG o F(a)

G(v) GoFoG(v)

l l

GoF(a') —7cer@)—» GoFoGoF(d)
QED

Example 3.29. Is there a set equivalent with SETP? We have already en-
countered the contravariant functor P~ : SET — SET in Example 2.7. Let us
view it as P~ : SET® — SET. Recall P~ (a) = P(a) and let a € SET (a,b)
and x € b. Then

P~ (a) : P(b) = P(a)

€T +— Otil(I) c a.
Let P be a complete subcategory of SET whose objects are of the form P(x)
for each € SET.

Then P~ is faithful (even invertible) and essentially surjective on P. The functor
P~ : SET®® — P, however, is not full. To correct this, we restrict P only to
morphisms preserving unions, intersections, the emptyset, and complements; if
we take the subcategory B < P, ObjB = ObjP with fewer morphisms, then
P~ : SETP — B witnesses SETP ~ B.
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4 Limits & Colimits

Notation 4.1. For categories K, H, and object a € ObjH, we define A, : K —
H, a constant functor onto a by

Ay (b) =aforall be ObjK AL(B) =1, for all € MorK.

Definition 4.2 (Diagram, Scheme, Cone, Limit).

(1) By a diagram in the category K, we understand the functor M : D — K,
where D is a small category; D is termed the diagram scheme of M

(2) By the cone of diagram M : D — K we understand the pair (a, p), where
a € ObjK and p € Nat(A, : D — K, M). In this context, a is termed the
apezx of the cone (a,p).

Ay(d) — da(e) — Ay (d))

a
‘ Simplified pd/ \

|
l l / N
M(d) — M(a) — M(d') M(d) —— M(e)—s M(d)

(3) A cone (a,p) of a diagram M : D — K is termed the limit of the diagram
M if for every cone (b,q) of the diagram M, there exists a unique « €
K (b, a) such that (Vd € ObjD) qq = pq o . We write (a,p) = lim M. The
components pg : a — M (d) are termed limit projections.

I

« qd

b
g Pa —= d

Remark 4.3 (Properties & Further Terminology). What does it mean for (b, q)
to be a cone? For all d,d’ € Obj D and (VA € D(d,d"))M o qq = qa.

a —2 5 M(d)
. M(3)
M(d)

The term cone was motivated by the following image
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Projections

Exercise 4.4. If (a,p), (b, q) are limits of diagram M, then a, b are isomorphic.

Solution. By definition, there exists a € K(b,a) and thus 8 € K(a,b) such that
(Vd € Obj D) qq = pgo and pg = qq0 3. Then pg = pgo (o B) for all d whence
aof =1, since pg = pgo 1, holds and 1, is unique by definition of a limit.
Proceed by analogy for foa = 1,. QEF

Theorem 4.5 (Morphisms Are Determined by Cone-Projections). Let (a,p) be
a limit of the diagram M and «, 8 € K(c,a). Then a = 8 iff (Vd € Obj D) pg o
Q = Pq © B

Proof. (=) Trivially. (<) Consider the cone
(¢;{paca|de ObjD}) = (¢, {pac f|d e ObjD})

of M. Observe it indeed is a cone: the morphisms pjoa and pgof are components
of a natural transformation as evidenced by the following commutative diagram
for 6 € D(d,d'):

A(d) — A — Ac(d)

oo o]

Aa(d) 2% Aud)  Auld) Au(d)
Pa pd/l —New Cone J/pd, pd'l

M(d) MO, M(d") M(d) — M) — M(d')

By definition of a limit, there exists a unique v € K(c,a) such that (Vd €
ObjD)pgoa =pgo~y and pgo S = pg o~y whence a = 5 = 1. QED

Remark 4.6. The dual notions of cone and limit are cocone and colimit which
are defined by analogy.

In greater detail, the cocone of the diagram M : D — K is the pair (a,i) where
a € Obj K, and 7 is a natural transformation from M to A,. In the definition
of a colimit o maps the apex of a colimit cone to the apex of a general cocone.
ig is a colimit injection.
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Definition 4.7 (Terminal & Initial Objects). The (apex of the) limit of a
diagram with an empty schema is termed a terminal object of the category K.
In practice, an object t is terminal if for every a € Obj /C there exists a unique
morphism « € K(a,t).

Dually, one defines the initial object as the colimit of a diagram with a nonempty
schema. In practice, an object 4 is initial if for every b € Obj K, there exists a
unique « € K(i, ).

Lastly, a null object is an object which is both initial and terminal, denoted 0.
We define a zero morphism from « to 8 by « ENIE B.

Definition 4.8 (Equalisation & Equaliser). Let o, € K(a,b) and take the
scheme D defined by the diagram

T

~_

A

We say that v € K(c,a) equalises « and § if € oy = 8 o~. This is equivalent
to saying (c, {7y, a0 v}) is the cone of a diagram M : D — K such that M(z) =
a,M(y) = baM()‘) = OZ?M(A,) =p.

By the equaliser of o and 3, written eq(c, 8) we understand v € K(c, a) such
that (¢, {v,a0~}) = lim M.

More explicitly, an equaliser is a morphism v € K(c,a) equalising morphisms
a oy = B o~ and such that given any object o € ObjK and any morphism
10— a, if m equalises o and 3, then there exists a unique morphism v : 0 — ¢
such that yov = pu.

[e3%

— \b
~_ "

Y a

S

o

AN

O ---x--3 0

By changing the direction of equalisation, we obtain the notion of a coequaliser.

Definition 4.9 (Product). Let M : D — K be a diagram and D be discrete.
A limit of M is termed a product, denoted [ [;con; p M(d) or di x -+ x dy if
Obj D is finite.

Less generally, this means that given two objects a,b € ObjC, a product of a
and b, denoted a x b, equipped with a pair of morphisms 7, : a x b — a and
mp ¢ a X b — b — the only components of the natural equivalence wherewith a x b
forms a limit of M — such that for every object ¢ and every pair of morphisms
a:c—a,fB:c—b—acone (¢ {a,3}) of M — there exists a unique morphism
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v : ¢ — a x b — the unique morphism guaranteed to exist between the limit
(a x b, {ma,mp}) and the cone (¢, {c, 8}) by definition of a limit — such that the
following diagram commutes:

Example 4.10.

(1) Let D be discrete with at least one object. In this setting, a limit is called a
product whose apex is denoted HdeObj p» M(d), where for each d € Obj D,
the limit projection py : [ [eon;p M (d) — M *(d). In SET, TOP, GRP,
MOD—T the product is the Cartesian product on the respective settings.

Dually, we define colimits and coproducts. The apex is denoted | .

In SET this corresponds with disjoint unions. (Vd € ObjD)M(d) €
ObjSET. [1,e. M(d) = U {M(d) x {d}| d € Obj D}.

In groups, this corresponds with free product denoted k4. M(d). In
AB, MOD — R we have the product @,. M/(d).

(2) In SET, eq(a, B) = ({x € Doma|a(x) = B(x)}, {7, @ 0~}), where 7 is an
identical embedding into a.

In GRP, the apex of eq(a, ) is likewise a group. In AB,the apex of
eq(a, B) is Ker(a — ).

Coequalisers in SET :

/a\"b
\6/

a Y— C

yoa=vy0f. RSbxbR={(a(x) <p(z))]|xea}. Let R* be the least
equivalence on b containing R; ¢ := b/R*, v(y) = [yl -

Definition 4.11 (Kernel). If £ has a null object, then eq(e,0) = Kera, the
kernel of a. Note 0 stands for the null morphism. Dually, the cokernel is defined
by coeq(c, 0) = Coker a.

Definition 4.12 (Pullback). Suppose D is a diagram scheme of the form:

A/Z\x
/ \
x y

Then the limit of the diagram M : D — K is termed pullback; (I, p) = lim M.
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Jﬁb
7
o« qy ‘
\
U= 1 B
P a—s ¢

The dual term is pushout; it is the colimit of M : D — K.

A/ : \X
« ~

T Y

Exercise 4.13. Let (I, {ps,py}) be a pullback. If o is a monomorphism, then
Dy is likewise monic.

a a——- C
T v 1
Peo A
o

l Py — b

Definition 4.14. Let diagram scheme D be thin, ordered, and upwardly closed
(nahoru usporadana) and (P, <) be a partially ordered set with the property
(Vx,ye P)(FIze P)z <z Ay < 2.

Then the limit of M : D°P K is said to be the inverse limit, written lim. . The
colimit of M is said to be a direct colimit, written lim_,.

Example 4.15. The following two examples are, in a sense, the same.

(1) Consider the setting (N, <) and set ObjD = N, a,b € Nand a < b <
|D(a,b)| = 1.

M:D — AB
1
angng

Observe Q is the apex of the colimit of M, since

1
Q= 5z
aeN
1 1
Zc-7Zc<c-7Zc<---<Q.
Cjlcgls--cQ

We have colim M = (Q,i = {i1 | a € N})
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(2) Consider the diagram

N:D — AB

a— 7

Z -2 Z, -3 7 .4

Then colim N = (Q, j) where j, : Z ~ %Z =Q.
Example 4.16. Let M : D°P — TOP.

(Vae N)M(a) = {ze C||z]} ..

Definition 4.17 (Finite Category). A category K is said to be finite if both
Obj KL and Mor K are finite sets.

Definition 4.18 ((Finitely) Complete Category). A category is said to be (fi-
nitely) complete if all (finite) limits exist — if the limits of all diagrams with
any (finite) schemes exist. The dual notion is (finite) cocompleteness.

Theorem 4.19 (Maranda). A category K is (finitely) complete iff it has all
(finite) products and equalisers
Proof.

= Trivial.

< Let M : D — K be a diagram and D, and D,,, be discrete categories with
Obj D, = ObjD and ObjD,, = Mor D.

Define the functor Cod
Cod : D,, — Dy
a— Coda

(Lx — lcod oc)

Set N : D, — K by

(t,p) 2 im N (s,q) def lim(N o Cod)
t= [] M@ s= [ M(Cod(\).
deObj D AeMor D
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Lastly, define the cones

k1 (¢, {pcodr : t — M(Cod \)) | A € Obj Dy })

ks %5 (£, {M(X) © ppom a : t — M(Cod )| A € Obj Dy, })

The latter elements in these ordered pairs really do define a natural trans-
formation since the appropriate compatibility-conditions are met trivially
— the set of morphisms on which they should be verified is empty.

Observe

M(A) : Dom M (M) = M(Dom A) — M(Cod \) = Cod M (A).
Since (s,q) = lim(N o Cod), there exist uniquely determined morphisms
a, B € K(t,s) such that

(V)\ € MorD) g)\ © @ = DCod A\
qro B = M()) ©ppom A-

Set eq(a, 8) = (I, {y, @ 07}).

T
Ty——>t S
\ﬂ/’

l

We claim that
lim M = (I, ) where my = pgo~y for each a € Obj D.

We have defined all we needed, we shall now verify our constructions to
prove the claim. Denote L = (I, ).

L is a cone. We first check (I, ) is a cone of the diagram M; for every A € D(d,d")
we need to check

?
(grofBoy = MAopgoy =)M(N)omy = Ty (= Paroy = PCod AV = ¢r0Q0OY).
Since 7 equalises «, 3, we obtain gy ooy = ¢\ o S0y, where 7/, = a
and 8 = M(\) o mgq. Hence L is a cone.

L is a limit. Let (I’,p) be the cone of the diagram M. Then (I’,p) is also the
cone of the diagram N (which contains only a fraction of information
stored by M). There exists, therefore, a unique morphism 4 : I’ — ¢
such that pgod = py.

We can see that § equalises «, 3 since a0 § = 0 d holds iff for each
A € Mor D

(PCodx = Pcod(n) ©0 =)
gpoaod=qgyoB06
(= M(X) ©ppoma ©6 = M(X) © ppom »)
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by theorem 77.

But pcoax = M(A) © ppoma holds since (I, p) is the cone of the
diagram M.

0 equalises «a, § whence there exists a unique € € (I, ))yoe = 4.
Then mgoe = pg =pg0d = pgoyoe for each de ObjD.
€ is the only morphism from K(I’,1) with this property.

QED

Remark 4.20. The proof of Theorem 4.19 may serve as a template for con-
structing limits in ‘concrete’ categories. For example, in AB and RN G with a
prime p

fs—> Zps

fo—> sz

f1—> Zp

where f; is defined as taking the argument modulo p*. The limit of such a
diagram is J, = {ge€[[;2, Zy | (VieN) fiog(i+ 1) = g(i)}, the set of all p-
adic numbers.

The product [ [,_, Z,: would be our ¢ from the proof of Theorem 4.19.

Remark 4.21. The dual version for colimits, coproducts, and coequalisers in
Theorem 4.19 holds.

Theorem 4.22 (Mitchell). The category K has all limits iff it has all products
and pullbacks.
Proof. (=) Trivial since a pullback is a special case of a limit.

(<) We shall use Theorem 4.19. Suppose we have

[ —eq(a,8)— a B—— b

We are trying to find eq(«, 8). Consider the product (axb, p) where p = {p4, ps},
where p, : a x b — a and pp : a x b — b. This is a little bit formally unwieldy,
since if a = b, then these two morphisms are named the same even if they are
different.

Consider the morphisms v,d : a — a x b, where
Paop=paod =14 ppoy=90, ppod=p
Observe these equalities uniquely determine them since we have defined them

on all cone-projections as per Theorem 4.5. Moreover, (a,{1,,a}), (a,{la, 5})
are cones of the product-diagram.
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l—eq(aﬂ)%a/— \b
\\u /
N\

axb
Consider the following pullback:
l 65— a
v L
g s— a £ b

Then ¢y = pa 0 (8 0gp) = pa ©7gs = gs5. Let ¢ := ¢s. We claim ¢ : | — a is an
equaliser of the morphisms «, (.
(1) acg=pyoyog=p,0dog=pogq.

(2) ¢’ : I" — a equalises the morphisms «, 8. We will show yo ¢ = doq on
the limit (product) projections whence they will be equal by theorem ?77?.

Pa0y0q =q = paodogpyoyoq =aoq =poqd =pyodod
N~ ~——
1q la
Since I’ is the apex of the pullback-cone, and thus by definition of a pull-

back, there exists a unique morhpism € : I’ — [ such that goe = ¢. We
have verified ¢ = eq(«, ).

QED

Exercise 4.23. Show that a category has finite limits iff it has a terminal
objects and all pullbacks.

4.1 Complete Small Categories
Example 4.24. Let K be a thin, small category. Is K complete? K has all

equalisers since all are of the form

1, @
a—>a_ "0
~a-7

and eq(a, a) = 1,. It also has all products in : Consider the cone M : D — K,
where D is discrete. In the special case D = (J: we have the terminal object t,
which is the greatest (up to isomorphism) in Obj K as quasi-ordered set by the
relation ‘an arrow leads to me from X’ .
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More generally, [ [;con; p M (d) = inf {M(d)|d € Obj D} up to isomorphism, if

it exists.

It follows by 4.19, K is complete iff I has all infima including inf ¢ =: the
greatest element up to isomorphism.

Let S € Obj K be a skeleton. S determines a complete subcategory S, termed
a skeletal subcategory, where ObjS = S. Note S, S are ordered sets. Although,
S € K, §,K are equivalent categories. To see this, note Id : § — K is an
identity-embedding as it is injective, faithful, full, and essentially surjective.

It follows then K is complete iff S is complete. An ordered set with all infima
is termed a complete lattice.

Observe complete lattices have all suprema. Conversely, the ordered set with

all suprema is a complete lattice.

Proof. We shall prove only the first claim. X € L and
supX =inf{ye L|(Vzxe X)z < y}.
Note every y is an upper bound of X. QED

As a corollary, we know a thin category is complete iff it is cocomplete.

Exercise 4.25. Let KC,H be thin, small categories, which ‘are’ ordered sets.
Then K ~ H iff these ordered sets are isomorphic.

Note both I and H are their own skeletons; they are skeletal categories.
Theorem 4.26. Let K be a small category. Then the following are equivalent:
(1) K is complete/cocomplete.
(2) K has all products/coproducts.
(3) K is thin and equivalent with a complete lattice.
Proof. (1) = (2) Trivial. (3) = (1) Example 4.24 (2) = (3). We only need to
show I is thin in view of ?77?. Towards a contradiction, suppose there are a, S :
a — bin K where a # 3. Denote D a discrete category, where Obj D = Mor K.

Let M : D — K be defined by (Vd € Obj D) M(d) := b; i.e. M = A;. Denote
lim M = (s,p), where s € Obj K.

For each Y € Mor K let vy : a — s be defined on its projections by

a ifaeY
@) =
pd =y [ otherwise

For Y,Z < Mor K such that Y # Z, we have vy # 7. Let, for example,
deY\Z, then pjopy = a # 8 =pgovz.
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The set Mor K 2 K(a, s) 2 {vyy | Y < Mor K} is a set comprising more morph-
isms than are in Mor L. We are using Cantor’s theorem which states the power-
set of a set has a greater cardinality than the original set. The argument we
have employed has in fact a hidden diagonal argument. QED

Definition 4.27 (Bicomplete Category). A category K is said to be bicomplete
if it complete and cocomplete.
Example 4.28.

(1) Bicomplete Categories. SET,AB, MOD — R,GRP,DAB. Note that
DAB has different equalisers (and kernels) to AB.

(2) Let K be the thin category of all ordinal numbers. K is cocomplete, but
not complete. The coproduct of two ordinal products is their supremum.
The reason why the category is not complete is that there is no terminal
object; i.e. there is no largest ordinal number.

(3) Let R be a non-Noetherian commutative ring (e.g. R = Q[z1,22,...]),
then K has all products, but it does not have kernels (equalisers).

5 Limit & Colimit Invariance

Lemma 5.1. Let M : D — K be a diagram with a cone (a,p) and a functor
F:K — H, then (F(a), Fp = {F(pq)|d € ObjD}) is a cone of D — H.

Proof. Note Fy,: FoA, — FoM and FoA, = Ap): D — H. QED

Definition 5.2 (Limit Preservation). Let M : D — K be a diagram with
limM = (a,7) and F : K — H be a functor. It is said F preserves the limit
(a,m) if (F(a), Fr) = lim(F o M).

Moreover, F' is said to preserve limits, products, or equalisers if it preserves all
limits, products, or equalisers respectively.

Theorem 5.3. Let M : D — K be a diagram.

(1) If N : D — K is another diagram naturally equivalent with M by p : M —
N, then given any limit (a,7) of M, the cone (a,po ) is a limit of N.

(2) If F,G : K - H are naturally equivalent functors and (a,nw) = lim M,
then F preserves (a,7) iff G preserves (a, ).

Proof.
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(1) The pair (a,u om) is clearly a cone of N as evidenced by the following
diagram.

N
%

M(d) —— M(a) — M(d')
|

,le Har
N(d) —— N(o) — N(d')

We will show it is a limit. By the same token, if (b, p) is any cone of N,
then (b, =1 0 p) is a cone of M. Since (a,7) = lim M, there is a unique
a € K(b,a) such that
(pom)a
. 1 . —
(Vde ObjD)mgoa =y~ o pg = (Vd € Obj D) (pgoma)oa = pg
= (a,pom)=lmN.

(2) The claim’s symmetry allows for only one implication being shown to
prove equivalence. Let ¢ : F' — G be a natural equivalence and F' preserve
(a,m); i.e. (F(a), Fr) =1lim(F o M). The fact tps : FoM — Go M is a
natural equivalence follows from the diagram below.

Putting g := ¢ps in (1) yields
(F(a),tpr 0 Frr) = lim(G o M).

Writing out explicitly the components of the natural transformation above
gives

LMOF7T= {LM(d)OF(’R’d)‘dE ObJD},

where 1pr(q) 0 F(mg = Gmg 0L, (as seen in the diagram), whence (recalling
Lq 18 an isomorphism and hence invertible)

lim(G o M) = (F(a),tp o F)
= (F(a)a{Gﬂ—dOLa|de ObJD})

= (G(a),Gn).
M(d") F FM(d) La(ar) GM(d)
g Py Gy
a M(5) F(a) FM(5) S G(a) GM(5)
- ‘ m cm ‘
M(d) F FM(d) LM (a) GM(d)
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QED

Theorem 5.4. Let K be a category. For any ¢ € Obj K we denote F, : K —
SET functor K(c,—). Let (a,m) be a cone of the diagram M : D — K. Then
(a,m) =lim M iff (Vce ObjK) (Fe(a), Ferr) = Him(F. o M).

Proof. («) We shall show from definition that (a,7) = lim M. Let (b,p) be
any cone of M. By assumption, (Fy(a), Fpm) = im(F, o M). At the same time
(Fp(b), Fpp) is a cone of FroM. There exists then a unique g € SET (Fy(b), Fy(a))
such that Fy(mq) 0 g = Fyp(pa) for every d € Obj D). Recall Fp(b) = KC(b,b) 5 15.

Set a:= g(1) € K(b,a). We will show « is the only such that 74 o o = pp for
every d € Obj D.

(1) For d € Obj D we have mgoa = mp o g(1ly) = K(b,74)(9(1p)) = (Fp(mq) ©
9)(1p) = Fy(pa)(1p) = pa o lp = pa.
(2) Uniqueness. If o/ # a were such that (Vd € ObjD)my 0o’ = pg, then

g € SET(Fy(b), Fy(a)) such that G'(1,) = o, ¢'(x) = g(z) for x # 1,
satisfies Fp(mq) 0 ¢’ = Fp(pgq). A contradiction with the uniqueness of g.

(=) Suppose (a, ) = lim M. We will show that for each ¢ € Obj K, F, preserves
(a, ) such that (F.(a), F.m) = lim(F.o M). Let (s,0) be a cone of the diagram
F.oM.

We define « € SET (s, Fo(a)) elementwise. For any z € s and any d € Obj D we
consider o4 : s > F.(M(d)) K(c, M(d)), more precisely oq(z) € K(c, M(d)).

We claim (¢, {o4(z) |d € Obj D})is a cone of the diagram M. We will verify the
compatibility conditions hold.

VA e D(d,d) M(\) ooq(x)r=04(x).
Since o is a natural transformation,we know that VA € D(d,d’)(F.oM)(\) ooy =
og. But (FooM) = F.(M(\))oogees=F.((N\))(oq4(x)) = m(N)ooy(z) = o (x).
Thus indeed M (A) o o4(x) = og ().
Since (a,7) = lim M, there exists a unique a(x) € K(¢, a) such that mgo(a(z)) =

cq(z) for every d € Obj D. Since x € s was arbitrary, we have thus defined some
a € SET (s, Fe(a)). For any d € Obj D, then

(Vo € s)(Fe(ma) 0 @) (2) = Fe(ma)(a(2)) = mq 0 ((2)) = aa(). (1)
It remains to show a € SET (z, F(a)) is the only one satisfying Equation (1).
F.(a)
]
s ~ 3 Fe(ma)
~ |
F.M(d)
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If @ € SET (s, Fc(a)) were different to «, then there would exist some z € s
such that o/ (x) # a(x), contradicting the definition of a(z).

Observe that we have a different cone for different z. QED

Corollary 5.4.1.

(1) Representable functors preserve limits (as follows from Theorem 5.4 and
Theorem 5.3)

(2) A functor U : H — K preserves limits iff (Yc € ObjK) K(¢,—)oU : H —
SET preserves limits.

6 Adjoint Functors

We remark the term adjoint functor first appeared in an article ‘Adjoint Func-
tors’ by Dr Kan in TAMS.

Definition 6.1 (Adjoint Functor, Adjunction). Let F': K > Hand U : H —» K
be covariant functors. F is termed a left adjoint of U (and conversely U is termed
a right adjoint of F) if the functors H(F(—),—),K(—,U(=)) : K? xH — SET
are naturally equivalent.

Note H(F,—) is to be interpreted as H(—, —) o (F x Idy) but the intuitive view
is preferable.

By the adjunction of F,U we understand the ordered triple (F,U, ¢) where
¢ H(F(-),—) — K(—,U(-)) is a natural equivalence. The fact is denoted
F -4 U or more briefly F' 4 U.

We shall illustrate this for a natural equivalence ¢ = {¢qp | a,b € Obj(KP xH)}.
Note that since the target-category is SET, ¢4, being ismorphisms implies their
being mere bijections (in SET).

a a H(F(a),b) 2P 91 (p(ar), b))
| s

al b/ ¢a,b ¢a’,b’

K Y K(a,Ub)) VO e uw))

Example 6.2. Let £ = H = MODg, where R is a commutative ring. Fix
B e ObjK. Then FF H U, where F = B®gr —, U = H(B,—).

Notation 6.3. Let F' : K — H be a functor. Then F°P : K°° — H°P is a
covariant functor where

(Va € ObjK) F°P(a) = f(a) (Va € Mor K) F°P () = F(a).
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Indeed, F°P is indistinguishable from F' by its assignment of value. We, never-
theless, need to treat them as separate formal entities.

Exercise 6.4. F 4 U < U —,-1 F°P. Note ¢! exists because ¢ is a natural
equivalence (and hence is composed of isomorphisms).

Theorem 6.5. Let F : K — H and U : H — K be covariant functors and
F' U’ be naturally equivalent with F,U respectively. Then

F4U s F qU'".

Proof. Due to Exercise 6.4, it suffices to prove the claim for F' = F’. Were it not
so, we could split the proof into two steps: first showing the claim for F' = F’
and the second for U = U’. But in this two-step process, the first demonstration
is sufficient since we could invoke the exercise and be done.

Fix some natural equivalence + : U — U’. Note 1 x ¢ is still a natural equivalence
and consequently we arrive at the following diagram.

Id;cop xU
KoP x H ﬂm Kov x k00 seT
Idscop xU'’

Since functors preserve isomorphisms, we obtain the natural equivalence

K(==)(1x0) = K(=0) : K(=,U(=)) = K(=,U'(-))

Yrav.

QED

Definition 6.6 (Free Object). Let U : H — K and a € ObjK. The pair
(a’,n[‘}(a,)) € ObjH x Obj K is termed a free object over a with respect to U if
it is the universal element (pair) of the functor K(a,U(-)) = K(a,—) o U.

In greater detail, given any pair (a”,n“U(a,,)) € ObjH x Obj K there exists a
unique o € H(a',a”) such that K(a, U(Oz))[?](a](a,)] = ng(au)-

U U(a)

= Pg(a/)
o= KC(a, U(~))[] a
: T [

"

a U U(a")
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Theorem 6.7 (Characterisation of Adjunction). Let U : H — K be a functor.
Then the following are equivalent.

(1) U is the right adjoint (or admits a left adjoint) of F : K — H; F 4 U.

(2) For each a € ObjK, the functor K(a,U(—)) is representable (i.e. admits
a universal pair).

(8) There exists F : K — H and n € Nat(1x,U o F) such that (F(a),n.) s a
free object. (Then F 4 U and n is termed the unit of adjunction).

(3°) There exists F' : KK — H and ¢ € Nat(F o U,1y) such that (U(D),ep)
is a unversal element of a contravariant functor H(F(—),b), for each
be ObjH (then F 4 U and € is termed the counit of adjuction).

Proof. (1) = (2) Let ¢ : H(F(—),—) — K(—,U(—) be a natural equivalence
(which exists by assumption) and fix some a € Obj K. Then after partial sub-
stitution IC(F(a), —), K(a,U(—)) are still naturally equivalent functors from H
to SET as one merely fixes one argument, namely a, in the binary components
of ¢; denote this natural equivalence (. We know K(F(a),—) = K(a’,—) is
representable functor, whence K(a,U(—)) is likewise representable.

In fact, if (¢, v4) is a universal element of H(F(a), —), the pair (a’,.7 1 ovy) is
a universal element of K(a, U(—)). To see this, let b€ ObjH and p € K(a, U(b).
The existence of the unique morphism « : @’ — b is evident from the following
diagram (note it commutes due to the universal property of ¢):

a 1d a U U(a)
I | |

Va! 2 i e(vgr)
F(a) Had <1’ Got a
| § |
) L= K
l i l

b Id b U U(b)

(2) = (3) We define F piecewise on objects and on morphisms.

Objects. For every a € Obj K let (F'(a),n,) be a free object over a with respect to
U; we know it exists since we assume the existence of a universal pair of
K(a,U(—)), which is by definition is a free object over a with respect to
U.

Morphisms. For every a : a — a’ we define F'(«) as the only morphism from H(F(a), F(a'))
such that 1y oa = UF(a)on, from the definition of a universal pair. Thus,
F is defined on morphisms as well.
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F(a) U UF(a) a o a"
i Objects 1 F Morphisms F
= K@U @ | F@ e @) |
B
Z U U(b) U}«%(a) ————— UF(a)----y UF(a’)

We shall verify F' is a functor.

Unity. We want to show F'(14) = 1p(q). By definition of F, F'(1,) € H(F(a), F'(a))
is the unique morphism with

(na =)Naoly = UOF(la) O MNa-

Clearly 7, = lyop(a) ©Ma = U(1F(a)) © 10 by virtue of U being a functor.
The equality U(1p(q)) 0 na = U o F(1,) 01, necessitates F(1,) = 1p(q) by
uniqueness of F'(1,).

Composition. We need to check F(Soa) = F(f) o F(«) for an arbitrary 8:a' — a”. It
follows from definition F'(8 o «) is the unique morphism with

Vgr 0 (Boa) =Uo F(Boa)n,.
Simultaneously
Nar 0 Boa=UF(B)oFla))omn
=UF(B)oUF(a)on,.
—_—

Mgt OQ

- _
~—

ngofoa

Thus the uniqueness of F' forces the desired equality.

In view of F' being a functor, it is clear from the morphisms-diagram above
n = {nq | a € Obj K} is a natural transformation (for the coloured subdiagram) of
1 and U o F. The claim then follows by construction and, therefore, (F'(a), v,)
is a free object for every a € Obj K.

(3) = (1) We begin with the functors U : H — K, F : K — H and the unit of
adjunction 7.

We introduce the system of morphisms ¢ : H(F(-),—) — K(—,U(—)) and
define its components by setting for each (a, b) € K x K and each v € H(F(a), b),

K(a,U(b)) 3 ¢ap(v) = U(7) © Na-
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The claim is ¢ is a natural transformation. To show this, we need to verify
its components are isomorphisms (or rather bijections) and the compatibility
conditions.

We begin with the latter.

H(F(a),b) — das— K(a,U(b))

H(F(a),8) K(e,U(8))

! !

H(F(a'),V) — bar e — K(a',UV))
O We have

K@, U(8)) © bus(v) = cat(a, F())(U (1) o 1a)
—U(B) o U(y) om0 0

(O Similarly,
$arpy(BoyoF(a)) =U(BoyoF(a))ona
=U(B) o U(y) o UF(a) © nar
— U(B)o UM oo,
where the last equality follows from the coloured diagram.

It remains to show ¢, is a bijection (an isomorphism in SET); i.e. that for
each & € K(a,U(b)) there exists a unique preimage v such that 6 = U(y) o 7,.

This is guaranteed by virtue of (a,n,) being free. To see this, take the pair
(b,0): there exists a unique v € H(F(a),b) such that U(y) on, = 0.

(1) — (3') Follows from the duality principle; i.e. if we consider instead of
IC,H, U their opposites KP, H°P U°P,

When dualising, the unit is replaced by the counit and vice versa. QED

Corollary 6.7.1.

(1) The right adjoint preserves limits. The left adjoint preserves colimits.
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(2) Let FF: K - H, U :H — K witnesses H,K are equivalent categories.
Then F U, U H F.

Proof.

(1) Immediately by (2) of Theorem 6.7 coupled with Theorem 5.3 and The-
orem 5.4. In short, we know representable functors preserve limits.

(2) Let : 1 — UF be a natural equivalence (recall F,U being witnesses for
H ~ I simply means FU = 1 and UF = 14. Theorem 3.28 implies F, U
are full, faithful and essentially surjective. We wish to show 7 is a unit of
adjunction of F' 4 U; i.e. that for each a € Obj K the pair (F'(a),n,) is a
free object. To this end, let (b, ) be arbitrary such that u € K(a, U(b)).

F(a) U UF(a)
]
'——= K(a,U(—))[—] a

\“
i l

b U U(b)

—

The morphism 7, is invertible and therefore o n; 1 € K(UF(a),U(b)).
The fullness of U implies o, = U(B) for some 3 € H(F(a),b) The
faithfulness of U implies such a [ is unique.

This proves F 4 U. The converse implication that U — F follows from
the claim’s symmetry.

QED

Exercise 6.8. Using the units of adjunction, show

(FHAU A FH4G)-U=G.
Lemma 6.9. The identity-functor lsgr : SET — SET . Its universal pair is
({#},%). Consequently, 1seT ~ SET ({*},—).

Theorem 6.10. Let U : H — SET. Then U is the right adjoint iff U is
representable and H admits coproducts | [,.,c, where c € ObjH is (some) such
that U ~ H(c, —); for any set a (permissibly empty).

Proof. = Let F : SET — H be such that F o U. In particular, s = {x} €
ObjSET, whence by Lemma 6.9

H(F(s),—) ~SET (s, U—) =SET (s,—)oU ~ 1lggroU = U.
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Set ¢ = F(s) and observe U ~ H(c,—); i.e. U is representable. F preserves
colimits, hence it also preserves coproducts of the form [ [, s, whence H admits
coproducts [ [,.,c

xT€a "

TrEeQ
< is left as an exercise. QED

6.1 Special Cases of Adjunction

Definition 6.11 (Free Functor). Let U : H — K be a forgetful functor (e.g.
H =GRP and K = SET or H = TOPGRP and K = GRP) Then the left
adjoint of U, if it exists, is termed a free functor of U.

Example 6.12. Let £ = SET and H = SMG. Then for X € ObjSET, F(X)
is a so-called free group over X. Its elements are words over the alphabet X
and its operations are concatenations of words.

Similarly for . Instead of words one considers ‘reduced words’ which are words
over the alphabet X U X 1.

Definition 6.13 (Reflective & Coreflective Categories). Let U : H — K be an
embedding-functor of the subcategory H into K. If U admits a left adjoint F,
then F is termed a reflector of U.

Free objects (F'(a),n,) of a € Obj K inH are then termed its reflexions.
Example 6.14.

(1) Let K = DAB and H = AB, €4 : D — A, where D is the largest divisible
group of A. Then D := > ,_, B.

(2) Let K = GRP,H = SYMGRAPH a full subcategory of symmetric
graphs. For the graph (X, R) its reflexions are of the form ((X,R u
Rfl),n(xﬁ)), where 7(x g) is the canonical embedding of (X, R) into
(X,RuR™™).

(3) Let K = TZCH be the category of Tychonoff topological spaces and H =
HCOMP be the category of complete Hausdorff spaces.

Let X € ObjTZICH and F(X) = X be its ‘beta-cover’.

(4) Let K = UNZIF be the category of uniform topological spaces with uni-
formly continuous maps and H = CUNZF be the category of complete
uniform spaces
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Definition 6.15 (Cartesian-closed Categories). It is said a category K is Cartesian-
closed if it admits finite products and the functor F' = _ x a is a left adjoint for
each a € Obj K. Note F(a) :x x a = y X a.

Example 6.16.

(1) SET is Cartesian-closed. For any given a =: Be ObjSET, F = _x B is
paired with U = SET (B, —). Then F A U:

For X,Y € ObjSET we have SET (X x B,Y) ~ SET(X,8ET(B,Y)), as
witnessed by ¢xy : YX*B ~ (YB)X,

(2) POSET is likewise Cartesian-closed. RGRAPH, the category of reflexive
graphs (i.e. graphs with loops), is likewise Cartesian-closed.

Definition 6.17 (Duality). Let F': K — H, G : H — K. We are interested in
HCP not ‘H. Instead of F,U we may consider the contravariant functors

F:K — H%®P U:HP > K

K‘IE‘ F
e Y
\0/‘! ~_py—
Recall that for each o € K(a,a’), Note F(a) = F(a) € HP(d',a) and F(a) =
F(a).

Have the unit and counit of adjunction changed? The unit 7 : 1x — UF = UF
remains the same.

The counit is changed, however: Let {e,|be ObjH} = € : FU — 1y be the
original counit. Then the new counit {&, |b € ObjHP} = €: 1yop — FU(# FU)
is given by €, = €.

Example 6.18. Using the counit, verify F' 4 U. Hint: € = (ey | FU(Y) - Y)
(note FU(Y) = SET(B,Y) x B), where ey (f,b) = f(b), a so-called evaluation

map.

Example 6.19. Let B be a category of complex Banach spaces and linear
continuous maps between them. Let B € ObjB. Put B = {f|f e B(B,C)}
(where for f € B we put | f|| = sup|,|<1 [ f(z)]) is dual to B (a linear functional
on B). Think how these act on morphisms through (exercise).
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We obtain the unit 7 = {ng | B € Obj#} such that np : B < B is an embedding.
Note if we considered vectorspaces instead of Banach spaces, we would indeed
get dual vectorspaces (i.e. spaces of linear forms on a vectorspace).

Example 6.20 (Stone Duality). Boolean algebras and Boolean Spaces (com-
pact, Hausdorff, totally disconnected topological spaces)

Example 6.21 (Priestly’s Duality). Priestly’s duality is a duality between dis-
tributive {0, 1}-lattices and Priestly Spaces.
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7 Adjoint Functors Theorem

Definition 7.1 (Quasi-Initial Objects). Let £ be a category, and @ < Obj L
be a set. It is said @ is a quasi-initial set of objects of L if for each a € Obj L
there exists ¢ € @ such that £(q,a) # &.

The object ¢ € Obj @ is said to be quasi-initial if {q} is a quasi-initial set (there
is no requirement for uniqueness unlike with initial objects).

Lemma 7.2. If L admits products and a quasi-initial set of objects then it

admits a quasi-initial object.

Proof. Let Q@ < Obj L be quasi-initial. Define s = quQ q. Then s is a quasi-
initial object.

s/
I
/ | \
Vqq | Vo
I
v . ™~
— s Tay — (o

Q1 Ta REL

QED

Example 7.3.

(1) A thin category defined as follows has a quasi-initial set {a,c} but it does
not have a quasi-initial object.

b

N

a c

(2) Every small category £ has a quasi-initial set of objects, namely @ =
Obj L.

Lemma 7.4. If L is a complete category with a quasi-initial set of objects, then
L has an initial object.

Proof. By Lemma 7.2, there is a quasi-initial object s € Obj L. Let D be a full
subcategory of £ with Obj D = {s} (meaning Mor D = L(s, s)).

Denote M : D — L a full embedding functor; this is a cone (D is small) which
by assumption (£ is complete) has a limit lim M = (i, {v}), where v : i — s is
a limit projection.

Then v is a monomorphism

c/a\i
\5/'

v—>
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whence by definition voa =vof = a = (a, are equal on a (unique) limit
projection).

We claim i is the sought initial object (it clearly is quasi-initial since a morphism
leads therefrom to s which is quasi-initial). Let a € Obj L be arbitrary, and
a, B : i — a. We wish toshow o = 8. Consider v = eq(«, 8) : b — i (recall that
all limits exist and, therefore, all equalisers do by Maranda’s Theorem 4.19).

If we prove « is an epimorphism, then a0y = [ o~ implies the claimed o = .

Let o € L(s,b) be arbitrary. Then (vyo)v = v by definition of v. Since v is a
monomorphism, v(yov) = vol; = yov = 1; whence « is an epimorphism (as
it is a left inverse of the morphism o o v and therefore a retraction which is a
particular case of epimorphisms).

s o ./a\)

\bkz\ﬁ/a

QED
Definition 7.5 (Comma Category). Let F': H1 — K, G : Ha — K be functors.
We define the comma category Fy | Fo:

Objects. The triple (a1, aq) is an object of Fy | Fy if a; € ObjH; for ¢ = 1,2 and
(el S K(Fl(a1)7 Fg(ag)).

aq P— Fl(al)
as Fy —— Fg(ag)

Morphisms. The pair (u1, pte) is a morphism in Fy | Fy from the objects (a1, «, az) to
(bl,ﬁ,bg) if i P a; — bl for i = 1,2 with FZ(MQ) o = ﬁ (@) Fl(,ul)

Hl F1 ’C F2 HQ
aj P —> Fl(al) a—— FQ(GQ) —— F» as
238 F(p1) F(p2) n2

l l | l

by P — Fi(b1) B—— Fa(b2) <—F ba

For i = 1,2 we shall further denote by P; : Fy | Fy — H,; the left (for i = 1) and
right (i = 2) projections; i.e. a functor with P;(a1,, a2) = a;, Pi(p1, p2) = ;-
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Example 7.6. Suppose Hy = Ho = K, F} = F; = 1. Then F; | F5 has de
facto morphisms of K as its objects and the pairs (i1, u2) for morphisms such
that the following diagram dommutes. Then Fy | F» ~ K where D is of the
form ‘self-loop arrow self-loop’.

aq a—> A9
H‘l H2
| |
b1 B— b2

Notation 7.7. Let H; = 1 be a discrete singleton category: Obj1 = {«}. with

B K&,

Set a = Fj(*). Then instead of Fy | Fy we often simply write a | F», and
instead of (x,,a2) € Obja | F» with a : a - Fy(a); we also simply write
(a,a2) € Obja | Fs, and instead of (14, uo) simply ps).

{*} 1y K Fy Ho

Fg(ag) «—— F» as

* FL—— a — F(p2) K2
\ /

Lemma 7.8 (Comma Category Observations).

(1) Let U : H — K, a € ObjK. Then (a',v,) is a free object over a’ with
respect to U iff (vq,a’) is an initial object of the category a | U.

{*} 1y K Fy Ho
a/
x Fi— a \(Aw\ [-] &=—=¢*

\ﬁ%

// "
a
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(2) Let U : H — K have a left adjoint. Then F : K — H iff the category
a | U has an initial object for every a € ObjK. In such a case, this
inintial object is of the form (vq, F(a)) where v is the unit of adjunction
of F 4 U.

Example 7.9 (Important!). Let D be a small category. We introduce:
(1) The category HP defined as the category of all functors M : D — H.

(2) The functor A : H — HP termed the constant functor defined for a €
ObjH by A(a) = Ay : D — H (a constant functor on a) and for a €
H(a,b) by A(a) € Nat(A,, Ap) such that (VD € Objd)A(a)q = a.

For M € ObjHP we consider the comma category M | A (M plays the role of
a above). Then

(v,b) e ObjM | A < (b,v) a cocone of the diagram M.

Moreover, (v, b) is an initial object in M | A iff (b,v) = colim M (exercise).

M

v—> Ab

If H admits colimits of all diagrams with the scheme D, then Lemma 7.8 (2)
proves there exists a left adjoint F of A and colim M = (F(b), 1), where v is a
unit of adjunction of FF H A.

Theorem 7.10 (Comma Category Completeness). Let Hi, Ho be complete
categories F; : H; — K for i = 1,2. If Fy preserves limits, then Fy | Fs is
complete.

Proof. Received in paper form. QED

Definition 7.11 (Solution-Set-Condition). Let U : H — K be a functor. It is
said U satisfies the Solution-Set-Condition or SSC if for every a € Obj/C the
category a | U admits a quasi-initial set of objects.

Theorem 7.12 (Adjoint Functor Theorem). Let U : H — K be a functor, and
H be complete. Then U has a left adjoint iff U preserves limits and satisfies
SSC.
Proof.

(=) We know the right adjoint preserves limits. By Lemma 7.8 (2), a | U
admits an initial object for each a € Obj K, whence SSC is satisfied.

(<) By Lemma 7.8 (2), it suffices to show (Va € ObjK) a | admits an initial
object. By Theorem 7.10, a | U is complete.

By Lemma 7.4 and SSC, a | U admits an initial object for each a € Obj K.
QED
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Example 7.13 (An Application: Existence of Free Groups). Consider the for-
getful functor U : GRP — SET and permissibly F : SET — GRP (we do not
know if it exists).

If we do not know GRP admits coproducts [ [, ,Z for any a (which would imply
the existence of F'), we may employ Adjoint Functor Theorem.

To verify SSC, a € ObjSET, G € ObjGRP. For the quasi-initial set, we take
the set Q = {(g,H)|ge SET (a,U(H)), H € S} where S is a representative set
of groups generated by fewer than |a| elements.

a Ff— U(G)

Q\]\

U(H)

7.1 Topological Applications

Let K = TOP, H € {HAUSCHAUS}. Let U : H — K be a full embedding
functor. U admits a left adjoint F' iff H is a reflexive subcategory. Note H is a
complete category (its limits are the same as in TOP and U preserves limits.
Lastly, SSC is met: Let We need to check A € ObjK A | U has a quasi-initial
set of objects.

(a,B) e ObjA | U

For the quasi-initial set, take

H=HAUS Q = {(5,C)|F: A—>U(C),C e S}, where S is a representative set of
objects in H with cardinality not greater than |A].

Rnga < U(B) = B with |Rnga| < |A4].

A

a—— U(B)
~, |

U(Rnga)

H=CHAUS Q = {(8,C)|B: A—U(C),C e T}, where C € T is a representative set
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of objects from H = CHAUS with the cardinality |C| < 22"

A

a—> U(B) =B

N

(03

.

U(Rng a)

Overall, there exists an F' such that F' - U (where F' is ‘Hausdorffied’ if
H = HAUS and compactified if H = CHAUS).

Example 7.14. SSC may not be ignored. One may take H as the opposite
category of the (thin) category of ordinal numbers. # is complete (but it is not
cocomplete as it has no initial object).

Let FF: SET - H,U : H — SET. U is representable and therefore it preserves
limits but there is no left adjoint of F' (which preserves colimits) to U, since
F () would need to be an initial object (recall ¢ is an initial object in SET).

Theorem 7.15 (Dual Form of AFT). Let F' : K — H be a functor, K be
cocomplete. Then F has a right adjoint iff F preserves colimits and does not
satisfy ‘co-SSC’; i.e. (Ybe ObjH) F | b has a quasi-initial set of objects.

Exercise 7.16. For the functor A : H — HP where D is small, A(a) := A, :=
A, : D — H is constant (and A(a)q := «). Show that A preserves limits and
colimits.

An Application. H is complete and A has a left adjoint of F iff H has colimits
of all diagrams from the scheme D. From AFT we know that for the existence
of colimits it suffices to shwo that for every M € ObjH?® (i.e. a diagram) there
exists a quasi-initial set of objects from M | A (e.g. (v,b)); i.e. a cocone (b, v).

8 Subobjects, Factorobjects, & SAFT

Definition 8.1 (Subobject). Let K be a category and a € Obj K. Every mono-
morphism « € K(p,a) is termed an subobject of a. Two subojects a, 8 of a
are identified if there exists an isomorphism ¢ € K(Dom «, Dom ) such that
Bot=a.

Dom « a—- q
L /3/
e

Dom

Dually, a factorobject of a is an epimorphism v € K(a,b) construed under the
same condition for sameness as above.
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Example 8.2. In AB (or GRP) take a = (Z,+,—,0). Every pair of distinct
objects is of the form Z 5 Z, n e N u {0} .

Z 7 n——— 7

— Z
% \
\ \
nZ, Z

Definition 8.3 (Wellpowered Category). A category K is termed wellpowered
if each object therein admits merely a set of pairwise distinct subobjects.

Dually, a category is co-wellpowered if each such object admits a set of factorob-
jects.

The name is indicative (perhaps) of SET satisfying the Axiom of Powerset.
Example 8.4.
(1) The thin category of ordinals is wellpowered but is not co-wellpowered.

(2) A category K of Urysohn Topological Spaces (‘every two points may be
separated by two disjoint closed neighbourhoods’) is wellpowered but is
not co-wellpowered (J. Schréder, 1983).

Lemma 8.5.

(1) Let K admit products and a cogenerator ¢ € Obj K. Then for each b €
Obj K there is a set Y and a monomorphism v : b — c¥ (= [Lev O

(2) If the following diagram is a pullback in K and v is a monomorphism,
then p is a monomorphism.

S — Q.
Q—=2——n0o

Proof.

(1) For each fixed b € ObjK, set Y := K(b,c). Since our categories are (by
agreement) locally small, Y is indeed a set.

Define the morphism v on projections m, (they are all the same) of the
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product ¢¥ by myov =y. Then (b,Y) is a cone of the product diagram.

b \!u -3 c¥ a (‘E\; b = v—oy c¥
Yy Ty ™ Yy o Ty
c c

Then v is a monomorphism; let «, 3 : a — b be distinct. We shall show
this implies v o a, v o B are likewise distinct.

Recall ¢ is a cogenerator, whence there exists some y € Y such that yoa #
y o 8 and therefore, indeed, v o« # v o 5.

Let us have o, 8 : b — d such that oo = po 8. We are showing o = 3.
We know that yopoa =~vyopop,ie. voooa =vooof. Since v is
a monomorphism, we have c o« = g o 8. Hence (I,0 0 a, o 0, yu)) is a
cone of the pullback diagram, whence there exists a unique 6 : b — d such
that pod = poa =popf and cod = coa = oo, this altogether implies

d=a=0.
d
7N

6 a O

\/

p—

c
~
a

v—

QED

Theorem 8.6 (Special Adjoint Functors Theorem (SAFT)). Let H be a com-
plete category which is wellpowered with a cogenerator. Then U : H — K admits
a left adjoint iff U preserves limits.

Proof.

= Corollary 6.7.1

< The chief strategy is to use AFT: we need to show SSC holds to obtain

RHS.

Fix a € Obj K. We need to show a | U admits a quasi-initial set of objects.
Set X = K(a,U(c)).

Furthermore, let (¢X,7) be a product (¢X = H«,ex c and 7 are projec-

tions). Denote by M a (representative) set of subobjects of ¢X (recall H
wellpowered and hence it is indeed a set). Namely,

M < {p: Dom(p) — ¢* | pu is a monomorphism} .
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Put
Obja | U 2Q = {(a,Domp)) |pe M,a € K(a,U(Dom #(u)))} .

Henceforth, we shall write d,, := Dom . We claim @) is a quasi-initial set
ina|U.

Let (8,b) € Obja | U be any fixed object. We are trying to find some
morphism leading from some (o, Dom p) to (8,b). We have a lemma at
hand, which we shall use to insert 3 into some set of cogenerators of c.

By 8.5 (1) there exists a set Y with a monomorphism v : b — ¢¥. Denote
by (c¥,%) the corresponding product (whose existence we assume from
the outset).

Define p : ¢X¥ — ¢¥ on the projections of ¢ by
(Vy € Y) ¥y © p = TU(p,00)0B(eX)

g—— U(b) — Uw)— U(cY) X —L Y

T |

€X U(¢y) by

\ l TU (¢pyov)op

We construct a pullback

a

-
—

]
~

o

Note the top-left corner of a pullback is uniquely determined up to iso-
morphism: consequently from those isomorphic choices we may in partic-
ular choose d,, (note p is a monomorphism by Lemma 8.5(2).

We apply the functor U (preserving limits) and obtain the new pullback

U(d,) —Uw

P ! !

p——s U(b) — Uw)— U(cY)

a

U preserves products, whence (U(cX),U(r)) forms a product. We define
§ :a — U(c*) on the projections of U(rm) by

(VY€ X)Utr,yos =7
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We claim (a, (8,0U(p) 0§ = U(v) o 8)) is a cone of the pullback diagram.
We, therefore, need to verify U(p) o é = U(v) o §: 7a since na projekcich
Uy soucinem (U(cY), U(v).

U(%) © U(V) of = U(% © V) of
"L Uy pyovyop) © 0
T Uy op)0d
— U)o U(p) 0 0.

We have verified: U(v) o 8 = U(p) o d. By the universal property of
pullbacks, there exists a: @ — U(d,,) such that § = a o U(o). That is to
say,

oceal U((a7du)7 (57b))
€Q

Strategy Overview. The most important step is to define p. We want to
use the universal property of pullbacks, and hence the second important step is
defintion of §. A verification follows. Finally, find « such that 8 = U(o) o o
had not played any significant role until when when it is shown to witness the
claim. QED

Corollary 8.6.1. Suppose H is complete, wellpowered, and admits a cogener-
ator, then H is also cocomplete.

Proof. Let M : D — H be a diagram. Recall H L AJHP preserves limits. It
follows from SAFT that there exists a left adjoints F' to A, then colim M =
(F(M),vpr) where p is a unit of adjunction F' — A.

Specifically CHAUS is cocomplete (as it is wellpowered and complete). Its
cogenerator is the closed interval [0, 1] with the classic topology. QED
Example 8.7.

(1) The requirement H be well-powered may not be omitted: Let H be the
opposite category of the thin category of ordinal numbers. Note K is
complete, admits a cogenerator but it is not well-powered (and does not
have an initial object).

The representable functor U : H — SET cannot admit a left adjoint. It
follows then the requirement on wellpoweredness is essential.

(2) The requirement H admit a cogenerator cannot likewise be omitted.

(a) The category CLAT of complete lattices endowed with maps pre-
serving meets and joins is complete and well-powered, but it does not
admit coproducts. That is, the functor U := A : H — H? preserves
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limits, it may not admit a left adjoint F' if D is a discrete category
such that H does not admit a coproduct of some M : D — H.

In particular, the following lattice
0 — 2z ——1

does not admit a coproduct of three copies of

0 —— o —— 1

(b) Let U : GRP — SET be a functor defined as follows:

i. For every infinite cardinal ), thereeists a simple group A, of
cardinality A.

ii. For every ordinal number a we set Ay 1= Ay

We define U(G) = [ <aco, |aj<|c| IRP(Aa; G) = GRP (H:gaeon,\a\S\G\Aa’ G)-

Think about how U is defined on morphisms (similarly to a covariant
homfunctor). Then U preserves limits (this follows from ‘more-or-
less’ from the fact covariant homfunctors preserve limits) but is is
not representable (by contradiction, a proposition from set theory),
whence it does not admit a left adjoint.

(3) To show the final counterexample, it shall suffice to find some #H which
admits a cogenerator, is well-powered, is not cocomplete. If we find it, we
can re-employ the strategy from (2) (and consider some suitable U := A :
H— HP.

Consider then the wellpowered small category which is not thin (and con-
sequently by Freyd’s Theorem is neither complete nor cocomplete) with a
cogenerator: the group Zs thoguht of as a singleton category: Obj K = {x}
and Mor K = {14, a}. Then = is a cogenerator.

[e3%

ly — %
\ﬁ/’

Exercise 8.8. Let K be a category, m € K(a,b) be an epimorphism and ¢ €
Obj K. Then the following is a monomorphism in SET .

K(rm,c): K(b,¢) — K(a,c)

Lemma 8.9. Let K admit products of the form ¢ for a fived c € ObjK and
any set X.

If a: X = Y is a monomorphism in SET and X # & then there exists some
monomorphism v : ¢X — ¢¥ in K.
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Proof. Denote the products in question (c¢X,7),(¢¥,4). The morphism v is
defined on the projections ¥ by

T, if  a(z)=y.
m, else  for some fixed p e X.

(Ver)wyoyz{

We shall verify it is a monomorphism: i.e. we wish to show 3 # v = vof # vo~.

d/fl\\) X v—=>3 c¥
~_
Since 8 # v,
(Fre X)mpo0p # w07,
then

wa(x)oz/oﬂ;éqpa(z)oyoy:yoﬂ;«éVO'y.
~— ——
T T

QED

Theorem 8.10. A category K is wellcopowered iff
(Va e ObjKIM < ObjK) M is a set A (¥ factorobject m of a3b e ObjK) Codn ~ b.

Proof.
= Trivially by definition.

< Let a € Obj K be fixed, 7 : a — b be a factorobject. It suffices to show
factorobjects p : @ — ¢ where ¢ ~ b form a set.

If p: @ — cis some factorobject, we fix some isomorphism ¢ : ¢ — b (whose
existence we assume). Then p is identical with ¢ o p with respect to the
equivalence defined on factorobjects.

a ——pP—— C

AN

L

"

b

Without any loss of generality, assume p : a — b. But K(a,b) is merely a
set, whence factorobjects of a with Cod(_) ~ b form a set.

QED

Theorem 8.11. Let K be complete, wellpowered, and admit a cogenerator c €
Obj K. Then K is wellcopowered.
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Proof. We will make use of Theorem 8.10. Let a € Obj K be fixed and 7 : a — b
be a factorobject.

Lemma 8.5 implies there exists a monomorphism g : b — ¢X with X = K(b, ¢)
(the latter part follows from the construction in the proof thereof).

If X # ¢, consider the injective map o = K(m,¢) : X — K(a,¢) =Y. By

Lemma 8.9 we obtain v : ¢X¥ — ¢¥ is a monomorphism.

Altogether then, we have a monomorphism v : op : b — ¢¥, where Y = K(a, c)
is independent of b.

We have shown the codomain of any factorobject a is the domain of a subobject
of ¢¥' or the domain of the terminal object (which was the case X = ). Since
K is wellpowered, the proof is concluded. QED

Remark 8.12. The proof would work just as well if /I simply admitted products.

Example 8.13.

(1) The assumption about the existence of a cogenerator may not be omitted.
Take K as the category of Urysohn topological spaces: this category is
complete, wellpowered but it does not admit a cogenerator and is not
wellcopowered.

(2) Let K be the thin category of ordinal numbers with an added greatest
element.

a € 0, admits a proper class of factorobjects, and co admits a proper
class of subobjects.

9 Dense & Colimit-Dense Categories

Definition 9.1 (Colimit-Dense Category, Canonical Diagram). Let K be a
category, and ‘H < K be a full subcategory, G : H — K be an embedding
functor.

(1) H is said to be a colimit-dense subcategory in K if (Va € ObjK) there
exists a diagram M : D — H such that (a,v) = colim(G o M) for a
suitable v.

(2) If H small, consider the (small) comma-category G | a for some a € Obj K.

The functor K : G | a — K defined on objects (b,a) € ObjG | a and
morphisms € Mor G | a by

K(b,) = b=G(b) K(n) = 1= G(p)

is said to be the canonical diagram of a with respect to H.
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(3) Ttissaid H is a (small) dense subcategory of K if (Va € Obj K) is colim K =
(a,{a| (b,a) € Obj G | a})

If K is the canonical diagram of the object a with respect to H, then (a, (c, (b, a) €
Obj G | a)) is always a cocone of the diagram K.

[—

‘H is dense by definition iff (Va € ObjK)(a, (o, (b,a) € ObjG | a)) = colim K.

Gla —K

|

J
H

Remark 9.2. A dense subcategory is colimit-dense.
Example 9.3.
(1) In SET, H with a single object {#} € ObjH is a small, dense subcategory.

a=[1,eq{#}-

(2) In GRAPH (the category of oriented graphs) there does not exists a
singleton dense subcategory but H, where Obj H = {G1, G2} where G1, G2
are defined as follows is

G1 G2

[ e ——— X

and therefore G; = {{e}, J} and G2 = {{e, x}, (e, x)} Our G1,G> play
the role of b, b’ from earlier. Note there exists an arrow from G to every
vertex of any graph a (a per illustration above) while G2 has an arrow
leading to any two vertices connected with an edge (77?).

(3) Let T be a field. Let K = Mod — T the category of vectorspaces over T.
Note H where ObjH = {T'} is a colimit-dense subcategory in K (every
vectorspace V' is isomorphisc to @, T').

This category is not a dense subcategory in K. Conversely, H' wheree
ObjH' = {T x T}. is a dense subcategory.
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Generally, If K is a variety of univerfsal algebras with a signature in which
all operations have an arity at most n € N, then the free algebra (in this
variety) with n generators forms a dense singleton subcategory.

(4) For K = TOP, the subcategory H composed of all Hausdorff and totally
disconnected spaces is colimit dense. This # is not a small subcategory.

Exercise 9.4. The forgetful functor F' : TOP — SET admits both right and
left adjoint.

Solution.
/F\
TOP SET
~
Define U(X) = (X, 7), where 7 = {¢J, X }; i.e. the indiscrete topology.

The Unit:
Nye =1dy : (Y,o0) > (Y, {&,Y}).
—

UF((Y,0))
The rest is left as an exercise. QEF
Remark 9.5. The furgetful functor TOP — SET preserves colimits (and
limits).
Theorem 9.6. TOP admits no small colimit-dense subcategory
Proof. Towards a contradiction, suppose H < K is a small, colimit-dense sub-

category in 7T OP. Denote the forgetful functor F': TOP — SET. If H is small,
we may consider some set which has larger cardinality than all those in .

Let X be a set of larger cardinality than every F(b) where b € ObjH. Assume
X is at least infinite.

We define on X a topology (verify it is a topology)
pi= {P S X||X\P| < X[} U Q.

IfY € X, |Y] < |X]|, then the subspace (Y,p) is discrete. For any y € Y,
consider P, = {y} u X\Y — an open set in X, whence it is open in Y.

Suppose H is colimit-dense. Then there exists a diagram M : D — H such
that (X, p) = colim(G o M), where G : H — K is an embedding. Then X =
((X,p)v) = colim(F o G o M) (for some nu), and therefore 1, is the only map
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a: X — X such that (Vd € Obj D)« o F(vg) = F(vq).

X
X

Consider (X, o) where o is a discrete topology. Then ((X,0),v) is a cocone
of the diagram G o M (i.e. vq : GM(d) — (X,0) are continuous; since vq :
GM(d) — (X, p) is continuous and by our choice of (X, p) (?7))

(Vd € D)a o vg = vy implies by definition of o taht a = 1x but 1x is not
continuous, since (X, p) is not discrete). QED

Definition 9.7. Let H < K be a small, full subcategory. We define the canon-
ical functor (for H) by:

H:K — SETH”
(Vee ObjK)e— K(,,¢) | HP
(:c—d)d=K(,8) | HP
(Vb €]ObjHP (H(8))s = KC(b,0) : K(b,c) — K (b, d).

Theorem 9.8. The subcategory H < K is small, full, and dense iff the canonical
functor of H is faithful and full.

Proof. Next time. QED

Corollary 9.8.1. If K admits a dense subcategory H, then K is equivalent to
(its image) some full subcategory in SET ™ ’

Theorem 9.9. Let H be a small and complege subcategory of K. Then H is
dense iff the canonical functor H : K — SET* " s full and faithful.

Proof. Let ¢,d € Obj K be arbitrary. Let 7 : H(c) — H(d); i.e. 7 € Nat(H(c), H(d)).
Compatibility conditions on 7 immediately yield (d, (75()) where (b,v) € Obj G |
¢))* is a cocone of the canonical diagram K : G | ¢ — Obj ¢ with respect to the
subcategory H; here G is an embedding functor.

Conversely, if (d,v) is a cocone of the canonical diagram K : G | ¢ —» K
of the object ¢, then 7(7,,b € ObjH®P), where 7 is defined element-wise by
() = V(»,4) Where b,y € Obj G | c, is a natural transformation from H (c) into
H(d).

4where v € K(b, c).
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H is full and faithful whence, for any 7 € Nat(H(c), H(d)), there exists a unique
0 : ¢ — d such that for each b€ ObjHP, 7, = K(b,9).

‘H is dense, meaning (¢, (v, (b,7) € ObjG | ¢)) = colim K, there exists a unique

§ : ¢ — d such that for each (b,7) € ObjG | ¢), vpy) = 60y = 7(y) =
K(b,)(). QED

Example 9.10. Now that we have acquired new tools, let us reexamine 77.
Let K be the category of vectorspaces over T. H, where ObjH = {T'} is not
dense (although it is colimit-dense) in K.

Let V=T? € ObjK, W =T and g: V — W is a map which is not additive,
that is g ¢ Mor K, but (V¢ € T)(Vv € V) g(vt) = g(v)t (which may be easily
verified /constructed).

7: H(V)— H(W) is defined on (its only) component thus:

T K(T,V) - K(T,W)
frgof

This indeed is additive® and thus a linear map. T is a natural transformation, but
there edoes not exist any 6 : V' — W is linear such that 7 = H(§) : g: V - W
is the only option for § but g is not linear.

Remark 9.11 (Isbell). SET°P admits a small dense subcategory iff there does
not exist a proper class of measurable cardinals.

Theorem 9.12 (CMUC Magazine 2019). SET P admits a subcategory H where
ObjH = ({a,b,c}), is a colimit-dense subcategory; i.e. every object in SET may
be written as a limit is the apex of the limit of a diagram comprising all three-
element sets.

Theorem 9.13. Let H be a small, full subcategoory in the complete category
K. chz)gn the canonical functogr H: K — SET™" admits a left adjoint F -
SETH” — K. Ie ObjSET™

Remark 9.14. Recall that if K is a category and D is small, then A : K — K
is constant andpreserves (co)limits.

For M € Obj KP; ie. M is a diagram M : D — K consider the comma-category
AM (modelled on the pattern of Fy | a). Its objects are the pairs (a, ) which
are precisely cones of the diagram M.

If moreover (a,7) is a limiit of M and (b,p) is a cone of M, then (by the
properties of limits) there eixsts precisely one « : b — a such that (Vd € D) g0
a = Pq.

This may be written on as a composition of natural transformations moA(«a) = p.

5This is indeedo only because the function starts off from a monodimensional space and
the map ¢ preserves scalar multiplication which itself implicitly requries additivity in one
dimension.
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Theorem 9.15. If K is cocomplete and H < K is small and colimit dense, then
K is complete.

Proof. Let M : D — K be an arbitrary diagram. Denote by G : H — K the
(full) embedding functor. The limit of the diagram M in K exists iff there exists
the terminal object in A | M.

The dual theorem of the comma-category completeness (7??7) gives that A | M
is cocomplete (since K is cocomplete and A admits colimits). By the dual form
of the theorem which states that quasi-initial set implies initial objects (it is
usually called ‘initial lemma’) A | M admits a terminal object iff there exists a
quasiterminal object. This is what we need to verify.

To this end, denote G:AoG | M — A | M is an embedding functor. Note
that A o GM is a small category. Since our category is complete, G admits a
colimit:

colim @ = ( (t,p) ).
~—
€Obj AL M

We shall not actually use its being a colimit, a cocone would have sufficed.
Denote by P : A | M — K the left projection® We will show (t,p) is quasi-
terminal in AM.

Let (a,7) € ObjA | M be arbitrary. H is colimit dense, whence there exists the
diagram N : E — H is diagram such that (a,v) = colim(GoN) for some suitable
nu. We define the functor A: E — (Ao G) | M by A(e) = (N(e),mo A(v.)),
for e€ Obj E, A(\) = N()) for A € Mor E.

SN e
N/
I

GoNle)

AN eMor(6oG) | M. o A(Ve,) o AGN(A) = w0 A(ve, o GN(A)) = mo A(v,, ). Regardin the
last equality, recall (a,v) is the cocone of the diagram G o N.

A'is a Functor. A(1l.) = N(l.) = In() = lag for some e € ObjE. A(A o)) =

S(a,n) — a.
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N(A1oX2) =n(A1) o N(Aa).

E A (AoG) | M ﬂu ALM —p—s K
\A(tuﬂ)/

PuAeNat(PG A, PAy ) A)

Note (¢, PuA) is a cocone of the diagram G o N.

Consider PuA € Nat(PoGoA, PoA , 0A). We can see that PoGoA =
GoN. Hence P,A € Nat(Go N, A,); from the properties of colimits there
exists a unique a € K(a,t) such that Ve € Obj E) j14() = aov.. This is
significant and could equivalently be written as

A(a) ov = PuA. (2)

Observe Mor(A | M) 3 14 is a colimit injection that lands in (¢, p) whence

poAlag) = 7o Alr) (3)

At P M

AN /

Apace)) molA(ve)

AN

AGnN(e)

We shall verify that « : (a,7) — (r,p) is a morphism in A | M such that
poA(a) =m;ie (VYde ObjD)psoa = mg. We shall verify this on the colimit
injections v, for e € Obj E (theorem 777). Altogether we have

2 3
Pd O QO Ve = pPd O hA(e) = Td O Ve

This holds for each d € ObjD and each e € ObjE. We have shown (¢,p) €
ObjA | M is quasiterminal. (the categories are cocomplete and hence the
existence of a quasiterminal object implies the existence of a terminal object
(by analogy to theorem 777 about initial objects) and this is equivalent to the
existence of a limit. hence the category is complete. QED



Note we have used the following exercise.

Exercise 9.16. Show that AKX — K preserves colimits for a small D.

Solution. Let (a,v) = colim N where N : D — K be a diagram. We want to
show that (6(a), A(v)) = colim(A o N). The LHS is clearly a cocone of Ao N.
Let (G, 7) be any cocone of AN. Let 7 € (Ao N,Ag). We are trying tofind a
unique a : A(a) — G such that

(Vee E)ao A(v,) = 7. € Nat(A o N(e), G) for each e € Obj E.
A
N(a)

This is equivalent to

agove = (Te)qd: N(e) » G(d) for each d € Obj D.
Observe that given any fixed d, (G(d),{(7.)q|e € ObjE}) is a cocone of the
diagram N.

For A € E(ey,e2), T being a natural transformation and since 7., o A(N (X)) =
Te,, we consequently have (7¢,)q 0 N(A = (7, )a-

Moreover, (G(d),({rc)qa|e € ObjE}) is a cocone of the diagram N implying
there exists a unique ag : a — G(d) and for each e € Obj E, ag o ve = (Te)a-

Hence we define o %' {ag|d € Obj D}. Tt remains to show « € Nat(A,, G); i.e.
it remains to verify the compatibility-conditions (it is not clear if «) is a natural
transformation).

For any d € D(dy,dz2), G(6) 0 ag, = g, : a — G(da); we check this on colimit
injections v, for each e € Obj E:

G((S) O, OVe = G(5) o (Te)dl = (Te)dg = Qq, O Ve.
The second equality holds since 7. € Nat(Apy (., G).a QEF

Exercise 9.17. If K is a concretisible (i.e. there exists a fatihful functor U :
K — SET ) then each small category D KP is likewise concretisable. This
altogether implies SET™ is also concretisible.
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10 Exercises

10.1 24** November 2023

Exercise 10.1. Show that monomorphisms, epimorphisms, sections, and re-
tractions are closed under composition.

Exercise 10.2. Consider the category REL whose objects are sets and whose
morphisms are relations equipped with the standard operation of composition.

(1) Show that p € REL(A, B) is a monomorphism iff there exists B’ € B so
that p N (A x B’) determined a bijection A — B’.

(2) Decide when p € REL(A, B) is an epimorphism/isomorphism.
(3) Show that all monomorphisms are sections and all epimorphisms are re-
tractions in REL.
Solution. HOMEWORK! QEF

Exercise 10.3. Let (P, <) be a poset. Consider the category P whose objects
are elements of the set P and morphisms correspond to ordered pairs of elements
of P. This means that between any pair of objects p,q € ObjP there exists a
morphism iff p < ¢ and this morphism is unique.

(1) Show P is a category.

(2) Show that every morphism in P is bimorphic.

(3) Show that given any morphism f € P the following notions are equivalent:
(a) f is a section.
(b

(c

(d) f is an identity (in some object).

g is a retraction.

)
) f is an isomorphism.
)

(4) Let (@, <) be some other ordered set and Q be the corresponding category.
Show that functors P — Q correspond to monotonic maps P — Q.
Solution.

It easily follows from our setup that given any two p,q € P, P(p,q) is
either empty, which occurrs if p € g, or it is a singleton if p < ¢q. It is easy
to see the relation < behaves well with respect to composition.

(2) This follows immediately from P being thin, which we have already es-
tablished.
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(3) Left out.

(4) Given a F : P — Q and any two morphisms « € P(a,b), 8 € P(b,c) then
F(Boa) = F(8)o F(a). But since morphisms are given by <, this simply
means F' preserves such order-relations; i.e. it is monic on P, Q.

QEF

Exercise 10.4. Let POS stand for a category of all ordered sets. Morphisms in
this category are monotonic maps. Decide if all monomorphisms in this category
are sections and if it is balanced.

Solution. Injective, monotonic maps are clearly monomorphisms; the converse
statement is not so clear.

LEFT AS HOMEWORK. QEF

Exercise 10.5. Recall GRP is the category of groups.

(1) Show that monomorphisms in GRP are precisely injective homomorph-
isms.

(2) Show that epimorphisms in GRP are precisely surjective homomorphisms.

Solution.

Supppose ¢ is a non-injective monomorphism. Consider the following setup

KL)GLH

where (Vz € K) j(z) = 1, and hence K € G. Since ¢ is not injective, Ker ¢ is
nontrivial. Then ¢i = ¢j = i = j. A contradiction.

Let

6:G——H , P
N

¢(G) =M < Hand ¢ # )/, po¢p =1 o¢. Suppose [H : M] = 2. Then
M<H. Then P=7Z,~H /} and

W H - {My<H v:H-H /)

Suppose [H : M| > 3 and P = Sym(H). We have at our disposal at least
three distinct cosets M, Mu, Mv in H/M. We define o € P by

reM= o(zu) = zv o(zv) = zu
r¢ M= o(y) =y

¥(h) is a permutation given by left multiplication by h.
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W' (h) = b~loy(h)o and

o (h)p(h)o

o (h)oo v (h)a
= ()Y’ (k')

' (hh') =

Then

(e (h)o) (zu)a ™" (v (k) (2v)) = 0" (hav)

If hzv ¢ Musup Mv then o~ (hav) = hzv, m € M and set h = mu~tz~!.
Then haue M.

Y(h)(zu) = hzu. Put

10.2 10t March 2023

Exercise 10.6. Denote FLD the category of fields and GRP the category of
groups. Let Gl,,, (—)* : FLD — GRP, defined thus:

(1) The functor Gl,, assigns the group G, (T) of all n x n matrices over T to
the field T

(2) The functor (—)* which assigns the multiplicative group T* of T to the
field T

Solution. Observe (—)* = GL;. We firstly need to verify these indeed are
functors.

Let f be a homomorphism of two fields T', .S and A, B be a n x n matrices.

S f T

‘/GLH ‘/GLn

GL,(S) —cL.(f) — GL,(T)

Observe

a1 e an1 f(CLll) e f(anl)

ap1 ... Qnn f(anl) <. f(a'rm

It remains to check GL,, (f)(AB) = GL,(f)(A)GL,(f)(B). Denote A = {a’ij}?j=1’
B = {bi]‘}?jzl, and C = {CZJ':l}’ where Cij = ZZ:I aikbkj.
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Then

[ fle11) ... flcin) ]
GLA(f)(C) = : :
;f(cnl) cee f(cnn)f
[ fla1) .o flap)] [fi1) oo f(ba)
GLA(f)(A)GL,(f)(B) = : : ' : :
_f(am) s f(arm | f(bnl) e f(bnn

We conclude these two are the same by the arithmetic properties of the homo-
morphism f.

Now let us return to what we wished to prove initially. Let

det : GL, (T) — (T)* A det(A).

Trivially, we obtain dety(AB) = detr(A) detr(B) from the fact detysr € Mor(GRP).

Denote
det = <dqqt (T c Obj(]-'L‘D> . GL, — ()"
We claim this to be a natural transformation. Let S, T € FLD and put

f:8S->T

G

GL,(8) T GL, (1)

g FE=IF=I18% oy

To see det is a natural transformation, we need to show the following diagram
commutes:

GL,(S) —GLa(f) = GL,(T)

detg detr
S* — fr=frgx — T*

Both directions are readily verified

ACED GLA(HA) Y sen(m)f(aiey)  Fanmm):

meSym,,

de * .
A '_t>S Z Sgn(ﬂ-)alﬂ(l) © Qpp(n) f'_> f Z sgn *pl)alﬂ'(l) © Qua(n)

meSym,, meSym,,

QEF
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Exercise 10.7. For the set A consdier the functor A x — : SET — SET. Show
that every map A — B determines a natural transformation A x — — B x —.

Solution. Observe
Ax.SET - SET
B— AxB
and
(f:B>C)—»Axf:AxB—>AxC
(a,) = <a, f(b))-

Let A, B be sets and f : A x B. Then both A x — and B x — are functors
SET — SET.

Let € =<{e.|C € Obj(SET)), C € ObjSET and g: C — D.

{a,c) AxC —Axg— Ax D
ec:‘fxc ED:‘fXD

| |
(f(a),c) Bx(C —Bxg— B xD

The diagram commutes since

[(f x D)o (A x 9)](a,¢) = f(xD)(a,g(c)) = (f(a), g(c))

[(B x g)o(f x C)](a,c) = (B x g)(f(a),c) = {f(a),g(c))
Morphisms here correspond to natural transformations on the category of func-

tors. QEF

Exercise 10.8. Let A be a category and P be an ordered set (which itself may
be viewed as a category). Consdier the pair of functors F,G : A — P.

(1) Describe when there exists a natural transformation F' — G.

(2) Show there exists at most one natural transformation F' — G.
Solution. For a natural trasformation to exist, we need for each object a € Obj A

a morphism F'(a) — G(a) in P must exist. P is an ordered set and morphisms
in P are ordered pairs. Hence Ya : F(a) < G(a). If this holds, then F(a)

F(a) ---------- » G(a)
F(‘f) G(‘f)
! !
F() ----------3 > G(b)



The diagram commutes iff there exists an arrow from F'(a) to G(b). If such a
morphism exists, it is uniquely determined. QEF

Exercise 10.9. Given some sets A, B, we denote B# the set of all maps f :
A — B. Consider the functor ()4 : SET — SET. For the set X, we define the
map ex : X4 x A — X by ex(f,a) = f(a). Show that € = {ex | X € Obj(SET))
is a natural transformation from the functor (—)4 x A to the identity-functor

on SET.

Solution.

@«

QEF
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11 Tables

11.1 Hombifunctor

Let a,a’,b,b € ObjK and a € K(a,d’),8 € K(b,V'). K(a,—) is covariant and
K(—,b) contravariant.

F=K(——-):KP®xK —SET

1)
F(a,b) = K(a,b).

(2)

K(a,B) : K(a,b) — K(a,b")

x— fox

3)

K(a,b) : K(a',b) — K(a,b)
(4)

K(a,B) : K(a,b) — K(a', V)
K(e, B)(z) = Boxoa.

11.2 Yoneda Natural Transformation

Let K be a category, a € Obj K and F : K — SET. Set for each b€ Obj K,

z: F(a) - Nat(K(a,—), F) Ty« K(a,b) — F(b)
= [F(a)](z)

P o
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