
Introduction to Category Theory
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1 Categories & Morphisms

The notion of ‘category’ first appeared in 1945 in an article of S. MacLane and
S. Eilenberg: On Natural Equivalences in the publication Transactions of AMS.

Definition 1.1 (Category). Let ObjK be a class and Kpa, bq be a set for any
a, b P ObjK. The former is termed a class of objects and the latter a set of
morphisms or arrows from a to b. For any α P Kpa, bq, a is termed the domain
of α and b the codomain of α, denoted Domα and Codα respectively.

Put
MorK “

ď

pa,bqPpObjKq2

Kpa, bq.

A category is any interpretation of K “ pObjK,MorKq which in addition meets
the following axioms:

(1) Morphism Disjointness.

p@a, b, a1, b1 P ObjKq pa, bq ‰ pa1, b1q ñ Kpa, bq XKpa1, b1q “ H.

(2) Composition.

p@α P Kpa, bq, β P Kpb, cq D!βqβ ˝ α P Kpa, cq.

(3) Associativity.

p@α P Kpa, bq, β P Kpb, cq, γ P Kpc, dqq γ ˝ pβ ˝ αq “ pγ ˝ βq ˝ α.

(4) Unit Law.

p@α P ObjK D1a P Kpa, aq@β P Kpa, bq@γ P Kpc, aqq pβ˝1a “ βq^p1a˝γ “ γq.

Remark 1.2. The morphism 1a from ?? is uniquely determined by its proper-
ties. If 11

a were another such morphism, then 11
a ˝ 1a “ 11

a.

Definition 1.3 (Locally Small Category). Sometimes the defnition admits
Kpa, bq being a class, and not just a set. The kinds of categories satisfying
our restricted definition is then called locally small.

Notation 1.4. If K is clear from context, instead of α P Kpa, bq we sometimes
write α : aÑ b. Another standard notation is xα, a, by.

Example 1.5.

(1) SET denotes the category of all sets. Here objects are sets and morphisms
are set mappings with a specified domain and codomain.

Let A,B˚ Ĺ B be sets, f : A Ñ B, f˚ : A Ñ B˚ and p@a P Aq f˚paq “
fpaq.
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Then f ‰ f˚ in the category SET pSET pA,Bq X SET pA,B˚q “ H even
though f “ f˚ componentwise.

(2) Structured Sets.

• POSET is a category whose objects are posets, i.e. partially ordered
sets; and whose morphisms are monotonic maps.

This means that α : pa,ďq Ñ pb,ďq implies that for each x, y P a,
x ď y ñ αpxq ď αpyq.

• QOSET is a category whose objects are quasiordered sets and whose
morphisms are as above.

• GRAPH is a category whose objects are oriented graphs (i.e. the set
V of all vertices and a relation A of two vertices being connected by
an oriented edge) and whose morphisms are graph-homomorphisms.

To clarify: let G “ pV,Aq, G1pV 1, A1q, α : G Ñ G1, α : p@v, w P V q.
Then

pv, wq P Aq ñ pαpvq, αpwqq P A1.

• GRP is a category whose objects are groups and morphisms are
group-homomorphisms.

Let pG, ¨q, pH, ˚q be groups. Then α : pG, ¨q Ñ pH, ˚q implies αpg1 ¨
g2q “ αpg1q ˚ αpg2q.

• SMG is a category of semigroups (sets equipped with an associative
operation): its objects are semigroups and its morphisms are semig-
roup homomorphisms

• RNG is a category whose objects are unitary rings and whose morph-
isms are ring-homomorphisms.

• T OP is a category whose objects are topological spaces and whose
morhpisms are continuous maps.

(3) Arbitrary Examples.

• Let ObjK be the elements of R2 and MorK be finite polygonal lines
connecting its two arguments.

Remark 1.6. Given a general category K it is not meaningful to consider the
elements of the objects of a category K.

Definition 1.7. A category K is said to be thin if for every a, b P ObjK,

|Kpa, bq| ď 1.

Remark 1.8. Thin categories correspond one-to-one with quasiordered classes:
Suppose K is a category. Define the ordering ď on ObjK by

a ď bô |Kpa, bq| “ 1.
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Then
K ãÑ pObjK,ďq.

Conversely, given a quasiordering Q, let ObjK “ Q and for any two a, b P Q,
let there exist a single morphism between them if a ď b. If  pa ď bq, then let
there be no such morphism.

Clearly
KÐâ pQ,ďq.

Definition 1.9 (Discrete Category). A category K is said to be discrete if it
contains only identity-morphisms. Symbolically

|Kpa, bq| “ δa,b.

Definition 1.10 (Small Category). A category K is said to be small if ObjK
is a set (as opposed to a class).

Remark 1.11. Singleton categories correspond one-to-one with monoids. For
any category K with a single object A, the set KpA,Aq of morphisms AÑ A is
a monoid. with unit element IdA and a binary operation given by composition;
conversely for any monoid pM, ¨, eq, there is a one-object category K with a single
object ObjK “ tMu whose morphisms are the elements of M , with IdA “ e

and such that composition is given by ‘¨’.

K ãÑ pKpA,Aq, ˝, IdAq

ptMu ,Mq Ðâ pM, ¨, eq

Definition 1.12 (Monomorphism, Epimorphism, Bimorphism, Isomorphism).
A morphism α P Kpa, bq is called a monomorphism if, given any two morphisms
γ, β : cÑ a; α ˝ β “ α ˝ γ implies β “ γ.

Dually, α P Kpa, bq is called an epimorphism if, given β, γ P Kpb, cq, β ˝α “ γ ˝α
implies β “ γ.

If α is both monic and epic, then it is termed a bimorphism.

Lastly, α P Kpa, bq is called an isomorphism if there exists β P Kpb, aq such that
β ˝ α “ 1a, α ˝ β “ 1b

Definition 1.13 (Balanced Category). A category is called balanced if a morph-
ism is epic and monic iff it is an isomorphism.

Theorem 1.14 (Heredity of Moncity & Epicity).

(1) If α1 P Kpa, bq, α2 P Kpb, cq are monic, then α1 ˝ α2 is likewise monic.

(2) Conversely, if α2 ˝ α1 are monic, then so is α1.

(3) Dually, the analogous propositions hold for epimorphisms.
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Proof. Trivial. Only point (2) shall be shown. Assume

c a b
β

γ

α1

and let α1 ˝ β “ α1 ˝ γ. Then pα2 ˝ α1q ˝ β “ pα2 ˝ α1q ˝ γ. Since α2 ˝ α1 is
monic, β “ γ. QED

Definition 1.15 (Opposite Category). The category Kop denotes a category
dual to K, also called opposite. We have ObjKop :“ ObjK, Koppa, bq “ Kpb, aq,
for all a, b P ObjK.

Remark 1.16. Monomorphisms in Kop correspond 1-to-1 with epimorphisms
in K.

Theorem 1.17 (Duality Priniciple). Isomorphisms are monic and epic.1

Proof. Let α P Kpa, bq be an isomorphism and let β P Kpb, aq be a morphism
witnessing the isomorphic property of α.

If γ, δ : cÑ a are any morphisms such that α˝δ “ α˝γ, then pβ˝αq˝δ “ pβ˝αq˝γ
implying 1a ˝ δ “ 1a ˝ γ whence γ “ δ. That is to say, α is epic. To see it is also
monic, let γ, δ : bÑ c and argue by analogy. QED

Definition 1.18 (Section, Retraction). A morphism α P Kpa, bq for which there
exists β P Kpb, aq such that β˝α “ 1a is called a split monomorphism or section;
if α ˝ β “ 1b, it is termed a split epimorphism or retraction.

More bluntly, a section is a right inverse and a retraction a left inverse of a
morphism.

b b

Section Retraction

a a

β α

1b

β

1a

Definition 1.19 (Witness). Let A be a first-order language, φpvq be an A-
formula, and A be an interpretation of L. An A-witness, or simply a witness if
A is clear from context, for the sentence Dv φpvq is an element a P Alenφ such
that A |ù φpaq.

For our purposes, by a witness we shall understand any object, morphism,
category, etc. whose existence proves a particular property. Given a map α P
Kpa, bq, the morphism β P Kpb, aq is a witness of α being a section if β ˝α “ 1b.

1Observe the converse does not generally hold; in view of this theorem, one could define
balanced categories as those categories which satisfy such (converse) implication.
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Remark 1.20. Clearly any section is monic and conversely any retraction is
epic. A morphism which is both a section and a contraction is an isomorphism.

Example 1.21.

(1) In SET , morphisms are monic iff they are injective and epic iff they are
surjective. The category SET is balanced.

One may prove that the Axiom of Choice holds iff every epimorphism in
SET is split (a retraction).

‚
‚‚

‚
‚

(2) In the balanced categories, GRP, AB, and the category of rightR-modules,
monomorphisms are precisely injective homomorphisms and epimorphisms
are surjective homomorphisms.

Showing this for GRP is nontrivial.

(3) In the category of polygonal lines, a morphism if monic iff it is epic iff it
is the identity-morphism 1B for B P R2.

(4) The category of divisible Abelian groups DAB and the category of tor-
sionfree Abelian groups T FAB whose morphisms are homomorphisms of
Abelian groups.

The category DAB is not balanced and neither is T FAB since the monic
canonical embedding ν : Z ãÑ Q is an epimorphism.

Z Q B P T FABν
α

β

α ˝ ν “ β ˝ ν implies α´ β æ Z “ 0, which means there exists γ : QäZÑ
B; then γ “ 0 since Cod γ is torsionfree and Dom γ is not, and hence

γ ˝ π “ α´ β “ 0 for π : QÑ QäZ.

(5) In RNG, Z ãÑ Q is also an epimorphism (exercise).

Remark 1.22. The homomorphic image of a divisible group is divisible and
any subgroup of a torsionfree group is torsionfree.

Moreover, in DAB the map π : Q ։ QäZ is a monomorphism.

Suppose π ˝ α “ π ˝ β, then π ˝ pα ´ βq “ 0. This implies that Impα ´ βq Ă
Kerpπq “ Z. Since Impα ´ βq is divisible, then Impα ´ βq being a subset of Z
implies Impα´ βq “ t0u.
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D Q QäZ

Z

πα´β

The fact DAB is not balanced follows hence given that π : Q ։ QäZ is not an
isomorphism.

Notation 1.23. Recall ãÑ denotes a monomorphism and ։ an epimorphism.

2 Functors

Definition 2.1 (Covariant Functor). Let K, H be categories. It is said F : KÑ
H is a covariant functor from K to H if for each a P ObjK and α P Kpa, bq,
β P Kpb, cq:

(1) F paq P ObjH

(2) F pαq P HpF paq, F pbqq

(3) F pβ ˝ αq “ F pβq ˝ F pαq

(4) F p1aq “ 1F paq

Definition 2.2 (Contravariant Functor). Let K, H be categories. It is said
F : K Ñ H is a contravariant functor from K to H if for each a P ObjK and
α P Kpa, bq, β P Kpb, cq:

(1) F paq P ObjH

(2) F pαq P HpF pbq, F paqq

(3) F pβ ˝ αq “ F pαq ˝ F pβq

(4) F p1aq “ 1F paq

Note that contravariant functors reverse the direction of composition.

Remark 2.3. In the topological category T OP monomorphisms are injective
morphisms and epimorphisms are surjective morphisms. A morphism which is
monic and epic is a continuous bijection, which is not the same as a homeo-
morphism, which is an isomorphism in the categorical sense.

To illustrate this, consider a set X with at least two elements, consider the map

pX, discreteq
Id
Ñ pX, indiscreteq.

Definition 2.4 (Parallel Morphism). Let α, β P Kpa, bq, then α, β are termed
parallel morphisms.

a b
α

β
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Definition 2.5 (Homfunctor). Let K be a (locally small) category, a, b P ObjK
and α P Kpb, cq. We introduce the functions

Kpa, αq : Kpa, bq Ñ Kpa, cq Kpα, aq : Kpc, aq Ñ Kpb, aq

β ÞÑ α ˝ β β ÞÑ β ˝ α.

Then Kpa,´q is said to be a covariant homfunctor of K if

(1) Kpa,´q : b ÞÑ Kpa, bq.

(2) Kpa,´q : α ÞÑ Kpa, αq.

Likewise, Kp´, aq is said to be a contravariant homfunctor if

(1) Kp´, bq : a ÞÑ Kpa, bq.

(2) Kp´, bq : α ÞÑ Kpα, aq.

Remark 2.6. The covariant and contravariant functors are naturally related.
Let a, b, a1, b1 P ObjK and f P Kpa, a1q, h P Kpb, b1q. Then

Kpa, bq Kpa1, bq

Kpa, b1q Kpa1, b1q

Kph,bq

Kpa1,fq

Kph,b1q

Kpa,fq

We shall learn more about this later when discussing natural transformations.

Example 2.7.

(1) Forgetful Functors. Functors are termed forgetful if they, in a sense, ‘for-
get’ part of the structure they are defined on, e.g.

F : T OP Ñ SET pX, τq Ñ X

F : GRP Ñ SET pG, ¨q ÞÑ G.

Another example

F : T OPGRP Ñ T OP

F : T OPGRP Ñ GRP.

(2) Let K be a category and a P ObjK. Let Fa : K Ñ SET ; for some
b P ObjK, Fapbq :“ Kpa, bq P ObjSET . Likewise for α : c Ñ b, Fapαq :
Kpa, cq Ñ Kpa, bq defined by β ÞÑ α ˝ β.

Such a covariant functor is usually denoted Kpa,´q, then indeed Fapαq “
Kpa, αq.

Then by F a : K Ñ SET ; for b P ObjK and F apbq :“ Kpb, aq and for
α : cÑ b, F apα : Kpb, aq Ñ Kpc, aq defined by β ÞÑ β ˝ α

Likewise, such a covariant functor is usually denoted Kp´, aq.
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(3) Define P`, P´ : SET Ñ SET . Then for s P ObjSET : P`psq “ P´psq “
Ppsq and for αsÑ t, P`pαq : Ppsq Ñ Pptq, defined by Ppsq Q y ÞÑ αrys “
tαpxq | s P yu

P´pαq : Pptq Ñ Ppsq defined by y ÞÑ α´1rys “ tx P s |αpxq P yu, this is
the complete preimage of the set y.

Definition 2.8 (Full, Faithful, One-to-One Functors). Let F : K Ñ H be
functor. It is said F is

(1) full if for every a, b P ObjK, F maps Kpa, bq onto HpF paq, F pbqq as given
by α ÞÑ F pαq.

(2) faithful, if for each a, b P ObjK, F maps Kpa, bq into HpF paq, F pbqq as
given by α ÞÑ F pαq. Hence F paq “ F pbq ñ a “ b.

(3) fully faithful if it is faithful and full.

Remark 2.9. A mnemonic for remembering the term full is that the image of
the function fills the codomain; a mnemonic for remembering the term faithful
is that one can have faith F paq “ F pbq implies a “ b.

Definition 2.10 (Subcategory, Embedding Functor). Let K,H be categories.
It is said that K is a subcategory of the category H, written K Ď H, if the
following conditions are met:

(1) ObjK Ď ObjH

(2) p@a, b P ObjKq Kpa, bq Ď Hpa, bq

(3) Id : KÑ H, where Idpaq “ a for a P ObjK, Idpαq “ α for α P MorK, is a
functor, termed an embedding functor of K into H.

Moreover, K is called a full subcategory of H if Id is full; that is, it inherits all
morphisms from H it can:

p@a, b P ObjKqKpa, bq “ Hpa, bq.

Lemma 2.11 (Functors Preserve Split Morphisms). Let F : K Ñ H, α P
Kpa, bq. Then

(1) If α is a section, then F pαq is a section.

(2) If α is a retraction, then F pαq is a retraction.

(3) If α is an isomorphism, then F pαq is an isomorphism.

Proof. Clear since functors preserve the existence of inverse-mappings between
their domains and codomains with respect to individual morphisms.

In greater detail, suppose α P Kpa, bq is a section with a witness β. It follows
from the definition of a functor that

α ˝ β “ 1b ñ F pαq ˝ F pβq “ 1F pbq
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Hence F pβq is a witness of F pαq being a section. By analogy, we deduce being a
retraction is likewise preserved under functors. Since any isomorphism is both a
section and a retraction, it follows trivially the image of an isomorphism under
a functor is isomorphic. QED

Remark 2.12. Functors need not preserve monomorphisms nor epimoroph-
isms.

Definition 2.13 (Projective Object). It is said a P ObjK is projective in K
if Kpa,´q preserves epimorphisms: given any epimorphism α P Kpb, cq, the
following map is surjective

Kpa, αq : Kpa, bq։ Kpa, cq

β ÞÑ α ˝ β

Simply put, given any epimorphism α P Kpb, cq and any morphism γ P Kpa, cq,
there exists a morphism β P Kpa, bq such that α ˝ β “ γ.

a c

b

αβ

γ

Remark 2.14. Definition 2.13 generalises the notion of a projective module.
The diagram from Definition Definition 2.13 should be familiar from Module
Theory.

Example 2.15.

(1) In SET all sets are projective objects and all nonempty sets are injective.

a

b cα

@ D

(2) In T OP projective objects are discrete spaces; injective objects are nonempty
indiscrete spaces.

(3) In AB (Abelian groups) projective objects are free groups; that is groups
isomorphic to a direct sum over some index-family of any cardinality of
cyclic groups.

Injective objects are precisely divisible Abelian groups.

(4) CHT OP (Complete Hausdorff spaces) projective objects are extremely
disconnected, that is those closure of an open set is open, complete and
Hausdorff topological spaces.
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(5) The category of vectorspaces has only objects are both injective and pro-
jective.

(6) F : AB Ñ DAB, G ÞÑ maximal divisible subgroup is a functor (exercise).

Definition 2.16 (Generator, Cogenerator). a P ObjK. It is said that a is
a generator or a cogenerator in K if Kpa,´q is faithful or Kp´, aq is faithful
respectively.

In practice, this means that given any morphism α P Kpb, cq, the assignment
α ÞÑ pβ ÞÑ α ˝ βq, where β P Kpa, bq, is unique.

More simply still, given any two distinct morphisms f, g, there is another morph-
ism h such that f ˝ h ‰ g ˝ h, provided the functions are composable. For this
reason, generators are sometimes called separators.

Example 2.17.

(1) In SET , generators are all nonempty sets and cogenerators are sets with
at least two elements.

(2) In SET , an example of a generator is Z and of a cogenerator is QäZ.

(3) In GRP , an example of a generator Z, cogenerators do not exist.

Definition 2.18 (Concrete Category). By a concrete category we understand
the pair pK, Uq, where K category U : KÑ SET is a faithful functor.

Since U is faithful, we may identify each morphism f of K with the function
Upfq. In these terms, a concrete category may be described as a category K in
which each object c comes equipped with an ‘underlying’ set Upcq, each morph-
ism bÑ c is an actual function Upbq Ñ Upcq, and composition of morphisms is
composition of functions.

Definition 2.19 (Mac Lane’s Represention). Let K be small. Its Mac Lane’s
representation is the functor M : KÑ SET defined in the following fashion:

M : KÑ SET

ObjKÑ MorK MorKÑ MorK

a ÞÑ
ď

bPObjK

Kpb, aq α ÞÑ pF :Mpaq ÑMpa1q x ÞÑ α ˝ xq

Theorem 2.20. Mac Lane’s representation functor is injective on K.

Proof.

(1) Let a, a1 P ObjK be distinct. Then Mpaq XMpa1q “ H, both of which
are nonempty since 1a P Mpaq and 1a1 P Mpa1q. Hence it is injective on
ObjK.

(2) Let α, β : a Ñ a1 be distinct. Then Mpαqp1aq “ α and Mpβqp1aq “ β,
which implies Mpαq ‰Mpβq. Thus, it is faithful.
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QED

Corollary 2.20.1. Every small category K is concretisable; i.e. there exists a
faithful functor U : KÑ SET such that pK, Uq is concrete.

Exercise 2.21. Show that there exist categories which are not concretisable;
that is, there exists no faithful functor therefrom to SET .

Notation 2.22.

(1) If α P Kpa, a1q is an isomorphism, then α´1 P Kpa1, aq denotes a morphism
inverse to it. It is uniquely determined (exercise).

(2) Functors may be composed; F : K Ñ H, G : H Ñ I, then G ˝ F , or GF ,
denotes a functor from K to I defined by G ˝ F paq :“ GpF paqq.

Definition 2.23 (Category Product). Let K,H be categories. Then KˆH is
defined by

ObjpKˆHq “ pObjKq ˆ pObjHq MorpKˆHq “ pMorKq ˆ pMorHq

where all operations are performed componentwise.

Definition 2.24 (Hombifunctor). A functor F is said to be a hombifunctor if
F “ Kp´,´q : KopˆKÑ SET and

Kp´,´q : pObjKq2 Ñ MorK F pα, βq : Kpa, bq Ñ Kpa1, b1q

F pa, bq “ Kpa, bq F pα, βqpxq “ β ˝ x ˝ α.

a1 a b b1α x β

3 Natural Transformations & Yoneda’s Lemma

Definition 3.1 (Natural Transformation, Mono-, Epi-, Natural Equivalence).
Let F,G : K Ñ H be functors. By a natural transformation from F to G we
understand the family of morphisms τ “ tτa | a P ObjKu where each component
τa P HpF paq, Gpaqq satisfies

F paq F pa1q

Gpaq Gpa1q

F pαq

τa

Gpαq

τα1

These properties are referred to as compatibility-conditions. A natural trans-
formation is said to be a monotransformation or an epitransformation if all its
coponents are mono- or epimorphisms respectively. By a natural equivalence or
sometimes natural isomorphism we understand such a natural transformation
whose components are isomorphisms.
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Observe that if τ is a natural equivalence, then τ´1 “
!

pτaq
´1

ˇ

ˇ

ˇ
a P ObjK

)

is

likewise a natural transformation. In diagrams, we indicate K,H having natural
transformation τ thus

K H

F

G

τ

Example 3.2. Let a, c P ObjK, α P Kpa, cq, and consider the following covari-
ant homfunctors Kpa,´q,Kpc,´q : KÑ SET .

Let α P Kpa, cq and set τ :“ Kpα,´q : Kpc,´q Ñ Kpa,´q, a contravariant
homfunctor, and for each b P ObjK put

τb “ Kpα, bq : Kpc, bq Ñ Kpa, bq

τb : x ÞÑ x ˝ α.

We need to check τ satisfies the compatibility-conditions. Let b P ObjK and
β : bÑ b1. Then

Kpc, bq Kpa, bq

Kpc, b1q Kpa, b1q

τb

Kpa,βqKpc,βq

τb1

as for any x P Kpc, bq

rKpa, βq ˝ τbs pxq “ β ˝ x ˝ α “ rτb1 ˝Kpc, βqs pxq.

Definition 3.3 (Conglomerate). By a conglomerate, we understand a collection
of classes. This is an informal term that, though it may be formalised, is to be
understood in the intuitive sense.

Notation 3.4. Let F,G : K Ñ H be functors. By NatpF,Gq we understand
the conglomerate of all natural transformations from F to G.

Moreover, HK denotes the conglomerate of all covariant functors from K to
H. It itself said to be a quasicategory, whose objects are functors and whose
morphisms are natural transformations. It behaves exactly like a category but
is not one due to the unbounded size of its collections of objects and morphisms.
Its identity (natural transformation) is given by Id : F Ñ F , Ida “ 1F paq

Remark 3.5.

(1) Natural transformations may be composed. Let τ : F Ñ G and σ : G Ñ
H, then σ ˝ τ : F Ñ H where pσ ˝ τqa :“ σa ˝ τa P HpF paq, Hpaqq.

K HG

F

H

τ

σ
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(2) Hτ : HF Ñ HG, pHτqa P IpHF paq, HGpaqq, a :“ Hpτaq.

τJ : FJ Ñ GJ , pτJq P HpFJpcq, GJpcq, GJpcqq, where c :“ τJpcq.

J K H IHJ
F

G

τ

3.1 Yoneda’s Lemma

Yoneda’s Lemma is arguably the most important result in category theory. It is
an abstract result on functors of the type morphisms into a fixed object ; a vast
generalisation of Cayley’s Theorem from Group Theory (viewing a group as a
miniature category with just one object and only isomorphisms). It allows the
embedding of any locally small category into a category of contravariant functors
defined thereon. It also clarifies how the embedded category of representable
functors and their natural transformations relates to the other objects in the
larger functor-category. It is named after a Japanese mathematician Nobuo
Yoneda.

Lemma 3.6 (Yoneda I). Let K be a category, a P ObjK and F : K Ñ SET .
Then the following map is bijective.

y : NatpKpa,´q, F q Ñ F paq τ ÞÑ τap1aq P F paq.

Kpa,´q F

...

...
NatpKpa, ´q, F q

F paq
a

b

c

x
τap1aq

y

τ

µ

ν

y

z

Proof. Set for each b P ObjK,

z : F paq Ñ NatpKpa,´q, F q τxb : Kpa, bq Ñ F pbq

x ÞÑ τx α ÞÑ rF pαqspxq

Kpa, bq Kpa, b1q

F pbq F pb1q

Kpa,βq

F pβq

τxb τx
b1

To verify z is well-defined, we need to check τx satisfies compatibility-conditions.
Put α P Kpa, bq, then

15



ö

rF pβqτxb spαq “ rF pβq ˝ F pαqspxq “ F pβ ˝ αqpxq

œ

rτxb1 ˝Kpa, βqspαq “ τxb1pβ ˝ αq “ F pβ ˝ αqpxq

We shall now check in two steps that z is the inverse map to y and vice versa,
thus proving the claim.

z ˝ y “ IdNatpKpa,´q,F q We wish to verify zpypτqq “ zpτap1aqq “ τ τap1aq “ τ. Let b P Obj and
α P Kpa, bq. Then

K : τ
τap1aq
b pαq “ rF pαqspτap1aqq “ τb ˝Kpa, αqp1aq

looooomooooon

α

“ τbpαq.

Kpa, aq F paq

Kpa, b1q F pb1q

τa

τb1

Kpa,αq F pαq

y ˝ z “ IdF paq Let x P F paq. Then

y P z “ IdF paq : ypzpxqq “ ypτxq “ τxa p1aq “ rF p1aqspxq “ 1F paqpxq “ x.

QED

Remark 3.7. A natural transformation is, formally speaking, a formula defin-
ing a class of morphisms.

Remark 3.8. In Lemma 3.6, we fixed an object a and a functor F . We shall
investigate what would happen if we allowed these be variable. It follows then
we need to introduce new notation: we donote the a and F whereupon y from
Lemma 3.6 depends by writing ya,F .

Lemma 3.9 (Yondeda II). Let y “
 

ya,F
ˇ

ˇ a P ObjK^F P ObjSET K
(

, a nat-

ural equivalence of the functors N,E : KˆSET K Ñ SET defined thus

Npa, F q :“ NatpKpa,´q, F q α P Kpa, bq Npα, ρq : Npa, F q Ñ Npb,Gq

Npb,Gq :“ NatpKpb,´q, Gq ρ P NatpF,Gq rNpα, ρqspνq :“ ρ ˝ ν ˝Kpα,´q

Kpa,´q F

Kpb,´q G

ν

Kpα,´q ρ

16



Epa, F q :“ F paq Epb,Gq :“ Gpbq Epα, ρq :“ ρb ˝ F pαq “ Gpα ˝ ρaq

Proof. The following proof shall not be examined. From theorem [3.6], we
already know ya,F is a bijection, and hence an isomorphism in SET , for every
a P ObjK, F : K Ñ SET . Hence, it only remains to show it satisfied the
compatibility-conditions.

Let τ P Npa, F q. Then Epα, ρqpya,F pτqq “ Epα, ρqpτap1aqq “ ρb˝τb˝Kpa, αqp1aq “
rρb ˝ τbspαq.

To see the lower triangle in the following diagram is correct, write:

yb,GpN ˚ pα, ρqpτqq “ yb,Gpρ ˝ τ ˝Kpα,´q
loooooooomoooooooon

PNpb,Gq

q “ pρ ˝ τ ˝Kpα,´qqbp1bq “ rρb ˝ τb ˝ Kpα, bq
loomoon

“Kpα,´qb

sp1bq “ rρb ˝ τbspαq

Npa, F q Epa, F q “ F paq

SET

Npb,Gq Epb,Gq “ Gpbq

Npα,ρq Epα,ρq

ya,F

yb,G

QED

Remark 3.10. In practice, Yoneda’s lemma allows us, given a formula defining
a natural transformation and a set, to uniquely assign an element of the set; it
gives us a twofold way of doing this constructively.

Definition 3.11 (Yoneda’s Embedding). Let K be a category. Then Yondeda’s
embedding is a functor Y : Kop Ñ SET K defined by a P ObjK, α P Kpb, aq,

Y : a ÞÑ Kpa,´q α ÞÑ Kpα,´q : Kpa,´q Ñ Kpb,´q.

Remark 3.12. Sometimes, Yondeda’s embedding is defined as Ỹ : KÑ SET K
op

by Ỹ paq :“ Kp´, aq. This is done so because SET K
op

is rather important; it is
called the quasicategory of presheaves.

Remark 3.13. Yoneda’s embedding is a vast generalisation of Cayley’s theorem
from Group Theory

G ãÑ SpGq.

Theorem 3.14 (Yoneda’s Embedding Is an Embedding). Yoneda’s Embedding
Y is a full and injective.

Proof.

17



(1) Y is injective on objects, since given any two distinct a, b, Kpa, aq X
pKpb, aq “ H, the former of which is nonempty since 1a P Kpa, aq. Recall

Y paq “ Kpa,´q Y pbq “ Kpb,´q

(2) Y is faithful, since given any β ‰ α P Kpb, aq

Y pαq “ Kpα,´q rY pαqsap1αq “ α

Y pβq “ Kpβ,´q rY pβqsap1βq “ β

because rKpα,´qsa “ Kpα, aq and Kpα, aqp1aq “ 1a ˝ α “ α and likewise
for β. Hence Y pαq ‰ Y pβq.

(3) Y is full. We shall show that for any τ : Kpa,´q Ñ Kpb,´q there is a
suitable α P Kpb, aq such that τ “ Kpα,´q. From the proof of Theorem
3.6, take τ “ τα for some α P F paq “ Kpb, aq.

ταc pβq “ rF pβqspαq “ rKpb, βqspαq “ β ˝ α,

where β P Kpa, cq.

Note

rKpα,´qsc : Kpa, cq Ñ Kpb, cq

b ÞÑ β ˝ α

QED

Definition 3.15 (Universal Pair). Let F : KÑ SET be a functor. Then pa, xq,
where a P ObjK and x P F paq is said to be a universal pair2 of the functor F if
for each pb, yq where b P ObjK, y P F pbq there exists a unique α P Kpa, bq such
that rF pαqspxq “ y.

a b

x y

α

F pαq

F

Theorem 3.16 (Representable Functor Equivalent Conditions). Let F : K Ñ
SET be a functor. Then the following are equivalent:

(1) F has a universal pair.

(2) There exists a P ObjK such that Kpa,´q is naturally equivalent with F .

2The term used on Wikipedia and Categories for the Working Mathematician is universal
element.
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Proof. p1q ñ p2q Let pa, xq be a universal pair of F : K Ñ SET . Set for each
b P ObjK,

z : F paq Ñ NatpKpa,´q, F q τxb : Kpa, bq Ñ F pbq

x ÞÑ τx α ÞÑ rF pαqspxq

as we have in the proof of Lemma 3.6, whence we know it is a well-defined
natural transformation. We will show τx : Kpa,´q Ñ F is the desired natural
equivalence. To this end, we need to prove τxb is an isomorphism for each b P
ObjK. The target-category of F,Kpa,´q is SET and thus from Example 1.21,
we know this occurs iff τx is bijective.

Let b P ObjK and v P F pbq. Then

1a P Kpa, aq F paq Q x 1a x

Kpa, bq F pbq Q v α v

τxa

τxb

Note τxa p1aq “ rF p1aqspxq “ x. By virtue of pa, xq being a universal pair, there
exists a unique α P Kpa, bq such that F pαqpxq “ v. Rephrased, v P F pbq has a
unique preimage α P Kpa, bq under τxb . In either case, τxb is bijective.

p2q ñ p1q. Recall the following bijection from Lemma 3.6.

y : NatpKpa,´q, F q Ñ F paq τ ÞÑ τap1aq P F paq

and let τ : Kpa,´q Ñ F be a natural equivalence. Then pa, ypτqq “ pa, τap1aqq
is a universal pair. To see this, let pb, vq P ObjKˆObjSET . Then the desired
unique morphism is α “ τ´1

b pvq. QED

Definition 3.17 (Representable Functor). A functor F : K Ñ SET is said to
be representable if it has a universal pair.

Example 3.18.

(1) Consider the forgetful functor U : T OP Ñ SET . Its universal pair is
pt˚u , ˚q.

(2) Consider the forgetful functor U : GRP Ñ SET . Its universal pair is
ppZ,`,´, 0q, 1q. Observe Up´q » GRPppZ,`,´, 0q,´q.

1

a

Z
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(3) Let U : RngÑ SET be a forgetful functor. Its universal pair is pZrxs, xq

Definition 3.19 (Essentially Surjective Functor). Let F : KÑ H be a functor.
It is said F is essentially surjective or dense if for each b P ObjH there exists
a P ObjK such that F paq » b.

Theorem 3.20 (Split Image Implies Split Preimage under Functors). Let F :
K Ñ H is faithful and full. Then whenever F pαq is a split morphism for some
α P MorK, then α is a like split morphism.

Proof. Let α P Kpa, bq. Suppose F pαq is a section; it is the right inverse of some
β P HpF pbq, F paqq— β ˝F pαq “ 1F paq. Since F is full, there is some γ P Kpb, aq
such that F pγq “ β,

F p1aq “ 1F paq “ F pγq ˝ F pαq “ F pγ ˝ αq

and since F is also faithful, we have 1a “ γ ˝α whence α is a section. The dual
statement about retractions follows by the symmetry of our argument. QED

Remark 3.21. Theorem 3.20 is a complementary statement to Lemma 2.11.

Definition 3.22 (Skeleton). Let K be a category and S Ď ObjK. It is said S
is a skeleton of K if

(1) p@a, b P Sqpa ‰ bÑ a fi bq.

(2) p@a P ObjKqpDb P Sqpa » bq.

Example 3.23. In SET , the class of all cardinal numbers is a skeleton.

Remark 3.24. The proposition ‘every category has a skeleton’ is equivalent to
the Axiom of Global Choice. This axiom if consistent with ZFC and Goedel-
Bernay’s Axiomatisation.

Remark 3.25. If F : K Ñ H is a full, faithful, and essentially surjective
functor, then for any skeleton S Ď ObjK, the class F pSq “ tF psq, | s P Su is a
skeleton of the category H.

Proof. The first condition in the definition of a skeleton follows from The-
orem 3.20 and the second from F being essentially surjective. QED

Definition 3.26 (Category Equivalence). Let K, H be categories. It is said
K is equivalent with H, written K » H if there exist functors F : K Ñ H and
G : HÑ K such that G ˝ F » IdK and F ˝G » IdH.3

Remark 3.27. We have now two notions of ‘»’. One sense is the one we
have just now defined, and the second as isomorphism between two objects of
a category. If we considered then a category of categories, these two notions
would merge.

3‘»’ denotes a natural equivalence.
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Theorem 3.28 (Category Equivalence). Let K,H be categories. Then K » H
iff there exists F : KÑ H which is faithful, full and essentially surjective.

Proof. pðq We shall need to assume the existenece of a skeleton S. Assume
then S is a skeleton of ObjK. Let F : K Ñ H be faithful, full and essentially
surjective, by Theorem (above supershort proof). For each b P ObjH, let sb P S
be the only objects for which F psbq » b. Fix an isomorphism ιb : b Ñ F psbq.
Define G : HÑ K as follows

(1) For b P ObjH we put Gpbq “ sb.

(2) For β P Hpb, cq let Gpβq : sb Ñ sc be the only one such that F ˝ Gpβq “
ιc ˝ β ˝ ι

´1
b .

F psbq b

F pscq c

β

ιc

ιb

Is G a functor? Gp1bq is the only one such that F pGp1bqq “ ιb ˝ 1b ˝ ι
´1
b “ 1b

and therefore Gp1bq “ 1Gpbq “ 1sb .

Likewise Gpγ ˝βq “ Gpγq˝Gpβq iff F ˝Gpγ ˝βq “ F pGpγq˝Gpβqq “ F ˝GpγqF ˝
Gpβq.

ιb : b Ñ F ˝ Gpbq and ι :“ tιb | b P ObjHu. We claim that ι is a natural
rquivalence. ι : IdH Ñ F ˝G. We know ιb are isomorphisms for each b P ObjH.
It remains to verify the natural transformation conditions.

b F ˝Gpbq

c F ˝Gpcq

β

ιb

ιc

F˝Gpβq“ιc˝βιb
´1

Upper Triangle: ιc ˝ β ˝ ι
´1
b ˝ ιb “ ιc ˝ β. Lower Triangle: ιc ˝ β.

It remains to define natural equivalence τ : Idκ Ñ G ˝F . The map τa is defined
as the only morphism from Kpa,GF paqq for which F pτaq “ ιF paq : F paq Ñ
F psfpaqq “ F pG ˝ F paqq; τa :“ F´1pιF paqq.

a G ˝ F paq “ sF paq

a1 G ˝ F pa1q “ sF pa1q

G˝F pαqα

τa1

τa
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The fact this diagram commutes shall be proven by applying F and showing
this new square commutes, this works because F is full and faithful.

F paq F
`

sF paq

˘

F pa1q F
`

sF pa1q

˘

F pαq

ιF pa1q

ιF paq

F˝GpF pαqq

Which commutes since ι is a natural transformation.

pñq Let F : K Ñ H, G : H Ñ K satisfy the conditions from the definition. of
K » H. We need to show F is full, faithful and essentially surjective.

Faithful.

a G ˝ F paq

a1 G ˝ F pa1q

τa

G˝F pαq“τa1 ˝α˝τ´1
a

α

τa1

β

τ : IdK Ñ G ˝ F is a natural equivalence. Recall then τa, τa1 are isomorphisms.
Then G ˝ F pαq “ τa1 ˝ α ˝ τ´1

a and τa1 ˝ β ˝ τ´1
a implies G ˝ F pαq ‰ G ˝ F pβq ñ

F pαq ‰ F pβq.

Esssentially Surjective. ι : IdH Ñ F ˝ G is a natural equivalence. p@b P
ObjHq : bÑ F pGpbqq mapped by ιb is an isomorphism.

By symmetry, G is faithful and G is essentially surjective.

Full.

a G ˝ F paq

G ˝ F paq G ˝ F ˝G ˝ F paqτG˝F paq

τa G˝F pτaq

τa

G ˝ F pτaq ˝ τa “ τG˝F paq ˝ τa. This implies G ˝ F pτaq “ τG˝F paq.

Let a, a1 P ObjK, γ P HpF paq, F pa1qq. We are looking for α P Kpa, a1q such that
F pαq “ γ. Set α “ τ´1

a1 ˝Gpγq ˝ τa. It suffices to show G ˝ F pαq “ Gpγq. Since
G is faithful, this implies F pαq “ γ.

22



a G ˝ F paq

a1 G ˝ F pa1q

Gpγq

τa1

α?

τa

G ˝ F pαq “ G ˝ F pτ´1
a1 ˝Gpγq ˝ τaq “ G ˝ F pτ´1

a1 q ˝GFGpγ ˝GF pτaq “ τ´1
GF pa1q ˝

GFGpγq ˝ τGF paq “ Gpγq.

G ˝ F paq G ˝ F ˝G ˝ F paq

G ˝ F pa1q G ˝ F ˝G ˝ F pa1q

Gpγq G˝F˝Gpγq

τG˝F pa1q

τG˝F paq

QED

Example 3.29. Is there a set equivalent with SET op? We have already en-
countered the contravariant functor P´ : SET Ñ SET in Example 2.7. Let us
view it as P´ : SET op Ñ SET . Recall P´paq “ Ppaq and let α P SET pa, bq
and x Ď b. Then

P´pαq : Ppbq Ñ Ppaq

x ÞÑ α´1pxq Ď a.

Let P be a complete subcategory of SET whose objects are of the form Ppxq
for each x P SET .

Then P´ is faithful (even invertible) and essentially surjective on P. The functor
P´ : SET op Ñ P, however, is not full. To correct this, we restrict P only to
morphisms preserving unions, intersections, the emptyset, and complements; if
we take the subcategory B Ď P, ObjB “ ObjP with fewer morphisms, then
P´ : SET op Ñ B witnesses SET op » B.
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4 Limits & Colimits

Notation 4.1. For categories K,H, and object a P ObjH, we define ∆a : KÑ
H, a constant functor onto a by

∆apbq “ a for all b P ObjK∆apβq “ 1a for all β P MorK .

Definition 4.2 (Diagram, Scheme, Cone, Limit).

(1) By a diagram in the category K, we understand the functor M : D Ñ K,
where D is a small category; D is termed the diagram scheme of M

(2) By the cone of diagram M : D Ñ K we understand the pair pa, pq, where
a P ObjK and p P Natp∆a : D Ñ K, Mq. In this context, a is termed the
apex of the cone pa, pq.

∆apdq ∆apd
1q a

Mpdq Mpd1q Mpdq Mpd1qMpαq

pd pd1

∆apαq

Mpαq

pd pd1
Simplified

(3) A cone pa, pq of a diagram M : D Ñ K is termed the limit of the diagram
M if for every cone pb, qq of the diagram M , there exists a unique α P
Kpb, aq such that p@d P ObjDq qd “ pd ˝ α. We write pa, pq “ limM . The
components pd : aÑMpdq are termed limit projections.

b

a d

α qd

pd

Remark 4.3 (Properties & Further Terminology). What does it mean for pb, qq
to be a cone? For all d, d1 P ObjD and p@λ P Dpd, d1qqM ˝ qd “ qd1 .

a Mpdq

Mpd1q

Mpλq

qd

qd1

The term cone was motivated by the following image
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a

Projections

b
D!α

Exercise 4.4. If pa, pq, pb, qq are limits of diagram M , then a, b are isomorphic.

Solution. By definition, there exists α P Kpb, aq and thus β P Kpa, bq such that
p@d P ObjDq qd “ pd ˝α and pd “ qd ˝β. Then pd “ pd ˝ pα˝βq for all d whence
α ˝ β “ 1a since pd “ pd ˝ 1a holds and 1a is unique by definition of a limit.
Proceed by analogy for β ˝ α “ 1b. QEF

Theorem 4.5 (Morphisms Are Determined by Cone-Projections). Let pa, pq be
a limit of the diagram M and α, β P Kpc, aq. Then α “ β iff p@d P ObjDq pd ˝
α “ pd ˝ β.

Proof. pñq Trivially. pðq Consider the cone

pc, tpd ˝ α | d P ObjDuq “ pc, tpd ˝ β | d P ObjDuq

ofM . Observe it indeed is a cone: the morphisms pd˝α and pd˝β are components
of a natural transformation as evidenced by the following commutative diagram
for δ P Dpd, d1q:

∆cpdq ∆cpd
1q

∆apdq ∆apd
1q ∆apdq ∆apd

1q

Mpdq Mpd1q Mpdq Mpd1q
Mpδq

pd

Mpδq

pd

α or β α or β

∆cpδq

∆apδq

pd1 pd1
New Cone

By definition of a limit, there exists a unique γ P Kpc, aq such that p@d P
ObjDq pd ˝ α “ pd ˝ γ and pd ˝ β “ pd ˝ γ whence α “ β “ γ. QED

Remark 4.6. The dual notions of cone and limit are cocone and colimit which
are defined by analogy.

In greater detail, the cocone of the diagram M : D Ñ K is the pair pa, iq where
a P ObjK, and i is a natural transformation from M to ∆a. In the definition
of a colimit α maps the apex of a colimit cone to the apex of a general cocone.
id is a colimit injection.
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Definition 4.7 (Terminal & Initial Objects). The (apex of the) limit of a
diagram with an empty schema is termed a terminal object of the category K.
In practice, an object t is terminal if for every a P ObjK there exists a unique
morphism α P Kpa, tq.

Dually, one defines the initial object as the colimit of a diagram with a nonempty
schema. In practice, an object i is initial if for every b P ObjK, there exists a
unique α P Kpi, bq.

Lastly, a null object is an object which is both initial and terminal, denoted 0.

We define a zero morphism from α to β by α
D!
Ñ 0

D!
Ñ β.

Definition 4.8 (Equalisation & Equaliser). Let α, β P Kpa, bq and take the
scheme D defined by the diagram

‚ ‚

λ

λ1

We say that γ P Kpc, aq equalises α and β if α ˝ γ “ β ˝ γ. This is equivalent
to saying pc, tγ, α ˝ γuq is the cone of a diagram M : D Ñ K such that Mpxq “
a,Mpyq “ b,Mpλq “ α,Mpλ1q “ β.

By the equaliser of α and β, written eqpα, βq we understand γ P Kpc, aq such
that pc, tγ, α ˝ γuq “ limM .

More explicitly, an equaliser is a morphism γ P Kpc, aq equalising morphisms
α ˝ γ “ β ˝ γ and such that given any object o P ObjK and any morphism
µ : oÑ a, if m equalises α and β, then there exists a unique morphism ν : oÑ c

such that γ ˝ ν “ µ.

c a b

o

γ

ν µ

α

β

By changing the direction of equalisation, we obtain the notion of a coequaliser.

Definition 4.9 (Product). Let M : D Ñ K be a diagram and D be discrete.
A limit of M is termed a product, denoted

ś

dPObjDMpdq or d1 ˆ ¨ ¨ ¨ ˆ dn if
ObjD is finite.

Less generally, this means that given two objects a, b P ObjK, a product of a
and b, denoted a ˆ b, equipped with a pair of morphisms πa : a ˆ b Ñ a and
πb : aˆbÑ b— the only components of the natural equivalence wherewith aˆb
forms a limit of M — such that for every object c and every pair of morphisms
α : cÑ a, β : cÑ b— a cone pc, tα, βuq ofM — there exists a unique morphism
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γ : c Ñ a ˆ b — the unique morphism guaranteed to exist between the limit
paˆ b, tπa, πbuq and the cone pc, tα, βuq by definition of a limit — such that the
following diagram commutes:

c

a aˆ b b

α β

πa πb

γ

Example 4.10.

(1) Let D be discrete with at least one object. In this setting, a limit is called a
product whose apex is denoted

ś

dPObjDMpdq, where for each d P ObjD,
the limit projection pd :

ś

dPObjDMpdq ÑM ˚ pdq. In SET , T OP, GRP,
MOD´T the product is the Cartesian product on the respective settings.

Dually, we define colimits and coproducts. The apex is denoted

ś

.

In SET this corresponds with disjoint unions. p@d P ObjDqMpdq P
ObjSET .

śdP...Mpdq “
Ť

tMpdq ˆ tdu | d P ObjDu.

In groups, this corresponds with free product denoted ˚dP...Mpdq. In
AB,MOD ´R we have the product

À

dP...Mpdq.

(2) In SET , eqpα, βq “ ptx P Domα |αpxq “ βpxqu , tγ, α ˝ γuq, where γ is an
identical embedding into a.

In GRP, the apex of eqpα, βq is likewise a group. In AB,the apex of
eqpα, βq is Kerpα´ βq.

Coequalisers in SET :

a b c
α

β

γ

γ ˝ α “ γ ˝ β. R Ď bˆ b,R “ tpαpxq ă βpxqq |x P au. Let R˚ be the least

equivalence on b containing R; c :“ bäR˚, γpyq “ rysR˚ .

Definition 4.11 (Kernel). If K has a null object, then eqpα, 0q “ Kerα, the
kernel of α. Note 0 stands for the null morphism. Dually, the cokernel is defined
by coeqpα, 0q “ Cokerα.

Definition 4.12 (Pullback). Suppose D is a diagram scheme of the form:

z

x y

λ λ1

Then the limit of the diagram M : D Ñ K is termed pullback ; pl, pq “ limM .
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l b

l1

a c

py

β

α

px

α qy

The dual term is pushout ; it is the colimit of M : D Ñ K.

z

x y

λ λ1

Exercise 4.13. Let pl, tpx, pyuq be a pullback. If α is a monomorphism, then
py is likewise monic.

a c

l b

α

py

βpx

Definition 4.14. Let diagram scheme D be thin, ordered, and upwardly closed
(nahoru usporadana) and pP,ďq be a partially ordered set with the property
p@x, y P P qpDz P P qx ď z ^ y ď z.

Then the limit of M : Dop K is said to be the inverse limit, written limÐ. The
colimit of M is said to be a direct colimit, written limÑ.

Example 4.15. The following two examples are, in a sense, the same.

(1) Consider the setting pN,ďq and set ObjD “ N, a, b P N and a ď b ô
|Dpa, bq| “ 1.

M : D Ñ AB

a ÞÑ
1

a1
P Z ď Q

Observe Q is the apex of the colimit of M , since

Q “
ď

aPN

1

a!
Z

Z Ď
1

2
Z Ď

1

6
Z Ď ¨ ¨ ¨ Ď Q.

We have colimM “ pQ, i “ ti1 | a P Nuq

28



(2) Consider the diagram

N : D Ñ AB

a ÞÑ Z

αba ÞÑ ¨
b!

a!

Z Z Z ¨ ¨ ¨¨2 ¨3 ¨4

Then colimN “ pQ, jq where ja : Z » 1
a!
Z “ Q.

Example 4.16. Let M : Dop Ñ T OP.

p@a P NqMpaq “ tz P C | }z}u ...

Definition 4.17 (Finite Category). A category K is said to be finite if both
ObjK and MorK are finite sets.

Definition 4.18 ((Finitely) Complete Category). A category is said to be (fi-
nitely) complete if all (finite) limits exist — if the limits of all diagrams with
any (finite) schemes exist. The dual notion is (finite) cocompleteness.

Theorem 4.19 (Maranda). A category K is (finitely) complete iff it has all
(finite) products and equalisers

Proof.

ñ Trivial.

ð Let M : D Ñ K be a diagram and Do and Dm be discrete categories with
ObjDo “ ObjD and ObjDm “ MorD.

Define the functor Cod

Cod : Dm Ñ D0

α ÞÑ Codα

p1α ÞÑ 1Codαq

Set N : Do Ñ K by

Npdq “Mpdq for each d P ObjDo.

Our working category K admits all products whence it admits in particular

pt, pq
def
“ limN ps, qq

def
“ limpN ˝ Codq

t “
ź

dPObjD

Mpdq s “
ź

λPMorD

MpCodpλqq.
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Lastly, define the cones

k1
def
“ pt, tpCodλ : tÑMpCodλqq |λ P ObjDmuq

k2
def
“ pt, tMpλq ˝ pDomλ : tÑMpCodλq |λ P ObjDmuq

The latter elements in these ordered pairs really do define a natural trans-
formation since the appropriate compatibility-conditions are met trivially
— the set of morphisms on which they should be verified is empty.

Observe

Mpλq : DomMpλq “MpDomλq ÑMpCodλq “ CodMpλq.

Since ps, qq “ limpN ˝ Codq, there exist uniquely determined morphisms
α, β P Kpt, sq such that

p@λ P MorDq qλ ˝ α “ pCodλ

qλ ˝ β “Mpλq ˝ pDomλ.

Set eqpα, βq “ pl, tγ, α ˝ γuq.

l t sγ

α

β

We claim that

limM “ pl, πq where πd “ pd ˝ γ for each α P ObjD.

We have defined all we needed, we shall now verify our constructions to
prove the claim. Denote L “ pl, πq.

L is a cone. We first check pl, πq is a cone of the diagramM ; for every λ P Dpd, d1q
we need to check

pqλ˝β˝γ “Mλ˝pd˝γ “qMpλq˝πd
?
“ πd1p“ pd1˝γ “ pCodλ˝γ “ qλ˝α˝γq.

Since γ equalises α, β, we obtain qλ ˝α ˝ γ “ qλ ˝β ˝ γ, where π
1
d “ α

and β “Mpλq ˝ πd. Hence L is a cone.

L is a limit. Let pl1, ρq be the cone of the diagram M . Then pl1, ρq is also the
cone of the diagram N (which contains only a fraction of information
stored by M). There exists, therefore, a unique morphism δ : l1 Ñ t

such that pd ˝ δ “ ρd.

We can see that δ equalises α, β since α ˝ δ “ β ˝ δ holds iff for each
λ P MorD

pρCodλ “ pCodpλq ˝ δ “q

qλ ˝ α ˝ δ “ qλ ˝ β ˝ δ

p“Mpλq ˝ pDomλ ˝ δ “Mpλq ˝ ρDomλq
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by theorem ??.

But ρCodλ “ Mpλq ˝ ρDomλ holds since pl1, ρq is the cone of the
diagram M .

δ equalises α, β whence there exists a unique ǫ P Kpl1,1 qq γ ˝ ǫ “ δ.
Then πd ˝ ǫ “ ρd “ pd ˝ δ “ pd ˝ γ ˝ ǫ for each d P ObjD.

ǫ is the only morphism from Kpl1, lq with this property.

QED

Remark 4.20. The proof of Theorem 4.19 may serve as a template for con-
structing limits in ‘concrete’ categories. For example, in AB and RNG with a
prime p

¨ ¨ ¨ Zp3 Zp2 Zpf1f2f3

where fi is defined as taking the argument modulo pi. The limit of such a
diagram is Jp “

 

g P
ś8
i“1 Zpi

ˇ

ˇ p@i P Nq fi ˝ gpi` 1q “ gpiq
(

, the set of all p-
adic numbers.

The product
ś

i“1 Zpi would be our t from the proof of Theorem 4.19.

Remark 4.21. The dual version for colimits, coproducts, and coequalisers in
Theorem 4.19 holds.

Theorem 4.22 (Mitchell). The category K has all limits iff it has all products
and pullbacks.

Proof. pñq Trivial since a pullback is a special case of a limit.

pðq We shall use Theorem 4.19. Suppose we have

l a bαβeqpα,βq

We are trying to find eqpα, βq. Consider the product paˆb, pq where p “ tpa, pbu,
where pa : a ˆ b Ñ a and pb : a ˆ b Ñ b. This is a little bit formally unwieldy,
since if a “ b, then these two morphisms are named the same even if they are
different.

Consider the morphisms γ, δ : aÑ aˆ b, where

pa ˝ p “ pa ˝ δ “ 1a pb ˝ γ “ δ, pb ˝ δ “ β

Observe these equalities uniquely determine them since we have defined them
on all cone-projections as per Theorem 4.5. Moreover, pa, t1a, αuq, pa, t1a, βuq
are cones of the product-diagram.
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l a b

aˆ b

α

β

eqpα,βq

pbpa
δ

δ

Consider the following pullback:

l a

a aˆ b

γ

δ

qδ

qγ

Then qγ “ pa ˝ pδ ˝ qpq “ pα ˝ γqδ “ qδ. Let q :“ qδ. We claim q : l Ñ a is an
equaliser of the morphisms α, β.

(1) α ˝ q “ pb ˝ γ ˝ q “ pb ˝ δ ˝ q “ β ˝ q.

(2) q1 : l1 Ñ a equalises the morphisms α, β. We will show γ ˝ q1 “ δ ˝ q1 on
the limit (product) projections whence they will be equal by theorem ???.

pa ˝ γ
loomoon

1a

˝q1 “ q1 “ pa ˝ δ
loomoon

1a

˝q1pb ˝ γ ˝ q
1 “ α ˝ q1 “ β ˝ q1 “ pb ˝ δ ˝ q

1

Since l1 is the apex of the pullback-cone, and thus by definition of a pull-
back, there exists a unique morhpism ǫ : l1 Ñ l such that q ˝ ǫ “ q1. We
have verified q “ eqpα, βq.

QED

Exercise 4.23. Show that a category has finite limits iff it has a terminal
objects and all pullbacks.

4.1 Complete Small Categories

Example 4.24. Let K be a thin, small category. Is K complete? K has all
equalisers since all are of the form

a a b
1a α

α

and eqpα, αq “ 1a. It also has all products in K: Consider the coneM : D Ñ K,
where D is discrete. In the special case D “ H: we have the terminal object t,
which is the greatest (up to isomorphism) in ObjK as quasi-ordered set by the
relation ‘an arrow leads to me from X’.
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More generally,
ś

dPObjDMpdq “ inf tMpdq | d P ObjDu up to isomorphism, if
it exists.

It follows by 4.19, K is complete iff K has all infima including infH “: the
greatest element up to isomorphism.

Let S Ď ObjK be a skeleton. S determines a complete subcategory S, termed
a skeletal subcategory, where ObjS “ S. Note S, S are ordered sets. Although,
S Ď K, S,K are equivalent categories. To see this, note Id : S Ñ K is an
identity-embedding as it is injective, faithful, full, and essentially surjective.

It follows then K is complete iff S is complete. An ordered set with all infima
is termed a complete lattice.

Observe complete lattices have all suprema. Conversely, the ordered set with
all suprema is a complete lattice.

Proof. We shall prove only the first claim. X Ď L and

supX “ inf ty P L | p@x P Xqx ď yu .

Note every y is an upper bound of X. QED

As a corollary, we know a thin category is complete iff it is cocomplete.

Exercise 4.25. Let K,H be thin, small categories, which ‘are’ ordered sets.
Then K » H iff these ordered sets are isomorphic.

Note both K and H are their own skeletons; they are skeletal categories.

Theorem 4.26. Let K be a small category. Then the following are equivalent:

(1) K is complete/cocomplete.

(2) K has all products/coproducts.

(3) K is thin and equivalent with a complete lattice.

Proof. p1q ñ p2q Trivial. p3q ñ p1q Example 4.24 p2q ñ p3q. We only need to
show K is thin in view of ???. Towards a contradiction, suppose there are α, β :
aÑ b in K where α ‰ β. Denote D a discrete category, where ObjD “ MorK.
Let M : D Ñ K be defined by p@d P ObjDqMpdq :“ b; i.e. M “ ∆b. Denote
limM “ ps, pq, where s P ObjK.

For each Y Ď MorK let γY : aÑ s be defined on its projections by

pd ˝ γY “

#

α if α P Y

β otherwise

For Y,Z Ď MorK such that Y ‰ Z, we have γY ‰ γZ . Let, for example,
d P Y zZ, then pd ˝ pY “ α ‰ β “ pd ˝ γZ .
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The set MorK Ě Kpa, sq Ě tγY |Y Ď MorKu is a set comprising more morph-
isms than are in MorK. We are using Cantor’s theorem which states the power-
set of a set has a greater cardinality than the original set. The argument we
have employed has in fact a hidden diagonal argument. QED

Definition 4.27 (Bicomplete Category). A category K is said to be bicomplete
if it complete and cocomplete.

Example 4.28.

(1) Bicomplete Categories. SET ,AB,MOD ´ R,GRP ,DAB. Note that
DAB has different equalisers (and kernels) to AB.

(2) Let K be the thin category of all ordinal numbers. K is cocomplete, but
not complete. The coproduct of two ordinal products is their supremum.
The reason why the category is not complete is that there is no terminal
object; i.e. there is no largest ordinal number.

(3) Let R be a non-Noetherian commutative ring (e.g. R “ Qrx1, x2, . . . s),
then K has all products, but it does not have kernels (equalisers).

5 Limit & Colimit Invariance

Lemma 5.1. Let M : D Ñ K be a diagram with a cone pa, pq and a functor
F : KÑ H, then pF paq, Fp “ tF ppdq | d P ObjDuq is a cone of D Ñ H.

Proof. Note Fp : F ˝∆a Ñ F ˝M and F ˝∆a “ ∆F paq : D Ñ H. QED

Definition 5.2 (Limit Preservation). Let M : D Ñ K be a diagram with
limM “ pa, πq and F : K Ñ H be a functor. It is said F preserves the limit
pa, πq if pF paq, Fπq “ limpF ˝Mq.

Moreover, F is said to preserve limits, products, or equalisers if it preserves all
limits, products, or equalisers respectively.

Theorem 5.3. Let M : D Ñ K be a diagram.

(1) If N : D Ñ K is another diagram naturally equivalent with M by µ :M Ñ
N , then given any limit pa, πq of M , the cone pa, µ ˝ πq is a limit of N .

(2) If F,G : K Ñ H are naturally equivalent functors and pa, πq “ limM ,
then F preserves pa, πq iff G preserves pa, πq.

Proof.
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(1) The pair pa, µ ˝ πq is clearly a cone of N as evidenced by the following
diagram.

a

Mpdq Mpd1q

Npdq Npd1q

πd πd1

µd µd1

Mpαq

Npαq

We will show it is a limit. By the same token, if pb, ρq is any cone of N ,
then pb, µ´1 ˝ ρq is a cone of M . Since pa, πq “ limM , there is a unique
α P Kpb, aq such that

p@d P ObjDqπd ˝ α “ µ´1
d ˝ ρd ñ p@d P ObjDq

pµ˝πqd
hkkkikkkj

pµd ˝ πdq ˝α “ ρd

ñ pa, µ ˝ πq “ limN.

(2) The claim’s symmetry allows for only one implication being shown to
prove equivalence. Let ι : F Ñ G be a natural equivalence and F preserve
pa, πq; i.e. pF paq, Fπq “ limpF ˝Mq. The fact ιM : F ˝M Ñ G ˝M is a
natural equivalence follows from the diagram below.

Putting µ :“ ιM in (1) yields

pF paq, ιM ˝ Fπq “ limpG ˝Mq.

Writing out explicitly the components of the natural transformation above
gives

ιM ˝ Fπ “
 

ιMpdq ˝ F pπdq
ˇ

ˇ d P ObjD
(

,

where ιMpdq ˝F pπd “ Gπd ˝ ιa (as seen in the diagram), whence (recalling
ιa is an isomorphism and hence invertible)

limpG ˝Mq “ pF paq, ιM ˝ Fπq

“ pF paq, tGπd ˝ ιa | d P ObjDuq

“ pGpaq, Gπq.

Mpd1q FMpd1q GMpd1q

a F paq Gpaq

Mpdq FMpdq GMpdq

πd1

πd

F ιMpdq

ιMpd1qF

Mpδq FMpδq GMpδq

Gπd

Gπd1Fπd1

Fπd

ιa

F
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QED

Theorem 5.4. Let K be a category. For any c P ObjK we denote Fc : K Ñ
SET functor Kpc,´q. Let pa, πq be a cone of the diagram M : D Ñ K. Then
pa, πq “ limM iff p@c P ObjKq pFcpaq, Fcπq “ limpFc ˝Mq.

Proof. pðq We shall show from definition that pa, πq “ limM . Let pb, ρq be
any cone of M . By assumption, pFbpaq, Fbπq “ limpFb ˝Mq. At the same time
pFbpbq, Fbρq is a cone of Fb˝M . There exists then a unique g P SET pFbpbq, Fbpaqq
such that Fbpπdq ˝ g “ Fbpρdq for every d P ObjDq. Recall Fbpbq “ Kpb, bq Q 1b.

Set α :“ gp1bq P Kpb, aq. We will show α is the only such that πd ˝ α “ ρD for
every d P ObjD.

(1) For d P ObjD we have πd ˝ α “ πD ˝ gp1bq “ Kpb, πdqpgp1bqq “ pFbpπdq ˝
gqp1bq “ Fbpρdqp1bq “ ρd ˝ 1B “ ρd.

(2) Uniqueness. If α1 ‰ α were such that p@d P ObjDqπd ˝ α
1 “ ρd, then

g1 P SET pFbpbq, Fbpaqq such that G1p1bq “ α1, g1pxq “ gpxq for x ‰ 1b,
satisfies Fbpπdq ˝ g

1 “ Fbpρdq. A contradiction with the uniqueness of g.

pñq Suppose pa, πq “ limM . We will show that for each c P ObjK, Fc preserves
pa, πq such that pFcpaq, Fcπq “ limpFc ˝Mq. Let ps, σq be a cone of the diagram
Fc ˝M .

We define α P SET ps, FCpaqq elementwise. For any x P s and any d P ObjD we
consider σd : sÑ FcpMpdqqKpc,Mpdqq, more precisely σdpxq P Kpc,Mpdqq.

We claim pc, tσdpxq | d P ObjDuqis a cone of the diagram M . We will verify the
compatibility conditions hold.

@λ P Dpd, d1qMpλq ˝ σdpxq?“σd1pxq.

Since σ is a natural transformation,we know that @λ P Dpd, d1qpFc˝Mqpλq˝σd “
σd1 . But pFC ˝Mq “ FcpMpλqq˝σdxPsñFcppλqqpσdpxqq “ mpλq˝σdpxq “ σd1pxq.

Thus indeed Mpλq ˝ σdpxq “ σd1pxq.

Since pa, πq “ limM , there exists a unique αpxq P Kpc, aq such that πd˝pαpxqq “
σdpxq for every d P ObjD. Since x P s was arbitrary, we have thus defined some
α P SET ps, Fcpaqq. For any d P ObjD, then

p@x P sqpFcpπdq ˝ αqpxq “ Fcpπdqpαpxqq “ πd ˝ pαpxqq “ σdpxq. (1)

It remains to show α P SET px, Fcpaqq is the only one satisfying Equation (1).

Fcpaq

s

FcMpdq

σd

α

Fcpπdq
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If α P SET ps, FCpaqq were different to α, then there would exist some x P s
such that α1pxq ‰ αpxq, contradicting the definition of αpxq.

Observe that we have a different cone for different x. QED

Corollary 5.4.1.

(1) Representable functors preserve limits (as follows from Theorem 5.4 and
Theorem 5.3)

(2) A functor U : HÑ K preserves limits iff p@c P ObjKq Kpc,´q ˝ U : HÑ
SET preserves limits.

6 Adjoint Functors

We remark the term adjoint functor first appeared in an article ‘Adjoint Func-
tors’ by Dr Kan in TAMS.

Definition 6.1 (Adjoint Functor, Adjunction). Let F : KÑ H and U : HÑ K
be covariant functors. F is termed a left adjoint of U (and conversely U is termed
a right adjoint of F ) if the functors HpF p´q,´q,Kp´, Up´qq : KopˆHÑ SET
are naturally equivalent.

Note HpF,´q is to be interpreted as Hp´,´q˝ pF ˆ IdHq but the intuitive view
is preferable.

By the adjunction of F,U we understand the ordered triple pF,U, φq where
φ : HpF p´q,´q á Kp´, Up´qq is a natural equivalence. The fact is denoted
F %φ U or more briefly F % U .

We shall illustrate this for a natural equivalence φ “ tφa,b | a, b P ObjpKopˆHqu .
Note that since the target-category is SET , φa,b being ismorphisms implies their
being mere bijections (in SET ).

a a HpF paq, bq HpF pa1q, b1q

a1 b1

K H Kpa, Upbqq Kpa1, Upb1qq

φa,b φa1,b1

Kpα,Upβqq

HpF pαq,βq

α β

Example 6.2. Let K “ H “ MODR, where R is a commutative ring. Fix
B P ObjK. Then F % U , where F “ B bR ´, U “ HpB,´q.

Notation 6.3. Let F : K Ñ H be a functor. Then F op : Kop Ñ Hop is a
covariant functor where

p@a P ObjKqF oppaq “ fpaq p@α P MorKqF oppαq “ F pαq.
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Indeed, F op is indistinguishable from F by its assignment of value. We, never-
theless, need to treat them as separate formal entities.

Exercise 6.4. F %φ U ô Uop %φ´1 F op. Note φ´1 exists because φ is a natural
equivalence (and hence is composed of isomorphisms).

Theorem 6.5. Let F : K Ñ H and U : H Ñ K be covariant functors and
F 1, U 1 be naturally equivalent with F,U respectively. Then

F % U ô F 1 % U 1.

Proof. Due to Exercise 6.4, it suffices to prove the claim for F “ F 1. Were it not
so, we could split the proof into two steps: first showing the claim for F “ F 1

and the second for U “ U 1. But in this two-step process, the first demonstration
is sufficient since we could invoke the exercise and be done.

Fix some natural equivalence ι : U Ñ U 1. Note 1ˆι is still a natural equivalence
and consequently we arrive at the following diagram.

Kop ˆH Kop ˆK SET

IdKop ˆU

IdKop ˆU 1

Kp´,´q
1ˆι

Since functors preserve isomorphisms, we obtain the natural equivalence

Kp´,´qp1ˆ ιq “ Kp´, ιq : Kp´, Up´qq Ñ Kp´, U 1p´qq

def
ô F % U 1.

QED

Definition 6.6 (Free Object). Let U : H Ñ K and a P ObjK. The pair
pa1, ηa

Upa1qq P ObjH ˆ ObjK is termed a free object over a with respect to U if

it is the universal element (pair) of the functor Kpa, Up´qq “ Kpa,´q ˝ U .

In greater detail, given any pair pa2, ηa
Upa2qq P ObjH ˆ ObjK there exists a

unique α P Hpa1, a2q such that Kpa, Upαqqrηa
Upa1qs “ ηa

Upa2q.

a1 Upa1q

Kpa, Up´qqr´s a

a2 Upa2q

νa
Upa1q

νa
Upa2q

U

U

!α
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Theorem 6.7 (Characterisation of Adjunction). Let U : H Ñ K be a functor.
Then the following are equivalent.

(1) U is the right adjoint (or admits a left adjoint) of F : KÑ H; F % U .

(2) For each a P ObjK, the functor Kpa, Up´qq is representable (i.e. admits
a universal pair).

(3) There exists F : K Ñ H and η P Natp1K, U ˝ F q such that pF paq, ηaq is a
free object. (Then F % U and η is termed the unit of adjunction).

(3’) There exists F : K Ñ H and ǫ P NatpF ˝ U, 1Hq such that pUpbq, ǫbq
is a universal element of a contravariant functor HpF p´q, bq, for each
b P ObjH (then F % U and ǫ is termed the counit of adjuction).

Proof. p1q ñ p2q Let φ : HpF p´q,´q Ñ Kp´, Up´q be a natural equivalence
(which exists by assumption) and fix some a P ObjK. Then after partial sub-
stitution KpF paq,´q,Kpa, Up´qq are still naturally equivalent functors from H
to SET as one merely fixes one argument, namely a, in the binary components
of φ; denote this natural equivalence ι. We know KpF paq,´q “ Kpa1,´q is
representable functor, whence Kpa, Up´qq is likewise representable.

In fact, if pa1, νa1q is a universal element of HpF paq,´q, the pair pa1, ι´1 ˝ νa1q is
a universal element of Kpa, Up´qq. To see this, let b P ObjH and µ P Kpa, Upbq.
The existence of the unique morphism α : a1 Ñ b is evident from the following
diagram (note it commutes due to the universal property of ι):

a1 a1 Upa1q

F paq Had Got a

b b Upbq

ιpνa1 q

U

U

α

µ

Id

Id

νa1

ι´1pµq

ι

ι

p2q ñ p3q We define F piecewise on objects and on morphisms.

Objects. For every a P ObjK let pF paq, ηaq be a free object over a with respect to
U ; we know it exists since we assume the existence of a universal pair of
Kpa, Up´qq, which is by definition is a free object over a with respect to
U .

Morphisms. For every α : aÑ a1 we define F pαq as the only morphism fromHpF paq, F pa1qq
such that ηa1 ˝α “ UF pαq˝ηa from the definition of a universal pair. Thus,
F is defined on morphisms as well.
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F paq UF paq a a1

Objects Morphisms

Kpa, Up´qqr´s a F paq F pa1q

b Upbq UF paq UF pa1q

F pαq

UU

UF pαq

α

ηa1ηa

F Fηa

µ

U

U

β!

We shall verify F is a functor.

Unity. We want to show F p1aq “ 1F paq. By definition of F , F p1aq P HpF paq, F paqq
is the unique morphism with

pηa “qηa ˝ 1a “ U ˝ F p1aq ˝ ηa.

Clearly ηa “ 1U˝F paq ˝ ηa “ Up1F paqq ˝ ηa by virtue of U being a functor.
The equality Up1F paqq ˝ ηa “ U ˝F p1aq ˝ ηa necessitates F p1aq “ 1F paq by
uniqueness of F p1aq.

Composition. We need to check F pβ ˝ αq “ F pβq ˝ F pαq for an arbitrary β : a1 Ñ a2. It
follows from definition F pβ ˝ αq is the unique morphism with

νa2 ˝ pβ ˝ αq “ U ˝ F pβ ˝ αqηa.

Simultaneously

ηa2 ˝ β ˝ α “ UpF pβq ˝ F pαqq ˝ ηa

“ UF pβq ˝ UF pαq ˝ ηa
looooomooooon

ηa1 ˝α
loooooooooooomoooooooooooon

ηã˝β˝α

.

Thus the uniqueness of F forces the desired equality.

In view of F being a functor, it is clear from the morphisms-diagram above
η “ tηa | a P ObjKu is a natural transformation (for the coloured subdiagram) of
1K and U ˝F . The claim then follows by construction and, therefore, pF paq, νaq
is a free object for every a P ObjK.

p3q ñ p1q We begin with the functors U : H Ñ K, F : K Ñ H and the unit of
adjunction η.

We introduce the system of morphisms φ : HpF p´q,´q Ñ Kp´, Up´qq and
define its components by setting for each pa, bq P KopˆK and each γ P HpF paq, bq,

Kpa, Upbqq Q φa,bpγq “ Upγq ˝ ηa.
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The claim is φ is a natural transformation. To show this, we need to verify
its components are isomorphisms (or rather bijections) and the compatibility
conditions.

We begin with the latter.

HpF paq, bq Kpa, Upbqq

HpF pa1q, b1q Kpa1, Upb1qq

φa,b

HpF pαq,βq Kpα,Upβqq

φa1,b1

œ We have

Kpα,Upβqq ˝ φa,bpγq “ catpα, F pβqqpUpγq ˝ ηaq

“ Upβq ˝ Upγq ˝ ηa ˝ α.

ö Similarly,

φa1,b1pβ ˝ γ ˝ F pαqq “ Upβ ˝ γ ˝ F pαqq ˝ ηa1

“ Upβq ˝ Upγq ˝ UF pαq ˝ ηa1

“ Upβq ˝ Upγq ˝ ηa ˝ α,

where the last equality follows from the coloured diagram.

It remains to show φa,b is a bijection (an isomorphism in SET ); i.e. that for
each δ P Kpa, Upbqq there exists a unique preimage γ such that δ “ Upγq ˝ ηa.

This is guaranteed by virtue of pa, ηaq being free. To see this, take the pair
pb, δq: there exists a unique γ P HpF paq, bq such that Upγq ˝ ηa “ δ.

UF paq

a

Upbq

ηa

δ

Upγq

p1q Ñ p31q Follows from the duality principle; i.e. if we consider instead of
K,H, U their opposites Kop,Hop, Uop.

When dualising, the unit is replaced by the counit and vice versa. QED

Corollary 6.7.1.

(1) The right adjoint preserves limits. The left adjoint preserves colimits.
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(2) Let F : K Ñ H, U : H Ñ K witnesses H,K are equivalent categories.
Then F % U,U % F .

Proof.

(1) Immediately by (2) of Theorem 6.7 coupled with Theorem 5.3 and The-
orem 5.4. In short, we know representable functors preserve limits.

(2) Let η : 1K Ñ UF be a natural equivalence (recall F,U being witnesses for
H » K simply means FU “ 1K and UF “ 1H. Theorem 3.28 implies F,U
are full, faithful and essentially surjective. We wish to show η is a unit of
adjunction of F % U ; i.e. that for each a P ObjK the pair pF paq, ηaq is a
free object. To this end, let pb, µq be arbitrary such that µ P Kpa, Upbqq.

F paq UF paq

Kpa, Up´qqr´s a

b Upbq

νa

µ

U

U

β!

The morphism ηa is invertible and therefore µ ˝ η´1
a P KpUF paq, Upbqq.

The fullness of U implies µ ˝ η´1
a “ Upβq for some β P HpF paq, bq The

faithfulness of U implies such a β is unique.

This proves F % U . The converse implication that U % F follows from
the claim’s symmetry.

QED

Exercise 6.8. Using the units of adjunction, show

pF % U ^ F % Gq Ñ U » G.

Lemma 6.9. The identity-functor 1SET : SET Ñ SET . Its universal pair is
pt˚u , ˚q. Consequently, 1SET » SET pt˚u ,´q.

Theorem 6.10. Let U : H Ñ SET . Then U is the right adjoint iff U is
representable and H admits coproducts

śxPac, where c P ObjH is (some) such
that U » Hpc,´q; for any set a (permissibly empty).

Proof. ñ Let F : SET Ñ H be such that F % U . In particular, s “ t˚u P
ObjSET , whence by Lemma 6.9

HpF psq,´q » SET ps, U´q “ SET ps,´q ˝ U » 1SET ˝ U “ U.
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Set c “ F psq and observe U » Hpc,´q; i.e. U is representable. F preserves
colimits, hence it also preserves coproducts of the form

śxPas, whenceH admits
coproducts

śxPac.

ð is left as an exercise. QED

6.1 Special Cases of Adjunction

Definition 6.11 (Free Functor). Let U : H Ñ K be a forgetful functor (e.g.
H “ GRP and K “ SET or H “ T OPGRP and K “ GRP) Then the left
adjoint of U , if it exists, is termed a free functor of U .

Example 6.12. Let K “ SET and H “ SMG. Then for X P ObjSET , F pXq
is a so-called free group over X. Its elements are words over the alphabet X
and its operations are concatenations of words.

Similarly for H. Instead of words one considers ‘reduced words’ which are words
over the alphabet X YX´1.

Definition 6.13 (Reflective & Coreflective Categories). Let U : HÑ K be an
embedding-functor of the subcategory H into K. If U admits a left adjoint F ,
then F is termed a reflector of U .

Free objects pF paq, ηaq of a P ObjK inH are then termed its reflexions.

Example 6.14.

(1) Let K “ DAB and H “ AB, ǫA : D ãÑ A, where D is the largest divisible
group of A. Then D :“

ř

BďAB.

(2) Let K “ GRP,H “ SYMGRAPH a full subcategory of symmetric
graphs. For the graph pX,Rq its reflexions are of the form ppX,R Y
R´1q, ηpX,Rqq, where ηpX,Rq is the canonical embedding of pX,Rq into
pX,RYR´1q.

(3) Let K “ T ICH be the category of Tychonoff topological spaces and H “
HCOMP be the category of complete Hausdorff spaces.

Let X P Obj T ICH and F pXq “ βX be its ‘beta-cover’.

X F pXq

K

!g

νX

@f

(4) Let K “ UNIF be the category of uniform topological spaces with uni-
formly continuous maps and H “ CUNIF be the category of complete
uniform spaces
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Definition 6.15 (Cartesian-closed Categories). It is said a categoryK is Cartesian-
closed if it admits finite products and the functor F “ ˆ a is a left adjoint for
each a P ObjK. Note F pαq : xˆ aÑ y ˆ a.

Example 6.16.

(1) SET is Cartesian-closed. For any given a “: B P ObjSET , F “ ˆ B is
paired with U “ SET pB,´q. Then F % U :

For X,Y P ObjSET we have SET pX ˆB, Y q » SET pX,SET pB, Y qq, as
witnessed by φX,Y : Y XˆB » pY BqX .

(2) POSET is likewise Cartesian-closed. RGRAPH, the category of reflexive
graphs (i.e. graphs with loops), is likewise Cartesian-closed.

Definition 6.17 (Duality). Let F : K Ñ H, G : H Ñ K. We are interested in
Hop not H. Instead of F,U we may consider the contravariant functors

F̃ : KÑ Hop Ũ : Hop Ñ K

Hop K H
F

U

F̃

Ũ

Recall that for each α P Kpa, a1q, Note F̃ pαq “ F pαq P Hoppa1, aq and F paq “
F̃ paq.

Have the unit and counit of adjunction changed? The unit η : 1K Ñ UF “ Ũ F̃

remains the same.

The counit is changed, however: Let tǫb | b P ObjHu “ ǫ : FU Ñ 1H be the
original counit. Then the new counit tǫ̃b | b P ObjHopu “ ǫ̃ : 1Hop Ñ F̃ Ũp‰ FUq
is given by ǫb “ ǫ̃b.

Ũ F̃ paq

a D!f̂ P Hoppb, F̃ paqq

Ũpbq

@f

ηa

Ũpf̂q

Example 6.18. Using the counit, verify F % U. Hint: ǫ “ pǫY |FUpY q Ñ Y q
(note FUpY q “ SET pB, Y q ˆ B), where ǫY pf, bq “ fpbq, a so-called evaluation
map.

Example 6.19. Let B be a category of complex Banach spaces and linear
continuous maps between them. Let B P ObjB. Put B̃ “ tf | f P BpB,Cqu
(where for f P B̃ we put }f} “ sup}x}ď1 }fpxq}) is dual to B (a linear functional
on B). Think how these act on morphisms through (exercise).

44



We obtain the unit η “ tηB |B P ObjHu such that ηB : B ãÑ ˜̃
B is an embedding.

Note if we considered vectorspaces instead of Banach spaces, we would indeed
get dual vectorspaces (i.e. spaces of linear forms on a vectorspace).

Example 6.20 (Stone Duality). Boolean algebras and Boolean Spaces (com-
pact, Hausdorff, totally disconnected topological spaces)

Example 6.21 (Priestly’s Duality). Priestly’s duality is a duality between dis-
tributive t0, 1u-lattices and Priestly Spaces.
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7 Adjoint Functors Theorem

Definition 7.1 (Quasi-Initial Objects). Let L be a category, and Q Ď ObjL
be a set. It is said Q is a quasi-initial set of objects of L if for each a P ObjL
there exists q P Q such that Lpq, aq ‰ H.

The object q P ObjQ is said to be quasi-initial if tqu is a quasi-initial set (there
is no requirement for uniqueness unlike with initial objects).

Lemma 7.2. If L admits products and a quasi-initial set of objects then it
admits a quasi-initial object.

Proof. Let Q Ď ObjL be quasi-initial. Define s “
ś

qPQ q. Then s is a quasi-
initial object.

s1

q1 s q2 aπq1 πq2

νq2νq1

QED

Example 7.3.

(1) A thin category defined as follows has a quasi-initial set ta, cu but it does
not have a quasi-initial object.

b

a c

(2) Every small category L has a quasi-initial set of objects, namely Q “
ObjL.

Lemma 7.4. If L is a complete category with a quasi-initial set of objects, then
L has an initial object.

Proof. By Lemma 7.2, there is a quasi-initial object s P ObjL. Let D be a full
subcategory of L with ObjD “ tsu (meaning MorD “ Lps, sqq.

Denote M : D Ñ L a full embedding functor; this is a cone (D is small) which
by assumption (L is complete) has a limit limM “ pi, tνuq, where ν : i Ñ s is
a limit projection.

Then ν is a monomorphism

c i sν

α

β
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whence by definition ν ˝ α “ ν ˝ β ñ α “ β (α, β are equal on a (unique) limit
projection).

We claim i is the sought initial object (it clearly is quasi-initial since a morphism
leads therefrom to s which is quasi-initial). Let a P ObjL be arbitrary, and
α, β : iÑ a. We wish toshow α “ β. Consider γ “ eqpα, βq : bÑ i (recall that
all limits exist and, therefore, all equalisers do by Maranda’s Theorem 4.19).

If we prove γ is an epimorphism, then α ˝ γ “ β ˝ γ implies the claimed α “ β.

Let σ P Lps, bq be arbitrary. Then pνγσqν “ ν by definition of ν. Since ν is a
monomorphism, νpγσνq “ ν ˝ 1i ñ γσν “ 1i whence γ is an epimorphism (as
it is a left inverse of the morphism σ ˝ ν and therefore a retraction which is a
particular case of epimorphisms).

s b i a
α

β

γσ

ν

QED

Definition 7.5 (Comma Category). Let F : H1 Ñ K, G : H2 Ñ K be functors.
We define the comma category F1 Ó F2:

Objects. The triple pa1, α, a2q is an object of F1 Ó F2 if ai P ObjHi for i “ 1, 2 and
α P KpF1pa1q, F2pa2qq.

a1 F1pa1q

a2 F2pa2q

F1

F2

α

Morphisms. The pair pµ1, µ2q is a morphism in F1 Ó F2 from the objects pa1, α, a2q to
pb1, β, b2q if µi : ai Ñ bi for i “ 1, 2 with F2pµ2q ˝ α “ β ˝ F1pµ1q.

H1 K H2

a1 F1pa1q F2pa2q a2

b1 F1pb1q F2pb2q b2

F1 F2α

F1 F2β

µ1 F pµ1q µ2F pµ2q

F1 F2

For i “ 1, 2 we shall further denote by Pi : F1 Ó F2 Ñ Hi the left (for i “ 1) and
right pi “ 2q projections; i.e. a functor with Pipa1, α, a2q “ ai, Pipµ1, µ2q “ µi.
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Example 7.6. Suppose H1 “ H2 “ K, F1 “ F2 “ 1K. Then F1 Ó F2 has de
facto morphisms of K as its objects and the pairs pµ1, µ2q for morphisms such
that the following diagram dommutes. Then F1 Ó F2 » KD where D is of the
form ‘self-loop arrow self-loop’.

a1 a2

b1 b2β

µ2µ1

α

Notation 7.7. Let H1 “ 1 be a discrete singleton category: Obj 1 “ t˚u. with

1
F1Ñ K

F2Ð H2.

Set a “ F1p˚q. Then instead of F1 Ó F2 we often simply write a Ó F2, and
instead of p˚, α, a2q P Obj a Ó F2 with α : a Ñ F2paq; we also simply write
pα, a2q P Obj a Ó F2, and instead of p1˚, µ2q simply µ2q.

t˚u K H2

F2pa2q a2

˚ a

F2pb2q b2

F2

F2

µ2F pµ2q

1˚ F2

β

F1

α

Lemma 7.8 (Comma Category Observations).

(1) Let U : H Ñ K, a P ObjK. Then pa1, νaq is a free object over a1 with
respect to U iff pνa, a

1q is an initial object of the category a Ó U .

t˚u K H2

Upa1q a1

˚ a Kpa, Up´qqr´s

Upa2q a2

U

U

µ

1˚ F2

β

F1

νa

Upµq
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(2) Let U : H Ñ K have a left adjoint. Then F : K Ñ H iff the category
a Ó U has an initial object for every a P ObjK. In such a case, this
inintial object is of the form pνa, F paqq where ν is the unit of adjunction
of F % U .

Example 7.9 (Important!). Let D be a small category. We introduce:

(1) The category HD defined as the category of all functors M : D Ñ H.

(2) The functor ∆ : H Ñ HD termed the constant functor defined for a P
ObjH by ∆paq “ ∆a : D Ñ H (a constant functor on a) and for α P
Hpa, bq by ∆pαq P Natp∆a,∆bq such that p@D P Obj dq∆pαqd “ α.

For M P ObjHD we consider the comma category M Ó ∆ (M plays the role of
a above). Then

pν, bq P ObjM Ó ∆ô pb, νq a cocone of the diagram M .

Moreover, pν, bq is an initial object in M Ó ∆ iff pb, νq “ colimM (exercise).

M ∆bν

If H admits colimits of all diagrams with the scheme D, then Lemma 7.8 (2)
proves there exists a left adjoint F of ∆ and colimM “ pF pbq, νbq, where ν is a
unit of adjunction of F % ∆.

Theorem 7.10 (Comma Category Completeness). Let H1, H2 be complete
categories Fi : Hi Ñ K for i “ 1, 2. If F2 preserves limits, then F1 Ó F2 is
complete.

Proof. Received in paper form. QED

Definition 7.11 (Solution-Set-Condition). Let U : H Ñ K be a functor. It is
said U satisfies the Solution-Set-Condition or SSC if for every a P ObjK the
category a Ó U admits a quasi-initial set of objects.

Theorem 7.12 (Adjoint Functor Theorem). Let U : HÑ K be a functor, and
H be complete. Then U has a left adjoint iff U preserves limits and satisfies
SSC.

Proof.

pñq We know the right adjoint preserves limits. By Lemma 7.8 (2), a Ó U
admits an initial object for each a P ObjK, whence SSC is satisfied.

pðq By Lemma 7.8 (2), it suffices to show p@a P ObjKq a Ó admits an initial
object. By Theorem 7.10, a Ó U is complete.

By Lemma 7.4 and SSC, a Ó U admits an initial object for each a P ObjK.

QED
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Example 7.13 (An Application: Existence of Free Groups). Consider the for-
getful functor U : GRP Ñ SET and permissibly F : SET Ñ GRP (we do not
know if it exists).

If we do not know GRP admits coproducts

śxPaZ for any a (which would imply
the existence of F ), we may employ Adjoint Functor Theorem.

To verify SSC, a P ObjSET , G P ObjGRP . For the quasi-initial set, we take
the set Q “ tpg,Hq | g P SET pa, UpHqq, H P Su where S is a representative set
of groups generated by fewer than |a| elements.

a UpGq

UpHq

f

g

7.1 Topological Applications

Let κ “ T OP, H P tHAUSCHAUSu. Let U : H ãÑ K be a full embedding
functor. U admits a left adjoint F iff H is a reflexive subcategory. Note H is a
complete category (its limits are the same as in T OP and U preserves limits.
Lastly, SSC is met: Let We need to check A P ObjK A Ó U has a quasi-initial
set of objects.

pα,Bq P ObjA Ó U

A UpBq

UpCq

α

β

For the quasi-initial set, take

H “ HAUS Q “ tpβ,Cq |β : AÑ UpCq, C P Su, where S is a representative set of
objects in H with cardinality not greater than |A|.

Rngα ď UpBq “ B with |Rngα| ď |A|.

A UpBq

UpRngαq

α

α

H “ CHAUS Q “ tpβ,Cq |β : AÑ UpCq, C P T u, where C P T is a representative set
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of objects from H “ CHAUS with the cardinality |C| ď 22
|A|

.

A UpBq “ B

UpRngαq

α

α

Overall, there exists an F such that F % U (where F is ‘Hausdorffied’ if
H “ HAUS and compactified if H “ CHAUS).

Example 7.14. SSC may not be ignored. One may take H as the opposite
category of the (thin) category of ordinal numbers. H is complete (but it is not
cocomplete as it has no initial object).

Let F : SET Ñ H, U : HÑ SET . U is representable and therefore it preserves
limits but there is no left adjoint of F (which preserves colimits) to U , since
F pHq would need to be an initial object (recall H is an initial object in SET ).

Theorem 7.15 (Dual Form of AFT). Let F : K Ñ H be a functor, K be
cocomplete. Then F has a right adjoint iff F preserves colimits and does not
satisfy ‘co-SSC’; i.e. p@b P ObjHqF Ó b has a quasi-initial set of objects.

Exercise 7.16. For the functor ∆ : HÑ HD, where D is small, ∆paq :“ ∆a :“
∆a : D Ñ H is constant (and ∆pαqd :“ α). Show that ∆ preserves limits and
colimits.

An Application. H is complete and ∆ has a left adjoint of F iff H has colimits
of all diagrams from the scheme D. From AFT we know that for the existence
of colimits it suffices to shwo that for every M P ObjHD (i.e. a diagram) there
exists a quasi-initial set of objects from M Ó ∆ (e.g. pν, bq); i.e. a cocone pb, νq.

8 Subobjects, Factorobjects, & SAFT

Definition 8.1 (Subobject). Let K be a category and a P ObjK. Every mono-
morphism α P Kpp, aq is termed an subobject of a. Two subojects α, β of a
are identified if there exists an isomorphism ι P KpDomα,Domβq such that
β ˝ ι “ α.

Domα a

Domβ

ι

α

β

Dually, a factorobject of a is an epimorphism γ P Kpa, bq construed under the
same condition for sameness as above.
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Example 8.2. In AB (or GRP) take a “ pZ,`,´, 0q. Every pair of distinct

objects is of the form Z
¨n
Ñ Z, n P NY t0u .

Z Z Z Z

nZ Z

¨n

ι ¨p´1q

¨n

Definition 8.3 (Wellpowered Category). A category K is termed wellpowered
if each object therein admits merely a set of pairwise distinct subobjects.

Dually, a category is co-wellpowered if each such object admits a set of factorob-
jects.

The name is indicative (perhaps) of SET satisfying the Axiom of Powerset.

Example 8.4.

(1) The thin category of ordinals is wellpowered but is not co-wellpowered.

(2) A category K of Urysohn Topological Spaces (‘every two points may be
separated by two disjoint closed neighbourhoods’) is wellpowered but is
not co-wellpowered (J. Schröder, 1983).

Lemma 8.5.

(1) Let K admit products and a cogenerator c P ObjK. Then for each b P
ObjK there is a set Y and a monomorphism ν : bÑ cY p“

ś

yPY cq.

(2) If the following diagram is a pullback in K and ν is a monomorphism,
then µ is a monomorphism.

d c

b a

µ

σ γ

ν

Proof.

(1) For each fixed b P ObjK, set Y :“ Kpb, cq. Since our categories are (by
agreement) locally small, Y is indeed a set.

Define the morphism ν on projections πy (they are all the same) of the
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product cY by πy ˝ ν “ y. Then pb, Y q is a cone of the product diagram.

b cY a b cY

c c

πyy

!ν

α

β

πy

ν

y

‰

Then ν is a monomorphism; let α, β : a Ñ b be distinct. We shall show
this implies ν ˝ α, ν ˝ β are likewise distinct.

Recall c is a cogenerator, whence there exists some y P Y such that y˝α ‰
y ˝ β and therefore, indeed, ν ˝ α ‰ ν ˝ β.

(2) Let us have α, β : bÑ d such that µ ˝ α “ µ ˝ β. We are showing α “ β.
We know that γ ˝ µ ˝ α “ γ ˝ µ ˝ β, i.e. ν ˝ σ ˝ α “ ν ˝ σ ˝ β. Since ν is
a monomorphism, we have σ ˝ α “ σ ˝ β. Hence pl, σ ˝ α, µ ˝ α, γµαqq is a
cone of the pullback diagram, whence there exists a unique δ : bÑ d such
that µ ˝ δ “ µ ˝α “ µ ˝β and σ ˝ δ “ σ ˝α “ σ ˝β, this altogether implies
δ “ α “ β.

d c

b a

α β

µ

σ

ν

γδ

QED

Theorem 8.6 (Special Adjoint Functors Theorem (SAFT)). Let H be a com-
plete category which is wellpowered with a cogenerator. Then U : HÑ K admits
a left adjoint iff U preserves limits.

Proof.

ñ Corollary 6.7.1

ð The chief strategy is to use AFT: we need to show SSC holds to obtain
RHS.

Fix a P ObjK. We need to show a Ó U admits a quasi-initial set of objects.
Set X “ Kpa, Upcqq.

Furthermore, let pcX , πq be a product (cX “
ś

γPX c and π are projec-

tions). Denote by M a (representative) set of subobjects of cX (recall H
wellpowered and hence it is indeed a set). Namely,

M Ď
 

µ : Dompµq Ñ cX
ˇ

ˇµ is a monomorphism
(

.
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Put

Obj a Ó U Ě Q “ tpα,Domµqq |µ PM,α P Kpa, UpDom ˚pµqqqu .

Henceforth, we shall write dµ :“ Domµ. We claim Q is a quasi-initial set
in a Ó U .

Let pβ, bq P Obj a Ó U be any fixed object. We are trying to find some
morphism leading from some pα,Domµq to pβ, bq. We have a lemma at
hand, which we shall use to insert β into some set of cogenerators of c.

By 8.5 (1) there exists a set Y with a monomorphism ν : bÑ cY . Denote
by pcY , ψq the corresponding product (whose existence we assume from
the outset).

Define ρ : cX Ñ cY on the projections of ψ by

p@y P yqψy ˝ ρ “ πUpψy˝νq˝βpPXq

a Upbq UpcY q cX cY

Upcq c

ψyπUpψy˝νq˝β

ρ
β Upνq

UpψyqPX

We construct a pullback

dµ cX

b cYν

ρ

µ

σ

Note the top-left corner of a pullback is uniquely determined up to iso-
morphism: consequently from those isomorphic choices we may in partic-
ular choose dµ (note µ is a monomorphism by Lemma 8.5(2).

We apply the functor U (preserving limits) and obtain the new pullback

Updµq UpcXq

a Upbq UpcY qUpνq

Upρq

Upµq

Upσq

β

δ

U preserves products, whence pUpcXq, Upπqq forms a product. We define
δ : aÑ UpcXq on the projections of Upπq by

p@γ P XqUpπγq˝δ “ γ
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We claim pa, pβ, δUpρq ˝ δ
“
? Upνq ˝ βqq is a cone of the pullback diagram.

We, therefore, need to verify Upρq ˝ δ “ Upνq ˝ β: ”a since na projekcich
Uψ soucinem pUpcY q, Upψq.

Upψyq ˝ Upνq ˝ β “ Upψy ˝ νq ˝ β
Def of δ
“ UpπUpψy˝νq˝βq ˝ δ

Def of ρ
“ Upψy ˝ ρq ˝ δ

“ Upψyq ˝ Upρq ˝ δ.

We have verified: Upνq ˝ β “ Upρq ˝ δ. By the universal property of
pullbacks, there exists α : aÑ Updµq such that β “ α ˝ Upσq. That is to
say,

σ P a Ó Uppα, dµq
loomoon

PQ

, pβ, bqq.

Strategy Overview. The most important step is to define ρ. We want to
use the universal property of pullbacks, and hence the second important step is
defintion of δ. A verification follows. Finally, find α such that β “ Upσq ˝ α. σ
had not played any significant role until when when it is shown to witness the
claim. QED

Corollary 8.6.1. Suppose H is complete, wellpowered, and admits a cogener-
ator, then H is also cocomplete.

Proof. Let M : D Ñ H be a diagram. Recall H
r
Ñ ∆sHD preserves limits. It

follows from SAFT that there exists a left adjoints F to ∆, then colimM “
pF pMq, νM q where µ is a unit of adjunction F % ∆.

Specifically CHAUS is cocomplete (as it is wellpowered and complete). Its
cogenerator is the closed interval r0, 1s with the classic topology. QED

Example 8.7.

(1) The requirement H be well-powered may not be omitted: Let H be the
opposite category of the thin category of ordinal numbers. Note K is
complete, admits a cogenerator but it is not well-powered (and does not
have an initial object).

The representable functor U : H Ñ SET cannot admit a left adjoint. It
follows then the requirement on wellpoweredness is essential.

(2) The requirement H admit a cogenerator cannot likewise be omitted.

(a) The category CLAT of complete lattices endowed with maps pre-
serving meets and joins is complete and well-powered, but it does not
admit coproducts. That is, the functor U :“ ∆ : HÑ H∆ preserves
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limits, it may not admit a left adjoint F if D is a discrete category
such that H does not admit a coproduct of some M : D Ñ H.

In particular, the following lattice

0 x 1

does not admit a coproduct of three copies of

0 x 1

(b) Let U : GRP Ñ SET be a functor defined as follows:

i. For every infinite cardinal λ, thereeists a simple group Aλ of
cardinality λ.

ii. For every ordinal number α we set Aα :“ A|α|.

We define UpGq “
ś

ωďαPOn,|α|ď|G| GRPpAα, Gq “ GRP
´

ś

˚
ωďαPOn,|α|ď|G|Aα, G

¯

.

Think about how U is defined on morphisms (similarly to a covariant
homfunctor). Then U preserves limits (this follows from ‘more-or-
less’ from the fact covariant homfunctors preserve limits) but is is
not representable (by contradiction, a proposition from set theory),
whence it does not admit a left adjoint.

(3) To show the final counterexample, it shall suffice to find some H which
admits a cogenerator, is well-powered, is not cocomplete. If we find it, we
can re-employ the strategy from (2) (and consider some suitable U :“ ∆ :
HÑ HD.

Consider then the wellpowered small category which is not thin (and con-
sequently by Freyd’s Theorem is neither complete nor cocomplete) with a
cogenerator: the group Z2 thoguht of as a singleton category: ObjK “ t˚u
and MorK “ t1˚, αu. Then ˚ is a cogenerator.

˚ ˚ ˚
α

β

1˚

‰

Exercise 8.8. Let K be a category, π P Kpa, bq be an epimorphism and c P
ObjK. Then the following is a monomorphism in SET .

Kpπ, cq : Kpb, cq Ñ Kpa, cq

Lemma 8.9. Let K admit products of the form cX for a fixed c P ObjK and
any set X.

If α : X Ñ Y is a monomorphism in SET and X ‰ H then there exists some
monomorphism ν : cX Ñ cY in K.
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Proof. Denote the products in question pcX , πq, pcY , ψq. The morphism ν is
defined on the projections ψ by

p@y P Y qψy ˝ ν “

#

πx if αpxq “ y.

πp else for some fixed p P X.

We shall verify it is a monomorphism: i.e. we wish to show β ‰ γ ñ ν˝β ‰ ν˝γ.

d cX cY

γ

β

ν‰
Since β ‰ γ,

pDx P Xqπx ˝ β ‰ πx ˝ γ,

then

ψαpxq ˝ ν
looomooon

πx

˝β ‰ ψαpxq ˝ ν
looomooon

πx

˝γ ñ ν ˝ β ‰ ν ˝ γ.

QED

Theorem 8.10. A category K is wellcopowered iff

p@a P ObjK DM Ď ObjKqM is a set ^ p@ factorobject π of a Db P ObjKq Codπ » b.

Proof.

ñ Trivially by definition.

ð Let a P ObjK be fixed, π : a Ñ b be a factorobject. It suffices to show
factorobjects ρ : aÑ c where c » b form a set.

If ρ : aÑ c is some factorobject, we fix some isomorphism ι : cÑ b (whose
existence we assume). Then ρ is identical with ι ˝ ρ with respect to the
equivalence defined on factorobjects.

a c

b

ι

ρ

ι˝ρ

Without any loss of generality, assume ρ : aÑ b. But Kpa, bq is merely a
set, whence factorobjects of a with Codp q » b form a set.

QED

Theorem 8.11. Let K be complete, wellpowered, and admit a cogenerator c P
ObjK. Then K is wellcopowered.
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Proof. We will make use of Theorem 8.10. Let a P ObjK be fixed and π : aÑ b

be a factorobject.

Lemma 8.5 implies there exists a monomorphism µ : b Ñ cX with X “ Kpb, cq
(the latter part follows from the construction in the proof thereof).

If X ‰ H, consider the injective map α “ Kpπ, cq : X Ñ Kpa, cq “: Y . By
Lemma 8.9 we obtain ν : cX Ñ cY is a monomorphism.

Altogether then, we have a monomorphism ν : ˝µ : bÑ cY , where Y “ Kpa, cq
is independent of b.

We have shown the codomain of any factorobject a is the domain of a subobject
of cY or the domain of the terminal object (which was the case X “ Hq. Since
K is wellpowered, the proof is concluded. QED

Remark 8.12. The proof would work just as well ifK simply admitted products.

Example 8.13.

(1) The assumption about the existence of a cogenerator may not be omitted.
Take K as the category of Urysohn topological spaces: this category is
complete, wellpowered but it does not admit a cogenerator and is not
wellcopowered.

(2) Let K be the thin category of ordinal numbers with an added greatest
element.

0 1 ¨ ¨ ¨ ω0 ¨ ¨ ¨ 8

α P On admits a proper class of factorobjects, and 8 admits a proper
class of subobjects.

9 Dense & Colimit-Dense Categories

Definition 9.1 (Colimit-Dense Category, Canonical Diagram). Let K be a
category, and H Ď K be a full subcategory, G : H Ñ K be an embedding
functor.

(1) H is said to be a colimit-dense subcategory in K if p@a P ObjKq there
exists a diagram M : D Ñ H such that pa, νq “ colimpG ˝ Mq for a
suitable ν.

(2) IfH small, consider the (small) comma-category G Ó a for some a P ObjK.

The functor K : G Ó a Ñ K defined on objects pb, αq P ObjG Ó a and
morphisms µ P MorG Ó a by

Kpb, αq “ b “ Gpbq Kpµq “ µ “ Gpµq

is said to be the canonical diagram of a with respect to H.
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(3) It is saidH is a (small) dense subcategory of K if p@a P ObjKq is colimK “
pa, tα | pb, αq P ObjG Ó auq

IfK is the canonical diagram of the object a with respect toH, then pa, pα, pb, αq P
ObjG Ó aqq is always a cocone of the diagram K.

a

b

b1

...

K
H

H is dense by definition iff p@a P ObjKqpa, pα, pb, αq P ObjG Ó aqq “ colimK.

G Ó a K

H

G

Remark 9.2. A dense subcategory is colimit-dense.

Example 9.3.

(1) In SET , H with a single object t˚u P ObjH is a small, dense subcategory.

a “

śxPa t˚u .

(2) In GRAPH (the category of oriented graphs) there does not exists a
singleton dense subcategory butH, where ObjH “ tG1, G2u where G1, G2

are defined as follows is

G1 G2

‚ ‚ ˆ

and therefore G1 “ tt‚u ,Hu and G2 “ tt‚,ˆu , p‚,ˆqu Our G1, G2 play
the role of b, b1 from earlier. Note there exists an arrow from G1 to every
vertex of any graph a (a per illustration above) while G2 has an arrow
leading to any two vertices connected with an edge (??).

(3) Let T be a field. Let K “ Mod´ T the category of vectorspaces over T .
Note H where ObjH “ tT u is a colimit-dense subcategory in K (every
vectorspace V is isomorphisc to

À

iP T q.

This category is not a dense subcategory in K. Conversely, H1 wheree
ObjH1 “ tT ˆ T u . is a dense subcategory.
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Generally, If K is a variety of univerfsal algebras with a signature in which
all operations have an arity at most n P N, then the free algebra (in this
variety) with n generators forms a dense singleton subcategory.

(4) For K “ T OP, the subcategory H composed of all Hausdorff and totally
disconnected spaces is colimit dense. This H is not a small subcategory.

Exercise 9.4. The forgetful functor F : T OP Ñ SET admits both right and
left adjoint.

Solution.

T OP SET

F

U

Define UpXq “ pX, τq, where τ “ tH, Xu; i.e. the indiscrete topology.

The Unit:
ηY,σ “ IdY : pY, σq Ñ pY, tH, Y uq

looooomooooon

UF ppY,σqq

.

The rest is left as an exercise. QEF

Remark 9.5. The furgetful functor T OP Ñ SET preserves colimits (and
limits).

Theorem 9.6. T OP admits no small colimit-dense subcategory

Proof. Towards a contradiction, suppose H Ď K is a small, colimit-dense sub-
category in T OP. Denote the forgetful functor F : T OP Ñ SET . If H is small,
we may consider some set which has larger cardinality than all those in H.

Let X be a set of larger cardinality than every F pbq where b P ObjH. Assume
X is at least infinite.

We define on X a topology (verify it is a topology)

ρ :“ tP Ď X | |XzP | ă |X|u YH.

If Y Ď X, |Y | ă |X|, then the subspace pY, ρq is discrete. For any y P Y ,
consider Py “ tyu YXzY — an open set in X, whence it is open in Y .

Suppose H is colimit-dense. Then there exists a diagram M : D Ñ H such
that pX, ρq “ colimpG ˝Mq, where G : H Ñ K is an embedding. Then X “
ppX, ρqνq “ colimpF ˝ G ˝Mq (for some nu), and therefore 1x is the only map
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α : X Ñ X such that p@d P ObjDqα ˝ F pνdq “ F pνdq.

X

FGMpdq

X

α
F pνdq

...

Consider pX,σq where σ is a discrete topology. Then ppX,σq, νq is a cocone
of the diagram G ˝M (i.e. νd : GMpdq Ñ pX,σq are continuous; since νd :
GMpdq Ñ pX, ρq is continuous and by our choice of pX, ρq (??))

p@d P Dqα ˝ νd “ νd implies by definition of α taht α “ 1X but 1X is not
continuous, since pX, ρq is not discrete). QED

Definition 9.7. Let H Ď K be a small, full subcategory. We define the canon-
ical functor (for H) by:

H : KÑ SET pHop

p@c P ObjKq c ÞÑ Kp , cq æ Hop

pδ : cÑ dq δ “ Kp , δq æ Hop

p@b PsObjHop pHpδqqb “ Kpb, δq : Kpb, cq Ñ Kpb, dq.

Theorem 9.8. The subcategory H Ď K is small, full, and dense iff the canonical
functor of H is faithful and full.

Proof. Next time. QED

Corollary 9.8.1. If K admits a dense subcategory H, then K is equivalent to
(its image) some full subcategory in SET H

op

.

Theorem 9.9. Let H be a small and complete subcategory of K. Then H is
dense iff the canonical functor H : KÑ SET K

op

is full and faithful.

Proof. Let c, d P ObjK be arbitrary. Let τ : Hpcq Ñ Hpdq; i.e. τ P NatpHpcq, Hpdqq.
Compatibility conditions on τ immediately yield pd, pτbpγqq where pb, γq P ObjG Ó
cqq4 is a cocone of the canonical diagram K : G Ó cÑ Obj c with respect to the
subcategory H; here G is an embedding functor.

Conversely, if pd, νq is a cocone of the canonical diagram K : G Ó c Ñ K
of the object c, then τpτb, b P ObjHopq, where τ is defined element-wise by
τbpγq “ νpb,γq where b, γ P ObjG Ó c, is a natural transformation from Hpcq into
Hpdq.

4where γ P Kpb, cq.
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H is full and faithful whence, for any τ P NatpHpcq, Hpdqq, there exists a unique
δ : cÑ d such that for each b P ObjHop, τb “ Kpb, δq.

H is dense, meaning pc, pγ, pb, γq P ObjG Ó cqq “ colimK, there exists a unique
δ : c Ñ d such that for each pb, γq P ObjG Ó cq, νpb,γq “ δ ˝ γ “ τbpγq “
Kpb, δqpγq. QED

Example 9.10. Now that we have acquired new tools, let us reexamine ??.
Let K be the category of vectorspaces over T . H, where ObjH “ tT u is not
dense (although it is colimit-dense) in K.

Let V “ T 2 P ObjK, W “ T and g : V ÑW is a map which is not additive,
that is g R MorK, but p@t P T qp@v P V q gpvtq “ gpvqt (which may be easily
verified/constructed).

τ : HpV q Ñ HpW q is defined on (its only) component thus:

τT : KpT ,V q Ñ KpT ,W q

f ÞÑ g ˝ f

This indeed is additive5 and thus a linear map. τ is a natural transformation, but
there edoes not exist any δ : V ÑW is linear such that τ “ Hpδq : g : V ÑW

is the only option for δ but g is not linear.

Remark 9.11 (Isbell). SET op admits a small dense subcategory iff there does
not exist a proper class of measurable cardinals.

Theorem 9.12 (CMUC Magazine 2019). SET op admits a subcategory H where
ObjH “ pta, b, cuq, is a colimit-dense subcategory; i.e. every object in SET may
be written as a limit is the apex of the limit of a diagram comprising all three-
element sets.

Theorem 9.13. Let H be a small, full subcategory in the complete category
K. Then the canonical functor H : K Ñ SET H

op

admits a left adjoint F :
SET H

op

Ñ K. I P ObjSET H
op

Remark 9.14. Recall that if K is a category and D is small, then ∆ : KÑ KD

is constant andpreserves (co)limits.

For M P ObjKD; ie. M is a diagram M : D Ñ K consider the comma-category
∆M (modelled on the pattern of F1 Ó a). Its objects are the pairs pa, πq which
are precisely cones of the diagram M .

If moreover pa, πq is a limiit of M and pb, ρq is a cone of M , then (by the
properties of limits) there eixsts precisely one α : bÑ a such that p@d P Dqπd ˝
α “ ρd.

This may be written on as a composition of natural transformations π˝∆pαq “ ρ.

5This is indeedo only because the function starts off from a monodimensional space and
the map g preserves scalar multiplication which itself implicitly requries additivity in one
dimension.
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Theorem 9.15. If K is cocomplete and H Ď K is small and colimit dense, then
K is complete.

Proof. Let M : D Ñ K be an arbitrary diagram. Denote by G : H Ñ K the
(full) embedding functor. The limit of the diagramM in K exists iff there exists
the terminal object in ∆ ÓM .

The dual theorem of the comma-category completeness (???) gives that ∆ ÓM
is cocomplete (since K is cocomplete and ∆ admits colimits). By the dual form
of the theorem which states that quasi-initial set implies initial objects (it is
usually called ‘initial lemma’) ∆ ÓM admits a terminal object iff there exists a
quasiterminal object. This is what we need to verify.

To this end, denote
ÝÑ
G : ∆ ˝ G Ó M Ñ ∆ Ó M is an embedding functor. Note

that ∆ ˝ GM is a small category. Since our category is complete,
ÝÑ
G admits a

colimit:

colim
ÝÑ
G “ p pt, ρq

loomoon

PObj∆ÓM

, µq.

We shall not actually use its being a colimit, a cocone would have sufficed.
Denote by P : ∆ Ó M Ñ K the left projection6 We will show pt, ρq is quasi-
terminal in ∆M .

Let pa, πq P Obj∆ ÓM be arbitrary. H is colimit dense, whence there exists the
diagram N : E Ñ H is diagram such that pa, νq “ colimpG˝Nq for some suitable
nu. We define the functor A : E Ñ p∆ ˝ Gq Ó M by Apeq “ pNpeq, π ˝∆pνeqq,
for e P ObjE, Apλq “ Npλq for λ P MorE.

‚ ‚ . . . ‚

Cocone

a

G ˝Npeq

πd πd1 πd2π...

Apλq P Morpδ ˝Gq ÓM . π ˝∆pνe2q ˝∆GNpλq “ π ˝∆pνe2 ˝ GNpλqq “ π ˝∆pνe1q. Regardin the
last equality, recall pa, νq is the cocone of the diagram G ˝N .

A is a Functor. Ap1eq “ Np1eq “ 1Npeq “ 1Apeq for some e P ObjE. Apλ1 ˝ λ2q “

6pa, πq ÞÑ a.
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Npλ1 ˝ λ2q “ npλ1q ˝Npλ2q.

E p∆ ˝Gq ÓM ∆ ÓM K

PµA P NatpP
ÝÑ
GA,P∆pt,ρqAq

A

ÝÑ
G

∆pt,ρq

Pµ

Note pt, PµAq is a cocone of the diagram G ˝N .

Consider PµA P NatpP ˝G˝A,P ˝∆pt,ρq˝Aq. We can see that P ˝
ÝÑ
G ˝A “

G˝N . Hence PµA P NatpG˝N,∆rq; from the properties of colimits there
exists a unique α P Kpa, tq such that @e P ObjEqµApeq “ α ˝ νe. This is
significant and could equivalently be written as

∆pαq ˝ ν “ PµA. (2)

GNpeq a ¨ ¨ ¨νe
...

...
π

...

...

Observe Morp∆ ÓMq Q µApeq is a colimit injection that lands in pt, ρq whence

ρ ˝∆pApeqq “ π ˝∆pνeq (3)

∆t M

∆GNpeq

ρ

π˝∆pνeq∆pµApeqq

We shall verify that α : pa, πq Ñ pr, ρq is a morphism in ∆ Ó M such that
ρ ˝∆pαq “ π; i.e. p@d P ObjDq ρd ˝ α “ πd. We shall verify this on the colimit
injections νe for e P ObjE (theorem ???). Altogether we have

ρd ˝ α ˝ νe
2
“ ρd ˝ µApeq

3
“ πd ˝ νe.

This holds for each d P ObjD and each e P ObjE. We have shown pt, ρq P
Obj∆ Ó M is quasiterminal. (the categories are cocomplete and hence the
existence of a quasiterminal object implies the existence of a terminal object
(by analogy to theorem ??? about initial objects) and this is equivalent to the
existence of a limit. hence the category is complete. QED
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Note we have used the following exercise.

Exercise 9.16. Show that ∆KÑ K preserves colimits for a small D.

Solution. Let pa, νq “ colimN where N : D Ñ K be a diagram. We want to
show that pδpaq,∆pνqq “ colimp∆ ˝Nq. The LHS is clearly a cocone of ∆ ˝N .
Let pG, τq be any cocone of ∆N . Let τ P p∆ ˝N,∆Gq. We are trying tofind a
unique α : ∆paq Ñ G such that

p@e P Eqα ˝∆pνeq “ τe P Natp∆ ˝Npeq
loooomoooon

∆Npaq

, Gq for each e P ObjE.

This is equivalent to

αd ˝ νe “ pτeqd : Npeq Ñ Gpdq for each d P ObjD.

Observe that given any fixed d, pGpdq, tpτeqd | e P ObjEuq is a cocone of the
diagram N .

For λ P Epe1, e2q, τ being a natural transformation and since τe2 ˝∆pNpλqq “
τe1 , we consequently have pτe2qd ˝Npλ “ pτe1qd.

Moreover, pGpdq, ptτeqd | e P ObjEuq is a cocone of the diagram N implying
there exists a unique αd : a Ñ Gpdq and for each e P ObjE, αd ˝ νe “ pτeqd.

Hence we define α
def
“ tαd | d P ObjDu. It remains to show α P Natp∆a, Gq; i.e.

it remains to verify the compatibility-conditions (it is not clear if αq is a natural
transformation).

For any d P Dpd1, d2q, Gpδq ˝ αd1 “ αd2 : a Ñ Gpd2q; we check this on colimit
injections νe for each e P ObjE:

Gpδq ˝ αd1 ˝ νe “ Gpδq ˝ pτeqd1 “ pτeqd2 “ αd2 ˝ νe.

The second equality holds since τe P Natp∆Npeq, Gq.a QEF

Exercise 9.17. If K is a concretisible (i.e. there exists a fatihful functor U :
K Ñ SET ) then each small category D KD is likewise concretisable. This
altogether implies SET D is also concretisible.
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10 Exercises

10.1 24th November 2023

Exercise 10.1. Show that monomorphisms, epimorphisms, sections, and re-
tractions are closed under composition.

Exercise 10.2. Consider the category REL whose objects are sets and whose
morphisms are relations equipped with the standard operation of composition.

(1) Show that ρ P RELpA,Bq is a monomorphism iff there exists B1 Ď B so
that ρX pAˆB1q determined a bijection AÑ B1.

(2) Decide when ρ P RELpA,Bq is an epimorphism/isomorphism.

(3) Show that all monomorphisms are sections and all epimorphisms are re-
tractions in REL.

Solution. HOMEWORK! QEF

Exercise 10.3. Let pP,ďq be a poset. Consider the category P whose objects
are elements of the set P and morphisms correspond to ordered pairs of elements
of P . This means that between any pair of objects p, q P ObjP there exists a
morphism iff p ď q and this morphism is unique.

(1) Show P is a category.

(2) Show that every morphism in P is bimorphic.

(3) Show that given any morphism f P P the following notions are equivalent:

(a) f is a section.

(b) g is a retraction.

(c) f is an isomorphism.

(d) f is an identity (in some object).

(4) Let pQ,ďq be some other ordered set and Q be the corresponding category.
Show that functors P Ñ Q correspond to monotonic maps P Ñ Q.

Solution.

It easily follows from our setup that given any two p, q P P , P pp, qq is
either empty, which occurrs if p ę q, or it is a singleton if p ď q. It is easy
to see the relation ď behaves well with respect to composition.

(1)(2) This follows immediately from P being thin, which we have already es-
tablished.

p q r

α1

α2
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(3) Left out.

(4) Given a F : P Ñ Q and any two morphisms α P Ppa, bq, β P Ppb, cq then
F pβ ˝αq “ F pβq ˝F pαq. But since morphisms are given by ď, this simply
means F preserves such order-relations; i.e. it is monic on P,Q.

QEF

Exercise 10.4. Let POS stand for a category of all ordered sets. Morphisms in
this category are monotonic maps. Decide if all monomorphisms in this category
are sections and if it is balanced.

Solution. Injective, monotonic maps are clearly monomorphisms; the converse
statement is not so clear.

LEFT AS HOMEWORK. QEF

Exercise 10.5. Recall GRP is the category of groups.

(1) Show that monomorphisms in GRP are precisely injective homomorph-
isms.

(2) Show that epimorphisms in GRP are precisely surjective homomorphisms.

Solution.

Supppose φ is a non-injective monomorphism. Consider the following setup

K G H
φij

where p@x P Kq jpxq “ 1, and hence K Ď G. Since φ is not injective, Kerφ is
nontrivial. Then φi “ φj ñ i “ j. A contradiction.

Let

φ : G H P

ψ

ψ1

φpGq “ M ă H and ψ ‰ ψ1, ψ ˝ φ “ ψ1 ˝ φ. Suppose rH : M s “ 2. Then

M EH. Then P “ Z2 » HäM and

ψ1 : H Ñ tMu ď HäM ψ : H Ñ HäM

Suppose rH : M s ě 3 and P “ SympHq. We have at our disposal at least

three distinct cosets M ,Mu,Mv in HäM . We define σ P P by

x PM ñ σpxuq “ xv σpxvq “ xu

x RM ñ σpyq “ y

ψphq is a permutation given by left multiplication by h.
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ψ1phq “ b´1σψphqσ and

ψ1phh1q “ σ´1ψphqψph1qσ

“ σ´1ψphqσσ´1ψphqσ

“ ψphqψ1ph1q

Then

`

σ´1ψphqσ
˘

pxuqσ´1pψphqpxvqq “ σ´1phxvq

If hxv R Mu supMv then σ´1phxvq “ hxv, m P M and set h “ mu´1x´1.
Then hxu PM .

ψphqpxuq “ hxu. Put

10.2 10th March 2023

Exercise 10.6. Denote FLD the category of fields and GRP the category of
groups. Let Gln, p´q

˚ : FLD Ñ GRP, defined thus:

(1) The functor Gln assigns the group GlnpT q of all nˆn matrices over T to
the field T .

(2) The functor p´q˚ which assigns the multiplicative group T ˚ of T to the
field T .

Solution. Observe p´q˚ “ GL1. We firstly need to verify these indeed are
functors.

Let f be a homomorphism of two fields T ,S and A,B be a nˆ n matrices.

S T

GLnpSq GLnpT q

GLnGLn

GLnpfq

f

Observe

GLnpfq :

»

—

–

a11 . . . an1
...

. . .
...

an1 . . . ann

fi

ffi

fl
ÞÑ

»

—

–

fpa11q . . . fpan1q
...

. . .
...

fpan1q . . . fpann

fi

ffi

fl
.

It remains to check GLnpfqpABq “ GLnpfqpAqGLnpfqpBq.DenoteA “ taiju
n

i,j“1
,

B “ tbiju
n

ij“1
, and C “

 

cni,j“1

(

, where cij “
řn
k“1 aikbkj .
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Then

GLnpfqpCq “

»

—

–

fpc11q . . . fpc1nq
...

. . .
...

fpcn1q . . . fpcnnq

fi

ffi

fl

GLnpfqpAqGLnpfqpBq “

»

—

–

fpa11q . . . fpan1q
...

. . .
...

fpan1q . . . fpann

fi

ffi

fl
¨

»

—

–

fpb11q . . . fpbn1q
...

. . .
...

fpbn1q . . . fpbnn

fi

ffi

fl

We conclude these two are the same by the arithmetic properties of the homo-
morphism f .

Now let us return to what we wished to prove initially. Let

det
T

: GLnpT q Ñ pT q˚ A ÞÑ detpAq.

Trivially, we obtain detT pABq “ detT pAqdetT pBq from the fact detbsT P MorpGRPq.

Denote

det “
A

det
T

ˇ

ˇ

ˇ
T P ObjpFLD

E

: GLn Ñ p q˚.

We claim this to be a natural transformation. Let S,T P FLD and put

f : S Ñ T

GLnpSq
GLnpfq
Ñ GLnpT q

S
˚ f˚“f˚“fæS˚

Ñ T
˚

To see det is a natural transformation, we need to show the following diagram
commutes:

GLnpSq GLnpT q

S˚ T ˚

detS detT

f˚“fæ
S˚

GLnpfq

Both directions are readily verified

A
GLnpfq
ÞÑ GLnpfqpAq

detTÞÑ
ÿ

πPSymn

sgnpπqfpa1πp1qq ¨ ¨ ¨ fpanπpnqq.

A
detSÞÑ

ÿ

πPSymn

sgnpπqa1πp1q ¨ ¨ ¨ anπpnq
f˚

ÞÑ f

¨

˝

ÿ

πPSymn

sgn ˚piqa1πp1q ¨ ¨ ¨ anπpnq

˛

‚

QEF
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Exercise 10.7. For the set A consdier the functor Aˆ´ : SET Ñ SET . Show
that every map AÑ B determines a natural transformation Aˆ´ Ñ B ˆ´.

Solution. Observe

Aˆ: SET Ñ SET

B ÞÑ AˆB

and

pf : B Ñ Cq ÞÑ Aˆ f : AˆB Ñ Aˆ C

xa, y ÞÑ xa, fpbqy .

Let A,B be sets and f : A ˆ B. Then both A ˆ ´ and B ˆ ´ are functors
SET Ñ SET .

Let ǫ “ xǫc |C P ObjpSET qy, C P ObjSET and g : C Ñ D.

〈a, c〉 Aˆ C AˆD

〈fpaq, c〉 B ˆ C B ˆD

ǫC“fˆC ǫD“fˆD

Bˆg

Aˆg

The diagram commutes since

rpf ˆDq ˝ pAˆ gqspa, cq “ fpˆDqpa, gpcqq “ xfpaq, gpcqy

rpB ˆ gq ˝ pf ˆ Cqspa, cq “ pB ˆ gqpfpaq, cq “ xfpaq, gpcqy

Morphisms here correspond to natural transformations on the category of func-
tors. QEF

Exercise 10.8. Let A be a category and P be an ordered set (which itself may
be viewed as a category). Consdier the pair of functors F,G : AÑ P .

(1) Describe when there exists a natural transformation F Ñ G.

(2) Show there exists at most one natural transformation F Ñ G.

Solution. For a natural trasformation to exist, we need for each object a P ObjA
a morphism F paq Ñ Gpaq in P must exist. P is an ordered set and morphisms
in P are ordered pairs. Hence @a : F paq ď Gpaq. If this holds, then F paq

F paq Gpaq

F pbq Gpbq

GpfqF pfq
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The diagram commutes iff there exists an arrow from F paq to Gpbq. If such a
morphism exists, it is uniquely determined. QEF

Exercise 10.9. Given some sets A,B, we denote BA the set of all maps f :
AÑ B. Consider the functor p´qA : SET Ñ SET . For the set X, we define the
map ǫX : XAˆAÑ X by ǫXpf, aq “ fpaq. Show that ǫ “ xǫX |X P ObjpSET qy
is a natural transformation from the functor p´qA ˆ A to the identity-functor
on SET .

Solution.

〈f, a〉 XA ˆA Y A ˆA 〈g ˝ f, a〉

fpaq X Y pg ˝ fqpaqg

ǫyǫx

gAˆA

QEF
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11 Tables

11.1 Hombifunctor

Let a, a1, b, b1 P ObjK and α P Kpa, a1q, β P Kpb, b1q. Kpa,´q is covariant and
Kp´, bq contravariant.

F “ Kp´,´q : KopˆKÑ SET

(1)

F pa, bq “ Kpa, bq.

(2)

Kpa, βq : Kpa, bq Ñ Kpa, b1q

x ÞÑ β ˝ x

(3)

Kpα, bq : Kpa1, bq Ñ Kpa, bq

x ÞÑ x ˝ α

(4)

Kpα, βq : Kpa, bq Ñ Kpa1, b1q

Kpα, βqpxq “ β ˝ x ˝ α.

11.2 Yoneda Natural Transformation

Let K be a category, a P ObjK and F : KÑ SET . Set for each b P ObjK,

z : F paq Ñ NatpKpa,´q, F q τxb : Kpa, bq Ñ F pbq

x ÞÑ τx α ÞÑ rF pαqspxq
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