Zkouska

Video formats
Digitalization

Analog - AD converter - Digital > DA converter - Analog

Audio - array of numbers

Video - 3d array of rgb tuples

Sampling - with an appropriate frequency, quantized based on required bit depth
too low loses detail, too high generates more data - quality vs storage
aliasing - losing information when sampling, creating unwanted signals
At least 2 times the frequency of the original signal

humans can hear 20-22 kHz - 44 kHz for sound sampling
Bit rate (bps) - number of bits transmitted/processed per second

audio - higher bitrate = better quality as more data can be used to represent sound, but also
larger size

video - higher bitrate = better visual quality, larger file size and streaming bandwidth
requirements

Containers
Multi-media object

Sequence of images + different resolutions
Audio stream + different languages
Subtitles

Meta-data

Detected object

Cover image

Container

Single standardized file comprising all related data
synchronization info, fragmentation, data structure, etc.
Compression is necessary for video and audio
Bit rate = number of bits to represent timed data per time unit

How to play an encoded file

Media player transforms a media container into a data stream using a CoDec
CoDec - Coder+Decoder - SW or HW tool for video coding based on some standardized format

MP4 container

A series of boxes/atoms which contain data
Each atom looks like this: [sizel[namel[datal
ftyp - FileTypeBox - brand, version, compatibility
mdat - timestamped audio/video payload
moov - metadata (creation time, duration, track types)
stbl - sample table boxes: codec info, sample location in mdat
stsd - description, codec info
stts - decoding timestamps and sample durations
sample number <> decoding timestamp, allowing for playback synchronization
stsc - sample to chunk
how samples are grouped into chunks

stco - chunk offsets
byte offsets of each chunk within the media track
stsz - sample sizes
size of each sample within the media track, determines the amount of data to be
read for each sample during playback or processing
Chunk - contiguous block of data, e.g. a video frame, a bunch of audio samples
Sample - snakkest ybut if tge nedua
You need a CoDec to extract compressed a/v content

Encoding
CoDec

codec implementations must comply with specs
decoder implementations can read data from different coders
best quality for a given bit rate, decoding/encoding time (e.qg. for live streaming)
Original data - list of BMP images based on fps
decoder(coder(frame))=frame - time/quality trade-off
Popular codecs
262 MPEG-2 - DVD
264 AVC - Blue-ray, youtube
265 HEVC - 8k video
266 VVC - better HEVC
Better codecs give higher subjective quality for lower bitrates

Why codecs work?

human eyes don't percieve the difference, e.g. we don't percieve high-frequency data
spatial/temporal redundancy - when color stays the same between the frames
statistical redundancy - we can use less bits for storing common colors

HEVC coding

Hierarchical structure of dividing images into smaller blocks, allowing for efficient compression
Coding tree unit CTU (HEVC)/Macroblock (AVC)
up to 64x64px, allow compression of large areas of uniform color or texture
each CTU square is divided into 4 equal squares (quad-tree division) until the smallest
allowable block size (Coding Unit) is reached
Coding tree units = Coding Units (CU), Prediction Units (PU) and Transform Units (TU)
Coding unit size varies from 8x8 to 64x64, adapts to different levels of detail within a frame
Prediction units define how prediction is performed within CU
2Nx2N - same size as CU, no further partitioning
NxN - CU is split into 4 equal parts, each forming a PU
NxnU, NxnD, nLxN, nRxN - asymmetric motion partitions, more flexible, non-uniform
motion
Transform units - transformation and quantization of residual data after prediction
4x4 to 32x32px, capture frequencies of the remaining data
Summary:
CTU division - 64x64px
CU partitioning - subdivision based on texture, detail and motion
PU partitioning - subdivision of CUs based on spatial similarity
TU partitioning - subdivision based on frequencies
Intra-frame (spatial prediction) - within same frame, jpeg-like,
RGB - YCbCr -» Chroma subsampling - Frequency-Domain - Quantization - Entropy
encoding

YCbCr - Y-luma, Chroma-blue, Chroma-red
Chroma subsampling - compress Chroma and keep Luma because our eyes are more
sensitive to brightness than color
Frequency domain - our eyes are less sensitive to high-frequency details, Discrete
Cosine Transform to extract separate frequencies
Energy compaction - largest DCT coefficient values are concentrated in low-
fregency coefficients
More coefficients = better quality
Quantization - divide and round values using a quantization table
defines compression quality - lower=worse
Huffman entropy encoding - our data has lots of zeroes which can be compressed as
well

Prediction

Vertical, horizontal, angular, DC, planar prediction - predicting each pixel based on the
one before it

Works well when we have uniform blocks of pixels
but not so much when we have high noise or fine details

Inter-frame - between different frames
Motion estimation - encoder detects movement and searches for motion vectors

Motion compensation - predicted frame is created by shifting blocks according to motion
vectors

Residual calculation - difference between two frames, allows for better compression (e.g.
subtracting same frames gives you a black rectangle)

c(motion info) + c(residual) < c(original)

Sub-pixel precision for better results
Tricks

Use heuristics to search for reference blocks
Use more reference frames to estimate motion
Filter out compression artifacts

Audio CoDecs

input: array of numbers samplet with a given frequency
decode(encode(audio_sample)) = audio_sample ? - size/quality trade-off

MP3 (lossy perceptual-based compression)
AAC (better for lower bit rates)

Similarity search

Video - all frames

Shots - groups of similar frames
Representative frames - represent shots

Similarity model queries meta-data <> content

attributes

keywords

free-form text

sketch

example image

Similarity search model

6(fq(query), fa(data))

distance function between two math objects (e.g. vectors, tensors, sets)
§(z,y) >0
8(z,y) = d(y,)
d(z,z) =0
Common functions
Cosinel — —2_
[z [1y]]

n
Lebesgue \’/Z wilz; — yil?
=1

L1=Manhattan
L2=Euclidean
Ls,=maximal

Jaccard - set similarity, intersection minus union
1 lxoy]
[XUY]

Similarity queries
Range - all objects within a given radius
kNN - nearest k objects to a query

Computing similarity scores

Global representation - e.g. a vector representing entire image
efficient, simple, scalable
loses detail, less robust to small variations
Histogram
Bins: hard - one bin per step / soft - more bins per step
Quantization - g-levels, image resize
Channel combinations (joint histogram)
Location - different image parts
For a video sequence - more frames into one histogram
Local representation - e.g. image keypoints and region descriptors, SIFT, SURF
precise, flexible, fine-grained
complex, less scalable

Convolutional neural network (CNN)

Convolutional layers - applies filters (kernels) by sliding over the input image and computing dot

products between the filter and the local regions in order to detect edges, textures and shapes
Filter - small matrix (e.g. 3x3, 5x5) of weights designed to detect specific patterns such as
edges, textures, or more complex as the layers deepen

f@ . RthX3 N R‘C|

maps image to the list of C' classes
Each filter generates a channel
Extract a k X k patch from the image
Multiply each element of the patch by the corresponding element of the filter K
Sum the products to get a single value and place it into the output matrix O
Convolution - process of sliding the filter over the input image, performing multiplication and
summing the results to produce feature maps
Filter values can learn and adjust through the process called backpropagation
Activation function - is applied after convolution, introduces non-linearity
ReLU(z) = maz(0, z) - outputs positive inputs directly, otherwise 0, applied element-wise

Linear functions can only represent proportional change and cannot capture complex
patterns, e.g. you are limited by a straight line in classification while non-linear functions
enable you to create complex curves to separate the data points
Pooling layers - reduce spatial dimensions of the previous feature maps for efficient
computation, max/average pooling
outputs resized "image" (actually its feature map)
max pooling - slides a window over input feature map, outputs max value within that window
for each position
Fully connected layers (Dense layers) - aggregate features learned by convolutional layers and
classify
Softmax - activation function that transforms scores into a probability distribution over
different classes, often used in the last layer
We don't always use FC layers because they require much more parameters and are
computation-intensive, convolutional layers tend to be much more efficient
Embedding - transformation of input data into a more manageable vector space
Can be extracted from data, e.g. extracting image features via ResNet for classification
Embeddings can represent different objects detected in an image or be used for computing
distances in similarity search
Embedding layer maps input indices to vectors - can be trained from scratch or initialized
with pre-trained embeddings
More layers = ability to detect more complex shapes from the building blocks in the previous
layers

AlexNET

Image classification, 1000 categories in the ImageNet dataset
Architecture - 8 layers

Input - image

1-5 Convolutional layers

6-8 Fully connected layers

Local image descriptors

We want object detection to be robust to occlusions, lightning conditions, scaling, rotation,
position, etc.
Scale-invariant feature transform (SIFT) - popular pre-DL unsupervised method
Image is represented by a set of local descriptors (e.g. vectors)
v; represents content of a selected subregion around detected keypoint at (x,y)
pairing between two sets of descriptors based on distance d(vi, Uj), expensive verification
in 2D
Operates on multiple image scales to detect keypoints invariant to scale changes
grid of pixel blocks around a keypoint
DoG (difference of gaussian) pyramid is used to identify scale-space keypoints by comparing
adjacent scales
For each keypoint we take the image put through a gaussian filter (blur) at corresponding
scale p and compute intensity differences between scales, keeping the points which are over
our threshold
Once keypoints are detected, SIFT does descriptor generation which captures features invariant
to scale/rotation/illumination changes
Compute dominant orientation of each keypoint by taking the highest point in the histogram
of orientations, (10, 20, 30, ..., 360) degrees (orientations closer to the center contribute
more)
Each descriptor has location, scale, orientation and a feature vector

Compute orientations relative to the dominant orientation, 45-degree differences, 8
histogram bins
The 8-bin keypoint histograms are then concatenated into a high-dimensional (128)
descriptor that represents keypoint's local appearance
Object detection
represent one image with one global histogram
select candidate db images using some efficient index for the global histograms
re-ranking with optimal transformation
For the query image and candidate images, find the optimal transformation by solving an
equation
Transformation that maximizes the number of inliers (|2’ — u|? + |y — v|? < a, points
that agree with the transformation) is considered optimal
Feature vector - array of numerical values that represent features of given data
Descriptor - representation that summarizes important features, often in computer vision, e.g.
edges, corners, textures, shapes - synonymous to feature vectors in the context of SIFT,
designed to be invariant to transformations
Other sources:

Shot detection

traditional approaches
similarity of two consecutive frames
keypoint tracking
ML using hand-crafted features
Deep learning
3D CNNs
TransNet - a neural network for fast detection of common shot transitions
TP = true positive, FP= false positive, FN= false negative, P = precision, R = recall
P=TP/(TP+ FP)
R=TP/(TP+ FN)
F, = 2PR/(P+R)
Precision - accuracy of positive predictions
High precision = low false positives
Recall - sensitivity, ability to capture all positive instances in the dataset
High recall = low false negatives
F1 score - harmonic mean of precision and recall

ResNet

Residual network architecture - allows for even deeper networks with improved performance
Instead of learning direct input-output mappings, it learns residual mappings - the difference
between the desired output and input to a given layer

Residual block - consists of 2+ convolutional layers with shortcut connections (identity
mappings) that bypass one or more layers, residual blocks are deeply stacked

Object detection with R-CNN (region-based cnn)

localization and bounding box estimation

Generate region proposals (candidate boxes) using selective search

Feed each region through a pretrained CNN to extract features

Classify regions and generate a bounding boxes
Selective search - region proposal algorithm, generates candidate bounding boxes from an
image

https://www.baeldung.com/cs/scale-invariant-feature-transform

Segments image into a large number of small, homogenous regions based on various
features, e.g. color, texture, instensity

Iteratively merges similar regions using hierarchical clustering to generate larger regions
Merging is guided by a similarity measure ensuring that similar adjacent regions are merged
EdgeBoxes - generates object boundaries based on edge density

YOLO (you only look once) - divide image into a grid and predict bounding boxes and class
probabilities directly from grid cells

predicts for objects whose centers fall within the cell
Faster R-CNN - introduces RPN, region proposal network
RPN shares convolutional features with object detection stages
RPN generates candidates directly from extracted feature maps
slides a small network over the feature map and predicts scores and box offsets

Popular datasets

ImageNet - image classification, single object localization, object detection
images for concepts in WordNet hierarchy
COCO - object detection and segmentation

Multi-modal search
Modality

Specific type of data, e.g. image, text, audio

(81, feyy) - distance metric and the embedding function
embedding function maps items from their original form onto feature vectors
e.g. a deep neural network can map images onto visual feature vectors, for text Word2Vec
can convert text into numerical vectors

Video data has many modalities - colors, edges, trajectories, sounds, text metadata

Fusion

a way of combining data of different modalities
Early fusion (feature-level fusion) - combine features from multiple modalities into a single
features, e.g. concatenating feature vectors

More effective for interdependent modalities, allows models to learn the combinations

E.g. whether a social media post is positive or negative based on text and pictures
Late fusion (decision-level fusion) - combine prediction outputs of separate models, e.g. by
averaging predictions

More effective for distinct modalities or when they have separate processing

E.g. multimedia content search, can search by text or image or both, flexible, modular

Mono vs Multi-modal similarity search engine

Mono-modal

Input: single modality descriptor (e.g. shape, color or text)

Data preprocessing - feature extraction

Similarity search - using distance function on indexed data

Retrieving IDs - of the most similar objects, then fetching full images and showing the results
Multi-modal

Input: combination of multiple modality descriptors

Data preprocessing - features from different modalities are extracted and combined into a

multi-modal indexed data structure (in early fusion models)

https://towardsdatascience.com/understanding-and-implementing-faster-r-cnn-a-step-by-step-guide-11acfff216b0

Similarity esarch - combined descriptors use combined distance functions (e.g. combining
distances for shape and color)

Temporal queries

Model can interpret and respond to queries that involve sequences of events or actions
e.g. Person entering a room and sitting down

Search for a video segment where "sea" frames are followed by "building" frames

Temporal context size (i + ¢) - i=frame index, c=context size

determines number of frames or timeframe units after the initial query ("sea"), the system
continues to search for the next item in the query ("building"), can be adjusted

Basic Classification-based Search

Creates confidence scores for supported classes
Text query consists of class names, engine rankes images using confidence scores

Joint embedding

Projecting both modalities onto a single feature space
5(fe, (query), f.,(data))

feq: input query - feature vector

feq: data item - feature vector

0 : how close are query and data in the same feature space
Example:

"ared sports car" text - feature vector

car images - feature vectors

text vector is then compared to image vectors in the database

Example: joint embedding based search

12/2/135 2 ..
- 1222341 .
Feature extraction 00111232.)
n 1112343.. il
H = 1 . - \
F&bR R tt 1125 4. Multimedia database
. " 1|11[2]3]a4]. o 1
Distance function 1lz2lz(112 34 DB 11si11g (fe' fm: 6}
5 R X R® — R e e S L
'“ d Learn text t‘.lrl]]t'clt{ing_{ % =2 Ll
rolunda. ? 5 =
: m: Uz - R" -
blue sky,
and pond” g .
q=fmn (Tq) . Searched
Text T 0= fo(ly) .
q image I,
P EEmammdsmte e Ee,
EEEEETEEEESEE

fe("p] =P. o \

DB contains preprocessed image vectors, during search a query feature vector is computed
and compared
T, - text query to be translated into a feature vector
fe : DB — R™ - extracts image vectors
f,g : Ur — R"™ - extracts text vectors into the same feature space as image vectors
6:R*" xR" — Rar - measures similarity between feature vectors
Loss functions for training joint embedding models
Usually the models of different modalities are trained together to ensure proper feature
vector alignment

Loss function - measures how well predictions match true data labels, quantifies error
between predicted and actual values
Contrastive loss - considers pairs of objects from the same class and pairs of objects from
different classes
Minimize: 6(z,y) + - - - + maz(0,c — 6(z,w))
X,y - similar
z,w - dissimilar
¢ - margin, minimum distance between positive pairs and maximum distance
between negative pairs
Consider similar and dissimilar pairs of data points to bring the similar pairs together and
push the different pairs apart
Minimize distancebetween similar, maximize between opposite, some margin is enforced
Triplet loss - considers triplets where one object is from the same class (anchor) and one
from a different class
Minimize: maz (0, ¢ + 6(z,y) — é(z,2)) + ...
X,y - similar
X,z - different
C - margin
Reduce distance between anchor and positive point while increasing the distance
between the anchor and the negative point by at least a margin

Contrastive Language-Image Pre-Training (CLIP)

CLIP jointly trains image and text encoders to predict the correct pairings of batch examples
Contrastive learning - maps similar images and text close together while pushing dissimilar pairs
apart
Purpose: align text and image representations
Use a large dataset of image-text pairs
Image encoder & Text encoder
Maximize similarity between correct pairs, minimize between mismatched
Dataset classifier from label text creation from label text
learns to classify images based on unseen text
input image <> text labels similarities
understand and categorize images according to labels it has never seen during pre-training
Zero-shot prediction
model makes predictions on data it has not been trained on
recognizes images it hasn't seen yet based on textual descriptions
by generating embeddings for both text and images, it can compare them to classify images
into categories that were not part of initial training, by simply using the descriptive text of
what the image contains
Robustness
bidirectional understanding of text and images - CLIP can associate images with their textual
descriptions and vice versa
transferable representations - CLIP learns transferable representations during pre-training
which can be generalized, they capture high-level semantics
large pre-training dataset
multimodal contrastive training - enables CLIP to associate similar images with text
descriptions
zero-shot - CLIP is strong even for datasets it hasn't been trained on
versatile - no task-specific data needed
scalable, powerful - trained on a diverse range of data
efficient - reduces need for extensive dataset-specific training by generalizing the model

Interactive search
Motivation

Interaction gives the search model feedback
Exploratory browsing - improved effectiveness through dynamic interaction
Visualization can help better understand the data

System interface must be intuitive and responsive (indexing!) but it's hard to evaluate subjective

experience
qualitative - user satisfaction, usability studies
quantitative - speed, accuracy, relevance

Relevance feedback loop

Feedback
Positive/negative
Obtained from the current results based on user actions
reinforcement learning - system's effectiveness improves over time
Use of feedback
Update query vector based on +/- examples (e.g. Rocchio)
moving query closer to preferred items, away from less relevant
Update decision model (decision hyperplane)
modifying the underlying decision-making processs, e.g. ml model parameters
Update relevance scores of all items (Bayes)
statistical methods to update relevance scores of db items

Rocchio algorithm (1971)

Data represented by vectors
relevant D,, irrelevant D,,

querye, = (@ queryan) + (- 3 0) = (= 3)

’ R’ vj€Dg ‘Dn’ v;€Dy

a, B, - importance coefficients, often chosen empirically
> v

vjeD

DA average vector of relevant documents scaled by 8

Positive reinforcement in the second coefficient pulls the query vector closer to the centroid of

the relevant documents

Negative reinforcement pushes query away from the centroid of the non-relevant documents

The reused query is more likely to retrieve items similar to those marked as relevant
Active learning

constant training
support vector machines to train decision plane

Bayesian feedback loop

Display D in iteration ¢ - set of images based on search query and prior interactions
User interacts by picking an image
Iterate over all items in the database and update score
VI, € DB : o11(1o,) = P(IL,, = Io5|Hy)
H; = N._o{Di, I, } - search history of user transactions
H, is updated to include the current iteration
select D;11 € DB - new set of images to display
Repeat

For each object in the database

P(I4|De; Hi-1, Lo, = Log) - P(Io, = Log|Hi-1)

P(Ioi = Os|IQt7Dt’Ht_1) - P(I ‘Dt Ht 1)
qt ’ -

1,4, - image user picked

similarity (Z,,,/,,) iceiti
P(I,|De, I, = I,,) ~ ORETTTT A User model, notice it in the upper part of our
VIg,€Dy

Bayes fraction but without history

below is a normalization coefficient, accounts for influence of other images in the display
set on the perception of similarity to query - if all images are similar to the query it
decreases the probability and we update a bit less

. . . er(IOi)afe(ID')Hz
similarity (I, I,;) ~ e=————5——

Other notes:

P that it is picked in the previous step (we know it)
1/|DB| by default
We don't know the user model
no H,;_; - we expect independence
P of choosing I, considering display D; and this is what we want (I,, = I,,)
o-00=1/|DB|
target - o,
Model adjusts the percieved relevance of images based on both direct similarity to the query and
the influence of other images in the search context - integrates prior knowledge over time

Display selection strategies

effective selection strategies can help reduce user's cognitive load
Most probable items - items most likely to be relevant based on scores
allows users to find the most relevant images quickly
flawed because user can get stuck in a cluster

Score-based sampling - select items based on relevance probability
more diverse, allows for more exploration, does not always show top-scored items
introduces randomness

Entropy-based criterion - based on set of sampled displays, more balanced
choosing pictures most far away from each other

maximizes information gain from user feedback by selecting images based on uncertainty of
model's predictions

improved performance and maximal information gain for faster improvement
sometimes displays less relevant images, more ambiguous images

Visualization of multimedia data
Limits of human perception
Limit to how many images can a human perceive in one page
Response times should be adequate to prevent lagging
Different visualizations for different tasks

Finding items - found should be highlighted

Content understanding - represent overarching themes and patterns that give insights into the
entire dataset

Exploratory browsing - no specific target, easy and intuitive discovery and browsing

Gestalt laws

how humans perceive visual elements as organized patterns rather than separate components
Law of simplicity - complex is perceived as simplest

Law of similarity - similar items are grouped together

Law of proximity - nearby items are grouped together

Law of continuity - eye is drawn to continuous lines

Law of closure - mind seeks to fill in the gaps to create whole

Law of symmetry - symmetrically arranged objects are perceived as forming around some center
point

Grid-based presentation

Standard grid

Emphasized top corner items

Progressive disclosure - zigzag pattern

Temporal/contextual - sequential view, relation across states/times
Case study on gaze patterns - most users look at the screen center

Reorganizing for larger displays

When there are too many images, it may be beneficial to do some additional reorganization
Swap images if it improves a cost function

(I[P(Ls) = P(Ly)l| = P)(8(s,t) — 9)

O'p0'5

L - layout

Vp, s - sum over all data points within the dataset 2

P(z) - location of cell

P - mean Euclidean distance between any two assigned cells
||P(Ls) — P(L¢)|| - Euclidean distance between two specific points
(s, t) - dissimilarity between two specific points

§ - mean dissimilarity between any two data entries

op, 05 - corresponding standard deviation values

Numerator: High if both deviations are either positive or both negative, indicating a positive
correlation

Denominator: Normalizes product by std
Self-sorting map

an algorithm that organizes data points on a grid so similar data points are located near each
other, creating a map

Reflects patterns and similarities without predefined categories
Typically generated via unsupervised learning
Applications

pattern recognition

feature mapping

anomaly detection

Z S
T; = Z Gau(k) 2= —argmin gy (|ls — Ti/| + It — Ti1al])
k=—1 l+k‘
k € [-1,0, 1] - we consider neighboring bins, B; 1, B;, B; 1
Gau(k) - Gaussian weighting function at k - higher importance to bins closer to %

> 8
SeBity

‘Bi+k‘
argmin . . . - finds pair of points s, ¢ that minimizes combined distance from s to the new
position T3 and from £ to position T 1 to align with the surrounding structure

The resulting map weighted by Gau is smooth and continuous

- centroid, average of the points S in the bin B,k

2D variant:

1

T, ; = argminp,, Z Gau(k, h) Z 5(s,t)

k,h=—1 SEB; kjih

To avoid getting stuck in a local minimum, we enumerate all 4!=24 possible alignments of

quadruples and find one that minimizes
argmin (s ;.,)(8(s, Tij) + 6(t, Tiv1,5) + 6(u, Tiji1) + 0(v, Tiv1,4+41))

Self-organizing map (SOM)

Artificial NN trained using competitive learning, 2D grid of neurons is fitted to data
Key concepts
Neurons - 2d grid, each has a weight vector of the same dimension as input data (position)
Weight vectors - represent positions in space, adjasted to training data
Topology - grid structure of the map, how neurons are connected and how they influence
each other
Best Matching Unit - for each data point, the neuron with the weight vector closest to the
input vector is BMU
Training algorithm
Init weights
Input vector selection - randomly from the dataset
Finding the BMU - compute distance between input vector and all weight vectors
identify the neuron (BMU) whose weight vector is closest to the input vector by some
distance function
Updating weights - adjust positions of BMU and neighboring neurons to make them more
similar to input
Wit + 1) = Wi(t) + Ir(t) - hemu,i(t) - (V(¢) — Wi(t))
W;(t) - weight vector of neuron i at time t
Ir(t) - learning rate at time t
linearly decrease Ir for network stabilization
hBMU,i(t) - neighborhood function, decreases with distance from the BMU over time
BMU,; = argmin;Ly(V,W;) - finds neuron with weight (position) closest to the

input vector
e —L2(coord(BMU;),coord(t))
0-2

V(t) - input vector at time t
Applications:
Data visualization
Clustering, dimension reduction

Approaches to visualization of dataset properties
for structure preservation while mapping high-dimensional structures into lower dimensions

High-dim feature space with manifold structure

Mapping without structure preservation in visualization space (could mislead)

Mapping with structure preservation in visualization space (colors represent ordered/sequential
relationship)

General dataset visualization properties

Overview requirement - visualization should give a faithful overview of the distribution of images
in the collection

Structure preservation requirement - relations between images should be preserved when
visualizing data

Visibility requirement - all displayed images should be visible to extent that the user can
understand the image content

