
Zkouška
Video formats
Digitalization

Containers
Multi-media object

Container

How to play an encoded file

MP4 container

Analog � AD converter � Digital � DA converter � Analog
Audio - array of numbers
Video � 3d array of rgb tuples
Sampling - with an appropriate frequency, quantized based on required bit depth

too low loses detail, too high generates more data - quality vs storage
aliasing - losing information when sampling, creating unwanted signals
At least 2 times the frequency of the original signal

humans can hear 20�22 kHz � 44 kHz for sound sampling
Bit rate (bps) - number of bits transmitted/processed per second

audio - higher bitrate = better quality as more data can be used to represent sound, but also
larger size
video - higher bitrate = better visual quality, larger file size and streaming bandwidth
requirements

Sequence of images + different resolutions
Audio stream + different languages
Subtitles
Meta-data
Detected object
Cover image

Single standardized file comprising all related data
synchronization info, fragmentation, data structure, etc.

Compression is necessary for video and audio
Bit rate = number of bits to represent timed data per time unit

Media player transforms a media container into a data stream using a CoDec
CoDec � Coder+Decoder � SW or HW tool for video coding based on some standardized format

A series of boxes/atoms which contain data
Each atom looks like this: [size][name][data]

ftyp  � FileTypeBox - brand, version, compatibility
mdat  - timestamped audio/video payload
moov  - metadata (creation time, duration, track types)

stbl  - sample table boxes: codec info, sample location in mdat
stsd  - description, codec info
stts  - decoding timestamps and sample durations

sample number ↔ decoding timestamp, allowing for playback synchronization
stsc  - sample to chunk

how samples are grouped into chunks



Encoding
CoDec

Why codecs work?

HEVC coding

stco  - chunk offsets
byte offsets of each chunk within the media track

stsz  - sample sizes
size of each sample within the media track, determines the amount of data to be
read for each sample during playback or processing

Chunk - contiguous block of data, e.g. a video frame, a bunch of audio samples
Sample - snakkest ybut if tge nedua
You need a CoDec to extract compressed a/v content

codec implementations must comply with specs
decoder implementations can read data from different coders
best quality for a given bit rate, decoding/encoding time (e.g. for live streaming)
Original data - list of BMP images based on fps

decoder(coder(frame))=frame  - time/quality trade-off
Popular codecs

262 MPEG�2 � DVD
264 AVC � Blue-ray, youtube
265 HEVC � 8k video
266 VVC � better HEVC

Better codecs give higher subjective quality for lower bitrates

human eyes don't percieve the difference, e.g. we don't percieve high-frequency data
spatial/temporal redundancy - when color stays the same between the frames
statistical redundancy - we can use less bits for storing common colors

Hierarchical structure of dividing images into smaller blocks, allowing for efficient compression
Coding tree unit CTU �HEVC�/Macroblock �AVC�

up to 64�64px, allow compression of large areas of uniform color or texture
each CTU square is divided into 4 equal squares (quad-tree division) until the smallest
allowable block size (Coding Unit) is reached

Coding tree units � Coding Units �CU�, Prediction Units �PU� and Transform Units �TU�
Coding unit size varies from 8�8 to 64�64, adapts to different levels of detail within a frame
Prediction units define how prediction is performed within CU

2Nx2N � same size as CU, no further partitioning
NxN � CU is split into 4 equal parts, each forming a PU
NxnU, NxnD, nLxN, nRxN � asymmetric motion partitions, more flexible, non-uniform
motion

Transform units - transformation and quantization of residual data after prediction
4�4 to 32�32px, capture frequencies of the remaining data

Summary:
CTU division � 64�64px
CU partitioning - subdivision based on texture, detail and motion
PU partitioning - subdivision of CUs based on spatial similarity
TU partitioning - subdivision based on frequencies

Intra-frame (spatial prediction) - within same frame, jpeg-like,
RGB � YCbCr � Chroma subsampling � Frequency-Domain � Quantization � Entropy
encoding



Audio CoDecs

Similarity search

Similarity model queries meta-data ↔ content

Similarity search model

YCbCr � Y-luma, Chroma-blue, Chroma-red
Chroma subsampling - compress Chroma and keep Luma because our eyes are more
sensitive to brightness than color
Frequency domain - our eyes are less sensitive to high-frequency details, Discrete
Cosine Transform to extract separate frequencies

Energy compaction - largest DCT coefficient values are concentrated in low-
freqency coefficients
More coefficients = better quality

Quantization - divide and round values using a quantization table
defines compression quality - lower=worse

Huffman entropy encoding - our data has lots of zeroes which can be compressed as
well

Prediction
Vertical, horizontal, angular, DC, planar prediction - predicting each pixel based on the
one before it
Works well when we have uniform blocks of pixels
but not so much when we have high noise or fine details

Inter-frame - between different frames
Motion estimation - encoder detects movement and searches for motion vectors
Motion compensation - predicted frame is created by shifting blocks according to motion
vectors
Residual calculation - difference between two frames, allows for better compression (e.g.
subtracting same frames gives you a black rectangle)
c(motion info) + c(residual) < c(original)

Sub-pixel precision for better results
Tricks

Use heuristics to search for reference blocks
Use more reference frames to estimate motion
Filter out compression artifacts

input: array of numbers samplet with a given frequency
decode(encode(audio_sample)) = audio_sample ? � size/quality trade-off
MP3 (lossy perceptual-based compression)
AAC (better for lower bit rates)

Video - all frames
Shots - groups of similar frames
Representative frames - represent shots

attributes
keywords
free-form text
sketch
example image

δ(fq(query), fd(data))



Computing similarity scores

Convolutional neural network �CNN�

distance function between two math objects (e.g. vectors, tensors, sets)
δ(x, y) ≥ 0

δ(x, y) = δ(y,x)

δ(x,x) = 0

Common functions
Cosine 1 −

xy

||x|| ||y||

Lebesgue p√
n

∑
i=1

wi|xi − yi|p

L1�Manhattan
L2�Euclidean
L∞=maximal

Jaccard - set similarity, intersection minus union

1 −
|X∩Y |

|X∪Y |

Similarity queries
Range - all objects within a given radius
kNN - nearest k objects to a query

Global representation - e.g. a vector representing entire image
efficient, simple, scalable
loses detail, less robust to small variations
Histogram

Bins: hard - one bin per step / soft - more bins per step
Quantization - q-levels, image resize
Channel combinations (joint histogram)
Location - different image parts
For a video sequence - more frames into one histogram

Local representation - e.g. image keypoints and region descriptors, SIFT, SURF
precise, flexible, fine-grained
complex, less scalable

Convolutional layers - applies filters (kernels) by sliding over the input image and computing dot
products between the filter and the local regions in order to detect edges, textures and shapes

Filter - small matrix (e.g. 3�3, 5�5� of weights designed to detect specific patterns such as
edges, textures, or more complex as the layers deepen

fΘ : Rw×h×3 → R|C|

maps image to the list of C classes
Each filter generates a channel

 Extract a k × k patch from the image
 Multiply each element of the patch by the corresponding element of the filter K
 Sum the products to get a single value and place it into the output matrix O

Convolution - process of sliding the filter over the input image, performing multiplication and
summing the results to produce feature maps
Filter values can learn and adjust through the process called backpropagation

Activation function - is applied after convolution, introduces non-linearity
ReLU(x) = max(0,x) - outputs positive inputs directly, otherwise 0, applied element-wise



AlexNET

Local image descriptors

Linear functions can only represent proportional change and cannot capture complex
patterns, e.g. you are limited by a straight line in classification while non-linear functions
enable you to create complex curves to separate the data points

Pooling layers - reduce spatial dimensions of the previous feature maps for efficient
computation, max/average pooling

outputs resized "image" (actually its feature map)
max pooling - slides a window over input feature map, outputs max value within that window
for each position

Fully connected layers �Dense layers) - aggregate features learned by convolutional layers and
classify

Softmax - activation function that transforms scores into a probability distribution over
different classes, often used in the last layer
We don't always use FC layers because they require much more parameters and are
computation-intensive, convolutional layers tend to be much more efficient

Embedding - transformation of input data into a more manageable vector space
Can be extracted from data, e.g. extracting image features via ResNet for classification
Embeddings can represent different objects detected in an image or be used for computing
distances in similarity search
Embedding layer maps input indices to vectors - can be trained from scratch or initialized
with pre-trained embeddings

More layers = ability to detect more complex shapes from the building blocks in the previous
layers

Image classification, 1000 categories in the ImageNet dataset
Architecture � 8 layers

Input - image
1�5 Convolutional layers
6�8 Fully connected layers

We want object detection to be robust to occlusions, lightning conditions, scaling, rotation,
position, etc.
Scale-invariant feature transform �SIFT� - popular pre-DL unsupervised method
Image is represented by a set of local descriptors (e.g. vectors)

vi represents content of a selected subregion around detected keypoint at (x,y)
pairing between two sets of descriptors based on distance d(vi, vj), expensive verification
in 2D

Operates on multiple image scales to detect keypoints invariant to scale changes
grid of pixel blocks around a keypoint

DoG (difference of gaussian) pyramid is used to identify scale-space keypoints by comparing
adjacent scales

For each keypoint we take the image put through a gaussian filter (blur) at corresponding
scale p and compute intensity differences between scales, keeping the points which are over
our threshold

Once keypoints are detected, SIFT does descriptor generation which captures features invariant
to scale/rotation/illumination changes

Compute dominant orientation of each keypoint by taking the highest point in the histogram
of orientations, �10, 20, 30, ..., 360� degrees (orientations closer to the center contribute
more)
Each descriptor has location, scale, orientation and a feature vector



Shot detection

ResNet

Object detection with R�CNN (region-based cnn)

Compute orientations relative to the dominant orientation, 45-degree differences, 8
histogram bins
The 8-bin keypoint histograms are then concatenated into a high-dimensional �128�
descriptor that represents keypoint's local appearance

Object detection
represent one image with one global histogram
select candidate db images using some efficient index for the global histograms
re-ranking with optimal transformation

For the query image and candidate images, find the optimal transformation by solving an
equation
Transformation that maximizes the number of inliers (|x′ − u|2 + |y′ − v|2 < α, points
that agree with the transformation) is considered optimal

Feature vector - array of numerical values that represent features of given data
Descriptor - representation that summarizes important features, often in computer vision, e.g.
edges, corners, textures, shapes - synonymous to feature vectors in the context of SIFT,
designed to be invariant to transformations
Other sources:

https://www.baeldung.com/cs/scale-invariant-feature-transform

traditional approaches
similarity of two consecutive frames
keypoint tracking
ML using hand-crafted features

Deep learning
3D CNNs

TransNet - a neural network for fast detection of common shot transitions
TP � true positive, FP� false positive, FN� false negative, P � precision, R � recall

P = TP/(TP + FP)

R = TP/(TP + FN)

F1 = 2PR/(P + R)

Precision - accuracy of positive predictions
High precision ⇒ low false positives

Recall - sensitivity, ability to capture all positive instances in the dataset
High recall ⇒ low false negatives

F1 score - harmonic mean of precision and recall

Residual network architecture - allows for even deeper networks with improved performance
Instead of learning direct input-output mappings, it learns residual mappings - the difference
between the desired output and input to a given layer
Residual block - consists of 2� convolutional layers with shortcut connections (identity
mappings) that bypass one or more layers, residual blocks are deeply stacked

localization and bounding box estimation
 Generate region proposals (candidate boxes) using selective search
 Feed each region through a pretrained CNN to extract features
 Classify regions and generate a bounding boxes

Selective search - region proposal algorithm, generates candidate bounding boxes from an
image

https://www.baeldung.com/cs/scale-invariant-feature-transform


Popular datasets

Multi-modal search
Modality

Fusion

Mono vs Multi-modal similarity search engine

Segments image into a large number of small, homogenous regions based on various
features, e.g. color, texture, instensity
Iteratively merges similar regions using hierarchical clustering to generate larger regions
Merging is guided by a similarity measure ensuring that similar adjacent regions are merged

EdgeBoxes - generates object boundaries based on edge density
YOLO (you only look once) - divide image into a grid and predict bounding boxes and class
probabilities directly from grid cells

predicts for objects whose centers fall within the cell
Faster R�CNN - introduces RPN, region proposal network

RPN shares convolutional features with object detection stages
RPN generates candidates directly from extracted feature maps
slides a small network over the feature map and predicts scores and box offsets
The Image first passes through the backbone network to get an output feature map, and the
ground truth bounding boxes of the image get projected onto the feature map

ImageNet - image classification, single object localization, object detection
images for concepts in WordNet hierarchy

COCO � object detection and segmentation

Specific type of data, e.g. image, text, audio
(δM , feM ) - distance metric and the embedding function

embedding function maps items from their original form onto feature vectors
e.g. a deep neural network can map images onto visual feature vectors, for text Word2Vec
can convert text into numerical vectors

Video data has many modalities - colors, edges, trajectories, sounds, text metadata

a way of combining data of different modalities
Early fusion (feature-level fusion) - combine features from multiple modalities into a single
features, e.g. concatenating feature vectors

More effective for interdependent modalities, allows models to learn the combinations
E.g. whether a social media post is positive or negative based on text and pictures

Late fusion (decision-level fusion) - combine prediction outputs of separate models, e.g. by
averaging predictions

More effective for distinct modalities or when they have separate processing
E.g. multimedia content search, can search by text or image or both, flexible, modular

Mono-modal
Input: single modality descriptor (e.g. shape, color or text)
Data preprocessing - feature extraction
Similarity search - using distance function on indexed data
Retrieving IDs - of the most similar objects, then fetching full images and showing the results

Multi-modal
Input: combination of multiple modality descriptors
Data preprocessing - features from different modalities are extracted and combined into a
multi-modal indexed data structure (in early fusion models)

https://towardsdatascience.com/understanding-and-implementing-faster-r-cnn-a-step-by-step-guide-11acfff216b0


Temporal queries

Basic Classification-based Search

Joint embedding

Similarity esarch - combined descriptors use combined distance functions (e.g. combining
distances for shape and color)

Model can interpret and respond to queries that involve sequences of events or actions
e.g. Person entering a room and sitting down

Search for a video segment where "sea" frames are followed by "building" frames
Temporal context size (i + c) - i=frame index, c=context size

determines number of frames or timeframe units after the initial query ("sea"), the system
continues to search for the next item in the query ("building"), can be adjusted

Creates confidence scores for supported classes
Text query consists of class names, engine rankes images using confidence scores

Projecting both modalities onto a single feature space
δ(feq(query), fed(data))

feq : input query → feature vector
feq : data item → feature vector
δ : how close are query and data in the same feature space

Example:
"a red sports car" text → feature vector
car images → feature vectors
text vector is then compared to image vectors in the database

DB contains preprocessed image vectors, during search a query feature vector is computed
and compared
Tq - text query to be translated into a feature vector
fe : DB → Rn - extracts image vectors
fΘ
m : UT → R

n - extracts text vectors into the same feature space as image vectors
δ : Rn × Rn → R

+
0  - measures similarity between feature vectors

Loss functions for training joint embedding models
Usually the models of different modalities are trained together to ensure proper feature
vector alignment



Contrastive Language-Image Pre-Training �CLIP�

Loss function - measures how well predictions match true data labels, quantifies error
between predicted and actual values
Contrastive loss - considers pairs of objects from the same class and pairs of objects from
different classes

Minimize: δ(x, y) + ⋯ + max(0, c − δ(z,w))

x,y - similar
z,w - dissimilar
c - margin, minimum distance between positive pairs and maximum distance
between negative pairs

Consider similar and dissimilar pairs of data points to bring the similar pairs together and
push the different pairs apart
Minimize distancebetween similar, maximize between opposite, some margin is enforced

Triplet loss - considers triplets where one object is from the same class (anchor) and one
from a different class

Minimize: max(0, c + δ(x, y) − δ(x, z)) + …

x,y - similar
x,z - different
c - margin

Reduce distance between anchor and positive point while increasing the distance
between the anchor and the negative point by at least a margin

CLIP jointly trains image and text encoders to predict the correct pairings of batch examples
Contrastive learning - maps similar images and text close together while pushing dissimilar pairs
apart

Purpose: align text and image representations
Use a large dataset of image-text pairs
Image encoder & Text encoder
Maximize similarity between correct pairs, minimize between mismatched

Dataset classifier from label text creation from label text
learns to classify images based on unseen text
input image ↔ text labels similarities
understand and categorize images according to labels it has never seen during pre-training

Zero-shot prediction
model makes predictions on data it has not been trained on
recognizes images it hasn't seen yet based on textual descriptions
by generating embeddings for both text and images, it can compare them to classify images
into categories that were not part of initial training, by simply using the descriptive text of
what the image contains

Robustness
bidirectional understanding of text and images � CLIP can associate images with their textual
descriptions and vice versa
transferable representations � CLIP learns transferable representations during pre-training
which can be generalized, they capture high-level semantics
large pre-training dataset
multimodal contrastive training - enables CLIP to associate similar images with text
descriptions
zero-shot � CLIP is strong even for datasets it hasn't been trained on

versatile - no task-specific data needed
scalable, powerful - trained on a diverse range of data
efficient - reduces need for extensive dataset-specific training by generalizing the model



Interactive search
Motivation

Relevance feedback loop

Rocchio algorithm �1971�

Active learning

Bayesian feedback loop

Interaction gives the search model feedback
Exploratory browsing - improved effectiveness through dynamic interaction
Visualization can help better understand the data
System interface must be intuitive and responsive (indexing!� but it's hard to evaluate subjective
experience

qualitative - user satisfaction, usability studies
quantitative - speed, accuracy, relevance

Feedback
Positive/negative
Obtained from the current results based on user actions

reinforcement learning - system's effectiveness improves over time
Use of feedback

Update query vector based on +/- examples (e.g. Rocchio)
moving query closer to preferred items, away from less relevant

Update decision model (decision hyperplane)
modifying the underlying decision-making processs, e.g. ml model parameters

Update relevance scores of all items �Bayes)
statistical methods to update relevance scores of db items

Data represented by vectors
relevant Dr, irrelevant Dn

querynew = (α ⋅ queryold) + (
β

|DR|
⋅ ∑
vj∈DR

vj) − (
γ

|Dn|
⋅ ∑
vj∈Dn

vj)

α,β, γ - importance coefficients, often chosen empirically

β ⋅

∑
vj∈DR

vj

|DR|  - average vector of relevant documents scaled by β

Positive reinforcement in the second coefficient pulls the query vector closer to the centroid of
the relevant documents
Negative reinforcement pushes query away from the centroid of the non-relevant documents
The reused query is more likely to retrieve items similar to those marked as relevant

constant training
support vector machines to train decision plane

Display Dt in iteration t - set of images based on search query and prior interactions
User interacts by picking an image
Iterate over all items in the database and update score
∀Ioi ∈ DB : σt+1(Ioi) = P(Ioi = IoS |Ht)

Ht = ⋂t
i=0{Di, Iqi} - search history of user transactions

Ht is updated to include the current iteration
select Dt+1 ⊆ DB - new set of images to display
Repeat



Display selection strategies

Visualization of multimedia data
Limits of human perception

Different visualizations for different tasks

Gestalt laws

For each object in the database

P(Ioi = IoS |Iqt ,Dt,Ht−1) =
P(Iqt |Dt,Ht−1, Ioi = IoS) ⋅ P(Ioi = IoS |Ht−1)

P(Iqt |Dt,Ht−1)

Iqt  - image user picked

P(Iqt |Dt, Ioi = IoS) ∼
similarity(Ioi ,Iqt)

∑
∀Idi

∈Dt

similarity(Ioi=Idi)
 - User model, notice it in the upper part of our

Bayes fraction but without history
below is a normalization coefficient, accounts for influence of other images in the display
set on the perception of similarity to query - if all images are similar to the query it
decreases the probability and we update a bit less

similarity(Ioi , Ioj) ∼ e
||fe(Ioi),fe(Ioj)||2

σ2

Other notes:
P that it is picked in the previous step (we know it)

1/|DB| by default
We don't know the user model

no Ht−1 - we expect independence
P of choosing Iqt  considering display Dt and this is what we want (Ioi = IoS )
σ - σ0 = 1/|DB|

target - os
Model adjusts the percieved relevance of images based on both direct similarity to the query and
the influence of other images in the search context - integrates prior knowledge over time

effective selection strategies can help reduce user's cognitive load
Most probable items - items most likely to be relevant based on scores

allows users to find the most relevant images quickly
flawed because user can get stuck in a cluster

Score-based sampling - select items based on relevance probability
more diverse, allows for more exploration, does not always show top-scored items
introduces randomness

Entropy-based criterion - based on set of sampled displays, more balanced
choosing pictures most far away from each other
maximizes information gain from user feedback by selecting images based on uncertainty of
model's predictions
improved performance and maximal information gain for faster improvement
sometimes displays less relevant images, more ambiguous images

Limit to how many images can a human perceive in one page
Response times should be adequate to prevent lagging

Finding items - found should be highlighted
Content understanding - represent overarching themes and patterns that give insights into the
entire dataset
Exploratory browsing - no specific target, easy and intuitive discovery and browsing



Grid-based presentation

Reorganizing for larger displays

Self-sorting map

how humans perceive visual elements as organized patterns rather than separate components
Law of simplicity - complex is perceived as simplest
Law of similarity - similar items are grouped together
Law of proximity - nearby items are grouped together
Law of continuity - eye is drawn to continuous lines
Law of closure - mind seeks to fill in the gaps to create whole
Law of symmetry - symmetrically arranged objects are perceived as forming around some center
point

Standard grid
Emphasized top corner items
Progressive disclosure - zigzag pattern
Temporal/contextual - sequential view, relation across states/times
Case study on gaze patterns - most users look at the screen center

When there are too many images, it may be beneficial to do some additional reorganization
Swap images if it improves a cost function

argmaxL ∑
∀s,t∈Ω

(||P(Ls) − P(Lt)|| − P)(δ(s, t) −
–
δ)

σpσδ

–

L - layout
∀p, s - sum over all data points within the dataset Ω
P(x) - location of cell x

P  - mean Euclidean distance between any two assigned cells
–

||P(Ls) − P(Lt)|| � Euclidean distance between two specific points
δ(s, t) - dissimilarity between two specific points
–
δ - mean dissimilarity between any two data entries
σp,σs - corresponding standard deviation values
Numerator: High if both deviations are either positive or both negative, indicating a positive
correlation
Denominator: Normalizes product by std

an algorithm that organizes data points on a grid so similar data points are located near each
other, creating a map
Reflects patterns and similarities without predefined categories
Typically generated via unsupervised learning
Applications

pattern recognition
feature mapping
anomaly detection

Ti =
+1

∑
k=−1

Gau(k)

∑
S∈Bi+k

S

|Bi+k|
argmin(s,t)(||s − Ti|| + ||t − Ti+1||)

k ∈ [−1, 0, 1] - we consider neighboring bins, Bi−1,Bi,Bi+1

Gau(k) � Gaussian weighting function at k - higher importance to bins closer to i



Self-organizing map �SOM�

Approaches to visualization of dataset properties

∑
S∈Bi+k

S

|Bi+k|  - centroid, average of the points S in the bin Bi+k

argmin… - finds pair of points s, t that minimizes combined distance from s to the new
position Ti and from t to position Ti+1 to align with the surrounding structure

The resulting map weighted by Gau is smooth and continuous
2D variant:

Ti,j = argmint∈Bi,j

1

∑
k,h=−1

Gau(k,h) ∑
s∈Bi+k,j+h

δ(s, t)
⎡
⎣

⎛
⎝

⎞
⎠
⎤
⎦

To avoid getting stuck in a local minimum, we enumerate all 4!�24 possible alignments of
quadruples and find one that minimizes
argmin(s,t,u,v)(δ(s,Ti,j) + δ(t,Ti+1,j) + δ(u,Ti,j+1) + δ(v,Ti+1,j+1))

Artificial NN trained using competitive learning, 2D grid of neurons is fitted to data
Key concepts

Neurons � 2d grid, each has a weight vector of the same dimension as input data (position)
Weight vectors - represent positions in space, adjasted to training data
Topology - grid structure of the map, how neurons are connected and how they influence
each other
Best Matching Unit - for each data point, the neuron with the weight vector closest to the
input vector is BMU

Training algorithm
Init weights
Input vector selection - randomly from the dataset
Finding the BMU � compute distance between input vector and all weight vectors

identify the neuron �BMU� whose weight vector is closest to the input vector by some
distance function

Updating weights - adjust positions of BMU and neighboring neurons to make them more
similar to input
Wi(t + 1) = Wi(t) + lr(t) ⋅ hBMU ,i(t) ⋅ (V (t) − Wi(t))

Wi(t) - weight vector of neuron i at time t
lr(t) - learning rate at time t

linearly decrease lr for network stabilization
hBMU ,i(t) - neighborhood function, decreases with distance from the BMU over time

BMUi = argminiL2(V ,Wi) - finds neuron with weight (position) closest to the
input vector

e
−L2(coord(BMUi),coord(i))

σ2

V (t) - input vector at time t
Applications:

Data visualization
Clustering, dimension reduction

for structure preservation while mapping high-dimensional structures into lower dimensions

 High-dim feature space with manifold structure
 Mapping without structure preservation in visualization space (could mislead)
 Mapping with structure preservation in visualization space (colors represent ordered/sequential

relationship)



General dataset visualization properties

Overview requirement - visualization should give a faithful overview of the distribution of images
in the collection
Structure preservation requirement - relations between images should be preserved when
visualizing data
Visibility requirement - all displayed images should be visible to extent that the user can
understand the image content


