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Kapitola 1

Syntaxe a sémantika výrokové
logiky

Syntaxe je soubor formálních pravidel pro tvoření korektních vět sestávajících ze slov (v
případě přirozených jazyků), nebo formálních výrazů sestávajících ze symbolů (např. příkazy
v programovacím jazyce). Naproti tomu sémantika popisuje význam takových výrazů. Vztah
mezi syntaxí a sémantikou se prolíná celou logikou a je klíčem k jejímu pochopení.

1.1 Syntaxe výrokové logiky
Nejprve definujeme formální ‘nápisy’, se kterými budeme v logice pracovat.

1.1.1 Jazyk

Jazyk výrokové logiky je určený neprázdnou množinou výrokových proměnných P (také jim
říkáme prvovýroky nebo atomické výroky). Tato množina může být konečná nebo i nekonečná,
obvykle ale bude spočetná1 (pokud neřekneme jinak), a bude mít dané uspořádání. Pro vý-
rokové proměnné budeme obvykle používat označení pi (od slova “proposition”), ale pro lepší
čitelnost, zejména je-li P konečná, také p, q, r, . . . Například:

P1 = {p, q, r}
P2 = {p0, p1, p2, p3, . . .} = {pi | i ∈ N}

Do jazyka patří kromě výrokových proměnných také logické symboly: symboly pro logické
spojky ¬,∧,∨,→,↔ a závorky (, ). Budeme ale pro jednoduchost mluvit o “jazyce P”.
Poznámka 1.1.1. Pokud budeme potřebovat formálněji vyjádřit uspořádání jazyka P, předsta-
víme si ho jako bijekci ι : {0, 1, . . . , n− 1} → P (pro konečný, n-prvkový jazyk) resp. ι : N → P
(je-li P spočetně nekonečný). V našich příkladech ι1(0) = p, ι1(1) = q, ι1(2) = r, a ι2(i) = pi
pro všechna i ∈ N.2

1To je důležité v mnoha aplikacích v informatice, nespočetné množiny se do (ani nekonečného) počítače
nevejdou.

2Množina přirozených čísel N obsahuje nulu, viz standard ISO 80000-2:2019.
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1.1.2 Výrok

Základním stavebním kamenem výrokové logiky je výrok neboli výroková formule. Je to ko-
nečný řetězec sestavený z výrokových proměnných a logických symbolů podle jistých pravidel.
Prvovýroky jsou výroky, a dále můžeme vytvářet výroky z jednodušších výroků a logických
symbolů: například pro logickou spojku ∧ vypíšeme nejprve symbol ‘(’, potom první výrok,
symbol ‘∧’, druhý výrok, a nakonec symbol ‘)’.

Definice 1.1.2 (Výrok). Výrok (výroková formule) v jazyce P je prvek množiny VFP defino-
vané následovně: VFP je nejmenší množina splňující3

• pro každý prvovýrok p ∈ P platí p ∈ VFP,

• pro každý výrok φ ∈ VFP je (¬φ) také prvek VFP

• pro každé φ,ψ ∈ VFP jsou (φ ∧ ψ), (φ ∨ ψ), (φ→ ψ), a (φ↔ ψ) také prvky VFP.

Výroky označujeme obvykle řeckými písmeny φ,ψ, χ (φ od slova “formule”). Abychom
nemuseli vypisovat všechny čtyři binární logické spojky, používáme pro ně někdy zástupný
symbol □. Třetí bod definice bychom tedy mohli vyjádřit takto:

• pro každé φ,ψ ∈ VFP a □ ∈ {∧,∨,→,↔} je (φ□ ψ) také prvek VFP.

Podvýrok (podformule) je podřetězec, který je sám o sobě výrokem. Uvědomte si, že
všechny výroky jsou nutně konečné řetězce, vzniklé aplikací konečně mnoha kroků z defi-
nice na své podvýroky.
Příklad 1.1.3. Výrok φ = ((p∨ (¬q))↔ (r→ (p∧q))) má následující podvýroky: p, q, (¬q), (p∨
(¬q)), r, (p ∧ q), (r → (p ∧ q)), φ.

Výrok v jazyce P nemusí obsahovat všechny prvovýroky z P (ani nemůže pokud je P
nekonečná množina). Bude se nám proto hodit značení Var(φ) pro množinu prvovýroků vy-
skytujících se ve φ.4 V našem příkladě Var(φ) = {p, q, r}.

Zavedeme si zkratky pro dva speciální výroky: ⊤ = (p ∨ (¬p)) (pravda) a ⊥ = (p ∧ (¬p))
(spor), kde p ∈ P je pevně zvolený (např. první prvovýrok z P). Tedy výrok ⊤ je vždy pravdivý
a výrok ⊥ je vždy nepravdivý.

Při zápisu výroků můžeme pro lepší čitelnost některé závorky vynechat. Např. výrok φ
z příkladu 1.1.3 můžeme reprezentovat nápisem p ∨ ¬q ↔ (r → p ∧ q). Vynecháváme vnější
závorky a používáme prioritu operátorů: ¬ má nejvyšší prioritu, dále ∧,∨, a konečně →,↔
mají nejnižší prioritu. Dále nápisem p∧ q ∧ r ∧ s myslíme výrok (p∧ (q ∧ (r ∧ s))), a podobně
pro ∨.56

3Takovému druhu definice říkáme induktivní. Lze také přirozeně vyjádřit pomocí formální gramatiky, viz
předmět NTIN071 Automaty a gramatiky.

4Pokud nespecifikujeme v jakém jazyce je výrok (a pokud to není jasné z kontextu), myslíme tím, že je v
jazyce Var(φ).

5Díky asociativitě ∧, ∨ na uzávorkování nezáleží.
6Někdy se zavádí jemnější priority, ∧ mívá vyšší prioritu než ∨, → vyšší než ↔. A někdy se píše p → q → r

místo (p → (r → q)), byť → není asociativní a na uzávorkování záleží. Obojímu se ale raději vyhneme.
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→
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p q

Obrázek 1.1: Strom výroku φ = ((p ∨ (¬q)) ↔ (r → (p ∧ q)))

1.1.3 Strom výroku

V definici výroku jsme zvolili infixový zápis se závorkami čistě z důvodu čitelnosti pro člověka.
Nic by nám nebránilo použít prefixový zápis (“polskou notaci”), tj. definovat výroky takto:

• každý prvovýrok je výrok, a

• jsou-li φ,ψ výroky, jsou také ¬φ, ∧φψ, ∨φψ, →φψ, a ↔φψ výroky.

Výrok φ = ((p∨ (¬q)) ↔ (r→ (p∧ q))) bychom potom zapsali jako φ = ↔∨p¬q→r∧pq. Také
bychom mohli použít postfixový zápis a psát φ = pq¬∨rpq∧→↔. Vše podstatné o výroku ve
skutečnosti obsahuje jeho stromová struktura, která zachycuje, jak je sestaven z jednodušších
výroků, obdobně jako strom aritmetického výrazu.
Příklad 1.1.4. Strom výroku φ = ((p ∨ (¬q)) ↔ (r → (p ∧ q))) je znázorněný na obrázku 1.1.
Všimněte si také, že podvýroky φ odpovídají podstromům. Výrok φ získáme průchodem
stromem od kořene, v každém vrcholu:

• pokud je label prvovýrok, vypíšeme ho

• pokud je label negace: vypíšeme ‘(¬’, rekurzivně zavoláme syna, vypíšeme ‘)’,

• jinak (pro binární logické spojky): vypíšeme ‘(’, zavoláme levého syna, vypíšeme label,
zavoláme pravého syna, vypíšeme ‘)’.7

Nyní si strom výroku definujeme formálně, indukcí podle struktury výroku:8

Definice 1.1.5 (Strom výroku). Strom výroku φ, označme Tree(φ) je zakořeněný uspořádaný
strom, definovaný induktivně takto:

• Je-li φ prvovýrok p, obsahuje Tree(φ) jediný vrchol, jeho label je p.

• Je-li φ tvaru (¬φ′), má Tree(φ) kořen s labelem ¬, a jeho jediný syn je kořen Tree(φ′).
7Prefixový a postfixový zápis bychom získali podobně, ale nevypisujeme závorky a label vypíšeme hned při

vstupu resp. těsně před opuštěním vrcholu.
8Jakmile máme definovaný strom výroku, můžeme indukci podle struktury výroku chápat jako indukci

podle hloubky stromu. Zatím tím ale chápejme indukci podle počtu kroků z definice 1.1.2, kterými výrok
vznikl. Alternativně postačí indukce podle délky výroku, nebo podle počtu logických spojek.
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• Je-li φ tvaru (φ′ □ φ′′) pro □ ∈ {∧,∨,→,↔}, má Tree(φ) kořen s labelem □ a dvěma
syny: levý syn je kořen stromu Tree(φ′), pravý je kořen Tree(φ′′).

Cvičení 1.1. Dokažte, že každý výrok má jednoznačně určený strom výroku, a naopak.

1.1.4 Teorie

V praktických aplikacích nevyjádříme požadované vlastnosti jediným výrokem — to by musel
být velmi dlouhý a složitý a špatně by se s ním pracovalo — ale mnoha jednoduššími výroky.

Definice 1.1.6 (Teorie). Teorie v jazyce P je libovolná množina výroků v P, tedy libovolná
podmnožina T ⊆ VFP. Jednotlivým výrokům φ ∈ T říkáme také axiomy.

Konečné teorie by tedy bylo možné (byť ne praktické) nahradit jediným výrokem: kon-
junkcí všech jejich axiomů. Připouštíme ale i nekonečné teorie (triviálním příkladem je teorie
T = VFP), a prázdnou teorii T = ∅.9

1.2 Sémantika výrokové logiky
V naší logice je sémantika daná jednou ze dvou možných hodnot: pravda, nebo nepravda. (V
jiných logických systémech může být sémantika zajímavější.)

1.2.1 Pravdivostní hodnota

Výrokům můžeme přiřadit jednu ze dvou možných pravdivostních hodnot: pravdivý (True, 1),
nebo lživý (False, 0). Prvovýroky reprezentují jednoduchá, nadále nedělitelná tvrzení (proto
jim také říkáme atomické výroky); pravdivostní hodnotu jim musíme přiřadit tak, aby od-
povídala tomu, co chceme modelovat (proto jim říkáme výrokové proměnné). Jakmile ale
ohodnotíme prvovýroky, pravdivostní hodnota libovolného složeného výroku je jednoznačně
určená, a snadno ji spočteme podle stromu výroku:
Příklad 1.2.1. Spočtěme pravdivostní hodnotu výroku φ = ((p ∨ (¬q)) ↔ (r → (p ∧ q))) při
ohodnocení (a) p = 0, q = 0, r = 0, (b) p = 1, q = 0, r = 1. Postupujeme od listů směrem
ke kořeni, podobně jako bychom vyhodnocovali např. aritmetický výraz. Výrok φ platí při
ohodnocení z (a), neplatí při ohodnocení z (b). Viz obrázek 1.2.

Logické spojky ve vnitřních vrcholech vyhodnocujeme podle jejich pravdivostních tabulek,
viz tabulka 1.1.10

1.2.2 Výroky a booleovské funkce

Abychom mohli formalizovat pravdivostní hodnotu výroku, podíváme se nejprve na souvislost
výroků a booleovských funkcí.

Booleovská funkce je funkce f : {0, 1}n → {0, 1}, tedy vstupem je n-tice nul a jedniček, a
výstupem 0 nebo 1. Každá logická spojka reprezentuje booleovskou funkci. V případě negace
jde o unární funkci f¬(x) = 1 − x, ostatním logickým spojkám odpovídají binární funkce
popsané v tabulce 1.2.

9Nekonečné teorie se hodí například pro popis vývoje nějakého systému v (diskrétním) čase t = 0, 1, 2, . . .
Prázdná teorie se nehodí k ničemu, ale bylo by nešikovné formulovat věty o logice, pokud by teorie musely být
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↔
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(a) p = 0, q = 0, r = 0

↔
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q
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p q

0
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1

1

0

0

1

0

1 0
(b) p = 1, q = 0, r = 1

Obrázek 1.2: Pravdivostní ohodnocení výroku

p q ¬p p ∧ q p ∨ q p→ q p↔ q

0 0 1 0 0 1 1
0 1 1 0 1 1 0
1 0 0 0 1 0 0
1 1 0 1 1 1 1

Tabulka 1.1: Pravdivostní tabulky logických spojek.

f∧(x, y):
0 1

0 0 0
1 0 1

f∨(x, y):
0 1

0 0 1
1 1 1

f→(x, y):
0 1

0 1 1
1 0 1

f↔(x, y):
0 1

0 1 0
1 0 1

Tabulka 1.2: Booleovské funkce logických spojek
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Definice 1.2.2 (Pravdivostní funkce). Pravdivostní funkce výroku φ v konečném jazyce P je
funkce fφ,P : {0, 1}|P| → {0, 1} definovaná induktivně:

• je-li φ i-tý prvovýrok z P, potom fφ,P(x0, . . . , xn−1) = xi,

• je-li φ = (¬φ′), potom

fφ,P(x0, . . . , xn−1) = f¬(fφ′,P(x0, . . . , xn−1)),

• je-li φ = (φ′ □ φ′′) kde □ ∈ {∧,∨,→,↔}, potom

fφ,P(x0, . . . , xn−1) = f□(fφ′,P(x0, . . . , xn−1), fφ′′,P(x0, . . . , xn−1)).

Příklad 1.2.3. Spočtěme pravdivostní funkci výroku φ = ((p ∨ (¬q)) ↔ (r → (p ∧ q))) v
jazyce P′ = {p, q, r, s}:

fφ,P′(x0, x1, x2, x3) = f↔(f∨(x0, f¬(x1)), f→(x2, f∧(x0, x1)))

Pravdivostní hodnotu výroku φ při ohodnocení p = 1, q = 0, r = 1, s = 1 spočteme takto
(srovnejte s obrázkem 1.2(b)):

fφ,P′(1, 0, 1, 1) = f↔(f∨(1, f¬(0)), f→(1, f∧(1, 0)))
= f↔(f∨(1, 1), f→(1, 0))
= f↔(1, 0)
= 0

Pozorování 1.2.4. Pravdivostní funkce výroku φ nad P závisí pouze na proměnných odpoví-
dajících prvovýrokům z Var(φ) ⊆ P.

Tedy i pokud máme výrok φ v nekonečném jazyce P, můžeme se omezit na jazyk Var(φ)
(který je konečný) a uvažovat pravdivostní funkci nad tímto jazykem.

1.2.3 Modely

Konkrétní pravdivostní ohodnocení výrokových proměnných představuje reprezentaci ‘reál-
ného světa’ (systému) v námi zvoleném ‘formálním světě’, proto mu také říkáme model.
Definice 1.2.5 (Model jazyka). Model jazyka P je libovolné pravdivostní ohodnocení v : P →
{0, 1}. Množinu (všech) modelů jazyka P označíme MP:

MP = {v | v : P → {0, 1}} = {0, 1}P

Modely budeme označovat písmeny v, u, w apod. (v od slova ‘valuation’). Model jazyka
je tedy funkce, formálně množina dvojic (vstup, výstup). Například pro jazyk P = {p, q, r} a
pravdivostní ohodnocení ve kterém p je pravda, q nepravda, a r pravda máme model

v = {(p, 1), (q, 0), (r, 1)}.

Pro jednoduchost ale budeme psát jen v = (1, 0, 1). Pro jazyk P = {p, q, r} tedy máme 23 = 8
modelů:

MP = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}
neprázdné.

10Připomeňme ještě jednou, že disjunkce není exkluzivní, tj. p ∨ q platí i pokud platí p i q, a že implikace je
čistě logická, tj. p → q platí kdykoliv p neplatí.
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Poznámka 1.2.6. Formálně vzato, ztotožňujeme množinu {0, 1}P s množinou {0, 1}|P| pomocí
uspořádání ι jazyka P (viz Poznámka 1.1.1). Konkrétně, místo prvku v = {(p, 1), (q, 0), (r, 1)} ∈
{0, 1}P píšeme (1, 0, 1) = (v ◦ ι)(0, 1, 2) = (v(ι(0)), v(ι(1)), v(ι(2))) ∈ {0, 1}|P| (kde funkcím v, ι
dovolíme působit ‘po složkách’).11 Pokud by se to zdálo matoucí, představte si model v jako
množinu prvovýroků, které jsou ohodnocené jako pravda, tj. {p, r} ⊆ P, náš zápis v = (1, 0, 1)
je potom charakteristický vektor této množiny. Toto ztotožnění budeme nadále používat bez
dalšího upozornění.

1.2.4 Platnost

Nyní můžeme definovat klíčový pojem logiky, platnost výroku v daném modelu. Neformálně,
výrok platí v modelu (tj. při konkrétním pravdivostním ohodnocení prvovýroků), pokud jeho
pravdivostní hodnota, tak jak jsme ji počítali v Příkladu 1.2.1, je rovna 1. Ve formální definici
využijeme pravdivostní funkci výroku (Definice 1.2.2).12

Definice 1.2.7 (Platnost výroku v modelu, model výroku). Mějme výrok φ v jazyce P a
model v ∈ MP. Pokud platí fφ,P(v) = 1, potom říkáme, že výrok φ platí v modelu v, v je
modelem φ, a píšeme v |= φ. Množinu všech modelů výroku φ označujeme MP(φ).

Modelům jazyka, které nejsou modely φ, budeme někdy říkat nemodely φ. Tvoří doplněk
množiny modelů φ. S pomocí standardního zápisu pro inverzní funkci můžeme psát:

MP(φ) = {v ∈ MP | v |= φ} = f−1
φ,P[1]

MP(φ) = MP \MP(φ) = {v ∈ MP | v ̸|= φ} = f−1
φ,P[0]

Je-li jazyk zřejmý z kontextu, můžeme psát jen M(φ). Musíme si ale být opravdu jistí:
například v jazyce P = {p, q} máme

M{p,q}(p→ q) = {(0, 0), (0, 1), (1, 1)},

zatímco v jazyce P′ = {p, q, r} bychom měli

MP′(p→ q) = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 1, 0), (1, 1, 1)}.

Definice 1.2.8 (Platnost teorie, model teorie). Je-li T teorie v jazyce P, potom T platí v
modelu v, pokud každý axiom φ ∈ T platí ve v. V tom případě říkáme také, že v je modelem
T , a píšeme v |= T . Množinu všech modelů teorie T v jazyce P označíme MP(T ).

Pracujeme-li s konečnou teorií, nebo přidáváme-li k nějaké teorii konečně mnoho nových
axiomů, budeme používat následující zjednodušený zápis:

• MP(φ1, φ2, . . . , φn) místo MP({φ1, φ2, . . . , φn}),

• MP(T, φ) místo MP(T ∪ {φ}).

Všimněte si, že MP(T, φ) = MP(T ) ∩ MP(φ), MP(T ) = ⋂
φ∈T MP(φ), a že pro konečnou

teorii (podobně i pro spočetnou) platí

MP(φ1) ⊇ MP(φ1, φ2) ⊇ MP(φ1, φ2, φ3) ⊇ · · · ⊇ MP(φ1, φ2, . . . , φn).

Toho můžeme využít při hledání modelů hrubou silou.
11Alternativně bychom mohli při formalizaci syntaxe vyžadovat (alespoň pro spočetné jazyky), aby jazyk

byl P = {0, 1, 2, . . . } a symboly p0, p1, p, q, r používat jen pro zvýšení čitelnosti.
12Pro platnost používáme symbol |=, který čteme jako ‘splňuje’ nebo ‘modeluje’, v LATEXu \models.
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Příklad 1.2.9. Modely teorie T = {p ∨ q ∨ r, q → r,¬r} (v jazyce P = {p, q, r}) můžeme najít
tak, najdeme tak, že nejprve najdeme modely výroku ¬r:

MP(r) = {(x, y, 0) | x, y ∈ {0, 1}} = {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0)},

poté určíme, ve který z těchto modelů platí výrok q → r:

• (0, 0, 0) |= q → r,

• (0, 1, 0) ̸|= q → r,

• (1, 0, 0) |= q → r,

• (1, 1, 0) ̸|= q → r,

Tedy MP(r, q→ r) = {(0, 0, 0), (1, 0, 0)}. Výrok p∨ q ∨ r platí jen ve druhém z těchto modelů,
dostáváme tedy

MP(r, q → r, p ∨ q ∨ r) = MP(T ) = {(1, 0, 0)}.

Tento postup je efektivnější než určit množiny modelů jednotlivých axiomů a udělat jejich
průnik. (Ale mnohem méně efektivní než postup založený na tablo metodě, který si ukážeme
později.)

1.2.5 Další sémantické pojmy

V návaznosti na pojem platnosti budeme používat řadu dalších pojmů. Pro některé vlastnosti
existuje více různých termínů, v závislosti na kontextu v jakém se vyskytnou.

Definice 1.2.10 (Sémantické pojmy). Říkáme, že výrok φ (v jazyce P) je

• pravdivý, tautologie, platí (v logice/logicky), a píšeme |= φ, pokud platí v každém modelu
(jazyka P), MP(φ) = MP,

• lživý, sporný, pokud nemá žádný model, MP(φ) = ∅.13

• nezávislý, pokud platí v nějakém modelu, a neplatí v nějakém jiném modelu, tj. není
pravdivý ani lživý, ∅ ⊊ MP(φ) ⊊ MP,

• splnitelný, pokud má nějaký model, tj. není lživý, MP(φ) ̸= ∅.

Dále říkáme, že výroky φ,ψ (ve stejném jazyce P) jsou (logicky) ekvivalentní, píšeme φ ∼ ψ
pokud mají stejné modely, tj.

φ ∼ ψ právě když MP(φ) = MP(ψ).

Příklad 1.2.11. Například platí následující:

• výroky ⊤, p ∨ q ↔ q ∨ p jsou pravdivé,

• výroky ⊥, (p ∨ q) ∧ (p ∨ ¬q) ∧ ¬p jsou lživé,

• výroky p, p ∧ q jsou nezávislé, a také splnitelné, a
13Všimněte si, že být lživý není totéž, co nebýt pravdivý!
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• následující výroky jsou ekvivalentní:

– p ∼ p ∨ p ∼ p ∨ p ∨ p,
– p→ q ∼ ¬p ∨ q,
– ¬p→ (p→ q) ∼ ⊤.

Pojmy z Definice 1.2.10 můžeme také relativizovat vzhledem k dané teorii. To znamená,
že se v jednotlivých definicích omezíme na modely této teorie:

Definice 1.2.12 (Sémantické pojmy vzhledem k teorii). Mějme teorii T v jazyce P. Říkáme,
že výrok φ v jazyce P je

• pravdivý v T , důsledek T , platí v T , a píšeme T |= φ, pokud φ platí v každém modelu
teorie T , neboli MP(T ) ⊆ MP(φ),

• lživý v T , sporný v T , pokud neplatí v žádném modelu T , neboli MP(φ) ∩ MP(T ) =
MP(T, φ) = ∅.

• nezávislý v T , pokud platí v nějakém modelu T , a neplatí v nějakém jiném modelu T ,
tj. není pravdivý v T ani lživý v T , ∅ ⊊ MP(T, φ) ⊊ MP(T ),

• splnitelný v T , konzistentní s T , pokud platí v nějakém modelu T , tj. není lživý v T ,
MP(T, φ) ̸= ∅.

A říkáme, že výroky φ,ψ (ve stejném jazyce P) jsou ekvivalentní v T , T -ekvivalentní, píšeme
φ ∼T ψ pokud platí v týchž modelech T , tj.

φ ∼T ψ právě když MP(T, φ) = MP(T, ψ).

Všimněte si, že pro prázdnou teorii T = ∅ platí MP(T ) = MP a výše uvedené pojmy pro
T se proto shodují s původními. Opět si pojmy ilustrujeme na několika příkladech:
Příklad 1.2.13. Mějme teorii T = {p ∨ q,¬r}. Platí následující:

• výroky q ∨ p, ¬p ∨ ¬q ∨ ¬r jsou pravdivé v T ,

• výrok (¬p ∧ ¬q) ∨ r je v T lživý,

• výroky p↔ q, p ∧ q jsou v T nezávislé, a také splnitelné, a

• platí p ∼T p ∨ r (ale p ̸∼ p ∨ r).

1.2.6 Univerzálnost logických spojek

V jazyce výrokové logiky používáme následující logické spojky: ¬,∧,∨,→,↔. To ale není
jediná možná volba, k vybudování plnohodnotné logiky by nám stačila například negace a
implikace,14 nebo negace, konjunkce, a disjunkce.15 A jak uvidíme níže, mohli bychom použít
i jiné logické spojky. Naše volba je zlatou střední cestou mezi bohatostí vyjadřování na jedné
straně, a úsporností syntaktických pravidel na straně druhé.

14Negaci potřebujeme k popisu stavu systému, a implikaci k popisu chování v čase.
15Ty stačí k vybudování logických obvodů.

19



Co myslíme tím, že je logika plnohodnotná? Řekneme, že množina logických spojek S je
univerzální, pokud lze každou booleovskou funkci f vyjádřit jako pravdivostní funkci fφ,P
nějakého výroku φ vybudovaného z logických spojek z S (kde |P| = n je-li f n-ární funkce).
Ekvivalentně, pro každý konečný jazyk P (řekněme, že n-prvkový) a každou množinu modelů
M ⊆ MP musí existovat výrok φ takový, že MP(φ) = M . (Ekvivalence těchto dvou vyjádření
plyne z toho, že máme-li booleovskou funkci f a zvolíme-li M = f−1[1], potom fφ,P = f právě
když MP(φ) = M .)

Tvrzení 1.2.14. Množiny logických spojek {¬,∧,∨} a {¬,→} jsou univerzální.

Důkaz. Mějme funkci f : {0, 1}n → {0, 1}, resp. množinu modelů M = f−1[1] ⊆ {0, 1}n.
Náš jazyk bude P = {p1, . . . , pn}. Pokud by množina M obsahovala jediný model, např.
v = (1, 0, 1, 0) mohli bychom ji reprezentovat výrokem φv = p1 ∧ ¬p2 ∧ p3 ∧ ¬p4, který říká
‘musím být model v’. Pro obecný model v bychom výrok φv zapsali takto:

φv = pv1
1 ∧ pv2

2 ∧ · · · ∧ pvn
n =

n∧
i=1

p
v(pi)
i =

∧
p∈P

pv(p)

kde zavádíme následující užitečné značení: pv(p) je výrok p pokud v(p) = 1, a výrok ¬p pokud
v(p) = 0.

Obsahuje-li množina M více modelů, řekneme ‘musím být alespoň jeden z modelů z M ’:

φM =
∨
v∈M

φv =
∨
v∈M

∧
p∈P

pv(p)

Zřejmě platí MP(φM ) = M neboli fφM ,P = f . (Pokud M = ∅, potom z definice ∨
v∈M φv =

⊥.)16

Univerzálnost {¬,→} plyne z univerzálnosti {¬,∧,∨} a faktu, že konjunkci a disjunkci
můžeme vyjádřit pomocí negace a implikace: p ∧ q ∼ ¬(p→ ¬q) a p ∨ q ∼ ¬p→ q.

Poznámka 1.2.15. Všimněte si, že při konstrukci výroku φM je klíčové, že množina M je ko-
nečná (má nejvýše 2n prvků). Kdyby byla nekonečná, symbol ‘∨v∈M ’ by znamenal ‘disjunkci’
nekonečně mnoha výroků, a výsledkem by tedy nebyl konečný nápis, tj. ‘φM ’ by vůbec nebyl
výrok. (Máme-li spočetně nekonečný jazyk P′, potom ne každou podmnožinu M ⊆ MP′ lze
reprezentovat výrokem—takových podmnožin je nespočetně mnoho, zatímco výroků je jen
spočetně mnoho.)

Jaké další logické spojky bychom mohli použít? Nulární booleovské funkce,17 neboli kon-
stanty 0, 1, bychom mohli zavést jako symboly TRUE a FALSE, my si ale vystačíme s výroky
⊤,⊥. Unární booleovské funkce jsou čtyři (4 = 221), ale negace je jediná ‘zajímavá’: ostatní
jsou f(x) = x, f(x) = 0, a f(x) = 1. Zajímavých binárních logických spojek už je více, v
přírodě se vyskytují například tyto:

• NAND neboli Shefferova spojka, někdy se používá symbol p ↑ q, platí p ↑ q ∼ ¬(p ∧ q),

• NOR neboli Pierceova spojka, někdy se používá symbol p ↓ q, platí p ↓ q ∼ ¬(p ∨ q),
16Podobně jako součet prázdné množiny sčítanců je roven 0.
17Ve formalizaci matematiky resp. informatiky funkce arity 0 znamená, že nemá žádné vstupy, výstup tedy

nemůže záviset na vstupu a je konstantní. Formálně, jde o funkce f : ∅ → {0, 1}. Pokud je to matoucí, představte
si, že funkce musí mít aritu alespoň 1, a místo ‘nulární funkce’ říkejme ‘konstanta’.
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• XOR, neboli exclusive-OR, někdy se píše také ⊕, platí p⊕ q ∼ (p∨ q) ∧ ¬(p∧ q), neboli
součet pravdivostní hodnot modulo 2.

Cvičení 1.2. Vyjádřete (p⊕ q) ⊕ r pomocí {¬,∧,∨}.
Cvičení 1.3. Ukažte, že {NAND} a také {NOR} jsou univerzální.
Cvičení 1.4. Uvažme ternární logickou spojku IFTE, kde IFTE(p, q, r) je splněno, právě když
platí ‘if p then q else r’. Určete pravdivostní tabulku této logické spojky (tj. funkci fIFTE) a
ukažte, že {TRUE,FALSE, IFTE} je univerzální.

1.3 Normální formy
Připomeňme, že výroky jsou ekvivalentní, pokud mají stejnou množinu modelů. Pro každý
výrok existuje nekonečně mnoho ekvivalentních výroků; často se hodí vyjádřit výrok v nějakém
‘hezkém’ (užitečném) ‘tvaru’, tj. najít ekvivalentní výrok v daném tvaru. Takovému konceptu
tvaru se v matematice říká normální forma. My si představíme dvě nejznámější: konjunktivní
normální formu (conjunctive normal form, CNF) a disjunktivní normální formu (DNF).

Používá se následující terminologie a značení:

• Literál ℓ je buď prvovýrok p nebo negace prvovýroku ¬p. Pro prvovýrok p označme
p0 = ¬p a p1 = p. Je-li ℓ literál, potom ℓ̄ označuje opačný literál k ℓ. Je-li ℓ = p
(pozitivní literál), potom ℓ̄ = ¬p, je-li ℓ = ¬p (negativní literál), potom ℓ̄ = p

• Klauzule (clause) je disjunkce literálů C = ℓ1 ∨ ℓ2 ∨ · · · ∨ ℓn. Jednotková klauzule (unit
clause) je samotný literál (n = 1) a prázdnou klauzulí (n = 0) myslíme ⊥.

• Výrok je v konjunktivní normální formě (v CNF) pokud je konjunkcí klauzulí. Prázdný
výrok v CNF je ⊤.

• Elementární konjunkce je konjunkce literálů E = ℓ1∧ℓ2∧· · ·∧ℓn. Jednotková elementární
konjunkce je samotný literál (n = 1). Prázdná elementární konjunkce (n = 0) je ⊤.

• Výrok je v disjunktivní normální formě (v DNF) pokud je disjunkcí elementárních kon-
junkcí. Prázdný výrok v DNF je ⊥.

Příklad 1.3.1. Výrok p ∨ q ∨ ¬r je v CNF (je to jediná klauzule) a zároveň v DNF (je to
disjunkce jednotkových elementárních konjunkcí). Výrok (p ∨ q) ∧ (p ∨ ¬q) ∧ ¬p je v CNF,
výrok ¬p ∨ (p ∧ q) je v DNF.
Příklad 1.3.2. Výrok φv z důkazu Tvrzení 1.2.14 je v CNF (je to konjunkce jednotkových
klauzulí, tj. literálů) a také v DNF (je to jediná elementární konjunkce). Výrok φM je v DNF.

Pozorování 1.3.3. Všimněte si, že výrok v CNF je tautologie, právě když každá jeho klau-
zule obsahuje dvojici opačných literálů. Podobně, výrok v DNF je splnitelný, pokud ne každá
elementární konjunkce obsahuje dvojici opačných literálů.

1.3.1 O dualitě

Všimněte si, že pokud ve výrokové logice zaměníme hodnoty pro pravdu a nepravdu, tj. 0
a 1, pravdivostní tabulka negace zůstává stejná, z konjunkce se stává disjunkce, a naopak.
Tomuto konceptu se říká dualita; v logice uvidíme mnoho příkladů.
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Platí ¬(p∧q) ∼ (¬p∨¬q) a z duality víme také ¬(¬p∨¬q) ∼ (¬¬p∧¬¬q), z čehož snadno
odvodíme ¬(p∨q) ∼ (¬p∧¬q).18 Obecněji, n-ární booleovské funkce f, g jsou navzájem duální,
pokud platí pokud f(¬x) = ¬g(x). Máme-li výrok φ vybudovaný z {¬,∧,∨} a zaměníme-li v
něm ∧ a ∨, a znegujeme-li výrokové proměnné (resp. zaměníme-li literály za opačné literály),
dostáváme výrok ψ ∼ ¬φ (tj. modely φ jsou nemodely ψ a naopak), a funkce fφ,P, fψ,P jsou
navzájem duální.

Pojem DNF je duální k pojmu CNF, ‘je tautologie’ je duální k ‘není splnitelný’, předchozí
pozorování tedy můžeme chápat jako příklad duality. Ke každému tvrzení ve výrokové logice
získáváme ‘zdarma’ tvrzení duální, vzniklé záměnou ∧ a ∨, pravdy a nepravdy.

1.3.2 Převod do normální formy

Disjunktivní normální formu jsme již potkali, v důkazu Tvrzení 1.2.14. Klíčovou část důkazu
bychom mohli zformulovat takto: ‘Je-li jazyk konečný, lze každou množinu modelů axiomati-
zovat výrokem v DNF’. Z duality dostáváme také axiomatizaci v CNF, neboť doplněk množiny
modelů je také množina modelů:

Tvrzení 1.3.4. Mějme konečný jazyk P a libovolnou množinu modelů M ⊆ MP. Potom
existuje výrok φDNF v DNF a výrok φCNF v CNF takový, že M = MP(φDNF) = MP(φCNF).
Konkrétně:

φDNF =
∨
v∈M

∧
p∈P

pv(p)

φCNF =
∧
v∈M

∨
p∈P

pv(p) =
∧
v/∈M

∨
p∈P

p1−v(p)

Důkaz. Pro výrok φDNF viz důkaz Tvrzení 1.2.14, každá elementární konjunkce popisuje
jeden model. Výrok φCNF je duální k výroku φ′

DNF sestrojenému pro doplněk M ′ = M . Nebo
můžeme dokázat přímo: modely klauzule Cv = ∨

p∈P p
1−v(p) jsou všechny modely kromě v,

MC = MP \{v}, tedy každá klauzule v konjunkci zakazuje jeden nemodel.

Tvrzení 1.3.4 dává návod, jak převádět výrok do disjunktivní nebo do konjunktivní nor-
mální formy:
Příklad 1.3.5. Uvažme výrok φ = p ↔ (q ∨ ¬r). Nejprve najdeme množinu modelů: M =
M(φ) = {(0, 0, 1), (1, 0, 0), (1, 1, 0), (1, 1, 1)}. Nyní najdeme výroky φDNF, φCNF podle Tvrzení
1.3.4, ty mají stejnou množinu modelů jako φ, jsou tedy ekvivalentní.

Výrok φDNF najdeme tak, že pro každý model sestrojíme elementární konjunkci vynucující
právě tento model:

φDNF = (¬p ∧ ¬q ∧ r) ∨ (p ∧ ¬q ∧ ¬r) ∨ (p ∧ q ∧ ¬r) ∨ (p ∧ q ∧ r)

Při konstrukci φCNF budeme potřebovat nemodely φ,M = {(0, 0, 0), (0, 1, 0), (0, 1, 1), (1, 0, 1)}.
Každá klauzule zakáže jeden nemodel:

φCNF = (p ∨ q ∨ r) ∧ (p ∨ ¬q ∨ r) ∧ (p ∨ ¬q ∨ ¬r) ∧ (¬p ∨ q ∨ ¬r)
18Protože p, q jsou výrokové proměnné, mohou za ně být dosazeny obě hodnoty 0 i 1, tedy je můžeme zaměnit

za k nim opačné literály.
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Důsledek 1.3.6. Každý výrok (v libovolném, i nekonečném jazyce P) je ekvivalentní nějakému
výroku v CNF a nějakému výroku v DNF.

Důkaz. I když je jazyk P nekonečný, výrok φ obsahuje jen konečně mnoho výrokových pro-
měnných, můžeme tedy použít Tvrzení 1.3.4 pro jazyk P′ = Var(φ), a množinu modelů
M = MP′(φ). Protože M = MP′(φDNF) = MP′(φCNF), máme φ ∼ φDNF ∼ φCNF.

Cvičení 1.5. Rozmyslete si, jak lze z DNF výroku snadno vygenerovat jeho modely, a z CNF
výroku jeho nemodely.
Poznámka 1.3.7. Kdy lze axiomatizovat teorii výrokem v DNF nebo výrokem v CNF? Mějme
jazyk P′ = Var(T ) (tj. všechny výrokové proměnné vyskytující se v axiomech T ). Má-li T v
jazyce P′ konečně mnoho modelů (tj. je-li MP′(T ) konečná), můžeme sestrojit výrok v DNF, a
má-li konečně mnoho nemodelů, můžeme sestrojit výrok v CNF. Obecně ale ne každou teorii
lze axiomatizovat jediným výrokem v CNF nebo v DNF. Vždy můžeme převést jednotlivé
axiomy do CNF (nebo DNF), a můžeme také axiomatizovat teorii jen pomocí (potenciálně
nekonečně mnoha) klauzulí.

Tento způsob převodu do CNF resp. do DNF vyžaduje znalost množiny modelů výroku, je
tedy poměrně neefektivní. A také výsledná normální forma může být velmi dlouhá. Ukážeme
si ještě jeden postup.

Převod pomocí ekvivalentních úprav

Využijeme následujícího pozorování: Nahradíme-li nějaký podvýrok ψ výroku φ ekvivalentním
výrokem ψ′, výsledný výrok φ′ bude také ekvivalentní φ. Nejprve si ukážeme postup na
příkladě:
Příklad 1.3.8. Převedeme opět výrok φ = p ↔ (q ∨ ¬r). Nejprve se zbavíme ekvivalence,
vyjádříme ji jako konjunkci dvou implikací. V dalším kroku odstraníme implikace, pomocí
pravidla φ→ ψ ∼ ¬φ ∨ ψ:

p↔ (q ∨ ¬r) ∼ (p→ (q ∨ ¬r)) ∧ ((q ∨ ¬r) → p)
∼ (¬p ∨ q ∨ ¬r) ∧ (¬(q ∨ ¬r) ∨ p)

Nyní si představme strom výroku, v dalším kroku chceme dostat negace na co nejnižší úroveň
stromu, bezprostředně nad listy: využijeme toho, že ¬(q∨¬r) ∼ ¬q∧¬¬r a zbavíme se dvojité
negace ¬¬r ∼ r. Dostáváme výrok

(¬p ∨ q ∨ ¬r) ∧ ((¬q ∧ r) ∨ p)

Nyní již necháme literály nedotčené, a použijeme distributivitu ∧ vůči ∨, nebo naopak, podle
toho, zda chceme DNF nebo CNF. Pro převod do CNF použijeme úpravu (¬q ∧ r) ∨ p ∼
(¬q ∨ p) ∧ (r ∨ p), kterou jsme dostali symbol ∨ na nižší úroveň stromu. (Nakreslete si!) Tím
už dostáváme výrok v CNF, pro přehlednost ještě seřadíme literály v klauzulích:

(¬p ∨ q ∨ ¬r) ∧ (p ∨ ¬q) ∧ (p ∨ r)

Při převodu do DNF bychom postupovali obdobně, opakovanou aplikací distributivity. Zde
vyjdeme z CNF formy a zkombinujeme každý literál z první klauzule s každým literálem z
druhé a s každým literálem z třetí klauzule. Všimneme si, že stejný literál nemusíme v ele-
mentární konjunkci opakovat dvakrát, a že obsahuje-li elementární klauzule dvojici opačných
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literálů, je sporná, a můžeme ji tedy v DNF vynechat. Také můžeme vynechat elementární
konjunkci E, pokud máme jinou elementární konjunkci E′ takovou, že literály obsažené v E′

jsou podmnožinou literálů obsažených v E, např. E = (p∧q∧¬r) a E′ = (p∧¬r). (Rozmyslete
si proč, a zformulujte duální zjednodušení při převodu do CNF.) Výsledný výrok v DNF je:

(¬p ∧ ¬q ∧ r) ∨ (p ∧ q ∧ r) ∨ (p ∧ ¬r)

Nyní vypíšeme všechny potřebné ekvivalentní úpravy. Důkaz, že každý výrok lze převést
do DNF a do CNF lze snadno provést indukcí podle struktury výroku (podle hloubky stromu
výroku).

• Implikace a ekvivalence:

φ→ ψ ∼ ¬φ ∨ ψ

φ↔ ψ ∼ (¬φ ∨ ψ) ∧ (¬ψ ∨ φ)

• Negace:

¬(φ ∧ ψ) ∼ ¬φ ∨ ¬ψ
¬(φ ∨ ψ) ∼ ¬φ ∧ ¬ψ
¬¬φ ∼ φ

• Konjunkce (převod do DNF):

φ ∧ (ψ ∨ χ) ∼ (φ ∧ ψ) ∨ (φ ∧ χ)
(φ ∨ ψ) ∧ χ ∼ (φ ∧ χ) ∨ (ψ ∧ χ)

• Disjunkce (převod do CNF):

φ ∨ (ψ ∧ χ) ∼ (φ ∨ ψ) ∧ (φ ∨ χ)
(φ ∧ ψ) ∨ χ ∼ (φ ∨ χ) ∧ (ψ ∨ χ)

Jak uvidíme v příští kapitole, CNF je v praxi mnohem důležitější než DNF (byť jde o du-
ální pojmy). Při popisu reálného systému je přirozenější vyjádření pomocí konjunkce mnoha
jednodušších vlastností, než jako jednu velmi dlouhou disjunkci. Existuje mnoho dalších forem
reprezentace booleovských funkcí. Podobně jako datové struktury, vhodnou formu reprezen-
tace volíme podle toho, jaké operace potřebujeme s funkcí dělat.19

1.4 Vlastnosti a důsledky teorií
Podívejme se nyní hlouběji na vlastnosti teorií. Podobně jako pro výroky řekneme, že dvě
teorie T, T ′ v jazyce P jsou ekvivalentní, pokud mají stejnou množinu modelů:

T ∼ T ′ právě když MP(T ) = MP(T ′)

Jde tedy o teorie vyjadřující tytéž vlastnosti modelů, jen jinak vyjádřené (axiomatizované).
V logice nás převážně zajímají ty vlastnosti teorií, které nezávisí na konkrétní axiomatizaci.
Příklad 1.4.1. Například teorie T = {p→q, p↔r} je ekvivalentní teorii T ′ = {(¬p∨q)∧ (¬p∨
r) ∧ (p ∨ ¬r)}.

Definice 1.4.2 (Vlastnosti teorií). Řekneme, že teorie T v jazyce P je

• sporná, jestliže v ní platí ⊥ (spor), ekvivalentně, jestliže nemá žádný model, ekviva-
lentně, jestliže v ní platí všechny výroky,

• bezesporná (splnitelná), pokud není sporná, tj. má nějaký model,
19Viz například přednáška NAIL031 Reprezentace booleovských funkcí.
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• kompletní, jestliže není sporná a každý výrok je v ní pravdivý nebo lživý (tj. nemá žádné
nezávislé výroky), ekvivalentně, pokud má právě jeden model.

Rozmysleme si, proč platí ekvivalence vlastností v definici. Uvědomme si, že ve sporné
teorii platí skutečně platí všechny výroky! Vskutku, výrok platí v T , pokud platí v každém
modelu T , ty ale žádné nejsou. Naopak, pokud teorie má alespoň jeden model, v tomto modelu
nemůže platit ⊥ = p ∧ ¬p.

A je-li teorie kompletní, nemůže mít dva různé modely v ̸= v′. Výrok φv = ∧
p∈P p

v(p)

(který jsme potkali v důkazu Tvrzení 1.2.14) by totiž byl nezávislý v T , protože platí v
modelu v ale ne v modelu v′. Naopak, má-li T jediný model v, potom každý výrok buď platí
ve v, a tedy platí v T , nebo neplatí ve v a potom je lživý v T .
Příklad 1.4.3. Příkladem sporné teorie je třeba T1 = {p, p→ q,¬q}. Teorie T2 = {p ∨ q, r} je
bezesporná, ale není kompletní, například výrok p ∧ q v ní není pravdivý (neplatí v modelu
(1, 0, 1)) ale ani lživý (platí v modelu (1, 1, 1)). Teorie T2 ∪ {¬p} je kompletní, jejím jediným
modelem je (0, 1, 1).

1.4.1 Důsledky teorií

Připomeňme, že důsledek teorie T je každý výrok, který v T platí (tj. platí v každém modelu
T ) a označme si množinu všech důsledků teorie T v jazyce P jako

CsqP(T ) = {φ ∈ VFP | T |= φ}

Pokud je teorie T v jazyce P, můžeme psát:

CsqP(T ) = {φ ∈ VFP | MP(T ) ⊆ MP(φ)}

(Dává ale smysl mluvit i o důsledcích teorie v nějakém menším jazyce, který je podmnožinou
jazyka T ).

Ukážeme si několik jednoduchých vlastností důsledků:
Tvrzení 1.4.4. Mějme teorie T, T ′ a výroky φ,φ1, . . . , φn v jazyce P. Potom platí:

(i) T ⊆ CsqP(T ),

(ii) CsqP(T ) = CsqP(CsqP(T )),

(iii) pokud T ⊆ T ′, potom CsqP(T ) ⊆ CsqP(T ′),

(iv) φ ∈ CsqP({φ1, . . . , φn}) právě když je výrok (φ1 ∧ · · · ∧ φn) → φ tautologie.
Důkaz. Důkaz je snadný, použijeme-li, že φ je důsledek T právě když MP(T ) ⊆ MP(φ), a
uvědomíme-li si následující vztahy:

• M(Csq(T )) = M(T ),

• je-li T ⊆ T ′ potom M(T ) ⊇ M(T ′),20

• ψ → φ je tautologie, právě když platí M(ψ) ⊆ M(φ),

• M(φ1 ∧ · · · ∧ φn) = M(φ1, . . . , φn).

Cvičení 1.6. Dokažte podrobně Tvrzení 1.4.4.
20Čím více vlastností předepíšeme, tím méně objektů je bude všechny splňovat.
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1.4.2 Extenze teorií

Neformálně řečeno, rozšířením, neboli extenzí teorie T myslíme jakoukoliv teorii T ′, která
splňuje vše, co platí v teorii T (a něco navíc, nejde-li o triviální případ). Modeluje-li T nějaký
systém, lze ji rozšířit dvěma způsoby: přidáním dodatečných požadavků o systému (tomu
budeme říkat jednoduchá extenze) nebo i rozšířením systému o nějaké nové části. Pokud
ve druhém případě nemáme dodatečné požadavky na původní část systému, tedy platí-li o
původní části totéž, co předtím, říkáme, že je extenze konzervativní.
Příklad 1.4.5. Vraťme se k úvodnímu příkladu o barvení grafů, Příklad ??. Teorie T3 (úplná
obarvení grafu zachovávající hranovou podmínku) je jednoduchou extenzí teorie T1 (částečná
obarvení množiny vrcholů bez ohledu na hrany). Teorie T ′

3 z Sekce ?? (přidání nového vrcholu
do grafu) je konzervativní, ale ne jednoduchou extenzí T3. A jde o extenzi T1, která není ani
jednoduchá ani konzervativní.

Uveďme nyní konečně formální definice:

Definice 1.4.6 (Extenze teorie). Mějme teorii T v jazyce P.

• Extenze teorie T je libovolná teorie T ′ v jazyce P′ ⊇ P splňující CsqP(T ) ⊆ CsqP′(T ′),

• je to jednoduchá extenze, pokud P′ = P,

• je to konzervativní extenze, pokud CsqP(T ) = CsqP(T ′) = CsqP′(T ′) ∩ VFP.

Extenze tedy znamená, že splňuje všechny důsledky původní teorie. Extenze je jednodu-
chá, pokud do jazyka nepřidáváme žádné nové výrokové proměnné, a konzervativní, pokud
neměníme platnost tvrzení vyjádřitelných v původním jazyce, každý nový důsledek tedy musí
obsahovat nějakou nově přidanou výrokovou proměnnou.

Co tyto pojmy znamenají sémanticky, v řeči modelů? Zformulujme nejprve obecné pozo-
rování, které ihned poté ilustrujeme na příkladě:

Pozorování 1.4.7. Je-li T teorie v jazyce P a T ′ teorie v jazyce P′ obsahujícím jazyk P.
Potom platí:

• T ′ je jednoduchou extenzí T , právě když P′ = P a MP(T ′) ⊆ MP(T ),

• T ′ je extenzí T , právě když MP′(T ′) ⊆ MP′(T ). Uvažujeme tedy modely teorie T nad
rozšířeným jazykem P′.21 Jinými slovy, restrikce22 libovolného modelu v ∈ MP′(T ′) na
původní jazyk P musí být modelem T , mohli bychom psát v↾P ∈ MP(T ) nebo:

{v↾P | v ∈ MP′(T ′)} ⊆ MP(T )

• T ′ je konzervativní extenzí T , pokud je extenzí a navíc platí, že každý model T (v jazyce
P) lze nějak expandovat (rozšířit)23 na model T ′ (v jazyce P′), neboli každý model T (v
jazyce P) získáme restrikcí nějakého modelu T ′ na jazyk P. Mohli bychom psát:

{v↾P | v ∈ MP′(T ′)} = MP(T )
21Pozor, nemůžeme psát MP(T ′), protože modely T ′ musí být ohodnoceními většího jazyka P′, hodnoty jen

pro proměnné z P nestačí k určení pravdivostní hodnoty. A nelze psát ani MP′ (T ′) ⊆ MP(T ), jde o množiny
vektorů jiné dimenze.

22Restrikce znamená zapomenutí hodnot pro nové výrokové proměnné, resp. smazání příslušných souřadnic
při reprezentaci modelu vektorem.

23Přidáním hodnot pro nové výrokové proměnné, resp. přidáním odpovídajících souřadnic ve vektorové
reprezentaci.
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• T ′ je extenzí T a zároveň T je extenzí T ′, právě když P′ = P a MP(T ′) = MP(T ), neboli
T ′ ∼ T .

• Kompletní jednoduché extenze T jednoznačně až na ekvivalenci odpovídají modelům T .

Příklad 1.4.8. Mějme teorii T = {p → q} v jazyce P = {p, q}. Teorie T1 = {p ∧ q} v jazyce
P je jednoduchou extenzí T , máme MP(T1) = {(1, 1)} ⊆ {(0, 0), (0, 1), (1, 1)} = MP(T ). Je
to kompletní teorie, další kompletní jednoduché extenze teorie T jsou např. T2 = {¬p, q} a
T3 = {¬p,¬q}. Každá kompletní jednoduchá extenze teorie T je ekvivalentní s T1, T2, nebo
T3.

Uvažme nyní teorii T ′ = {p ↔ (q ∧ r)} v jazyce P′ = {p, q, r}. Je extenzí T , neboť P =
{p, q} ⊆ {p, q, r} = P′ a platí:

MP′(T ′) = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 1, 1)}
⊆ {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 1, 0), (1, 1, 1)} = MP′(T )

Jinými slovy, zúžením modelů T ′ na jazyk P dostáváme {(0, 0), (0, 1), (1, 1)} což je podmnožina
MP(T ).

Protože platí dokonce {(0, 0), (0, 1), (1, 1)} = MP(T ), jinými slovy, každý model v ∈ MP(T )
lze rozšířit na model v′ ∈ MP′(T ′) (např. (0, 1) lze rozšířit dodefinováním v′(r) = 0 na model
(0, 1, 0)), je T ′ dokonce konzervativní extenzí T . To znamená, že každý výrok v jazyce P platí
v T , právě když platí v T ′. Ale výrok p→ r (který je v jazyce P′, ale ne v jazyce P) je novým
důsledkem: platí v T ′ ale ne v T (viz model (1, 1, 0)).

Teorie T ′′ = {¬p∨ q,¬q ∨ r,¬r ∨ p} v jazyce P′ je extenzí T , ale ne konzervativní extenzí,
neboť v ní platí p↔ q, což neplatí v T . Nebo také proto, že model (0, 1) teorie T nelze rozšířit
na model teorie T ′′: (0, 1, 0) ani (0, 1, 1) nesplňují axiomy T ′′.

Teorie T je (jednoduchou) extenzí teorie {¬p ∨ q} v jazyce P a naopak, T ∼ {¬p ∨ q}. Je
také, jako každá teorie, jednoduchou konzervativní extenzí sebe sama.
Cvičení 1.7. Ukažte (podrobně), že má-li teorie T kompletní konzervativní extenzi, potom je
sama nutně kompletní.

1.5 Algebra výroků
V logice nás většinou24 zajímají výroky (resp. teorie) až na ekvivalenci.25 Na otázku ‘Ko-
lik existuje různých výroků v jazyce P = {p, q, r}?’ je správná odpověď ‘Nekonečně mnoho.’
Nejspíše nás ale zajímaly výroky až na ekvivalenci (neboli navzájem neekvivalentní ). Těch
je tolik, kolik existuje různých podmnožin modelů jazyka, tedy 2| MP | = 28 = 256. Sku-
tečně, mají-li dva výroky stejnou množinu modelů, jsou z definice ekvivalentní. A pro každou
množinu modelů můžeme najít odpovídající výrok, např. v DNF (viz 1.3.4). Zkusme trochu
složitější úvahu:
Příklad 1.5.1. Mějme teorii T v jazyce P = {p, q, r} mající právě pět modelů. Kolik existuje
(až na ekvivalenci) výroků nad P, které jsou nezávislé v teorii T? Označme |P| = n = 3 a
| MP(T )| = k = 5.

Počítáme množiny M = MP(φ) a požadujeme, aby ∅ ̸= M ∩ MP(T ) ̸= MP(T ). Máme tedy
celkem 2k − 2 = 30 možností, jak může vypadat množina M ∩ MP(T ). A pro každý model

24Pokud např. neprovádíme konkrétní algoritmus založený na syntaktických úpravách, třeba převod do CNF.
25Můžeme je chápat jako jakési abstraktní ‘vlastnosti’ modelů bez ohledu na jejich konkrétní vyjádření.
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jazyka, který není modelem T (těch je 2n − k = 3) můžeme zvolit libovolně, zda bude či
nebude v M . Celkově tedy dostáváme (2k − 2) · 22n−k = 30 · 28−5 = 240 možných množin M ,
tolik je tedy výroků nezávislých v T , až na ekvivalenci.

Podívejme se na věc abstraktněji. Formálně, uvažujeme množinu ekvivalenčních tříd ∼ na
množině všech výroků VFP, kterou označíme VFP/∼. Prvky této množiny jsou množiny ekvi-
valentních výroků, např. [p→q]∼ = {p→q,¬p∨q,¬(p∧¬q),¬p∨q∨q, . . . }. A máme zobrazení
h : VFP/∼ → P(MP) (kde P(X) je množina všech podmnožin X) definované předpisem:

h([φ]∼) = M(φ)

tj. třídě ekvivalentních výroků přiřadíme množinu modelů libovolného z nich. Je snadné ověřit,
že toto zobrazení je korektně definované (nezáleží na tom, jaký výrok z třídy ekvivalence jsme
si vybrali) a prosté, a že je-li jazyk P konečný, je h dokonce bijekce. (Ověřte!)

Na množině VFP/∼ můžeme zavést operace ¬,∧,∨ pomocí předpisu

¬[φ]∼ = [¬φ]∼
[φ]∼ ∧ [ψ]∼ = [φ ∧ ψ]∼
[φ]∼ ∨ [ψ]∼ = [φ ∨ ψ]∼

tedy vybereme reprezentanta resp. reprezentanty, a provedeme operaci s nimi, např. ‘kon-
junkce’ tříd [p→ q]∼ a [q ∨ ¬r]∼ je:

[p→ q]∼ ∧ [q ∨ ¬r]∼ = [(p→ q) ∧ (q ∨ ¬r)]∼

Přidáme-li také konstanty ⊥ = [⊥]∼ a ⊤ = [⊤]∼, dostáváme (matematickou) strukturu26

AVP = ⟨ VFP/∼; ¬,∧,∨,⊥,⊤⟩

které říkáme algebra výroků jazyka P. Je to příklad tzv. Booleovy algebry. To znamená, že její
operace se ‘chovají’ jako operace , ∩, ∪ na množině všech podmnožin P(X) nějaké neprázdné
množiny X, a konstanty odpovídají ∅, X (takové Booleově algebře říkáme potenční algebra).27

Zobrazení h : VFP/∼ → P(MP) je tedy prosté zobrazení z algebry výroků AVP do potenční
algebry

P(MP) = ⟨P(MP); ,∩,∪, ∅,MP⟩

a je-li jazyk konečný, je to bijekce. Toto zobrazení ‘zachovává’ operace a konstanty, tj. platí
h(⊥) = ∅, h(⊤) = MP, a

h(¬[φ]∼) = h([φ]∼) = M(φ) = MP \ M(φ)
h([φ]∼ ∧ [ψ]∼) = h([φ]∼) ∩ h([ψ]∼) = M(φ) ∩ M(ψ)
h([φ]∼ ∨ [ψ]∼) = h([φ]∼) ∪ h([ψ]∼) = M(φ) ∪ M(ψ)

Takovému zobrazení říkáme homomorfismus Booleových algeber, a je-li to bijekce, jde o izo-
morfismus.

26Struktura je neprázdná množina spolu s relacemi, operacemi, a konstantami. Například (orientovaný) graf,
grupa, těleso, vektorový prostor. Struktury budou hrát důležitou roli v predikátové logice.

27Tj. splňují určité algebraické zákony, například distributivitu ∧ vůči ∨. Booleovy algebry definujeme for-
málně později, uveďme ale ještě jeden důležitý příklad: množina všech n-bitových vektorů s operacemi ∼, &, |
(po složkách) a s konstantami (0, 0, . . . , 0) a (1, 1, . . . , 1).
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Poznámka 1.5.2. Tyto vztahy můžeme také využít při hledání modelů: například pro výrok
φ→ (¬ψ ∧ χ) platí (s využitím toho, že M(φ→ φ′) = M(¬φ ∨ φ′)):

M(φ→ (¬ψ ∧ χ)) = M(φ) ∪ (M(ψ) ∩ M(χ))

Všechny předchozí úvahy můžeme také relativizovat vzhledem k dané teorii T v jazyce P, a
to tak, že ekvivalenci ∼ nahradíme T -ekvivalencí ∼T a množinu modelů jazyka MP nahradíme
množinou modelů teorie MP(T ). Dostáváme:

h(⊥) = ∅,
h(⊤) = M(T )

h(¬[φ]∼T ) = M(T ) \ M(T, φ)
h([φ]∼T ∧ [ψ]∼T ) = M(T, φ) ∩ M(T, ψ)
h([φ]∼T ∨ [ψ]∼T ) = M(T, φ) ∪ M(T, ψ)

Výslednou algebru výroků vzhledem k teorii T označíme AVP(T ). Algebra výroků jazyka je
tedy totéž co algebra výroků vzhledem k prázdné teorii. Z technických důvodů potřebujeme,
aby M(T ) byla neprázdná, tj. T musí být bezesporná. Shrňme naše úvahy:

Důsledek 1.5.3. Je-li T bezesporná teorie nad konečným jazykem P, potom je algebra výroků
AVP(T ) izomorfní potenční algebře P(MP(T)) prostřednictvím zobrazení h([φ]∼T ) = M(T, φ).

Víme tedy, že negace, konjunkce, a disjunkce odpovídají doplňku, průniku a sjednocení
množin modelů, a že chceme-li najít počet výroků až na ekvivalenci resp. T -ekvivalenci, stačí
určit počet příslušných množin modelů. Shrňme si několik takových výpočtů ve formě tvrzení,
jeho důkaz necháme jako cvičení.

Tvrzení 1.5.4. Mějme n-prvkový jazyk P a bezespornou teorii T mající právě k modelů.
Potom v jazyce P existuje až na ekvivalenci:

• 22n výroků (resp. teorií),

• 22n−k výroků pravdivých (resp. lživých) v T ,

• 22n − 2 · 22n−k výroků nezávislých v T ,

• 2k jednoduchých extenzí teorie T (z toho 1 sporná),

• k kompletních jednoduchých extenzí T .

Dále až na T -ekvivalenci existuje:

• 2k výroků,

• 1 výrok pravdivý v T , 1 lživý v T ,

• 2k − 2 výroků nezávislých v T .

Cvičení 1.8. Zvolte vhodnou teorii T a ukažte na jejím příkladě, že platí Tvrzení 1.5.4.
Cvičení 1.9. Dokažte podrobně Tvrzení 1.5.4. (Nakreslete si Vennův diagram.)
Cvičení 1.10. Dokažte podrobně, že zobrazení h z Důsledku 1.5.3 je korektně definované,
prosté, a je-li jazyk konečný, potom i na.
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Kapitola 2

Problém splnitelnosti

Problém splnitelnosti výrokových formulí, známý také jako problém SAT 1 je následující vý-
početní problém: Vstupem je výrok φ v CNF (v nějakém rozumném kódování2), a úkolem je
rozhodnout, zda je φ splnitelný. 3

Jak jsme si ukázali v předchozí kapitole, můžeme každý výrok, nebo i každou výrokovou
teorii v konečném jazyce, převést na CNF formuli. Problém SAT je tedy v jistém smyslu
univerzální; odpovídá na otázku, zda existuje model.

Známá Cook-Levinova věta říká, že problém SAT je NP-úplný, tedy je v třídě NP (pokud
nám orákulum prozradí správné ohodnocení proměnných, můžeme snadno ověřit, že všechny
klauzule jsou splněny) a každý problém z třídy NP na něj lze převést v polynomiálním čase
(konkrétně, výpočet Turingova stroje lze popsat pomocí výroku v CNF).4

Praktické SAT solvery si ale umí poradit s instancemi obsahujícími mnoho (až desítky
milionů) výrokových proměnných a klauzulí. V této kapitole si nejprve ukážeme praktickou
aplikaci SAT solveru na problém ‘ze života’, potom dva fragmenty problému SAT, tzv. 2-SAT
a Horn-SAT, pro které existují polynomiální algoritmy, a na závěr si ukážeme také algoritmus
DPLL, který je základem (téměř) všech SAT solverů. (Později, v Kapitole 3, uvidíme také
souvislost s rezoluční metodou.)

2.1 SAT solvery
První řešiče SAT byly vyvinuty v 60. letech 20. století. Jejich základem je téměř vždy algorit-
mus DPLL (Davis–Putnam–Logemann–Loveland), který představíme v Sekci 2.4, respektive
některé z jeho vylepšení. Po roce 2000 dochází k poněkud překvapivému, dramatickému vývoji
technologií pro řešiče SAT a tím i k rapidnímu růstu jejich užitečnosti v různých oblastech
aplikované informatiky.

Moderní SAT solvery používají celou řadu technologií pro efektivní řešení typických in-
stancí pocházejících z různých aplikačních domén, strategií a heuristik pro exploraci prostoru
řešení (například i za použití strojového učení a neuronových sítí), a dalších vylepšení. Tyto
moderní nástroje mají typicky několik desítek tisíc řádků kódu. Dostupnost efektivních SAT

1Z anglického ‘Boolean satisfiability problem’.
2Např. formát DIMACS-CNF.
3Pozor, v některé literatuře se jako SAT označuje splnitelnost libovolného výroku, a na CNF je potom

omezen až problém k-SAT (viz níže).
4Viz předmět NTIN090 Základy složitosti a vyčíslitelnosti.
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solverů významně ovlivnila vývoj například v oblasti softwarové verifikace, analýzy programů,
optimalizace, nebo umělé inteligence. Nejlepší SAT solvery spolu pravidelně soutěží v rámci
SAT competition.

Pro vyzkoušení SAT solvingu nám poslouží řešič Glucose. Ten přijímá vstup v jednodu-
chém formátu DIMACS CNF. Ukažme si postup použití na následující hříčce zvané boardo-
mino:
Příklad 2.1.1 (Boardomino). Lze pokrýt šachovnici s chybějícími dvěma protilehlými rohy
perfektně pokrýt kostkami domina?

Jak tento problém formalizovat? Zvolme výrokové proměnné hi,j , vi,j (1 ≤ i, j ≤ n), kde
hi,j znamená “na pozici (i, j) leží levá polovina horizontálně orientované kostky” a podobně
vi,j pro horní polovinu vertikální kostky. Zde n = 8, ale můžeme vyzkoušet i pro jiné (sudé)
rozměry šachovnice. Nyní axiomatizujeme všechny požadované vlastnosti:

• levý horní a pravý dolní roh chybí: ¬h11,¬v11,¬hn,n−1,¬vn−1,n

• kostky nevyčnívají z šachovnice (vpravo ani dolů): ¬hi,n,¬vn,i pro 1 ≤ i ≤ n

• každé políčko je pokryto alespoň jednou kostkou (první řádek a sloupec zvlášť):

hi,j−1 ∨ hi,j ∨ vi−1,j ∨ vi,j pro 1 < i, j ≤ n

h1,j−1 ∨ h1,j ∨ v1,j pro 1 < j ≤ n

hi,1 ∨ vi−1,1 ∨ vi,1 pro 1 < i ≤ n

• každé políčko je pokryto nejvýše jednou kostkou (první řádek a sloupec zvlášť):

(¬hi,j−1 ∨ ¬hi,j) ∧ (¬hi,j−1 ∨ ¬vi−1,j) ∧ (¬hi,j−1 ∨ ¬vi,j)∧
(¬hi,j ∨ ¬vi−1,j) ∧ (¬hi,j ∨ ¬vi,j) ∧ (¬vi−1,j ∨ ¬vi,j) pro 1 < i, j ≤ n

(¬h1,j−1 ∨ ¬h1,j) ∧ (¬h1,j−1 ∨ ¬v1,j) ∧ (¬h1,j ∨ ¬v1,j) pro 1 < j ≤ n

(¬hi,1 ∨ ¬vi−1,1) ∧ (¬hi,1 ∨ ¬vi,1) ∧ (¬vi−1,1 ∨ ¬vi,1) pro 1 < i ≤ n

Výsledná teorie už je v CNF, snadno ji můžeme zapsat ve formátu DIMACS CNF, a vyřešit
pomocí solveru Glucose. V praxi bychom mohli tento převod naprogramovat, nebo využít
jednoho z mnoha vysokoúrovňových jazyků z oblasti constraint programming umožňujících
překlad do SATu.

Uvidíme, že takové instance problému SAT budou pro řešiče těžké a už pro poměrně malé
rozměry šachovnice se řešení nedočkáme. Jako matematici snadno nahlédneme, že řešení nee-
xistuje: Každá kostka domina pokrývá jedno bílé a jedno černé políčko, ale odebrali jsme dvě
bílá, nutně tedy zbudou dvě černá. Tento pohled ale není v zakódování do CNF dostupný. Lze
najít částečná ohodnocení téměř všech proměnných, aniž bychom nějakou podmínku poru-
šili. Solver tedy bude muset prohledat téměř celý prostor řešení, než dokáže nesplnitelnost.5
Klíčovým náhledem do SAT solvingu je fakt, že takové těžké instance se v praxi téměř nikdy
nevyskytují.

5Podobné vlastnosti má také zakódování holubníkového principu do SATu.
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2.2 2-SAT a implikační graf
Výrok φ je v k-CNF, pokud je v CNF a každá klauzule má nejvýše k literálů. Problém k-SAT
se ptá, zda je daný k-CNF výrok splnitelný. Pro k ≥ 3 je k-SAT nadále NP-úplný, každou
CNF formuli lze zakódovat do 3-CNF výroku:
Cvičení 2.1. Ukažte, že pro každý výrok φ v CNF existuje ekvisplnitelný výrok v φ′ 3-CNF
(tj. φ je splnitelný, právě když φ′ je splnitelný), který lze zkonstruovat v lineárním čase.

Pro problém 2-SAT ale existuje polynomiální (dokonce lineární) algoritmus, který si nyní
představíme. Algoritmus využívá tzv. implikačního grafu. Ukážeme si postup na příkladě:
Příklad 2.2.1. Mějme následující 2-CNF výrok φ:

(¬p1 ∨ p2) ∧ (¬p2 ∨ ¬p3) ∧ (p1 ∨ p3) ∧ (p3 ∨ ¬p4) ∧ (¬p1 ∨ p5) ∧ (p2 ∨ p5) ∧ p1 ∧ ¬p4

Implikační graf

Implikační graf 2-CNF výroku φ je založený na myšlence, že 2-klauzuli ℓ1 ∨ ℓ2 (kde ℓ1, ℓ2 jsou
literály) lze chápat jako dvojici implikací: ℓ1 → ℓ2 a ℓ2 → ℓ1.6 Například, z klauzule ¬p1 ∨ p2
vzniknou implikace p1 → p2 a také ,¬p2 → ¬p1. Tedy pokud p1 platí v nějakém modelu,
musí platit i p2, a pokud p2 neplatí, nesmí platit ani p1. Jednotkovou klauzuli ℓ můžeme také
vyjádřit pomocí implikace jako ℓ→ ℓ, např. z p1 dostáváme ¬p1 → p1.

Implikační graf Gφ je tedy orientovaný graf, jehož vrcholy jsou všechny literály (proměnné
z Var(φ) a jejich negace) a hrany jsou dané implikacemi popsanými výše:

• V (Gφ) = {p,¬p | p ∈ Var(φ)},

• E(Gφ) = {(ℓ1, ℓ2), (ℓ2, ℓ1) | ℓ1 ∨ ℓ2 je klauzule φ} ∪ {(ℓ, ℓ) | ℓ je jednotková klauzule φ}

V našem příkladě máme množinu vrcholů

V (Gφ) = {p1, p2, p3, p4, p5,¬p1,¬p2,¬p3,¬p4,¬p5}

a hrany jsou:

E(Gφ) = {(p1, p2), (¬p2,¬p1), (p2,¬p3), (p3,¬p2), (¬p1, p3), (¬p3, p1), (¬p3,¬p4),
(p4, p3), (p1, p5), (¬p5,¬p1), (¬p2, p5), (¬p5, p2), (¬p1, p1), (p4,¬p4)}

Výsledný graf je znázorněný na Obrázku 2.1.

2.2.1 Silně souvislé komponenty

Nyní musíme najít komponenty silné souvislosti7 tohoto grafu. V našem příkladě dostáváme
následující komponenty: C1 = {¬p5}, C2 = {p4}, C3 = {¬p1,¬p2, p3}, C3 = {p1, p2,¬p3},
C2 = {¬p4}, C1 = {p5}.

Všechny literály v jedné komponentě musí být ohodnoceny stejně. Pokud bychom tedy
našli dvojici opačných literálů v jedné komponentě, znamená to, že výrok je nesplnitelný. V
opačném případě vždy můžeme najít splňující ohodnocení, jak si dokážeme v Tvrzení 2.2.2.

6V předchozí kapitole jsme vyjadřovali p1 → p2 jako ¬p1 ∨ p2, zde provádíme opačný postup.
7Silná souvislost znamená, že existuje orientovaná cesta z u do v i z v do u, neboli každé dva vrcholy v jedné

komponentě leží v orientovaném cyklu. A naopak, každý orientovaný cyklus leží uvnitř nějaké komponenty.
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Obrázek 2.1: Implikační graf Gφ. Komponenty silné souvislosti jsou odlišeny barevně.
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Obrázek 2.2: Implikační graf Gφ. Graf silně souvislých komponent G∗
φ.

Potřebujeme zajistit, aby z žádné komponenty ohodnocené 1 nevedla hrana do komponenty
ohodnocené 0. Provedeme-li kontrakci komponent (a odstraníme-li smyčky), výsledný graf G∗

φ

je acyklický (každý cyklus byl uvnitř nějaké komponenty), viz Obrázek 2.2. To znamená, že
ho můžeme nakreslit v topologickém uspořádání (tj. uspořádání na přímce, kde hrany vedou
jen doprava), viz Obrázek 2.3 níže.

Při hledání splňujícího ohodnocení (pokud nám nestačí informace, že výrok je splnitelný)
potom postupujeme tak, že vezmeme nejlevější dosud neohodnocenou komponentu, ohod-
notíme ji 0, opačnou komponentu ohodnotíme 1, a postup opakujeme dokud zbývá nějaká
neohodnocená komponenta. Například, topologické uspořádání na Obrázku 2.3 odpovídá mo-
delu v = (1, 1, 0, 0, 1).

Na závěr shrneme naše úvahy do následujícího tvrzení:

Tvrzení 2.2.2. Výrok φ je splnitelný, právě když žádná silně souvislá komponenta v Gφ
neobsahuje dvojici opačných literálů ℓ, ℓ.

Důkaz. Každý model, neboli splňující ohodnocení, musí ohodnotit všechny literály ze stejné
komponenty stejnou hodnotou. (V opačném případě by nutně existovala implikace ℓ1 → ℓ2,
kde ℓ1 v modelu platí ale ℓ2 neplatí.) V jedné komponentě tedy nemohou být opačné literály.
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Obrázek 2.3: Implikační graf Gφ. Topologické uspořádání grafu G∗
φ a splňující ohodnocení

komponent.

Naopak předpokládejme, že žádná komponenta neobsahuje dvojici opačných literálů, a
ukažme, že potom existuje model. Označme G∗

φ graf vzniklý z Gφ kontrakcí silně souvis-
lých komponent (a odstraněním smyček). Tento graf je acyklický, zvolme nějaké topologické
uspořádání. Model zkonstruujeme tak, že zvolíme první dosud neohodnocenou komponentu
v našem topologickém uspořádání, všechny literály v ní obsažené ohodnotíme 0, a opačné
literály ohodnotíme 1. Takto pokračujeme dokud nejsou všechny komponenty ohodnoceny.

Proč v takto získaném modelu platí výrok φ? Kdyby ne, neplatila by některá z klauzulí.
Jednotková klauzule ℓ musí platit, neboť v grafu Gφ máme hranu ℓ → ℓ. Stejná hrana je i
v grafu komponent, tedy ℓ předchází v topologickém uspořádání komponentu obsahující ℓ.
Při konstrukci modelu jsme museli ohodnotit ℓ dříve než ℓ, tedy ℓ = 0 a ℓ = 1. Podobně,
2-klauzule ℓ1 ∨ ℓ2 také musí platit: máme hrany ℓ1 → ℓ2 a ℓ2 → ℓ1. Pokud jsme ℓ1 ohodnotili
dříve než ℓ2, museli jsme kvůli hraně ℓ1 → ℓ2 ohodnotit ℓ1 = 0, tedy ℓ1 platí. Podobně pokud
jsme ohodnotili nejdříve ℓ2, musí být ℓ2 = 0 a ℓ2 = 1.

Důsledek 2.2.3. Problém 2-SAT je řešitelný v lineárním čase. V lineárním čase můžeme
také zkonstruovat model, pokud existuje.

Důkaz. Komponenty silné souvislosti lze snadno nalézt v čase O(|V |+ |E|), topologické uspo-
řádání můžeme také zkonstruovat v čase O(|V | + |E|).

Cvičení 2.2. Najděte nějaký nesplnitelný 2-CNF výrok, sestrojte jeho implikační graf, a pře-
svědčete se, že existuje dvojice opačných literálů ve stejné komponentě silné souvislosti.
Cvičení 2.3. Najděte všechna topologická uspořádání grafu G∗

φ z příkladu výše a jim odpoví-
dající modely. Rozmyslete si, proč takto získáme právě všechny modely výroku φ.
Cvičení 2.4. Rozmyslete si, proč lze komponenty i topologické uspořádání nalézt v čase
O(|V | + |E|).

2.3 Horn-SAT a jednotková propagace
Nyní si ukážeme další fragment SATu řešitelný v polynomiálním čase, tzv. Horn-SAT neboli
problém splnitelnosti hornovských výroků. Výrok je v hornovský (v Hornově tvaru)8, pokud
je konjunkcí hornovských klauzulí, tj. klauzulí obsahujících nejvýše jeden *pozitivní* literál.
Význam Hornovských klauzulí vyplývá z ekvivalentního vyjádření ve formě implikace:

¬p1 ∨ ¬p2 ∨ · · · ∨ ¬pn ∨ q ∼ (p1 ∧ p2 ∧ · · · ∧ pn) → q

8Matematik Alfred Horn objevil význam tohoto tvaru logických formulí (a položil tak základ logickému
programování) v roce 1951.
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Hornovské výroky tedy dobře modelují systémy, kde splnění určitých podmínek zaručuje
splnění jiné podmínky. Upozorněme, že jednotková klauzule ℓ je také hornovská. V kontextu
logického programování se jí říká fakt, pokud je literál pozitivní, a cíl pokud je negativní.9
Hornovské výroky s alespoň jedním pozitivním a alespoň jedním negativním literálem jsou
pravidla.
Příklad 2.3.1. Příkladem výroku, který je v CNF, ale není hornovský, je třeba (p1 ∨p2 ∨¬p3)∧
(¬p1 ∨ p3). Jako příklad, na kterém budeme ilustrovat algoritmus, nám poslouží následující
hornovský výrok:

φ = (¬p1 ∨ p2) ∧ (¬p1 ∨ ¬p2 ∨ p3) ∧ (¬p2 ∨ ¬p3) ∧ (¬p5 ∨ ¬p4) ∧ p4

Polynomiální algoritmus pro řešení problému Horn-SAT je založený na jednoduché myš-
lence jednotkové propagace: Pokud náš výrok obsahuje jednotkovou klauzuli, víme, jak musí
být ohodnocena výroková proměnná obsažená v této klauzuli. A tuto znalost můžeme propa-
govat—využít k zjednodušení výroku.

Náš výrok φ obsahuje jednotkovou klauzuli p4. Víme tedy, že v každém jeho modelu
v ∈ M(φ) musí platit v(p4) = 1. To ale znamená, že v libovolném modelu výroku φ

• každá klauzule obsahující pozitivní literál p4 je splněna, můžeme ji tedy z výroku od-
stranit,

• negativní literál ¬p4 nemůže být splněn, můžeme ho tedy odstranit ze všech klauzulí,
které ho obsahují.

Tomu kroku se říká jednotková propagace. Výsledkem je následující zjednodušený výrok, který
označíme φp4 (obecně φℓ máme-li jednotkovou klauzuli ℓ):

φp4 = (¬p1 ∨ p2) ∧ (¬p1 ∨ ¬p2 ∨ p3) ∧ (¬p2 ∨ ¬p3) ∧ ¬p5

Pozorování 2.3.2. Všimněte si, že φℓ už neobsahuje literál ℓ ani ℓ, a zřejmě platí, že modely
φ jsou právě modely {φℓ, ℓ}, neboli modely φℓ v původním jazyce P, ve kterých platí ℓ.

Jednotkovou propagací jsme získali ve výroku φp4 novou jednotkovou klauzuli ¬p5, mů-
žeme tedy pokračovat nastavením v(p5) = 0 a další jednotkovou propagací:

(φp4)¬p5 = (¬p1 ∨ p2) ∧ (¬p1 ∨ ¬p2 ∨ p3) ∧ (¬p2 ∨ ¬p3)

Výsledný výrok už neobsahuje jednotkovou klauzuli. To ale znamená, že každá klauzule ob-
sahuje alespoň dva literály, a nejvýše jeden z nich může být pozitivní! (Zde potřebujeme hor-
novskost výroku.) Protože každá klauzule obsahuje negativní literál, stačí ohodnotit všechny
zbývající proměnné 0, a výrok bude splněn: v(p1) = v(p2) = v(p3) = 0. Dostáváme tedy model
v = (0, 0, 0, 1, 0).
Příklad 2.3.3. Co by se stalo, pokud by výrok nebyl splnitelný? Podívejme se na výrok

ψ = p ∧ (¬p ∨ q) ∧ (¬q ∨ r) ∧ ¬r
9Neboť dokazujeme sporem, více v pozdější kapitole o rezoluci a Prologu.
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a provádějme jednotkovou propagaci jako v předchozím příkladě: máme v(p) = 1 a ψp =
q ∧ (¬q ∨ r) ∧ ¬r, dále v(q) = 1 a (ψp)q = r ∧ ¬r. Tento výrok je nesplnitelný, neboť obsahuje
dvojici opačných jednotkových klauzulí. 10

Shrňme si nyní algoritmus pro řešení problému Horn-SAT:

Algoritmus (Horn-SAT). vstup: výrok φ v Hornově tvaru, výstup: model φ nebo infor-
mace, že φ není splnitelný

1. Pokud φ obsahuje dvojici opačných jednotkových klauzulí ℓ, ℓ, není splnitelný.

2. Pokud φ neobsahuje žádnou jednotkovou klauzuli, je splnitelný, ohodnoť všechny zbý-
vající proměnné 0.

3. Pokud φ obsahuje jednotkovou klauzuli ℓ, ohodnoť literál ℓ hodnotou 1, proveď jednot-
kovou propagaci, nahraď φ výrokem φℓ, a vrať se na začátek.

Tvrzení 2.3.4. Algoritmus je korektní.

Důkaz. Korektnost plyne z Pozorování a z předchozí diskuze.

Důsledek 2.3.5. Horn-SAT lze řešit v lineárním čase.

Důkaz. V každém kroku stačí projít výrok jednou, a jednotková propagace výrok vždy zkrátí.
Z toho snadno plyne kvadratický horní odhad, ale při vhodné implementaci lze dosáhnout
lineárního času vzhledem k délce φ.

Cvičení 2.5. Navrhněte implementaci algoritmu pro Horn-SAT v lineárním čase.
Cvičení 2.6. Navrhněte modifikaci algoritmu pro Horn-SAT, která najde všechny modely.

2.4 Algoritmus DPLL
Na závěr kapitoly o problému splnitelnosti si představíme zdaleka nejpoužívanější algoritmus
pro řešení obecného problému SAT, algoritmus DPLL.11 Ačkoliv v nejhorším případě má
exponenciální složitost, v praxi funguje velmi efektivně.

Algoritmus používá jednotkovou propagaci spolu s následujícím pozorováním: Řekneme, že
literál ℓ má čistý výskyt v φ, pokud se vyskytuje ve φ, ale opačný literál ℓ se ve φ nevyskytuje.
Máme-li literál s čistým výskytem, můžeme jeho hodnotu nastavit na 1, a splnit (a odstranit)
tak všechny klauzule, které ho obsahují. Pokud výrok neumíme takto zjednodušit, rozvětvíme
výpočet dosazením obou možných hodnot pro vybranou výrokovou proměnnou.

Algoritmus (DPLL). vstup: výrok φ v CNF, výstup: model φ nebo informace, že φ není
splnitelný

1. Dokud φ obsahuje jednotkovou klauzuli ℓ, ohodnoť literál ℓ hodnotou 1, proveď jednot-
kovou propagaci, a nahraď φ výrokem φℓ.

10Jinými slovy, v dalším kroku bychom provedli jednotkovou propagaci r, odstranili jednotkovou klauzuli r,
a ze zbývající jednotkové klauzule ¬r bychom odstranili literál ¬r, čímž by vznikla prázdná klauzule, která je
nesplnitelná.

11Pojmenovaný po svých tvůrcích, Davis-Putnam-Logemann-Loveland, pochází z roku 1961.
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2. Dokud existuje literál ℓ, který má ve φ čistý výskyt, ohodnoť ℓ hodnotou 1, a odstraň
klauzule obsahující ℓ.

3. Pokud φ neobsahuje žádnou klauzuli, je splnitelný.

4. Pokud φ obsahuje prázdnou klauzuli, není splnitelný.

5. Jinak zvol dosud neohodnocenou výrokovou proměnnou p, a zavolej algoritmus rekur-
zivně na φ ∧ p a na φ ∧ ¬p.

Algoritmus běží v exponenciálním čase: počet větvení výpočtu nemůže být větší než po-
čet proměnných. Lze ukázat, že v nejhorším případě je opravdu potřeba exponenciální čas.
Korektnost algoritmu není těžké ověřit.

Tvrzení 2.4.1. Algoritmus DPLL řeší problém SAT.

Příklad 2.4.2. Ukážeme si běh algoritmu na následujícím příkladě:

(¬p ∨ q ∨ ¬r) ∧ (¬p ∨ ¬q ∨ ¬s) ∧ (p ∨ ¬r ∨ ¬s) ∧ (q ∨ ¬r ∨ s) ∧ (p ∨ s) ∧ (p ∨ ¬s) ∧ (q ∨ s)

Výrok nemá žádnou jednotkovou klauzuli. Literál ¬r má čistý výskyt, nastavíme v(r) = 0 a
odstraníme klauzule obsahující ¬r:

(¬p ∨ ¬q ∨ ¬s) ∧ (p ∨ s) ∧ (p ∨ ¬s) ∧ (q ∨ s)

Žádný další literál nemá čistý výskyt. Spustíme proto rekurzivně algoritmus:

(p=1) Přidáme jednotkovou klauzuli p:

(¬p ∨ ¬q ∨ ¬s) ∧ (p ∨ s) ∧ (p ∨ ¬s) ∧ (q ∨ s) ∧ p

Nastavíme v(p) = 1 a provedeme jednotkovou propagaci: (¬q ∨ ¬s) ∧ (q ∨ s). Nyní
rozvětvíme na proměnné q:

(q=1) (¬q ∨ ¬s) ∧ (q ∨ s) ∧ q. Po nastavení v(q) = 1 a jednotkové propagaci dostáváme
¬s, po nastavení v(s) = 0 a jednotkové propagaci dostáváme výrok neobsahující
žádnou klauzuli, je tedy splnitelný ohodnocením (1, 1, 0, 0). Odpověď na problém
splnitelnosti už máme, ostatní větve výpočtu nemusíme dokončovat. Pro ilustraci
to ale provedeme.

(q=0) (¬q∨¬s)∧(q∨s)∧¬q. Jednotkovou propagací s v(q) = 0 dostáváme s, po nastavení
v(s) = 1 a jednotkové propagaci máme prázdnou množinu klauzulí. Dostáváme
model (1, 0, 0, 1).

(p=0) Přidáme jednotkovou klauzuli ¬p:

(¬p ∨ ¬q ∨ ¬s) ∧ (p ∨ s) ∧ (p ∨ ¬s) ∧ (q ∨ s) ∧ ¬p

Po provedení jednotkové propagace ¬p máme s ∧ ¬s∧ (q ∨ s). Po provedení jednotkové
propagace s máme □∧q, kde □ je prázdná klauzule. Výrok je tedy nesplnitelný a v této
větvi nedostaneme žádné modely.
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Zjistili jsme, že původní výrok je splnitelný. Našli jsme 2 modely: (1, 1, 0, 0) a (1, 0, 0, 1).
Mohou ale existovat i další modely, ohodnocení v(r) = 0 pro literál ¬r s čistým výskytem
nemusí být nutné pro splnění všech klauzulí; tento krok nezachovává množinu modelů, jen
splnitelnost.

Co dále? Základní algoritmus DPLL, který systematicky prohledává prostor možných
řešení, byl na konci 90. let 20. století různými způsoby doplněn a rozšířen. Zmiňme algoritmus
zvaný Conflict-driven clause learning (CDCL). Ten je založený na myšlence, že ze selhání
větve prohledávacího stromu se můžeme naučit novou klauzuli, která tomuto konkrétnímu
selhání (“konfliktu”) zabraňuje. Kromě toho se můžeme vrátit zpět ve stromu o více úrovní
najednou (tzv. back-jumping) na místo, kde jsme začali ohodnocovat proměnné v této nové
klauzuli. Tím zabráníme opakovanému nalezení “téhož” konfliktu. Více o SAT solverech se
dozvíte například v předmětu NAIL094 Decision procedures and SAT/SMT solvers.
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Kapitola 3

Metoda analytického tabla

V této kapitole představíme Metodu analytického tabla. Jde o syntaktickou proceduru, kterou
můžeme použít pro zjištění, zda daný výrok platí v dané teorii, aniž bychom se museli zabývat
sémantikou (např. hledat všechny modely, což je nepraktické). Dokážeme si její korektnost
(‘dává správné odpovědi’) a úplnost (‘funguje vždy’), a použijeme ji také k důkazu tzv. Věty
o kompaktnosti (‘vlastnosti nekonečného objektu stačí ukázat pro jeho konečné části’).

3.1 Formální dokazovací systémy
Formální dokazovací systém formalizuje ‘dokazování’ (např. v matematice) jako přesně (al-
goritmicky) danou syntaktickou proceduru. Důkaz faktu, že v teorii T platí výrok φ (neboli
T |= φ) je konečný syntaktický objekt vycházející z axiomů T a výroku φ. Pokud důkaz
existuje, lze ho nalézt ‘algoritmicky’.1 Navíc musíme být schopni algoritmicky (a rozumně
efektivně) ověřit, že je daný objekt opravdu korektní důkaz.

Existuje-li důkaz, říkáme, že φ je [v daném dokazovacím systému] dokazatelný z T , a
píšeme T |− φ. Po dokazovacím systému požadujeme dvě vlastnosti:

• korektnost: je-li výrok dokazatelný z teorie, je v ní pravdivý (T |− φ ⇒ T |= φ)

• úplnost: je-li výrok pravdivý v teorii, je z ní dokazatelný (T |= φ ⇒ T |− φ)

(Přičemž korektnost vyžadujeme vždy, ale efektivní dokazovací systém může být praktický, i
pokud není úplný, zejména pokud je úplný pro nějakou zajímavou třídu výroků resp. teorií.)

V této kapitole si ukážeme kromě tablo metody také hilbertovský kalkulus, a v příští kapitole
představíme další dokazovací systém, tzv. rezoluční metodu.

3.2 Úvod do tablo metody
Po zbytek této kapitoly budeme předpokládat, že máme daný spočetný jazyk P. Z toho plyne,
že i každá teorie nad P je spočetná. Nejprve se soustředíme na případ, kdy T = ∅, tedy
dokazujeme, že výrok φ platí logicky (je to tautologie).

Tablo je olabelovaný strom představující hledání protipříkladu, tj. modelu, ve kterém φ
neplatí. Labely na vrcholech, kterým budeme říkat položky, sestávají ze symbolu T resp. F

1Zde ale musíme být opatrní v případě nekonečné teorie T , jak je zadaná? Algoritmus musí mít efektivní
přístup ke všem axiomům.
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(‘True’/‘False’) následovaného nějakým výrokem ψ a představují předpoklad (požadavek), že
v modelu výrok ψ platí resp. neplatí. Do kořene tabla dáme položku Fφ, tj. hledáme model,
ve kterém neplatí φ. Dále budeme tablo rozvíjet pomocí pravidel pro redukci položek. Tato
pravidla zajišťují následující invariant:

Každý model, který se shoduje s položkou v kořeni (tj. ve kterém neplatí φ), se
musí shodovat i s některou větví tabla (tj. splňovat všechny požadavky vyjádřené
položkami na této větvi).

Pokud na některé větvi dostaneme položky tvaru Tψ a Fψ (pro totéž ψ), říkáme, že větev
selhala (je sporná) a víme, že žádný model s ní nemůže souhlasit. Pokud selžou všechny větve,
víme, že neexistuje žádný model, ve kterém by neplatilo φ, a máme tedy důkaz, že φ platí.
(Všimněte si, že jde o důkaz sporem.)

Pokud nějaká větev neselhala, a je dokončená, tj. všechny položky jsou zredukované, víme,
že φ neplatí, a budeme z této větve schopni zkonstruovat konkrétní model, ve kterém neplatí.
Příklad 3.2.1. Ukažme si celý postup na dvou příkladech, viz Obrázek 3.2.1.

(a) Nejprve sestrojme tablo důkaz výroku φ = ((p → q) → p) → p. Začneme kořenem s
položkou Fφ. Tato položka je tvaru Fφ1→φ2 (‘neplatí implikace’), pokud se s ní shoduje
nějaký model, musí splňovat T(p → q) → p a Fp, připojíme tedy tyto dvě položky. (Ve
skutečnosti připojíme atomické tablo pro tento případ, viz Tabulka 3.1, kořen tohoto
atomického tabla ale vynecháme, abychom zbytečně nezopakovali tutéž položku.) Tím
jsme zredukovali položku v kořeni.
Pokračujeme položkou T(p → q) → p, ta je tvaru ‘platí implikace’, rozvětvíme na dvě
větve: model souhlasí s F(p → q) nebo s Tp (nebo s oběma). Pravá větev selhala (je
sporná), neboť obsahuje položky Tp, Fp, neshoduje se tedy s žádným modelem, označíme
ji symbolem ⊗. V levé větvi ještě zredukujeme položku Fp→q a také dostaneme spornou
větev. Všechny větve jsou sporné, neexistuje tedy žádný protipříklad a máme důkaz
výroku φ. Píšeme |− φ.

(b) Nyní sestrojíme tablo s položkou F(¬q ∨ p) → p v kořeni. Snažíme se tedy najít proti-
příklad: model, ve kterém neplatí (¬q∨ p) → p. Nejprve jsme použili atomické tablo pro
‘neplatí implikace’, a dále redukujeme položku T¬q ∨ p připojením atomického tabla
pro ‘platí disjunkce’. Pravá větev selhala. V levé větvi ještě zredukujeme T¬q na Fq
(atomické tablo pro ‘platí negace’) tím dostáváme dokončenou větev, neboť všechny
položky už jsme zredukovali. Tato dokončená větev ale není sporná (označíme ji tedy
symbolem ✓). To znamená, že protipříklad existuje: máme položky Fp a Fq, kterým
odpovídá model (0, 0), ve kterém opravdu (¬q ∨ p) → p neplatí.

V následující sekci celý postup zformalizujeme a vysvětlíme, co dělat, když chceme doka-
zovat ne v logice, ale v nějaké teorii T (spoiler alert: při konstrukci připojujeme položky Tα
pro axiomy α ∈ T ). Také si ukážeme příklad s nekonečnou teorií, kde dokončená větev někdy
musí být nekonečná.

Ve zbytku této sekce představíme všechna atomická tabla potřebná při konstrukci, a také
formalizujeme pojem stromu.
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F((p→ q) → p) → p

T(p→ q) → p

Fp

Fp→ q

Tp

Fq

Tp

⊗

⊗

F(¬q ∨ p) → p

T¬q ∨ p

Fp

T¬q

Fq

Tp

✓

⊗

Obrázek 3.1: Příklady tabel. (a) Tablo důkaz výroku ((p→ q) → p) → p. (b) Tablo pro výrok
(¬q ∨ p) → p. Levá větev dává protipříklad, model (0, 0) ve kterém výrok neplatí.

3.2.1 Atomická tabla

Atomická tabla představují pravidla, pomocí kterých redukujeme položky. Pro každou logic-
kou spojku a každý ze dvou příznaků T/ F máme jedno atomické tablo, znázorněné v Tabulce
3.1.

¬ ∧ ∨ → ↔

True

T¬φ

Fφ

Tφ ∧ ψ

Tφ

Tψ

Tφ ∨ ψ

Tφ Tψ

Tφ→ ψ

Fφ Tψ

Tφ↔ ψ

Tφ

Tψ

Fφ

Fψ

False

F¬φ

Tφ

Fφ ∧ ψ

Fφ Fψ

Fφ ∨ ψ

Fφ

Fψ

Fφ→ ψ

Tφ

Fψ

Fφ↔ ψ

Tφ

Fψ

Fφ

Tψ

Tabulka 3.1: Atomická tabla

Tabla z Příkladu 3.2.1 jsou zkonstruovaná postupným připojováním atomických tabel,
viz Obrázek 3.2.1. Kořeny atomických tabel jsou označené modře, zavedeme konvenci, že je
nebudeme zakreslovat.
Cvičení 3.1. Pokuste se zkonstruovat tablo s položkou F((¬p∧ ¬q) ∨ p) → (¬p∧ ¬q) v kořeni
a také tablo s položkou T(p → q) ↔ (p ∧ ¬q). Při konstrukci používejte jen atomická tabla
(zkontrolujte, zda vaše konstrukce souhlasí s definicí tabla z následující sekce). Rozmyslete si,
co tato tabla říkají o výrocích ve svých kořenech.
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F((p→ q) → p) → p

F((p→ q) → p) → p

T(p→ q) → p

Fp

T(p→ q) → p

Fp→ q

Fp→ q

Tp

Fq

Tp

⊗

⊗

F(¬q ∨ p) → p

F(¬q ∨ p) → p

T¬q ∨ p

Fp

T(¬q ∨ p)

T¬q

T¬q

Fq

Tp

✓

⊗

Obrázek 3.2: Konstrukce tabel z Příkladu 3.2.1.

Cvičení 3.2. Ověřte, že všechna atomická tabla splňují invariant: shoduje-li se model s polož-
kou v kořeni, shoduje se s některou z větví.
Cvičení 3.3. Navrhněte atomická tabla pro logické spojky NAND, NOR, XOR, IFTE.

3.2.2 O stromech

Než se pustíme do formální definice a důkazů, specifikujme, co myslíme pojmem strom. V
teorii grafů bychom stromem nazvali souvislý graf bez cyklů, naše stromy jsou ale zakořeněné,
uspořádané (tzv. pravolevým uspořádáním množiny synů každého vrcholu), a označkované.
A mohou, často i budou, nekonečné. Formálně:

Definice 3.2.2 (Strom). • Strom je neprázdná množina T s částečným uspořádáním <T ,
které má (jediný) minimální prvek (kořen) a ve kterém je množina předků libovolného
vrcholu dobře uspořádaná.2

• Větev stromu T je maximální3 lineárně uspořádaná podmnožina T .

• Uspořádaný strom je strom T spolu s lineárním uspořádáním <L množiny synů každého
vrcholu. Uspořádání synů budeme říkat pravolevé zatímco uspořádání <T je stromové.

• Označkovaný strom je strom spolu se značkovací funkcí label : V (T ) → Labels.
2Tj. každá její neprázdná podmnožina má nejmenší prvek. (Tím zakážeme nekonečné klesající řetězce

předků.)
3Tj. nelze do ní přidat další vrcholy stromu.
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Budeme používat standardní terminologii o stromech, např. budeme mluvit o n-té úrovni
stromu, nebo o hloubce stromu (ta je nekonečná, právě když máme nekonečnou větev). V
jedné větě, kterou si níže dokážeme, budeme potřebovat následující slavné tvrzení, které je
důsledkem axiomu výběru.

Lemma 3.2.3 (Königovo lemma). Nekonečný, konečně větvící strom má nekonečnou větev.

(Strom je konečně větvící, pokud má každý vrchol konečně mnoho synů.)

3.3 Tablo důkaz
Nyní uvedeme formální definici tabla. Do definice přidáme také teorii T , jejíž axiomy můžeme
při konstrukci připojovat s příznakem T (“true”). Připomeňme, že položka je nápis Tφ nebo
Fφ, kde φ je nějaký výrok.

Definice 3.3.1 (Tablo). Konečné tablo z teorie T je uspořádaný, položkami označkovaný
strom zkonstruovaný aplikací konečně mnoha následujících pravidel:

• jednoprvkový strom označkovaný libovolnou položkou je tablo z teorie T ,

• pro libovolnou položkou P na libovolné větvi V , můžeme na konec větve V připojit
atomické tablo pro položku P ,

• na konec libovolné větve můžeme připojit položku Tα pro libovolný axiom teorie α ∈ T .

Tablo z teorie T je buď konečné, nebo i nekonečné: v tom případě vzniklo ve spočetně mnoha
krocích. Můžeme ho formálně vyjádřit jako sjednocení τ = ⋃

i≥0 τi, kde τi jsou konečná tabla
z T , τ0 je jednoprvkové tablo, a τi+1 vzniklo z τi v jednom kroku.4

Tablo pro položku P je tablo, které má položku P v kořeni.

Připomeňme konvenci, že kořen atomického tabla nebudeme zapisovat (neboť vrchol s
položkou P už v tablu je). V definici neurčujeme, v jakém pořadí provádět jednotlivé kroky,
později ale specifikujeme konkrétní postup konstrukce (algoritmus), kterému budeme říkat
systematické tablo.

Abychom získali dokazovací systém, zbývá definovat pojem tablo důkazu (a související
pojmy). Připomeňme ještě jednou, že jde o důkaz sporem, tedy předpokládáme, že výrok
neplatí, a najdeme spor(né tablo):

Definice 3.3.2 (Tablo důkaz). Tablo důkaz výroku φ z teorie T je sporné tablo z teorie T s
položkou Fφ v kořeni. Pokud existuje, je φ (tablo) dokazatelný z T , píšeme T |− φ. (Definujme
také tablo zamítnutí jako sporné tablo s Tφ v kořeni. Pokud existuje, je φ (tablo) zamítnutelný
z T , tj. platí T |− ¬φ.)

• Tablo je sporné, pokud je každá jeho větev sporná.

• Větev je sporná, pokud obsahuje položky Tψ a Fψ pro nějaký výrok ψ, jinak je beze-
sporná.

• Tablo je dokončené, pokud je každá jeho větev dokončená.
4Sjednocení proto, že v jednotlivých krocích přidáváme do tabla nové vrcholy, τi je tedy podstromem τi+1.
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Fψ

Tφ→ ψ

Fφ

Tφ

Tψ

⊗

⊗

Fp0

Tp1 → p0

Fp1

Tp2 → p1

Fp2

...

Tp0

Tp0

⊗

⊗

Obrázek 3.3: Tabla z Příkladu 3.3.3. Položky vycházející z axiomů jsou označeny modře.

• Větev je dokončená, pokud

– je sporná, nebo
– je každá její položka na této větvi redukovaná a zároveň obsahuje položku Tα pro

každý axiom α ∈ T .

• Položka P je redukovaná na větvi V procházející touto položkou, pokud

– je tvaru Tp resp. Fp pro nějakou výrokovou proměnnou p ∈ P, nebo
– vyskytuje se na V jako kořen atomického tabla5 (tj., typicky, při konstrukci tabla

již došlo k jejímu rozvoji na V ).

Příklad 3.3.3. Ukážeme si dva příklady. Tabla jsou znázorněná na Obrázku 3.3.

(a) Tablo důkaz výroku ψ z teorie T = {φ,φ→ ψ}, tj. T |− ψ (kde φ,ψ jsou nějaké pevně
dané výroky). Tomuto faktu se říká Věta o dedukci.

(b) Dokončené tablo pro výrok p0 z teorie T = {pn+1 → pn | n ∈ N}. Nejlevější větev je
bezesporná dokončená. Obsahuje položky Tpi+1 → pi a Fpi pro všechna i ∈ N. Shoduje
se tedy s modelem v = (0, 0, . . . ), tj. v : P → {0, 1} kde v(pi) = 0 pro všechna i.

Cvičení 3.4. Vraťme se k tablům z Cvičení 3.1. Jde o tablo důkazy nebo zamítnutí (z teorie
T = ∅)? Které položky na kterých větvích jsou redukované? Které větve jsou sporné, které
jsou dokončené?

3.4 Konečnost a systematičnost důkazů
V této sekci dokážeme, že pokud existuje tablo důkaz, existuje vždy také konečný tablo
důkaz. Představíme také algoritmus, kterým nějaký tablo důkaz můžeme vždy najít, pro
důkaz tohoto faktu ale budeme potřebovat Věty o korektnosti a úplnosti z následující sekce.
Prozatím ukážeme, že tento algoritmus nám umožní vždy sestrojit dokončené tablo.

5Byť podle konvence tento kořen nezapisujeme.
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Všimněte si, že při redukci položky přidáváme do tabla pouze položky obsahující kratší
výroky. Pokud tedy máme konečnou teorii, a neděláme zbytečné kroky (například nepřidáváme
opakovaně tentýž axiom, nebo totéž atomické tablo), je snadné sestrojit dokončené tablo, které
bude konečné.

Je-li teorie T nekonečná, musíme ale být opatrnější. Mohli bychom nekonečně dlouho
konstruovat tablo, a přitom se nikdy nedostat k redukci určité položky, nebo nikdy nepou-
žít některý z axiomů. Definujeme tedy konkrétní algoritmus pro konstrukci tabla, výsledku
budeme říkat systematické tablo. Myšlenka konstrukce je jednoduchá: střídáme krok redukce
položky (zároveň na všech bezesporných větvích, které jí procházejí) a krokem použití axi-
omu. Položky procházíme po úrovních, a v rámci úrovně v pravolevém uspořádání. A axiomy
teorie ve zvoleném očíslování.

Definice 3.4.1 (Systematické tablo). Mějme položku R a (konečnou nebo nekonečnou6)
teorii T = {α1, α2, . . . }. Systematické tablo z teorie T pro položku R je tablo τ = ⋃

i≥0 τi, kde
τ0 je jednoprvkové tablo s položkou R, a pro každé i ≥ 0:

• Nechť P je nejlevější položka v co nejmenší úrovni, která není redukovaná na nějaké
bezesporné větvi procházející P . Definujeme nejprve tablo τ ′

i jako tablo vzniklé z τi
připojením atomického tabla pro P na každou bezespornou větev procházející P . (Pokud
taková položka neexistuje, potom τ ′

i = τi.)

• Následně, τi+1 je tablo vzniklé z τ ′
i připojením Tαi+1 na každou bezespornou větev τ ′

i .
To v případě, že i < |T |, jinak (je-li T konečná a už jsme použili všechny axiomy) tento
krok přeskočíme a definujeme τi+1 = τ ′

i .

Lemma 3.4.2. Systematické tablo je dokončené.

Důkaz. Ukážeme, že každá větev je dokončená. Sporné větve jsou dokončené. Bezesporné
větve obsahují položky Tαi (ty jsme připojili v i-tém kroku) a každá položka na nich je
redukovaná. Vskutku, kdyby P byla neredukovaná na bezesporné větvi V , přišla by na ni
v nějakém kroku řada, neboť v úrovních nad P a vlevo od P existuje jen konečně mnoho
položek. (Používáme zjevného faktu, že každý prefix bezesporné větve je také bezesporná
větev, tedy během konstrukce V nikdy není sporná.)

Nyní se vraťme k otázce konečnosti důkazů:

Věta 3.4.3 (Konečnost sporu). Je-li τ = ⋃
i≥0 τi sporné tablo, potom existuje n ∈ N takové,

že τn je sporné konečné tablo.

Důkaz. Uvažme množinu S všech vrcholů stromu τ , které nad sebou (ve stromovém uspořá-
dání) neobsahují spor, tj. dvojici položek Tψ, Fψ.

Kdyby množina S byla nekonečná, podle Königova lemmatu použitého na podstrom τ na
množině S bychom měli nekonečnou, bezespornou větev v S. To by ale znamenalo, že máme
i bezespornou větev v τ , což je ve sporu s tím, že τ je sporné. (Podrobněji: Větev na S by
byla podvětví nějaké větve V v τ , která je sporná, tj. obsahuje nějakou (konkrétní) spornou
dvojici položek, která ale existuje už v nějakém konečném prefixu V .)

Množina S je tedy konečná. To znamená, že existuje d ∈ N takové, že celá S leží v hloubce
nejvýše d. Každý vrchol na úrovni d + 1 má tedy nad sebou spor. Zvolme n tak, že τn už
obsahuje všechny vrcholy τ z prvních d+ 1 úrovní: každá větev τn je tedy sporná.

6Připomeňme, že T je spočetná, neboť jazyk je (v celé kapitole) spočetný.
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Důsledek 3.4.4. Pokud při konstrukci tabla nikdy neprodlužujeme sporné větve, např. pro
systematické tablo, potom sporné tablo je konečné.

Důkaz. Použijeme Větu 3.4.3, máme τ = τn neboť sporné tablo už neměníme.

Důsledek 3.4.5 (Konečnost důkazů). Pokud T |− φ, potom existuje i konečný tablo důkaz
φ z T .

Důkaz. Snadno plyne z Důsledku 3.4.4: stačí při konstrukci τ ignorovat kroky, které by pro-
dloužily spornou větev.

Vyslovíme zde také následující důsledek. Dokážeme ho ale až v příští sekci.

Důsledek 3.4.6 (Systematičnost důkazů). Pokud T |− φ, potom systematické tablo je (ko-
nečným) tablo důkazem φ z T .

K důkazu budeme potřebovat dvě fakta: pokud je φ dokazatelná z T , potom v T platí
(Věta o korektnosti), tj. nemůže existovat protipříklad. A dále pokud by systematické tablo
mělo bezespornou větev, znamenalo by to, že existuje protipříklad (to je klíčem k Větě o
úplnosti).

3.5 Korektnost a úplnost
V této sekci dokážeme, že je tablo metoda korektní a úplný dokazovací systém, tj. že T |− φ
platí právě když T |= φ.

3.5.1 Věta o korektnosti

Řekneme, model v se shoduje s položkou P , pokud P = Tφ a v |= φ, nebo P = Fφ a v ̸|= φ.
Dále v se shoduje s větví V , pokud se shoduje s každou položkou na této větvi.

Jak už jsme zmínili, design atomických tabel zaručuje, že shoduje-li se model s položkou
v kořeni tabla, shoduje se s některou větví. Není těžké indukcí podle konstrukce tabla ukázat
následující lemma:

Lemma 3.5.1. Shoduje-li se model teorie T s položkou v kořeni tabla z teorie T , potom se
shoduje s některou větví.

Důkaz. Mějme tablo τ = ⋃
i≥0 τi z teorie T a model v ∈ M(T ) shodující se s kořenem τ , tedy

s (jednoprvkovou) větví V0 v (jednoprvkovém) τ0.
Indukcí podle i (podle kroků v při konstrukci tabla) najdeme posloupnost V0 ⊆ V1 ⊆ . . .

takovou, že Vi je větev v tablu τi shodující se s modelem v, a Vi+1 je prodloužením Vi.
Požadovaná větev tabla τ je potom V = ⋃

i≥0 Vi.

• Pokud τi+1 vzniklo z τi bez prodloužení větve Vi, definujeme Vi+1 = Vi.

• Pokud τi+1 vzniklo z τi připojením položky Tα (pro nějaký axiom α ∈ T ) na konec
větve Vi, definujeme Vi+1 jako tuto prodlouženou větev. Protože v je model T , platí v
něm axiom α, tedy shoduje se i s novou položkou Tα.
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• Nechť τi+1 vzniklo z τi připojením atomického tabla pro nějakou položku P na konec
větve Vi. Protože se model v shoduje s položkou P (která leží už na větvi Vi), shoduje
se i s kořenem připojeného atomického tabla, a proto se shoduje i s některou z jeho
větví. (Tuto vlastnost snadno ověříme pro všechna atomická tabla.) Definujeme Vi+1
jako prodloužení Vi o tuto větev atomického tabla.7

Nyní už můžeme dokázat Větu o korektnosti. Zkráceně řečeno, pokud by existoval důkaz
a zároveň protipříklad, protipříklad by se musel shodovat s některou větví důkazu, ty jsou ale
všechny sporné.

Věta 3.5.2 (O korektnosti). Je-li výrok φ tablo dokazatelný z teorie T , potom je φ pravdivý
v T , tj. T |− φ ⇒ T |= φ.

Důkaz. Dokážeme sporem. Předpokládejme, že φ v T neplatí, tj. existuje protipříklad: model
v ∈ M(T ), ve kterém φ neplatí.

Protože je φ dokazatelná z T , existuje tablo důkaz φ z T , což je sporné tablo z T s položkou
Fφ v kořeni. Model v se shoduje s položkou Fφ, tedy podle Lemmatu 3.5.1 se shoduje s nějakou
větví V . Všechny větve jsou ale sporné, včetně V . Takže V obsahuje položky Tψ a Fψ (pro
nějaký výrok ψ), a model v se s těmito položkami shoduje. Máme tedy v |= ψ a zároveň
v ̸|= ψ, což je spor.

3.5.2 Věta o úplnosti

Ukážeme, že pokud selže dokazování, tj. pokud dostaneme bezespornou větev v dokončeném
tablu z teorie T pro položku Fφ, potom tato větev poskytuje protipříklad: model teorie T ,
který se shoduje s položkou Fφ v kořeni tabla, tj. neplatí v něm φ. Takových modelů může
být více, definujeme proto jeden konkrétní:

Definice 3.5.3 (Kanonický model). Je-li V bezesporná větev dokončeného tabla, potom
kanonický model pro V je model definovaný předpisem (pro p ∈ P):

v(p) =
{

1 pokud se na V vyskytuje položka Tp,
0 jinak.

Lemma 3.5.4. Kanonický model pro (bezespornou dokončenou) větev V se shoduje s V .

Důkaz. Ukážeme, že kanonický model v se shoduje se všemi položkami P na větvi V , a to
indukcí podle struktury výroku v položce.8 Nejprve základ indukce:

• Je-li P = Tp pro nějaký prvovýrok p ∈ P, máme podle definice v(p) = 1; v se s P
shoduje.

• Je-li P = Fp, potom se na větvi V nemůže vyskytovat položka Tp, jinak by V byla
sporná. Podle definice máme v(p) = 0 a v se s P opět shoduje.

7Resp. o libovolnou takovou větev: model v se může shodovat s více větvemi atomického tabla.
8Připomeňme, že to znamená indukci podle hloubky stromu výroku.

47



Nyní indukční krok. Rozebereme dva případy, ostatní se dokáží obdobně.

• Nechť P = Tφ ∧ ψ. Protože je V dokončená větev, je na ní položka P redukovaná. To
znamená, že se na V vyskytují i položky Tφ a Tψ. Podle indukčního předpokladu se s
nimi model v shoduje, tedy v |= φ a v |= ψ. Takže platí i v |= φ∧ψ a v se shoduje s P .

• Nechť P = Fφ∧ψ. Protože je P na V redukovaná, vyskytuje se na V položka Fφ nebo
položka Fψ. Platí tedy v ̸|= φ nebo v ̸|= ψ, z čehož plyne v ̸|= φ∧ψ a v se shoduje s P .

Věta 3.5.5 (O úplnosti). Je-li výrok φ pravdivý v teorii T , potom je tablo dokazatelný z T ,
tj. T |= φ ⇒ T |− φ.

Důkaz. Ukážeme, že libovolné dokončené (tedy např. i systematické) tablo z T s položkou
Fφ v kořeni je nutně sporné. Důkaz provedeme sporem: kdyby takové tablo nebylo sporné,
existovala by v něm bezesporná (dokončená) větev V . Uvažme kanonický model v pro tuto
větev. Protože je V dokončená, obsahuje Tα pro všechny axiomy α ∈ T . Model v se podle
Lemmatu 3.5.4 shoduje se všemi položkami na V , splňuje tedy všechny axiomy a máme v |= T .
Protože se ale v shoduje i s položkou Fφ v kořeni, máme v ̸|= φ, což znamená, že T ̸|= φ,
spor. Tablo tedy muselo být sporné, tj. být tablo důkazem φ z T .

Důkaz Důsledku 3.4.6. Z předchozího důkazu také dostáváme ‘systematičnost důkazů’, tj. že
důkaz můžeme vždy hledat konstrukcí systematického tabla: Pokud T |= φ, tak je i systema-
tické tablo pro položku Fφ nutně sporné, a je tedy tablo důkazem φ z T .

Cvičení 3.5. Ověřte zbývající případy v důkazu Lemmatu 3.5.4.
Cvičení 3.6. Popište, jak vypadají všechny modely shodující se s danou bezespornou dokon-
čenou větví.
Cvičení 3.7. Navrhněte postup, kterým můžeme za použití tablo metody najít všechny modely
dané teorie T .

3.6 Důsledky korektnosti a úplnosti
Věty o korektnosti a úplnosti dohromady říkají, že dokazatelnost je totéž, co platnost. To nám
umožňuje zformulovat syntaktické analogie sémantických pojmů a vlastností.

Analogií důsledků jsou teorémy teorie T :

ThmP(T ) = {φ ∈ VFP | T |− φ}

Důsledek 3.6.1 (Dokazatelnost = platnost). Pro libovolnou teorii T a výroky φ,ψ platí:

• T |− φ právě když T |= φ

• ThmP(T ) = CsqP(T )

Důkaz. Plyne okamžitě z Věty o korektnosti a z Věty o úplnosti.

Ve všech definicích a větách můžeme tedy nahradit pojem ‘platnost’ pojmem ‘dokazatel-
nost’ (tj. symbol ‘|=’ symbolem ‘|−’) a pojem ‘důsledek’ pojmem ‘teorém’. Například:
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• Teorie je sporná, jestliže je v ní dokazatelný spor (tj. T |− ⊥).

• Teorie je kompletní, jestliže pro každý výrok φ je buď T |− φ nebo T |− ¬φ (ale ne
obojí, jinak by byla sporná).

Uveďme ještě jeden snadný důsledek:

Věta 3.6.2 (O dedukci). Pro teorii T a výroky φ,ψ platí: T, φ |− ψ právě když T |− φ → ψ.

Důkaz. Stačí dokázat T, φ |= ψ ⇔ T |= φ → ψ, což je snadné.

Cvičení 3.8. Dokažte Větu o dedukci přímo, pomocí transformace tablo důkazů.

3.7 Věta o kompaktnosti
Důležitým důsledkem vět o korektnosti a úplnosti je také tzv. Věta o kompaktnosti.9 Tento
princip umožňuje převádět tvrzení o nekonečných objektech/procesech na tvrzení o (všech)
jejich konečných částech.

Věta 3.7.1 (O kompaktnosti). Teorie má model, právě když každá její konečná část má
model.

Důkaz. Každý model teorie T je zjevně modelem každé její části. Druhou implikaci dokážeme
nepřímým důkazem: Předpokládejme, že T nemá model, tj. je sporná, a najděme konečnou
část T ′ ⊆ T , která je také sporná.

Protože je T sporná, platí T |− ⊥ (zde potřebujeme Větu o úplnosti). Podle Důsledku
3.4.5 potom existuje konečný tablo důkaz τ výroku ⊥ z T . Konstrukce tohoto důkazu má
jen konečně mnoho kroků, použili jsme tedy jen konečně mnoho axiomů z T . Definujeme-li
T ′ = {α ∈ T | Tα je položka v tablu τ}, potom τ je také tablo důkaz sporu z teorie T ′. Teorie
T ′ je tedy sporná konečná část T .

3.7.1 Aplikace kompaktnosti

Následující jednoduchou aplikaci Věty o kompaktnosti můžete chápat jako šablonu, kterou
následuje i mnoho dalších, složitějších aplikací této věty.

Důsledek 3.7.2. Spočetně nekonečný graf je bipartitní, právě když je každý jeho konečný
podgraf bipartitní.

Důkaz. Každý podgraf bipartitního grafu je zjevně také bipartitní. Ukažme opačnou impli-
kaci. Graf je bipartitní, právě když je obarvitelný 2 barvami. Označme barvy 0, 1.

Sestrojíme výrokovou teorii T v jazyce P = {pv | v ∈ V (G)}, kde hodnota výrokové
proměnné pv reprezentuje barvu vrcholu v.

T = {pu ↔ ¬pv | {u, v} ∈ E(G)}

Zřejmě platí, že G je bipartitní, právě když T má model. Podle Věty o kompaktnosti stačí
ukázat, že každá konečná část T má model. Vezměme tedy konečnou T ′ ⊆ T . Buď G′ podgraf

9Slovo kompaktnost pochází z kompaktních (tj. omezených a uzavřených) množin v Euklidovských prosto-
rech, ve kterých lze z každé posloupnosti vybrat konvergentní podposloupnost. Můžete si představit posloupnost
zvětšujících se konečných částí ‘konvergující’ k nekonečnému celku.
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G indukovaný na množině vrcholů, o kterých se zmiňuje teorie T ′, tj. V (G′) = {v ∈ V (G) |
pv ∈ Var(T ′)}. Protože je T ′ konečná, jeG′ také konečný, a podle předpokladu je 2-obarvitelný.
Libovolné 2-obarvení V (G′) ale určuje model teorie T ′.

Základem této techniky je popis požadované vlastnosti nekonečného objektu pomocí (ne-
konečné) výrokové teorie. Dále si všimněte, jak z konečné části teorie sestrojíme konečný
podobjekt mající danou vlastnost (v našem případě konečný podgraf, který je bipartitní).
Cvičení 3.9. Zobecněte Důsledek 3.7.2 pro více barev, tj. ukažte, že spočetně nekonečný graf
je k-obarvitelný, právě když je každý jeho konečný podgraf k-obarvitelný. (Viz Sekce ??.)
Cvičení 3.10. Ukažte, že každé částečné uspořádání na spočetné množině lze rozšířit na line-
ární uspořádání.
Cvičení 3.11. Vyslovte a dokažte ‘spočetně nekonečnou’ analogii Hallovy věty.

3.8 Hilbertovský kalkulus
Na závěr kapitoly o tablo metodě si pro srovnání ukážeme jiný dokazovací systém, tzv. hil-
bertovský deduktivní systém neboli hilbertovský kalkulus. Jde o nejstarší dokazovací systém,
modelovaný podle matematických důkazů. Jak uvidíme na příkladě, dokazování je v něm po-
měrně pracné, hodí se tedy spíše pro teoretické účely. Jde také o korektní a úplný dokazovací
systém. (Korektnost ukážeme, úplnost ale necháme bez důkazu.)

Hilbertovský kalkulus používá jen dvě základní logické spojky: negaci a implikaci. (Při-
pomeňme, že ostatní logické spojky z nich lze odvodit.) Systém sestává z logických axiomů
daných následujícími schématy, a z jednoho odvozovacího pravidla, tzv. modus ponens:

Definice 3.8.1 (Schémata axiomů v hilbertovském kalkulu). Pro libovolné výroky φ,ψ, χ
jsou následující výroky logickými axiomy:

(i) φ→ (ψ → φ)

(ii) (φ→ (ψ → χ)) → ((φ→ ψ) → (φ→ χ))

(iii) (¬φ→ ¬ψ) → (ψ → φ)

Všimněte si, že všechny logické axiomy jsou opravdu tautologie. Poznamenejme, že lze
zvolit i jiný systém logických axiomů, existuje jich celá řada, viz článek List of Hilbert systems
na Wikipedii.

Definice 3.8.2 (Modus ponens). Odvozovací pravidlo modus ponens říká, že pokud jsme již
dokázali výrok φ a také výrok φ→ψ, můžeme odvodit i výrok ψ. Zapisujeme ho následovně:

φ,φ→ ψ

ψ

Všimněte si, že modus ponens je korektní, tj. platí-li v nějaké teorii T |= φ a T |= φ→ ψ,
máme i T |= ψ.

Nyní jsme již připraveni definovat důkaz. Půjde o konečnou posloupnost výroků, ve které
každý nově napsaný výrok je buď axiomem (logickým nebo z teorie, ve které dokazujeme),
nebo lze odvodit z předchozích pomocí modus ponens:
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Definice 3.8.3 (Hilbertovský důkaz). Hilbertovský důkaz výroku φ z teorie T je konečná
posloupnost výroků φ0, . . . , φn = φ, ve které pro každé i ≤ n platí:

• φi je logický axiom, nebo

• φi je axiom teorie (φi ∈ T ), nebo

• φi lze odvodit z nějakých předchozích výroků φj , φk (kde j, k < i) pomocí modus
ponens.

Existuje-li hilbertovský důkaz, říkáme, že je φ (hilbertovsky) dokazatelný, a píšeme T |−H φ.

Pojem hilbertovského důkazu si ilustrujeme na jednoduchém příkladě:
Příklad 3.8.4. Ukažme, že pro teorii T = {¬φ} a pro libovolný výrok ψ platí T |−H φ → ψ.
Hilbertovským důkazem je následující posloupnost výroků:

1. ¬φ axiom teorie

2. ¬φ→ (¬ψ → ¬φ) logický axiom dle (i)

3. ¬ψ → ¬φ modus ponens na 1. a 2.

4. (¬ψ → ¬φ) → (φ→ ψ) logický axiom dle (iii)

5. φ→ ψ modus ponens na 3. a 4.

Jak jsme již zmínili, hilbertovský kalkulus je korektní a úplný dokazovací systém.

Věta 3.8.5 (O korektnosti hilbertovského kalkulu). Pro každou teorii T a výrok φ platí:

T |−H φ ⇒ T |= φ

Důkaz. Indukcí dle indexu i ukážeme, že každý výrok φi z důkazu (tedy i φn = φ) platí v T .
Je-li φi logický axiom, T |= φi platí protože logické axiomy jsou tautologie. Je-li φi ∈ T ,

také jistě platí T |= φi. Získáme-li φi pomocí modus ponens z φj a φk = φj →φi (pro nějaká
j, k < i), víme z indukčního předpokladu, že platí T |= φj a T |= φj → φi. Potom ale z
korektnosti modus ponens platí i T |= φi.

Pro úplnost ještě vyslovme úplnost, důkaz ale neuvedeme.

Věta 3.8.6 (O úplnosti hilbertovského kalkulu). Pro každou teorii T a výrok φ platí:

T |= φ ⇒ T |−H φ
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Kapitola 4

Rezoluční metoda

V této kapitole představíme jiný dokazovací systém, vhodnější pro praktické aplikace, tzv.
rezoluční metodu. Tato metoda je základem např. logického programování nebo systémů auto-
matického dokazování a softwarové verifikace. V této kapitole se omezíme na rezoluční metodu
ve výrokové logice, ale později, v Kapitole 7, si ukážeme koncept unifikace, který umožňuje
hledat rezoluční důkazy v logice predikátové.

Rezoluční metoda pracuje s výroky v konjunktivní normální formě (CNF). Připomeňme,
že každý výrok lze převést do CNF. Tento převod je v nejhorším případě v exponenciálním
čase (dokonce existují výroky jejichž nejkratší CNF ekvivalent je exponenciálně delší), v praxi
to ale není problém.

Podobně jako tablo metoda je založena na důkazu sporem, tj. přidáme k teorii, ve které
dokazujeme, negaci výroku, který chceme dokázat (obojí převedené do CNF), a ukážeme, že
to vede ke sporu.

K hledání sporu používá rezoluční metoda jediné inferenční pravidlo, tzv. rezoluční pravi-
dlo. To je speciálním případem pravidla řezu, které říká: “z výroků φ∨ψ a ¬φ∨χ lze odvodit
výrok ψ ∨ χ,” píšeme:

φ ∨ ψ,¬φ ∨ χ

ψ ∨ χ

V rezolučním pravidle, které si ukážeme za chvíli, bude φ literál, a ψ, χ budou klauzule.
Cvičení 4.1. Rozmyslete si, že pravidlo řezu je korektní. (Co to znamená, a proč to platí?)

4.1 Množinová reprezentace
Nejprve představíme úspornější zápis CNF výroků, tzv. množinový zápis. Bylo by totiž ne-
praktické zapisovat výroky včetně závorek a logických symbolů.

• Připomeňme, že Literál ℓ je prvovýrok nebo negace prvovýroku a že ℓ̄ označuje opačný
literál k ℓ.

• Klauzule C je konečná množina literálů. Prázdnou klauzuli, která není nikdy splněna,1
označíme □.

1Reprezentuje disjunkci prázdné množiny literálů, žádný z disjunktů tedy není splněný.
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• (CNF) formule S je (konečná, nebo i nekonečná) množina klauzulí. Prázdná formule ∅
je vždy splněna.2

Poznámka 4.1.1. Všimněte si, že CNF formule může být i nekonečná množina klauzulí. Po-
kud tedy převádíme nekonečnou výrokovou teorii do CNF, zapíšeme v množinové reprezentaci
všech nekonečně mnoho klauzulí jako prvky jediné formule (množiny). V praktických aplika-
cích je samozřejmě formule (téměř vždy) konečná.

V množinové reprezentaci odpovídají modely množinám literálů, které obsahují pro každou
výrokovou proměnnou p právě jeden z literálů p,¬p:

• (Částečné) ohodnocení V je libovolná množina literálů, která je konzistentní, tj. neob-
sahuje dvojici opačných literálů.

• Ohodnocení je úplné, pokud obsahuje pozitivní nebo negativní literál pro každou výro-
kovou proměnnou.

• Ohodnocení V splňuje formuli S, píšeme V |= S, pokud V obsahuje nějaký literál z
každé klauzule v S, tj.:

V ∩ C ̸= ∅ pro každou C ∈ S

Příklad 4.1.2. Výrok φ = (¬p1 ∨p2)∧(¬p1 ∨¬p2 ∨p3)∧(¬p3 ∨¬p4)∧(¬p4 ∨¬p5)∧p4 zapíšeme
v množinové reprezentaci takto:

S = {{¬p1, p2}, {¬p1,¬p2, p3}, {¬p3,¬p4}, {¬p4,¬p5}, {p4}}

Ohodnocení V = {¬p1,¬p3, p4,¬p5} splňuje S, píšeme V |= S. Není úplné, ale můžeme ho
rozšířit libovolným literálem pro p2: platí V ∪ {p2} |= S i V ∪ {¬p2} |= S. Tato dvě úplná
ohodnocení odpovídají modelům (0, 1, 0, 1, 0) a (0, 0, 0, 1, 0).

4.2 Rezoluční důkaz
Nejprve definujeme jeden krok inference v rezolučním důkazu, tzv. rezoluční pravidlo, které
aplikujeme na dvojici klauzulí; jeho výsledkem je klauzule, které říkáme rezolventa, a která je
logickým důsledkem původní dvojice klauzulí:

Definice 4.2.1 (Rezoluční pravidlo). Mějme klauzule C1 a C2 a literál ℓ takový, že ℓ ∈ C1 a
ℓ̄ ∈ C2. Potom rezolventa klauzulí C1 a C2 přes literál ℓ je klauzule

C = (C1 \ {ℓ}) ∪ (C2 \ {ℓ̄}).

Z první klauzule tedy odstraníme literál ℓ a z druhé literál ℓ̄ (které tam musely být!) a
všechny zbylé literály sjednotíme do výsledné rezolventy. S pomocí symbolu ⊔̇ pro disjunktní
sjednocení bychom také mohli psát:

C ′
1 ∪ C ′

2 je rezolventou klauzulí C ′
1 ⊔̇ {ℓ} a C ′

2 ⊔̇ {ℓ̄}

Příklad 4.2.2. Z klauzulí C1 = {¬q, r} a C2 = {¬p,¬q,¬r} lze odvodit rezolventu {¬p,¬q}
přes literál r. Z klauzulí {p, q} a {¬p,¬q} lze odvodit {p,¬p} přes literál q nebo {q,¬q} přes
literál p (obojí jsou ale tautologie).3

2Reprezentuje konjunkci prázdné množiny klauzulí, všechny klauzule v S jsou tedy splněny.
3Nelze ale odvodit □ ‘rezolucí přes p a q najednou’ (což je častá chyba). Všimněte si, že {{p, q}, {¬p, ¬q}}

není nesplnitelná, např. (1, 0) je modelem.
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Pozorování 4.2.3 (Korektnost rezolučního pravidla). Rezoluční pravidlo je korektní, tj. pro
libovolné ohodnocení V platí:

Pokud V |= C1 a V |= C2, potom V |= C.

Rezoluční důkaz definujeme podobně jako v Hilbertově kalkulu jako konečnou posloupnost
klauzulí, kde je zaručena platnost každé klauzule v této posloupnosti: v každém kroku můžeme
buď napsat ‘axiom’ (klauzuli z S), nebo rezolventu nějakých dvou už napsaných klauzulí.

Definice 4.2.4 (Rezoluční důkaz). Rezoluční důkaz (odvození) klauzule C z CNF formule S
je konečná posloupnost klauzulí C0, C1, . . . , Cn = C taková, že pro každé i buď Ci ∈ S nebo
Ci je rezolventou nějakých Cj , Ck kde j < i a k < i.

Pokud rezoluční důkaz existuje, říkáme, že C je rezolucí dokazatelná z S, a píšeme S |−R C.
(Rezoluční) zamítnutí CNF formule S je rezoluční důkaz □ z S, v tom případě je S (rezolucí)
zamítnutelná.

Příklad 4.2.5. CNF formule S = {{p,¬q, r}, {p,¬r}, {¬p, r}, {¬p,¬r}, {q, r}} je (rezolucí)
zamítnutelná, jedno z možných zamítnutí je:

{p,¬q, r}, {q, r}, {p, r}, {¬p, r}, {r}, {p,¬r}, {¬p,¬r}, {¬r},□

Rezoluční důkaz má přirozenou stromovou strukturu: v listech jsou axiomy a vnitřní
vrcholy představují jednotlivé rezoluční kroky.

Definice 4.2.6 (Rezoluční strom). Rezoluční strom klauzule C z CNF formule S je konečný
binární strom s vrcholy označenými klauzulemi, kde

• v kořeni je C,

• v listech jsou klauzule z S,

• v každém vnitřním vrcholu je rezolventa klauzulí ze synů tohoto vrcholu.

Příklad 4.2.7. Rezoluční strom prázdné klauzule □ z CNF formule S z Příkladu 4.2.5 je:

□

{¬r}

{¬p,¬r}{p,¬r}

{r}

{¬p, r}{p, r}

{q, r}{p,¬q, r}

Je snadné ukázat následující pozorování, indukcí podle hloubky stromu a délky rezolučního
důkazu:

Pozorování 4.2.8. Klauzule C má rezoluční strom z CNF formule S, právě když S |−R C.
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Každému rezolučnímu důkazu odpovídá jednoznačný rezoluční strom. Naopak, z jednoho
rezolučního stromu můžeme získat více rezolučních důkazů: jsou dané libovolnou procházkou
po vrcholech stromu, při které navštívíme vnitřní vrchol až poté, co jsme navštívili oba jeho
syny.

Zaveďme ještě jeden pojem, tzv. rezoluční uzávěr, který obsahuje všechny klauzule, které
se můžeme ‘naučit’ rezolucí z dané formule. Jde spíše o užitečný teoretický pohled na rezoluci,
v aplikacích by bylo nepraktické konstruovat celý rezoluční uzávěr

Definice 4.2.9 (Rezoluční uzávěr). Rezoluční uzávěr R(S) formule S je definován induktivně
jako nejmenší množina klauzulí splňující:

• C ∈ R(S) pro všechna C ∈ S,

• jsou-li C1, C2 ∈ R(S) a je-li C rezolventa C1, C2, potom také C ∈ R(S).

Příklad 4.2.10. Spočtěme rezoluční uzávěr formule S = {{p,¬q, r}, {p,¬r}, {¬p, r}, {¬p,¬r}, {q, r}}.
Klauzule z S jsou modře, další klauzule získáváme postupným rezolvováním (první s první,
druhá s první, druhá s druhou atd., přes všechny možné literály):

R(S) = {{p,¬q, r}, {p,¬r}, {¬p, r}, {p, s}, {q, r},
{p,¬q}, {¬q, r}, {r,¬r}, {p,¬p}, {r, s}, {p, r}, {p, q}, {r}, {p}}

4.3 Korektnost a úplnost rezoluční metody
Rezoluční metoda je také korektní i úplná.

4.3.1 Korektnost rezoluce

Korektnost dokážeme snadno indukcí podle délky rezolučního důkazu.

Věta 4.3.1 (O korektnosti rezoluce). Je-li formule S rezolucí zamítnutelná, potom je S
nesplnitelná.

Důkaz. Nechť S |−R □ a vezměme nějaký rezoluční důkaz C0, C1, . . . , Cn = □. Předpoklá-
dejme pro spor, že S je splnitelná, tedy V |= S pro nějaké ohodnocení V. Indukcí podle i
dokážeme, že V |= Ci. Pro i = 0 to platí, neboť C0 ∈ S. Pro i > 0 máme dva případy:

• Ci ∈ S, v tom případě V |= Ci plyne z předpokladu, že V |= S,

• Ci je rezolventou Cj , Ck, kde j, k < i: z indukčního předpokladu víme V |= Cj a V |= Ck,
V |= Ci plyne z korektnosti rezolučního pravidla.

(Alternativně bychom mohli v důkazu postupovat indukcí podle hloubky rezolučního stromu.)

4.3.2 Strom dosazení

V důkazu úplnosti budeme potřebovat zkonstruovat rezoluční strom, jeho konstrukce je zalo-
žena na tzv. stromu dosazení. Dosazením literálu do formule myslíme zjednodušení formule
za předpokladu, že daný literál platí. Dosazení jsme už potkali v Sekci 2.3 při jednotkové pro-
pagaci: odstraníme klauzule obsahující tento literál, a z ostatních klauzulí odstraníme literál
opačný.
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Definice 4.3.2 (Dosazení literálu). Je-li S formule a ℓ literál, potom dosazením ℓ do S
myslíme formuli:

Sℓ = {C \ {ℓ̄} | ℓ /∈ C ∈ S}

Pozorování 4.3.3. Zde shrneme několik jednoduchých faktů o dosazení:

• Sℓ je výsledkem jednotkové propagace aplikované na S ∪ {{ℓ}}.

• Sℓ neobsahuje v žádné klauzuli literál ℓ ani ℓ̄ (vůbec tedy neobsahuje prvovýrok z ℓ)

• Pokud S neobsahovala literál ℓ ani ℓ̄, potom Sℓ = S.

• Pokud S obsahovala jednotkovou klauzuli {ℓ̄}, potom □ ∈ Sℓ, tedy Sℓ je sporná.

Klíčovou vlastnost dosazení vyjadřuje následující lemma:

Lemma 4.3.4. S je splnitelná, právě když je splnitelná Sℓ nebo S ℓ̄.

Důkaz. Mějme ohodnocení V |= S, to nemůže obsahovat ℓ i ℓ̄ (musí být konzistentní); bez
újmy na obecnosti předpokládejme, že ℓ̄ /∈ V, a ukažme, že V |= Sℓ. Vezměme libovolnou
klauzuli v Sℓ. Ta je tvaru C \ {ℓ̄} pro klauzuli C ∈ S (neobsahující literál ℓ). Víme, že V |= C,
protože ale V neobsahuje ℓ̄, muselo ohodnocení V splnit nějaký jiný literál C, takže platí i
V |= C \ {ℓ̄}.

Naopak, předpokládejme že existuje ohodnocení V splňující Sℓ (opět bez újmy na obec-
nosti). Protože se ℓ̄ (ani ℓ) nevyskytuje v Sℓ, platí také V \ {ℓ̄} |= Sℓ. Ohodnocení V ′ =
(V \ {ℓ̄}) ∪ {ℓ} potom splňuje každou klauzuli C ∈ S: pokud ℓ ∈ C, potom ℓ ∈ C ∩ V ′ a
C ∩ V ′ ̸= ∅, jinak C ∩ V ′ = (C \ {ℓ̄}) ∩ V ′ ̸= ∅ neboť V \ {ℓ̄} |= C \ {ℓ̄} ∈ Sℓ. Ověřili jsme, že
V ′ |= S, tedy S je splnitelná.

Zda je daná konečná formule splnitelná bychom tedy mohli zjišťovat rekurzivně (metodou
rozděl a panuj), dosazením obou možných literálů pro (nějakou, třeba první) výrokovou pro-
měnnou vyskytující se ve formuli, a rozvětvením výpočtu. V zásadě jde o podobný princip
jako v algoritmu DPLL (viz Sekce 2.4). Výslednému stromu říkáme strom dosazení.
Příklad 4.3.5. Ilustrujme si tento koncept na příkladě, zkonstruujme strom dosazení pro for-
muli S = {{p}, {¬q}, {¬p,¬q}}:

S

Sp = {{¬q}}

Spq = {□} Spq̄ = ∅

Sp̄ = {□, {¬q}}

⊗ V = {p, q̄}

⊗

Jakmile větev obsahuje prázdnou klauzuli □, je nesplnitelná a nemusíme v ní pokračovat.
V listech jsou buď nesplnitelné teorie, nebo prázdná teorie: v tom případě z posloupnosti
dosazení získáme splňující ohodnocení.

Z konstrukce je vidět, jak postupovat v případě konečné formule. Strom dosazení ale dává
smysl, a následující důsledek platí, i pro nekonečné formule:
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Důsledek 4.3.6. Formule S (nad spočetným jazykem) je nesplnitelná, právě když každá větev
stromu dosazení obsahuje prázdnou klauzuli □.

Důkaz. Pro konečnou formuli S plyne z diskuze výše, můžeme snadno dokázat indukcí podle
velikosti Var(S):

• Je-li | Var(S)| = 0, máme S = ∅ nebo S = {□}, v obou případech je strom dosazení
jednoprvkový a tvrzení platí.

• V indukčním kroku vybereme libovolný literál ℓ ∈ Var(S) a aplikujeme Lemma 4.3.4.

Je-li S nekonečná a splnitelná, potom má splňující ohodnocení, to se ‘shoduje’ s odpovídající
(nekonečnou) větví ve stromu dosazení. Je-li nekonečná a nesplnitelná, potom podle Věty o
kompaktnosti existuje konečná část S′ ⊆ S, která je také nesplnitelná. Po dosazení pro všechny
proměnné z Var(S′) bude v každé větvi □, to nastane po konečně mnoha krocích.

4.3.3 Úplnost rezoluce

Věta 4.3.7 (O úplnosti rezoluce). Je-li S nesplnitelná, je rezolucí zamítnutelná (tj. S |−R □).

Důkaz. Je-li S nekonečná, má z Věty o kompaktnosti konečnou nesplnitelnou část S′. Rezo-
luční zamítnutí S′ je také rezolučním zamítnutím S. Předpokládejme tedy, že S je konečná.

Důkaz provedeme indukcí podle počtu proměnných v S. Je-li | Var(S)| = 0, jediná možná
nesplnitelná formule bez proměnných je S = {□} a máme jednokrokový důkaz S |−R □. Jinak
vyberme p ∈ Var(S). Podle Lemmatu 4.3.4 jsou Sp i Sp̄ nesplnitelné. Mají o jednu proměnnou
méně, tedy podle indukčního předpokladu existují rezoluční stromy T pro Sp |−R □ a T ′ pro
Sp̄ |−R □.

Ukážeme, jak ze stromu T vyrobit rezoluční strom T̂ pro S |−R ¬p. Analogicky vyrobíme
T̂ ′ pro S |−R p a potom už snadno vyrobíme rezoluční strom pro S |−R □: ke kořeni □
připojíme kořeny stromů T̂ a T̂ ′ jako levého a pravého syna (tj. v posledním kroku rezolučního
důkazu získáme □ rezolucí z {¬p} a {p}).

Zbývá ukázat konstrukci stromu T̂ : množina vrcholů i uspořádání jsou stejné, změníme
jen některé klauzule ve vrcholech, a to přidáním literálu ¬p. Na každém listu stromu T je
nějaká klauzule C ∈ Sp, a buď je C ∈ S, nebo není, ale C ∪ {¬p} ∈ S. V prvním případě
necháme label stejný. Ve druhém případě přidáme do C a do všech klauzulí nad tímto listem
literál ¬p. V listech jsou nyní jen klauzule z S, v kořeni jsme □ změnili na ¬p. A každý vnitřní
vrchol je nadále rezolventou svých synů.

Cvičení 4.2. Důkaz Věty o úplnosti rezoluce dává návod, jak rekurzivně ‘vypěstovat’ rezoluční
zamítnutí. Rozmyslete si jak a proveďte na nějakém příkladě nesplnitelné formule.

4.4 LI-rezoluce a Horn-SAT
Začneme jiným pohledem na rezoluční důkaz, tzv. lineárním důkazem.

4.4.1 Lineární důkaz

Rezoluční důkaz můžeme kromě rezolučního stromu zorganizovat také ve formě tzv. lineárního
důkazu, kde v každém kroku máme jednu centrální klauzuli, kterou rezolvujeme s boční (‘side’)
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klauzulí, která je buď jednou z předchozích centrálních klauzulí, nebo axiomem z S. Rezolventa
je potom novou centrální klauzulí.4

Definice 4.4.1 (Lineární důkaz). Lineární důkaz (rezolucí) klauzule C z formule S je konečná
posloupnost [

C0
B0

]
,

[
C1
B1

]
, . . . ,

[
Cn
Bn

]
, Cn+1

kde Ci říkáme centrální klauzule, C0 je počáteční, Cn+1 = C je koncová, Bi jsou boční klauzule,
a platí:

• C0 ∈ S, pro i ≤ n je Ci+1 rezolventou Ci a Bi,

• B0 ∈ S, pro i ≤ n je Bi ∈ S nebo Bi = Cj pro nějaké j < i.

Lineární zamítnutí S je lineární důkaz □ z S. Lineární důkaz můžeme znázornit takto:

Cn+1Cn· · · · · · · · ·C2C1C0

B0 B1 Bn−1 Bn

Příklad 4.4.2. Zkonstruujme lineární zamítnutí formule S = {{p, q}, {p,¬q}, {¬p, q}, {¬p,¬q}}
(tj. lineární důkaz □ z S). Lineární důkaz může vypadat třeba takto:

□{¬p}{q}{p}{p, q}

{p,¬q} {¬p, q} {¬p,¬q} {p}

Poslední boční klauzule {p} (červeně) není z S, ale je rovna předchozí centrální klauzuli
(modře).
Cvičení 4.3. Převeďte lineární důkaz z Příkladu 4.4.2 na rezoluční strom.
Poznámka 4.4.3. C má lineární důkaz z S, právě když S |−R C.

Z lineárního důkazu snadno vyrobíme rezoluční strom. Indukcí podle délky důkazu: základ
indukce je zřejmý, a máme-li boční klauzuli Bi která není axiomem z S, potom Bi = Cj pro
nějaké j < i a stačí připojit místo Bi rezoluční strom pro důkaz Cj z S. Všimněte si, že z
toho plyne i korektnost lineární rezoluce.

Důkaz opačné implikace neuvedeme. Plyne z úplnosti lineární rezoluce, jejíž důkaz najdete
v učebnici A. Nerode, R. Shore: Logic for Applications [1].

4.4.2 LI-rezoluce

V obecném lineárním důkazu může být každá následující boční klauzule buď axiom z S nebo
jedna z předchozích centrálních klauzulí. Pokud zakážeme druhou možnost, budeme-li tedy
požadovat, aby všechny boční klauzule byly z S, dostaneme tzv. LI (linear-input) rezoluci:

4Zatímco konstrukci rezolučního stromu lze snadno popsat rekurzivně, lineární důkaz lépe odpovídá pro-
cedurálnímu výpočtu. Jde jen o to, jak najít vhodnou boční klauzuli.
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Definice 4.4.4 (LI-důkaz). LI-důkaz (rezolucí) klauzule C z formule S je lineární důkaz[
C0
B0

]
,

[
C1
B1

]
, . . . ,

[
Cn
Bn

]
, C

ve kterém je každá boční klauzule Bi axiom z S. Pokud LI-důkaz existuje, říkáme, že je C
LI-dokazatelná z S, a píšeme S |−LI C. Pokud S |−LI □, je S LI-zamítnutelná.

Poznámka 4.4.5. LI-důkaz přímo dává rezoluční strom (všechny listy jsou axiomy), a to ve spe-
ciálním tvaru, kterému bychom mohli říkat ‘chlupatá cesta’. A naopak, z rezolučního stromu
ve tvaru chlupaté cesty okamžitě získáme LI-důkaz: vrcholy na cestě jsou centrální klauzule,
chlupy jsou boční klauzule.

Zatímco lineární rezoluce5 je jen jiný pohled na obecný rezoluční důkaz, LI-rezoluce při-
náší zásadní omezení: ztrácíme úplnost (ne každá nesplnitelná formule má LI-zamítnutí). Na
druhou stranu, LI-důkazy je jednodušší konstruovat.6

4.4.3 Úplnost LI-rezoluce pro Hornovy formule

Jak si nyní ukážeme, LI-rezoluce je úplná pro Hornovy formule. A jak uvidíme v následující
sekci, je základem interpreterů jazyka Prolog, který s Hornovými formulemi pracuje. Nej-
prve připomeňme terminologii týkající se hornovskosti a také programů, a to v množinové
reprezentaci:

• Hornova klauzule je klauzule obsahující nejvýše jeden pozitivní literál.

• Hornova formule je (konečná, nebo i nekonečná) množina Hornových klauzulí.

• Fakt je pozitivní jednotková (Hornova) klauzule, tj. {p}, kde p je výroková proměnná.

• Pravidlo je (Hornova) klauzule s právě jedním pozitivním a alespoň jedním negativním
literálem.

• Pravidlům a faktům říkáme programové klauzule.

• Cíl je neprázdná (Hornova) klauzule bez pozitivního literálu.7

Bude se nám hodit následující jednoduché pozorování:

Pozorování 4.4.6. Je-li Hornova formule S nesplnitelná a □ /∈ S, potom obsahuje fakt i cíl.

Důkaz. Neobsahuje-li fakt, můžeme ohodnotit všechny proměnné 0; neobsahuje-li cíl, ohod-
notíme 1.

Nyní vyslovíme a dokážeme Větu o úplnosti LI-rezoluce pro Hornovské formule. Důkaz
dává také návod, jak LI-zamítnutí zkonstruovat, a to na základě průběhu jednotkové propa-
gace. Tento postup ilustrujeme na příkladu níže, který můžete sledovat souběžně s čtením
důkazu.

5Tj. dokazovací systém založený na hledání lineárních důkazů resp. zamítnutí.
6V každém kroku máme k volbě jen klauzule z S, nikoliv předchozí dokázané centrální klauzule.
7Připomeňme, že dokazujeme sporem, tedy cíl je negací toho, co bychom chtěli dokázat.
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Věta 4.4.7 (O úplnosti LI-rezoluce pro Hornovy formule). Je-li Hornova formule T splni-
telná, a T ∪ {G} je nesplnitelná pro cíl G, potom T ∪ {G} |−LI □, a to LI-zamítnutím, které
začíná cílem G.

Důkaz. Podobně jako ve Větě o úplnosti rezoluce můžeme díky Větě o kompaktnosti před-
pokládat, že T je konečná. Důkaz (konstrukci LI-zamítnutí) provedeme indukcí podle počtu
proměnných v T .

Z Pozorování 4.4.6 plyne, že T obsahuje fakt {p} pro nějakou výrokovou proměnnou p.
Protože T ∪ {G} je nesplnitelná, je podle Lemmatu 4.3.4 nesplnitelná také (T ∪ {G})p =
T p ∪ {Gp}, kde Gp = G \ {¬p}.

Pokud Gp = □, potom G = {¬p}, □ je rezolventa G a {p} ∈ T , a máme jednokrokové
LI-zamítnutí T ∪ {G} (to je báze indukce).

Jinak využijeme indukčního předpokladu. Všimněte si, že formule T p je splnitelná (stejným
ohodnocením jako T , neboť to musí obsahovat p kvůli faktu {p}, tedy neobsahuje ¬p) a
má méně proměnných než T . Tedy podle indukčního předpokladu existuje LI-odvození □ z
T p ∪ {Gp} začínající Gp = G \ {¬p}.

Hledané LI-zamítnutí T ∪{G} začínající G zkonstruujeme (podobně jako v důkazu Věty o
úplnosti rezoluce) přidáním literálu ¬p do všech listů, které už nejsou v T ∪{G} (tedy vznikly
odebráním ¬p), a do všech vrcholů nad nimi. Tím získáme T ∪{G} |−LI ¬p, na závěr přidáme
boční klauzuli {p} a odvodíme □.

Příklad 4.4.8. Mějme (splnitelnou, hornovskou) teorii T , kterou zapíšeme v množinové repre-
zentaci jako formuli T = {{p,¬r,¬s}, {¬q, r}, {q,¬s}, {s}}. Představte si, že chceme dokázat,
že v teorii T platí p ∧ q.8 V rezoluční metodě uvážíme cíl G = {¬p,¬q} a ukážeme, že
T ∪ {G} |−LI □.

Dle návodu z důkazu najdeme ve formuli T fakt, a provedeme pomocí něho jednotkovou
propagaci v T i v cíli G. Postup opakujeme, dokud není formule prázdná:

• T = {{p,¬r,¬s}, {¬q, r}, {q,¬s}, {s}}, G = {¬p,¬q}

• T s = {{p,¬r}, {¬q, r}, {q}}, Gs = {¬p,¬q}

• T sq = {{p,¬r}, {r}}, Gsq = {¬p}

• T sqr = {{p}}, Gsqr = {¬p}

• T sqrp = ∅, Gsqrp = □

Nyní zpětným postupem sestrojíme rezoluční zamítnutí:

• T sqrp, Gsqrp |−LI □:

□

• T sqr, Gsqr |−LI □:
8Tj. v Prologu bychom položili ‘dotaz’ (‘query’): ?-p,q.
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□{¬p}

{p}

• T sq, Gsq |−LI □:

□{¬r}{¬p}

{p,¬r} {r}

• T s, Gs |−LI □:

□{¬q}{¬q,¬r}{¬p,¬q}

{p,¬r} {¬q, r} {q}

• T,G |−LI □

□{¬s}{¬q,¬s}{¬q,¬r,¬s}{¬p,¬q}

{p,¬r,¬s} {¬q, r} {q,¬s} {s}

4.4.4 Program v Prologu

Ačkoliv skutečná síla Prologu vychází z tzv. unifikace a z rezoluce v predikátové logice, uká-
žeme si jak Prolog využívá rezoluční metodu na příkladě výrokového programu. Adaptace na
predikáty bude později přímočará.

Program v Prologu je Hornova formule obsahující pouze programové klauzule, tj. fakta
nebo pravidla. Dotaz je konjunkce faktů, negace dotazu je cíl.
Příklad 4.4.9. Jako příklad programu v Prologu využijeme teorii (formuli) T a dotaz p ∧ q
z Příkladu 4.4.8. Například klauzuli {p,¬r,¬s}, která je ekvivalentní r ∧ s → p, zapíšeme v
Prologu jako: p:-r,s.

p:-r,s.
r:-q.
q:-s.
s.

A programu položíme dotaz:

?-p,q.

Důsledek 4.4.10. Mějme program P a dotaz Q = p1∧· · ·∧pn, a označme G = {¬p1, . . . ,¬pn}
(tj. G ∼ ¬Q). Následující podmínky jsou ekvivalentní:
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• P |= Q,

• P ∪ {G} je nesplnitelná,

• P ∪ {G} |−LI □, a existuje LI-zamítnutí začínající cílem G.

Důkaz. Ekvivalence prvních dvou podmínek je důkaz sporem, ekvivalence druhé a třetí je Věta
o úplnosti LI-rezoluce pro Hornovy formule. (Všimněte si, že Program je vždy splnitelný.)
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Část II

Predikátová logika
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Kapitola 5

Syntaxe a sémantika predikátové
logiky

Kurzy logiky vesměs začínají výrokovou logikou, která je pro svou jednoduchost vhodnější k
prvnímu seznámení. Plná síla logiky v informatice se ale projeví teprve s použitím logiky pre-
dikátové. Začněme neformálním úvodem, ve kterém ilustrujeme základní aspekty predikátové
logiky. K formálnímu výkladu se vrátíme v následujících sekcích.

5.1 Úvod
Připomeňme, že ve výrokové logice jsme popisovali svět pomocí výroků složených z prvový-
roků—odpovědí na zjišťovací (ano/ne) otázky o světě. V predikátové logice (prvního řádu)1

jsou základním stavebním kamenem proměnné reprezentující individua—nedělitelné objekty
z nějaké množiny: např. přirozená čísla, vrcholy grafu, nebo stavy mikroprocesoru.

Tato individua mohou mít určité vlastnosti a vzájemné vztahy, kterým říkáme predikáty,
např. ‘Leaf(x)’ nebo ‘Edge(x, y)’ mluvíme-li o grafu, nebo ‘x ≤ y’ v přirozených číslech.
Kromě toho mohou individua vstupovat do funkcí, např. ‘lowest_common_ancestor(x, y)’
v zakořeněném stromu, ‘succ(x)’ nebo ‘x + y’ v přirozených číslech, a být konstantami se
speciálním významem, např. ‘root’ v zakořeněném stromu, ‘0’ v přirozených číslech.

Atomické formule popisují predikát (včetně predikátu rovnosti =) o proměnných nebo o
termech (‘výrazech’ složených2 z funkcí popř. konstant). A složitější tvrzení (formule) budu-
jeme z atomických formulí pomocí logických spojek, a dvou kvantifikátorů:

• ∀x “pro všechna individua (reprezentovaná proměnnou x),” a

• ∃x “existuje individuum (reprezentované proměnnou x)”.

Uveďme příklad: tvrzení “Každý, kdo má dítě, je rodič.” bychom mohli formalizovat následující
formulí:

(∀x)((∃y)child_of(y, x) → is_parent(x))
1V logice druhého řádu máme také proměnné reprezentující množiny individuí nebo i množiny n-tic, tj.

relace na množině individuí.
2Podobně jako vytváříme aritmetické výrazy.
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kde child_of(y, x) je binární predikát vyjadřující, že individuum reprezentované proměnnou
y je dítětem individua reprezentovaného proměnnou x, a is_parent(x) je unární predikát (tj.
‘vlastnost’) vyjadřující, že individuum reprezentované x je rodič.

Jak je to s platností této formule? To záleží na konkrétním modelu světa/systému, který
nás zajímá. Model je (neprázdná) množina objektů spolu s unární relací (tj. podmnožinou)
interpretující unární relační symbol is_parent a binární relací interpretující binární relační
symbol child_of. Tyto relace mohou být obecně jakékoliv a snadno sestrojíme model, kde
formule neplatí.3 Pokud ale modelujeme například všechny lidi na světě, a relace mají svůj
přirozený význam, potom formule bude platit.4

Podívejme se na ještě jeden příklad, tentokrát i s funkčními symboly a s konstantním
symbolem: “Je-li x1 ≤ y1 a x2 ≤ y2, potom (y1 ·y2)− (x1 ·x2) je nezáporné.” Výsledná formule
by mohla vypadat takto:

φ = (x1 ≤ y1) ∧ (x2 ≤ y2) → ((y1 · y2) + (−(x1 · x2)) ≥ 0)

Vidíme dva binární relační symboly (≤,≥), binární funkční symbol +, unární funkční symbol
−, a konstantní symbol 0.

Příkladem modelu, ve kterém formule platí, je množina přirozených čísel N s binárními re-
lacemi ≤N,≥N, binárními funkcemi +N, ·N, unární funkcí −N, a konstantou 0N = 0. Vezmeme-li
ale podobně množinu celých čísel, formule už platit nebude.
Poznámka 5.1.1. Mohli bychom chápat symbol − jako binární operaci, obvykle se ale zavádí
jako unární. Pro konstantní symbol 0 používáme (jak je zvykem) stejný symbol, jako pro
přirozené číslo 0. Ale pozor, v našem modelu může být tento konstantní symbol interpretován
jako jiné číslo, nebo náš model vůbec nemusí sestávat z čísel!

Ve formuli nejsou žádné kvantifikátory (takovým formulím říkáme otevřené), proměnné
x1, x2, y1, y2 jsou volné proměnné této formule (nejsou vázané žádným kvantifikátorem), pí-
šeme φ(x1, x2, y1, y2). Sémantiku této formule chápeme stejně, jako formule

(∀x1)(∀x2)(∀y1)(∀y2)φ(x1, x2, y1, y2)

Výraz (y1 · y2) + (−(x1 ·x2)) je příkladem termu, výrazy (x1 ≤ y1), (x2 ≤ y2) a ((y1 · y2) +
(−(x1 · x2)) ≥ 0) jsou atomické (pod)formule. V čem spočívá rozdíl? Máme-li konkrétní mo-
del, a konkrétní ohodnocení proměnných individui (prvky) tohoto modelu, potom atomickým
formulím lze přiřadit pravdivostní hodnotu. Lze je tedy kombinovat s logickými spojkami do
složitějších ‘logických výrazů’, tj. formulí. Na druhou stranu ‘výsledkem’ termu (při daném
ohodnocení) je nějaké konkrétní individuum z modelu.

Upozorníme ještě na to, že v zápisu formule φ jsme použili infixový zápis pro funkční
symboly +, · a pro relace ≤,≥, a podobné konvence o uzávorkování jako ve výrokové logice.
Jinak bychom formuli φ zapsali takto:

((≤ (x1, y1)∧ ≤ (x2, y2))→ ≤ (+(·(y1, y2),−(·(x1, x2))), 0))

Cvičení 5.1. Najděte vhodnou definici pojmu stromu formule (zobecňující strom výroku z
výrokové logiky) a nakreslete strom formule (∀x1)(∀x2)(∀y1)(∀y2)φ(x1, x2, y1, y2).

3Vezměme například jednoprvkovou množinu A = {a}, a relace child_ofA = {(a, a)}, parentA = ∅, tedy
jediný objekt je svým vlastním dítětem, ale není rodičem.

4Při formalizaci musíme být velmi opatrní, abychom nepřidali dodatečné předpoklady, které v modelovaném
systému nemusí platit. Zde se například schovává předpoklad, že má-li někdo dítě, musí být jeho rodičem.
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Nyní začneme tím, že formalizujeme tento koncept “modelu”, tzv. strukturu. Zbytek ka-
pitoly sleduje osnovu výkladu o výrokové logice: představíme syntaxi, následně sémantiku, a
nakonec pokročilejší vlastnosti formulí, teorií, a struktur. Na závěr si ukážeme jednu jednodu-
chou, ale velmi užitečnou aplikaci predikátové logiky, takzvanou definovatelnost podmnožin a
relací, která je základem relačních databází (např. SQL), a ještě jednou se podíváme na vztah
výrokové a predikátové logiky.

5.2 Struktury
Nejprve specifikujeme, jakého typu bude daná struktura, tj. jaké bude mít relace, funkce
(jakých arit) a konstanty, a jaké symboly pro ně budeme používat. Této formální specifikaci
se někdy říká typ, my budeme říkat signatura.5 Připomeňme, že konstanty můžeme chápat
jako funkce arity 0 (tj. funkce bez vstupů).

Definice 5.2.1 (Signatura). Signatura je dvojice ⟨R,F⟩, kde R,F jsou disjunktní množiny
symbolů (relační a funkční, ty zahrnují konstantní ) spolu s danými aritami (tj. danými funkcí
ar : R ∪ F → N) a neobsahující symbol ‘=’ (ten je rezervovaný pro rovnost).

Často ale budeme signaturu zapisovat jen výčtem symbolů, bude-li jejich arita a to, zda
jsou relační nebo funkční, zřejmé z kontextu. Uveďme několik příkladů signatur:

• ⟨E⟩ signatura grafů: E je binární relační symbol (struktury jsou uspořádané grafy),

• ⟨≤⟩ signatura částečných uspořádání : stejná jako signatura grafů, jen jiný symbol,6

• ⟨+,−, 0⟩ signatura grup: + je binární funkční, − unární funkční, 0 konstantní symbol

• ⟨+,−, 0, ·, 1⟩ signatura těles: · je binární funkční, 1 konstantní symbol

• ⟨+,−, 0, ·, 1,≤⟩ signatura uspořádaných těles: ≤ je binární relační symbol,

• ⟨−,∧,∨,⊥,⊤⟩ signatura Booleových algeber : ∧,∨ jsou binární funkční symboly, ⊥,⊤
jsou konstantní symboly,

• ⟨S,+, ·, 0,≤⟩ signatura aritmetiky: S je unární funkční symbol (‘successor’).

Kromě běžných symbolů relací, funkcí a konstant (známých např. z aritmetiky) typicky po-
užíváme pro relační symboly P,Q,R, . . . , pro funkční symboly f, g, h, . . . , a pro konstantní
symboly c, d, a, b, . . .

Strukturu dané signatury získáme tak, že na nějaké neprázdné doméně zvolíme realizace
(také říkáme interpretace) všech relačních a funkčních symbolů (a konstant), tj. konkrétní
relace resp. funkce příslušných arit. (V případě konstantního symbolu je jeho realizací zvolený
prvek z domény.)7

5Signaturu si můžete představovat analogicky definici třídy v OOP, struktury potom odpovídají objektům
této třídy (v ‘programovacím jazyce’ teorie množin).

6Ne každá struktura v této signatuře je částečné uspořádání, k tomu ještě potřebujeme, aby splňovala
příslušné axiomy.

7Na tom, jaké konkrétní symboly v signatuře použijeme, nezáleží, můžeme je interpretovat libovolně. Na-
příklad to, že máme symbol + neznamená, že by jeho interpretace musela mít cokoliv společného se sčítáním
(tedy kromě toho, že to bude také binární funkce).
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Příklad 5.2.2. Formální definice struktury je uvedena níže, nejprve si ukážeme několik pří-
kladů:

• Struktura v prázdné signatuře ⟨ ⟩ je libovolná neprázdná množina.8 (Nemusí být ko-
nečná, dokonce ani spočetná!)

• Struktura v signatuře grafů je G = ⟨V,E⟩, kde V ̸= ∅ a E ⊆ V 2, říkáme jí orientovaný
graf.

– Je-li E ireflexivní a symetrická, jde o jednoduchý graf (tj. neorientovaný, bez smy-
ček).

– Je-li E reflexivní, tranzitivní, a antisymetrická, jde o částečné uspořádání.
– Je-li E reflexivní, tranzitivní, a symetrická, mluvíme o ekvivalenci.

• Struktury v signatuře částečných uspořádání jsou tytéž, jako v signatuře grafů, signa-
tury se liší jen použitým symbolem. (Tedy ne každá struktura v signatuře částečných
uspořádání je částečné uspořádání!)

• Struktury v signatuře grup jsou například následující grupy:

– Zn = ⟨Zn,+,−, 0⟩, aditivní grupa celých čísel modulo n (operace jsou modulo n).9

– Sn = ⟨Symn, ◦,−1, id⟩ je symetrická grupa (grupa všech permutací) na n prvcích.
– Q∗ = ⟨Q \ {0}, ·,−1, 1⟩ je multiplikativní grupa (nenulových) racionálních čísel.

Všimněte si, že interpretací symbolu 0 je číslo 1.

Všechny tyto struktury splňují axiomy teorie grup, snadno ale najdeme jiné struktury,
které tyto axiomy nesplňují, a nejsou tedy grupami. Například změníme-li ve struktuře
Zn interpretaci symbolu + na funkci · (modulo n).

• Struktury Q = ⟨Q,+,−, 0, ·, 1,≤⟩ a Z = ⟨Z,+,−, 0, ·, 1,≤⟩, se standardními operacemi
a uspořádáním, jsou v signatuře uspořádaných těles (ale jen první z nich je uspořádaným
tělesem).

• P(X) = ⟨P(X),̄ ,∩,∪, ∅, X⟩, tzv. potenční algebra nad množinou X, je to struktura v
signatuře Booleových algeber. (Booleova algebra je to pokud X ̸= ∅.)

• N = ⟨N, S,+, ·, 0,≤⟩, kde S(x) = x + 1, a ostatní symboly jsou interpretovány stan-
dardně, je standardní model aritmetiky.

Definice 5.2.3 (Struktura). Struktura v signatuře ⟨R,F⟩ je trojice A = ⟨A,RA,FA⟩, kde

• A je neprázdná množina, říkáme jí doména (také univerzum),

• RA = {RA | R ∈ R} kde RA ⊆ Aar(R) je interpretace relačního symbolu R,
8Jak uvidíme v definici níže, formálně vzato je to trojice ⟨A, ∅, ∅⟩, ale tento rozdíl budeme zanedbávat.
9Zde Zn znamená strukturu, zatímco Zn = {0, 1, . . . , n − 1} jen její doménu. Často se ale toto nerozlišuje

a symbol Zn se používá jak pro celou strukturu, tak jen její doménu. Podobně +, −, 0 jsou jak symboly, tak i
jejich interpretace. To je běžně používané značení, je klíčové být si vždy vědomi toho, v jakém významu daný
symbol na daném místě používáme.
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• FA = {fA | f ∈ F} kde fA : Aar(f) → A je interpretace funkčního symbolu f (speciálně
pro konstantní symbol c ∈ F máme cA ∈ A).

Cvičení 5.2. Uvažme signaturu n konstant ⟨c1, c2, . . . , cn⟩. Jak vypadají struktury v této
signatuře? Popište např. všechny nejvýše pětiprvkové struktury v signatuře tří konstant. (In-
terpretace konstant nemusí být různé!) A jak je tomu v případě signatury spočetně mnoha
konstant ⟨c1, c2, . . . ⟩ = ⟨ci | i ∈ N⟩?

5.3 Syntaxe
V této sekci představíme syntaxi predikátové logiky (prvního řádu). Srovnejte co má syntaxe
společného, a jak se liší, od syntaxe výrokové logiky.

5.3.1 Jazyk

Při specifikaci jazyka nejprve stanovíme, jakého typu jsou struktury, které chceme popisovat,
tj. určíme signaturu. Dále přidáme informaci, zda je jazyk s rovností nebo ne, tj. zda ve
formulích můžeme také používat symbol ‘=’ vyjadřující rovnost (identitu) prvků v doméně
struktur.10 Do jazyka patří následující:

• spočetně mnoho proměnných x0, x1, x2, . . . (ale píšeme také x, y, z, . . . ; množinu všech
proměnných označíme Var),

• relační, funkční a konstantní symboly ze signatury, a symbol = jde-li o jazyk s rovností,

• univerzální a existenční kvantifikátory (∀x), (∃x) pro každou proměnnou x ∈ Var,11

• symboly pro logické spojky ¬,∧,∨,→,↔ a závorky (, ).

Podobně jako symbol □ zastupující libovolnou binární logickou spojku budeme někdy psát
(Qx) pro kvantifikátor (∀x) nebo (∃x).

Symbolům ze signatury, a =, říkáme mimologické, ostatní jsou logické. Jazyk musí obsa-
hovat alespoň jeden relační symbol (buď rovnost, nebo v signatuře).12

Jazyk tedy specifikujeme pomocí signatury a informace ‘s rovností’ (popř. ‘bez rovnosti’).
Například:

• Jazyk L = ⟨⟩ s rovností je jazyk čisté rovnosti,

• jazyk L = ⟨c0, c1, c2, . . . ⟩ s rovností je jazyk spočetně mnoha konstant,

• jazyk uspořádání je ⟨≤⟩ s rovností,

• jazyk teorie grafů je ⟨E⟩ s rovností,

• jazyky teorie grup, teorie těles, teorie uspořádaných těles, Booleových algeber, aritmetiky
jsou jazyky s rovností odpovídající signaturám z Příkladu 5.2.2

10Ve většině aplikací budeme používat jazyky s rovností. V některých speciálních oblastech se ale hodí
rovnost nemít. Například pokud se zabýváme velmi rychlými výpočetními modely: zjistit, které proměnné se
sobě rovnají, vyžaduje najít tranzitivní uzávěr rovností daných formulí, což je relativně výpočetně náročný
problém.

11Kvantifikátor chápeme jako jediný symbol, tedy (∀x) neobsahuje proměnnou x. Někdy se také používají
symboly ∀x, ∃x.

12Jinak bychom v jazyce nemohli vybudovat žádná ‘tvrzení’ (formule), viz níže.
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Obrázek 5.1: Strom termu

5.3.2 Termy

Termy jsou syntaktické ‘výrazy’ složené z proměnných, konstantních symbolů a funkčních
symbolů.

Definice 5.3.1 (Termy). Termy jazyka L jsou konečné nápisy definované induktivně:

• každá proměnná a každý konstantní symbol z L je term,

• je-li f funkční symbol z L arity n a jsou-li t1, . . . , tn termy, potom nápis f(t1, t2, . . . , tn)
je také term.

Množinu všech termů jazyka L označíme TermL.

Při zápisu termů obsahujících binární funkční symbol můžeme používat infixový zápis,
např. (t1 +t2) znamená +(t1, t2). Závorky někdy vynecháváme, je-li struktura termu (‘priorita
operátorů’) zřejmá.

Podterm je podřetězec termu, který je sám termem (je to tedy buď celý term, nebo se
vyskytl jako nějaké ti při konstrukci termu).

Pokud term neobsahuje proměnnou, říkáme mu konstantní (ground), například ((S(0) +
S(0)) · S(S(0))) je konstantní term v jazyce aritmetiky.13

Strom termu t, označme Tree(t), je definován podobně jako strom výroku, v listech jsou
proměnné nebo konstantní symboly, ve vnitřních vrcholech jsou funkční symboly, jejichž arita
je rovna počtu synů.
Příklad 5.3.2. Nakresleme stromy termů (a) (S(0)+x)·y v jazyce aritmetiky, (b) −(x∧y)∨⊥ v
jazyce Booleových algeber. Zde ∧,∨ nejsou logické spojky z jazyka, ale mimologické symboly
ze signatury Booleových algeber (byť používáme stejné symboly)! Termy v tomto jazyce
můžeme chápat jako výrokové formule (s konstantami pro spor a tautologii), viz Sekce 5.9.
Na obrázku 5.1 jsou nakresleny stromy těchto termů.

Není těžké uhádnout, jaká bude sémantika termů. Máme-li konkrétní strukturu, odpovídá
term funkci na její doméně: vstupem je ohodnocení proměnných prvky domény, konstantní a
funkční symboly jsou nahrazeny jejich interpretacemi, a výstupem je hodnota (prvek domény)
v kořeni. Formálněji ale až v Sekci 5.4.

13Pozor, termy jsou čistě syntaktické, můžeme používat jen symboly z jazyka, nikoliv prvky struktury, tedy
např. (1 + 1) · 2 není term v jazyce aritmetiky! (Mohli bychom ale definovat nové konstantní symboly 1, 2 jako
zkratky za S(0) a S(S(0)) a rozšířit tak náš jazyk, viz Sekce 5.7.1.)
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5.3.3 Formule

Termům nelze v žádném smyslu přiřadit pravdivostní hodnotu, k tomu potřebujeme predikát
(relační symbol nebo rovnost), který mluví o ‘vztahu’ termů: v konkrétní struktuře při kon-
krétním ohodnocení proměnných prvky z domény je tento vztah buď splněn, nebo nesplněn.

Nejjednoduššími formulemi jsou atomické formule. Z nich potom vybudujeme pomocí
logických spojek a kvantifikátorů všechny formule.

Definice 5.3.3 (Atomická formule). Atomická formule jazyka L je nápis R(t1, . . . , tn), kde
R je n-ární relační symbol z L (včetně = jde-li o jazyk s rovností) a ti ∈ TermL.

U binárních relačních symbolů často používáme infixový zápis, např. atomickou formuli
≤ (x, y) zapíšeme jako x ≤ y, a (je-li jazyk s rovností) místo = (t1, t2) budeme psát t1 = t2.
Příklad 5.3.4. Uveďme několik příkladů atomických formulí:

• R(f(f(x)), c, f(d)) kde R je ternární relační, f unární funkční, c, d konstantní symboly,

• (x · x) + (y · y) ≤ (x+ y) · (x+ y) v jazyce uspořádaných těles,

• x · y ≤ (S(0) + x) · y v jazyce aritmetiky,

• −(x ∧ y) ∨ ⊥ = ⊥ v jazyce Booleových algeber

Definice 5.3.5 (Formule). Formule jazyka L jsou konečné nápisy definované induktivně:

• každá atomická formule jazyka L je formule,

• je-li φ formule, potom (¬φ) je také formule,

• jsou-li φ,ψ formule, potom (φ ∧ ψ), (φ ∨ ψ), (φ→ ψ), a (φ↔ ψ) jsou také formule,

• je-li φ formule a x proměnná, potom ((∀x)φ) a ((∃x)φ) jsou také formule.

Podformule je podřetězec, který je sám o sobě formulí. Strom formule, označíme Tree(φ),
je definován takto: strom atomické formule φ = R(t1, . . . , tn) má v kořeni relační symbol R,
a k němu jsou připojeny stromy Tree(ti). Není-li φ atomická, strom zkonstruujeme obdobně
jako strom výroku.14 Při zápisu formulí používáme obdobné konvence jako ve výrokové logice,
přičemž kvantifikátory mají stejnou prioritu jako ¬ (vyšší než ostatní logické spojky). Místo
((∀x)φ) tedy můžeme psát (∀x)φ.15

Příklad 5.3.6. Příkladem formule v jazyce aritmetiky je (∀x)(x ·y ≤ (S(0) +x) ·y). Její strom
je znázorněn na Obrázku 5.2.

Volné a vázané proměnné

Význam formule16 může, nebo nemusí záviset na proměnných, které se v ní vyskytují: srovnejte
x ≤ 0 a (∃x)(x ≤ 0) (a co teprve x ≤ 0 ∨ (∃x)(x ≤ 0)). Nyní tento koncept upřesníme a
zavedeme potřebnou terminologii.

14Kvantifikátory mají, podobně jako negace, jediného syna.
15Někdy se také nepíší závorky v kvantifikátorech, tj. jen ∀xφ, my je ale pro přehlednost psát budeme.
16Přesněji, její pravdivostní hodnota, kterou formálně definujeme níže v Sekci 5.4.3.
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Obrázek 5.2: Strom formule (∀x)(x · y ≤ (S(0) + x) · y)

Výskytem proměnné x ve formuli φ myslíme list Tree(φ) označený x. 17 Výskyt je vázaný,
je-li součástí nějaké podformule (podstromu) začínající (Qx). Není-li výskyt vázaný, je volný.
Proměnná je volná ve φ, pokud má ve φ volný výskyt, a vázaná ve φ, pokud má ve φ vázaný
výskyt. Zápis φ(x1, . . . , xn) znamená, že x1, . . . , xn jsou všechny volné proměnné ve formuli
φ.
Příklad 5.3.7. Proměnná může být volná i vázaná, např. ve formuli φ = (∀x)(∃y)(x ≤ y)∨x ≤
z je první výskyt x vázaný a druhý výskyt volný. (Nakreslete si strom formule!) Proměnná y
je vázaná (její jediný výskyt je vázaný) a z je volná. Můžeme tedy psát φ(x, z).
Poznámka 5.3.8. Jak uvidíme níže, význam (pravdivostní hodnota) formule závisí pouze na
ohodnocení volných proměnných. Proměnné v kvantifikátorech, spolu s příslušnými vázanými
výskyty, můžeme přejmenovat (musíme ale být opatrní, viz níže).

Otevřené a uzavřené formule

Často budeme mluvit o následujících dvou důležitých druzích formulí:

Definice 5.3.9 (Otevřená a uzavřená formule). Formule je otevřená, neobsahuje-li žádný
kvantifikátor, a uzavřená (neboli sentence), pokud nemá žádnou volnou proměnnou

Příklad 5.3.10. Uveďme několik příkladů:

• formule x+ y ≤ 0 je otevřená,

• formule (∀x)(∀y)(x+ y ≤ 0) je uzavřená (tedy je to sentence),

• formule (∀x)(x+ y ≤ 0) není ani otevřená, ani uzavřená,

• formule (0 + 1 = 1) ∧ (1 + 1 = 0) je otevřená i uzavřená.
17Proměnná x se tedy nevyskytuje v symbolu pro kvantifikátor (Qx).
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Každá atomická formule je otevřená, otevřené formule jsou jen kombinace atomických
pomocí logických spojek. Formule může být otevřená i uzavřená zároveň, v tom případě
jsou všechny její termy konstantní. Formule je uzavřená, právě když nemá žádnou volnou
proměnnou.18

Poznámka 5.3.11. Jak uvidíme později, pravdivostní hodnota formule závisí jen na ohodnocení
jejích volných proměnných. Speciálně, sentence má v dané struktuře pravdivostní hodnotu 0
nebo 1 (nezávisle na ohodnocení proměnných). To je důvod, proč hrají sentence v logice
důležitou roli.

5.3.4 Instance a varianty

Jak jsme viděli, jedna proměnná se může ve formuli vyskytovat v různých ‘rolích’. Jde o velmi
podobný princip jako v programování, kde jeden identifikátor může v programu znamenat
různé proměnné (buď lokální, nebo globální). Pod pojmem instance si představte ‘dosazení’
(termu) do (globální) proměnné (nebo lépe ‘nahrazení’ proměnné nějakým výrazem, který
ji počítá), a pod pojmem varianta ‘přejmenování’ (lokální) proměnné. Vezměme například
formuli φ(x):

P (x) ∧ (∀x)(Q(x) ∧ (∃x)R(x))

První výskyt proměnné x je volný, druhý je vázaný kvantifikátorem (∀x), a třetí je vázaný
(∃x). Pokud ‘dosadíme’ za proměnnou x term t = 1+1, dostáváme instanci formule φ, kterou
označíme φ(x/t):

P (1 + 1) ∧ (∀x)(Q(x) ∧ (∃x)R(x))

Můžeme také přejmenovat kvantifikátory ve formuli, tak získáme variantu formule φ, např.:

P (x) ∧ (∀y)(Q(y) ∧ (∃z)R(z))

Jak víme, kdy a jak toto můžeme provést, abychom zachovali význam, tj. aby instance byla
důsledkem φ, a varianta byla s φ ekvivalentní ? To nyní chceme zformalizovat.

Instance

Pokud do formule φ dosadíme za volnou proměnnou x term t, požadujeme, aby výsledná
formule ‘říkala’ o t ‘totéž’, co φ o x.
Příklad 5.3.12. Například formule φ(x) = (∃y)(x+ y = 1) říká o x, že ‘existuje 1 − x’. Term
t = 1 lze dosadit, neboť φ(x/t) = (∃y)(1 + y = 1) říká ‘existuje 1-1’. Ale term t = y dosadit
nelze, (∃y)(y + y = 1) říká ‘1 je dělitelné 2’. Problém spočívá v tom, že term t = y obsahuje
proměnnou y, jež bude nově vázaná kvantifikátorem (∃y). Takové situaci se musíme vyhnout.

Definice 5.3.13 (Substituovatelnost a instance). Term t je substituovatelný za proměnnou x
ve formuli φ, pokud po simultánním nahrazení všech volných výskytů x ve φ za t nevznikne
ve φ žádný vázaný výskyt proměnné z t. V tom případě říkáme vzniklé formuli instance φ
vzniklá substitucí t za x, a označujeme ji φ(x/t).

Poznámka 5.3.14. Všimněte si, že term t není substituovatelný za x do φ, právě když x má
volný výskyt v nějaké podformuli φ tvaru (Qy)ψ a proměnná y se vyskytuje v t. Speciálně,
konstantní termy jsou vždy substituovatelné.

18Neplatí ale, že formule je otevřená, pokud nemá žádnou vázanou proměnnou, viz formule (∀x)0 = 1.
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Varianty

Potřebujeme-li substituovat term t do formule φ, můžeme to udělat vždy, pokud nejprve
přejmenujeme všechny kvantifikované proměnné na zcela nové (tj. takové, které se nevyskytují
ani ve φ ani v t), a potom substituujeme t do takto vzniklé varianty formule φ.

Definice 5.3.15 (Varianta). Má-li formule φ podformuli tvaru (Qx)ψ a je-li y proměnná,
taková, že

• y je substituovatelná za x do ψ a

• y nemá volný výskyt v ψ,

potom nahrazením podformule (Qx)ψ formulí (Qy)ψ(x/y) vznikne varianta formule φ v pod-
formuli (Qx)ψ. Varianta říkáme i výsledku postupné variace ve více podformulích.

Všimněte si, že požadavek na proměnnou y z definice varianty je vždy splněn, pokud se y
nevyskytuje ve formuli φ.
Příklad 5.3.16. Mějme formuli φ = (∃x)(∀y)(x ≤ y). Potom:

• (∃y)(∀y)(y ≤ y) není varianta φ, neboť y není substituovatelná za x do ψ = (∀y)(x ≤ y),

• (∃x)(∀x)(x ≤ x) není varianta φ, neboť x má volný výskyt v podformuli ψ = (x ≤ y),

• (∃u)(∀v)(u ≤ v) je varianta φ.

Tím jsme uzavřeli výklad o syntaxi, následuje sémantika.

5.4 Sémantika
Než se pustíme do formálnějšího výkladu, shrňme stručně sémantiku, tak jak jsme ji už
naznačili v předchozích sekcích:

• modely jsou struktury dané signatury,

• formule platí ve struktuře, pokud platí při každém ohodnocení volných proměnných
prvky z domény,

• hodnoty termů se vyhodnocují podle jejich stromů, kde symboly nahradíme jejich in-
terpretacemi (funkcemi, a konstantami z domény),

• z hodnot termů získáme pravdivostní hodnoty atomických formulí: je výsledná n-tice v
relaci (interpretující daný relační symbol)?

• hodnoty složených formulí vyhodnocujeme také podle jejich stromu, přičemž (∀x) hraje
roli ‘konjunkce přes všechny prvky’ a (∃y) hraje roli ‘disjunkce přes všechny prvky’ z
domény struktury

Nyní formálněji:
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5.4.1 Modely jazyka

Definice 5.4.1 (Model jazyka). Model jazyka L, nebo také L-struktura, je libovolná struktura
v signatuře jazyka L. Třídu všech modelů jazyka označíme ML.

Poznámka 5.4.2. V definici nehraje roli, zda je jazyk s rovností nebo bez. A proč nemůžeme
mluvit o množině všech modelů ML, proč musíme říkat třída? Protože doménou struktury
může být libovolná neprázdná množina, a ‘množina všech množin’ neexistuje, je to klasický
příklad tzv. vlastní třídy. Třída je ‘soubor’ všech množin splňujících danou vlastnost (popsa-
telnou v jazyce teorie množin).
Příklad 5.4.3. Mezi modely jazyka uspořádání L = ⟨≤⟩ patří následující struktury: ⟨N,≤⟩,
⟨Q, >⟩, libovolný orientovaný grafG = ⟨V,E⟩, ⟨P(X),⊆⟩. Ale také např. ⟨C, RC⟩ kde (z1, z2) ∈
RC právě když |z1| = |z2| nebo ⟨{0, 1}, ∅⟩, což nejsou částečná uspořádání.

5.4.2 Hodnota termu

Mějme term t jazyka L = ⟨R,F⟩ (s rovností nebo bez), a L-strukturu A = ⟨A,RA, FA⟩.
Ohodnocení proměnných v množině A je libovolná funkce e : Var → A.

Definice 5.4.4 (Hodnota termu). Hodnota termu t ve struktuře A při ohodnocení e, kterou
značíme tA[e], je dána induktivně:

• xA[e] = e(x) pro proměnnou x ∈ Var,

• cA[e] = cA pro konstantní symbol c ∈ F , a

• je-li t = f(t1, . . . , tn) složený term, kde f ∈ F , potom:

tA[e] = fA(tA1 [e], . . . , tAn [e])

Poznámka 5.4.5. Všimněte si, že hodnota termu závisí pouze na ohodnocení proměnných vy-
skytujících se v něm. Speciálně, je-li t konstantní term, jeho hodnota na ohodnocení nezávisí.
Obecně, každý term t reprezentuje termovou funkci fA

t : Ak → A, kde k je počet proměnných
v t, a konstantním termům odpovídají konstantní funkce.
Příklad 5.4.6. Uveďme dva příklady:

• Hodnota termu −(x∨⊥)∧y v Booleově algebře P({0, 1, 2}) při ohodnocení e ve kterém
e(x) = {0, 1} a e(y) = {1, 2} je {2}.

• Hodnota termu x+ 1 ve struktuře N = ⟨N, ·, 3⟩ jazyka L = ⟨+, 1⟩ při ohodnocení e ve
kterém e(x) = 2 je (x+ 1)N [e] = 6.

5.4.3 Pravdivostní hodnota formule

Nyní už jsme připraveni definovat pravdivostní hodnotu. Lokálně pro ni zavedeme značení PH.

Definice 5.4.7 (Pravdivostní hodnota). Mějme formuli φ v jazyce L, strukturu A ∈ ML,
a ohodnocení proměnných e : Var → A. Pravdivostní hodnota φ v A při ohodnocení e,
PHA(φ)[e], je definována induktivně podle struktury formule:
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Pro atomickou formuli φ = R(t1, . . . , tn) máme

PHA(φ)[e] =
{

1 pokud (tA1 [e], . . . , tAn [e]) ∈ RA,

0 jinak.

Speciálně, je-li φ tvaru t1 = t2, potom PHA(φ)[e] = 1 právě když (tA1 [e], tA2 [e]) ∈ =A, kde =A

je identita na A, tj. právě když tA1 [e] = tA2 [e] (obě strany rovnosti jsou stejný prvek a ∈ A).
Pravdivostní hodnota negace je definována takto:

PHA(¬φ)[e] = f¬(PHA(φ)[e]) = 1 − PHA(φ)[e]

Obdobně pro binární logické spojky, jsou-li φ,ψ a □ ∈ {∧,∨,→,↔}, potom:

PHA(φ□ ψ)[e] = f□(PHA(φ)[e],PHA(ψ)[e])

Zbývá definovat pravdivostní hodnotu pro kvantifikátory, tj. formule tvaru (Qx)φ. Budeme
potřebovat následující značení: Změníme-li v ohodnocení e : Var → A hodnotu pro proměnnou
x na a, výsledné ohodnocení zapíšeme jako e(x/a). Platí tedy e(x/a)(x) = a. Pravdivostní
hodnotu pro (Qx)φ definujeme takto:

PHA((∀x)φ)[e] = min
a∈A

(PHA(φ)[e(x/a)])

PHA((∃x)φ)[e] = max
a∈A

(PHA(φ)[e(x/a)])

Tedy v ohodnocení e nastavíme hodnotu proměnné x postupně na všechny prvky a ∈ A a
požadujeme, aby PH byla rovna 1 vždy (v případě ∀) nebo alespoň jednou (v případě ∃).19

Poznámka 5.4.8. Pravdivostní hodnota závisí pouze na ohodnocení volných proměnných. Spe-
ciálně, je-li φ sentence, potom její pravdivostní hodnota nezávisí na ohodnocení.
Příklad 5.4.9. Vezměme si uspořádané těleso Q. Potom:

• PHQ(x ≤ 1 ∧ ¬(x ≤ 0))[e] = 1 právě když e(x) ∈ (0, 1],

• PHQ((∀x)(x · y = y))[e] = 1 právě když e(y) = 0,

• PHQ((∃x)(x ≤ 0 ∧ ¬x = 0))[e] = 1 pro každé ohodnocení e (je to sentence), ale

• PHA((∃x)(x ≤ 0 ∧ ¬x = 0))[e] = 0 (pro každé e), je-li A = ⟨N,+,−, 0, ·, 1,≤⟩ se
standardními operacemi a uspořádáním.

5.4.4 Platnost

Na základě pravdivostní hodnoty už můžeme definovat klíčový pojem sémantiky, platnost.

Definice 5.4.10 (Platnost ve struktuře). Mějme formuli φ a strukturu A (ve stejném jazyce).

• Je-li e ohodnocení a PHA(φ)[e] = 1, potom říkáme, že φ platí v A při ohodnocení e,
a píšeme A |= φ[e]. (V opačném případě říkáme, že φ neplatí v A při ohodnocení e, a
píšeme A ̸|= φ[e].)

19Připomeňme, že f∧(x, y) = min(x, y) a f∨(x, y) = max(x, y). Kvantifikátory tedy hrají roli ‘konjunkce’ (∀)
resp.‘disjunkce’ (∃) přes všechny prvky struktury.
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• Pokud φ platí v A při každém ohodnocení e : Var → A, potom říkáme, že φ je pravdivá
(platí) v A, a píšeme A |= φ.

• Pokud A |= ¬φ, tj. φ neplatí v A při žádném ohodnocení (pro každé e máme A ̸|= φ[e]),
potom je φ lživá v A.20

Shrňme několik jednoduchých vlastností, nejprve týkajících se platnosti při ohodnocení.
Buď A struktura, φ,ψ formule, a e ohodnocení.

• A |= ¬φ[e] právě když A ̸|= φ[e],

• A |= (φ ∧ ψ)[e] právě když A |= φ[e] a A |= ψ[e],

• A |= (φ ∨ ψ)[e] právě když A |= φ[e] nebo A |= ψ[e],

• A |= (φ→ ψ)[e] právě když platí: jestliže A |= φ[e] potom A |= ψ[e],

• A |= (φ↔ ψ)[e] právě když platí: A |= φ[e] právě když A |= ψ[e],

• A |= (∀x)φ[e] právě když A |= φ[e(x/a)] pro všechna a ∈ A,

• A |= (∃x)φ[e] právě když A |= φ[e(x/a)] pro nějaké a ∈ A.

• Je-li term t substituovatelný za proměnnou x do formule φ, potom

A |= φ(x/t)[e] právě když A |= φ[e(x/a)] pro a = tA[e].

• Je-li ψ varianta φ, potom A |= φ[e] právě když A |= ψ[e].

Cvičení 5.3. Dokažte podrobně všechny uvedené vlastnosti platnosti při ohodnocení.
A jak je tomu s pojmem pravdivosti (platnosti) ve struktuře?

• Pokud A |= φ, potom A ̸|= ¬φ. Je-li φ sentence, potom platí i opačná implikace (tj.
platí ‘právě když’).

• A |= φ ∧ ψ právě když A |= φ a A |= ψ,

• Pokud A |= φ nebo A |= ψ, potom A |= φ ∨ ψ. Je-li φ sentence, potom platí i opačná
implikace (tj. platí ‘právě když’).

• A |= φ právě když A |= (∀x)φ.

Generální uzávěr formule φ(x1, . . . , xn) (tj. x1, . . . , xn jsou všechny volné proměnné formule
φ) je sentence (∀x1) · · · (∀xn)φ. Z posledního bodu plyne, že formule platí ve struktuře, právě
když v ní platí její generální uzávěr.
Cvičení 5.4. Dokažte podrobně všechny uvedené vlastnosti platnosti ve struktuře.
Cvičení 5.5. Najděte příklad struktury A a formule φ takových, že A ̸|= φ a zároveň A ̸|= ¬φ.
Cvičení 5.6. Najděte příklad struktury A a formulí φ,ψ takových, že A |= φ ∨ ψ ale A ̸|= φ
ani A ̸|= ψ.

20Pozor, lživá není totéž, co není pravdivá! To platí jen pro sentence.
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5.5 Vlastnosti teorií
Na základě pojmu platnosti vybudujeme sémantickou terminologii obdobně jako ve výrokové
logice. Teorie jazyka L je libovolná množina T L-formulí, prvkům teorie říkáme axiomy. Model
teorie T je L-struktura, ve které platí všechny axiomy teorie T , tj. A |= φ pro všechna φ ∈ T ,
což značíme A |= T . Třída modelů21 teorie T je:

ML(T ) = {A ∈ ML | A |= T}

Stejně jako ve výrokové logice budeme často vynechávat jazyk L, bude-li zřejmý z kontextu,
a budeme psát M(φ1, . . . , φn) místo M({φ1, . . . , φn}) a M(T, φ) místo M(T ∪ {φ}).

5.5.1 Platnost v teorii

Je-li T teorie v jazyce L a φ L-formule, potom říkáme, že φ je:

• pravdivá (platí) v T , značíme T |= φ, pokud A |= φ pro všechna A ∈ M(T ) (neboli:
M(T ) ⊆ M(φ)),

• lživá v T , pokud T |= ¬φ, tj. pokud je lživá v každém modelu T (neboli: M(T )∩M(φ) =
∅),

• nezávislá v T , pokud není pravdivá v T ani lživá v T .

Máme-li prázdnou teorii T = ∅ (tj. M(T ) = ML), potom teorii T vynecháváme, píšeme |= φ,
a říkáme, že φ je pravdivá (v logice), (logicky) platí, je tautologie; podobně pro ostatní pojmy.

Teorie je sporná, jestliže v ní platí spor ⊥, který v predikátové logice můžeme definovat
jako R(x1, . . . , xn) ∧ ¬R(x1, . . . , xn), kde R je libovolný (třeba první) relační symbol z jazyka
nebo rovnost (nemá-li jazyk relační symbol, musí být s rovností). Teorie je sporná, právě když
v ní platí každá formule, nebo, ekvivalentně, právě když nemá žádný model. Jinak říkáme, že
je teorie bezesporná (neplatí-li v ní spor, ekvivalentně má-li alespoň jeden model).

Sentencím pravdivým v T říkáme důsledky T ; množina všech důsledků T v jazyce L je:

CsqL(T ) = {φ | φ je sentence a T |= φ}

Kompletnost v predikátové logice

Jak je tomu s pojmem kompletnosti teorie?22

Definice 5.5.1 (Kompletní teorie). Teorie je kompletní, je-li bezesporná a každá sentence je
v ní buď pravdivá, nebo lživá.

Nemůžeme ale říci, že je teorie kompletní, právě když má jediný model. Máme-li totiž
jeden model, dostáváme z něj nekonečně mnoho jiných, ale izomorfních modelů, tj. lišících
se jen pojmenováním prvků univerza.23 Uvažovat jediný model ‘až na izomorfismus’ by ale
nebylo dostatečné. Správným pojmem je tzv. elementární ekvivalence:

21Připomeňme, že nemůžeme říkat ‘množina’.
22Připomeňme, že výroková teorie je kompletní, je-li bezesporná a každý výrok v ní buď platí, nebo platí

jeho negace. Ekvivalentně, má právě jeden model.
23Formálně pojem izomorfismu definujeme později v části o teorii modelů, v Sekci 8.2, jde ale o zobecnění

izomorfismu který znáte z teorie grafů.
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Definice 5.5.2 (Elementárně ekvivalentní struktury). Struktury A,B (v témž jazyce) jsou
elementárně ekvivalentní, pokud v nich platí tytéž sentence. Značíme A ≡ B.

Příklad 5.5.3. Příkladem struktur, které jsou elementárně ekvivalentní, ale ne izomorfní, jsou
uspořádané množiny A = ⟨Q,≤⟩ a B = ⟨R,≤⟩. Izomorfní nejsou proto, že Q je spočetná
zatímco R nespočetná množina, neexistuje tedy dokonce žádná bijekce mezi jejich univerzy.
Není těžké ukázat, že pro každou sentenci φ platí A |= φ ⇔ B |= φ: indukcí podle struktury
formule φ, jediný netriviální případ je existenční kvantifikátor, a klíčovou vlastností je hustota
obou uspořádání, tj. následující vlastnost:

(x ≤ y ∧ ¬x = y) → (∃z)(x ≤ z ∧ z ≤ y ∧ ¬x = z ∧ ¬y = z)

Pozorování 5.5.4. Teorie je kompletní, právě když má právě jeden model až na elementární
ekvivalenci.

Platnost pomocí nesplnitelnosti

Otázku pravdivosti (platnosti) v dané teorii lze převést na problém existence modelu:

Tvrzení 5.5.5 (O nesplnitelnosti a pravdivosti). Je-li T teorie a φ sentence (ve stejném
jazyce), potom platí: T ∪ {¬φ} nemá model, právě když T |= φ.

Důkaz. Platí následující ekvivalence: T ∪{¬φ} nemá model, právě když ¬φ neplatí v žádném
modelu T , právě když (neboť je to sentence) φ platí v každém modelu T .

Předpoklad, že φ je sentence, je nutný: uvažte teorii T = {P (c)} a formuli φ = P (x) (což
není sentence). Potom {P (c),¬P (x)} nemá model, ale P (c) ̸|= P (x). (Zde P je unární relační,
a c konstantní symbol.)

5.5.2 Příklady teorií

Uveďme několik příkladů důležitých teorií.

Teorie grafů

Teorie grafů je teorie v jazyce L = ⟨E⟩ s rovností, splňující axiomy ireflexivity a symetrie:

Tgraph = {¬E(x, x), E(x, y) → E(y, x)}

Modely Tgraph jsou struktury G = ⟨G,EG⟩, kde EG je symetrická ireflexivní relace, jde tedy o
tzv. jednoduché grafy, kde hranu {x, y} reprezentuje dvojice uspořádaných hran (x, y), (y, x).

• Formule ¬x = y → E(x, y) platí v grafu, právě když jde o úplný graf. Je tedy nezávislá
v Tgraph.

• Formule (∃y1)(∃y2)(¬y1 = y2 ∧ E(x, y1) ∧ E(x, y2) ∧ (∀z)(E(x, z) → z = y1 ∨ z = y2))
vyjadřuje, že každý vrchol má stupeň právě 2. Platí tedy právě v grafech, které jsou
disjunktní sjednocení kružnic, a je nezávislá v teorii Tgraph.
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Teorie uspořádání

Teorie uspořádání je teorie v jazyce uspořádání L = ⟨≤⟩ s rovností, jejíž axiomy jsou:

T = {x ≤ x,

x ≤ y ∧ y ≤ x→ x = y,

x ≤ y ∧ y ≤ z → x ≤ z}

Těmto axiomům říkáme reflexivita, antisymetrie, tranzitivita. Modely T jsou L-struktury
⟨S,≤S⟩, ve kterých platí axiomy T , tzv. (částečně) uspořádané množiny. Např: A = ⟨N,≤⟩,
B = ⟨P(X),⊆⟩ pro X = {0, 1, 2}.

• Formule x ≤ y ∨ y ≤ x (linearita) platí v A, ale neplatí v B, neboť neplatí např. při
ohodnocení kde e(x) = {0}, e(y) = {1} (píšeme B ̸|= φ[e]). Je tedy nezávislá v T .

• Sentence (∃x)(∀y)(y ≤ x) (označme ji ψ) je pravdivá v B a lživá v A, píšeme B |= ψ,
A |= ¬ψ. Je tedy také nezávislá v T .

• Formule (x ≤ y ∧ y ≤ z ∧ z ≤ x) → (x = y ∧ y = z) (označme ji χ) je pravdivá v T ,
píšeme T |= χ. Totéž platí pro její generální uzávěr (∀x)(∀y)(∀z)χ.

Algebraické teorie

• Teorie grup je teorie v jazyce L = ⟨+,−, 0⟩ s rovností, jejíž axiomy jsou:

T1 = {x+ (y + z) = (x+ y) + z,

0 + x = x, x+ 0 = x,

x+ (−x) = 0, (−x) + x = 0}

Těmto vlastnostem říkáme asociativita +, neutralita 0 vůči +, a −x je inverzní prvek k
x (vůči + a 0).

• Teorie komutativních grup má navíc axiom x+ y = y + x (komutativita +), je tedy:

T2 = T1 ∪ {x+ y = y + x}

• Teorie okruhů je v jazyce L = ⟨+,−, 0, ·, 1⟩ s rovností, má navíc axiomy:

T3 = T2 ∪ {1 · x = x · 1,
x · (y · z) = (x · y) · z,
x · (y + z) = x · y + x · z,
(x+ y) · z = x · z + y · z}

Těmto vlastnostem říkáme neutralita 1 vůči ·, asociativita ·, a (levá i pravá) distributivita
· vůči +.
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• Teorie komutativních okruhů má navíc axiom komutativity ·, máme tedy:

T4 = T3 ∪ {x · y = y · x}

• Teorie těles je ve stejném jazyce, ale má navíc axiomy existence inverzního prvku k · a
netriviality:

T5 = T4 ∪ {¬x = 0 → (∃y)(x · y = 1),¬ 0 = 1}

• Teorie uspořádaných těles je v jazyce ⟨+,−, 0, ·, 1,≤⟩ s rovností, sestává z axiomů teorie
těles, teorie uspořádání spolu s axiomem linearity, a z následujících axiomů kompatibility
uspořádání : x ≤ y → (x+ z ≤ y + z) a (0 ≤ x ∧ 0 ≤ y) → 0 ≤ x · y. (Modely jsou tedy
tělesa s lineárním (totálním) uspořádáním, které je kompatibilní s tělesovými operacemi
v tomto smyslu.)

5.6 Podstruktura, expanze, redukt
V této sekci se podíváme na způsoby, jak můžeme vytvářet nové struktury z existujících.

Podstruktura

Pojem podstruktury zobecňuje podgrupy, podprostory vektorového prostoru, a indukované
podgrafy grafu: vybereme nějakou podmnožinu B univerza struktury A, a vytvoříme na ní
strukturu B stejné signatury, která ‘zdědí’ relace, funkce, a konstanty. Abychom to mohli
provést, potřebujeme, aby byla množina B uzavřená na všechny funkce a obsahovala všechny
konstanty.24

Definice 5.6.1 (Podstruktura). Mějme strukturu A = ⟨A,RA,FA⟩ v signatuře ⟨R,F⟩.
Struktura B = ⟨B,RB,FB⟩ je (indukovaná) podstruktura A, značíme B ⊆ A, jestliže

• ∅ ̸= B ⊆ A,

• RB = RA ∩Bar(R) pro každý relační symbol R ∈ R,

• fB = fA ∩ (Bar(f) × B) pro každý funkční symbol f ∈ F (tj. funkce fB je restrikce fA

na množinu B, a její výstupy jsou všechny také z B),

• speciálně, pro každý konstantní symbol c ∈ F máme cB = cA ∈ B.

Množina C ⊆ A je uzavřená na funkci f : An → A, pokud f(x1, . . . , xn) ∈ C pro všechna
xi ∈ C. Platí:

Pozorování 5.6.2. Množina ∅ ̸= C ⊆ A je univerzem podstruktury struktury A, právě když
je C uzavřená na všechny funkce struktury A (včetně konstant).

V tom případě říkáme této podstruktuře restrikce A na množinu C, a značíme ji A ↾ C.
Příklad 5.6.3. Z = ⟨Z,+, ·, 0⟩ je podstrukturou Q = ⟨Q,+, ·, 0⟩, můžeme psát Z = Q ↾ Z.
Struktura N = ⟨N,+, ·, 0⟩ je podstrukturou obou těchto struktur, N = Q ↾ N = Z ↾ N.

24Stejně jako ne každá množina vektorů je podprostor, k tomu musí obsahovat nulový vektor, ke každému
vektoru obsahovat všechny jeho skalární násobky, a pro každou dvojici vektorů obsahovat jejich součet. Jinými
slovy, jen (neprázdné) množiny uzavřené na lineární kombinace vektorů dávají vzniknout podprostorům.
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Platnost v podstruktuře

Jak je tomu s platností formulí v podstruktuře? Uveďme několik jednoduchých pozorování o
otevřených formulích.

Pozorování 5.6.4. Je-li B ⊆ A, potom pro každou otevřenou formuli φ a ohodnocení pro-
měnných e : Var → B platí: B |= φ[e] právě když A |= φ[e].

Důkaz. Pro atomické formule je zřejmé, dále snadno dokážeme indukcí podle struktury for-
mule.

Důsledek 5.6.5. Otevřená formule platí ve struktuře A, právě když platí v každé podstruktuře
B ⊆ A.

Říkáme, že teorie T je otevřená, jsou-li všechny její axiomy otevřené formule.

Důsledek 5.6.6. Modely otevřené teorie jsou uzavřené na podstruktury, tj. každá podstruktura
modelu otevřené teorie je také model této teorie.

Příklad 5.6.7. Teorie grafů je otevřená. Každá podstruktura grafu (modelu teorie grafů) je
také graf, říkáme mu (indukovaný) podgraf.25 Podobně např. pro podgrupy nebo Booleovy
podalgebry.
Příklad 5.6.8. Teorie těles není otevřená. Jak si ukážeme později, není dokonce ani otevřeně
axiomatizovatelná, tj. neexistuje jí ekvivalentní otevřená teorie—kvantifikátoru v axiomu o
existenci inverzního prvku se nelze nijak zbavit. Podstruktura tělesa reálných čísel Q na
množině všech celých čísel Q ↾ Z není těleso. (Je to tzv. okruh, ale nenulové prvky kromě
1,−1 nemají multiplikativní inverz, např. rovnice 2 · x = 1 nemá v Z řešení).

Generovaná podstruktura

Co dělat, máme-li podmnožinu univerza, která není uzavřená na funkce struktury? V tom
případě uvážíme uzávěr této množiny na funkce.26

Definice 5.6.9 (Generovaná podstruktura). Mějme strukturu A = ⟨A,RA,FA⟩ a neprázd-
nou podmnožinu X ⊆ A. Označme jako B nejmenší podmnožinu A, která obsahuje množinu
X a je uzavřená na všechny funkce struktury A (tj. také obsahuje všechny konstanty). Potom
o podstruktuře A ↾ B říkáme, že je generovaná množinou X, a značíme ji A⟨X⟩.

Příklad 5.6.10. Uvažme struktury Q = ⟨Q,+, ·, 0⟩, Z = ⟨Z,+, ·, 0⟩, a N = ⟨N,+, ·, 0⟩. Potom
Q⟨{1}⟩ = N, Q⟨{−1}⟩ = Z, a Q⟨{2}⟩ je podstruktura N na množině všech sudých čísel.
Příklad 5.6.11. Pokud A nemá žádné funkce (ani konstanty), např. je-li to graf či uspořádání,
potom není čím generovat, a A⟨X⟩ = A ↾ X.

25Samotný pojem podgraf v teorii grafů často znamená jen EB ⊆ EA ∩ (B × B), nikoliv EB = EA ∩ (B × B).
My ale budeme používat slovo podgraf ve striktnějším smyslu, jako indukovaný podgraf.

26Viz pojem lineárního obalu množiny vektorů.
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Expanze a redukt

Prozatím jsme konstruovali nové struktury změnou univerza. Můžeme ale také nechat uni-
verzum stejné, a přidat resp. odebrat relace, funkce, a konstanty. Výsledku takové operace
říkáme expanze resp. redukt. Všimněte si, že jde o strukturu v jiné signatuře.

Definice 5.6.12 (Expanze a redukt). Mějme jazyky L ⊆ L′, L-strukturu A, a L′-strukturu A′

na stejné doméně A = A′. Jestliže je interpretace každého symbolu z L [relačního, funkčního,
konstantního] stejná [relace, funkce, konstanta] v A i v A′ potom říkáme, že struktura A′ je
expanzí struktury A do jazyka L′ (také říkáme, že je L′-expanzí ) a že struktura A je reduktem
struktury A′ na jazyk L (také říkáme, že je L-reduktem).

Příklad 5.6.13. Mějme grupu celých čísel ⟨Z,+,−, 0⟩. Potom struktura ⟨Z,+⟩ je jejím reduk-
tem, zatímco struktura ⟨Z,+,−, 0, ·, 1⟩ (okruh celých čísel) je její expanzí.
Příklad 5.6.14. Mějme graf G = ⟨G,EG⟩. Potom struktura ⟨G,EG, cG

v ⟩v∈G v jazyce ⟨E, cv⟩v∈G,
kde cG

v = v pro všechny vrcholy v ∈ G, je expanzí G o jména prvků (z množiny G).

5.6.1 Věta o konstantách

Věta o konstantách říká (neformálně), že splnit formuli s jednou volnou proměnnou je to-
též, co splnit sentenci, ve které je tato volná proměnná nahrazena (substituována) novým
konstantním symbolem (který není nijak svázaný žádnými axiomy). Klíčem je fakt, že tento
nový symbol může být v modelech interpretován jako libovolný (tj. každý) prvek. Tento trik
později využijeme v tablo metodě.

Věta 5.6.15 (O konstantách). Mějme formuli φ v jazyce L s volnými proměnnými x1, . . . , xn.
Označme L′ rozšíření jazyka o nové konstantní symboly c1, . . . , cn a buď T ′ stejná teorie jako
T ale v jazyce L′. Potom platí:

T |= φ právě když T ′ |= φ(x1/c1, . . . , xn/cn)

Důkaz. Tvrzení stačí dokázat pro jednu volnou proměnnou x a jednu konstantu c, indukcí se
snadno rozšíří na n konstant.

Předpokládejme nejprve, že φ platí v každém modelu teorie T . Chceme ukázat, že φ(x/c)
platí v každém modelu A′ teorie T ′. Vezměme tedy takový model A′ a libovolné ohodnocení
e : Var → A′ a ukažme, že A′ |= φ(x/c)[e].

Označme jako A redukt A′ na jazyk L (‘zapomeneme’ konstantu cA′). Všimněte si, že A je
model teorie T (axiomy T jsou tytéž jako T ′, neobsahují symbol c) tedy v něm platí φ. Protože
dle předpokladu platí A |= φ[e′] pro libovolné ohodnocení e′, platí i pro ohodnocení e(x/cA′)
ve kterém ohodnotíme proměnnou x interpretací konstantního symbolu c ve struktuře A′,
máme tedy A |= φ[e(x/cA′)]. To ale znamená, že A′ |= φ(x/c)[e], což jsme chtěli dokázat.

Naopak, předpokládejme, že φ(x/c) platí v každém modelu teorie T ′ a ukažme, že φ platí
v každém modelu A teorie T . Zvolme tedy takový model A a nějaké ohodnocení e : Var → A
a ukažme, že A |= φ[e].

Označme jako A′ expanzi A do jazyka L′, kde konstantní symbol c interpretujeme jako
prvek cA′ = e(x). Protože dle předpokladu platí A′ |= φ(x/c)[e′] pro všechna ohodnocení e′,
platí i A′ |= φ(x/c)[e], což ale znamená, že A′ |= φ[e]. (Neboť e = e(x/cA′) a A′ |= φ(x/c)[e]
platí právě když A′ |= φ[e(x/cA′)], což je A′ |= φ[e].) Formule φ ale neobsahuje c (zde
používáme, že c je nový), máme tedy i A |= φ[e].
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5.7 Extenze teorií
Pojem extenze teorie definujeme stejně jako ve výrokové logice:

Definice 5.7.1 (Extenze teorie). Mějme teorii T v jazyce L.

• Extenze teorie T je libovolná teorie T ′ v jazyce L′ ⊇ L splňující CsqL(T ) ⊆ CsqL′(T ′),

• je to jednoduchá extenze, pokud L′ = L,

• je to konzervativní extenze, pokud CsqL(T ) = CsqL(T ′) = CsqL′(T ′) ∩ FmL, kde FmL

značí množinu všech formulí v jazyce L.

• Teorie T ′ (v jazyce L) je ekvivalentní teorii T , pokud je T ′ extenzí T a T extenzí T ′.

Podobně jako ve výrokové logice, pro teorie ve stejném jazyce platí následující sémantický
popis těchto pojmů:

Pozorování 5.7.2. Mějme teorie T, T ′ v jazyce L. Potom:

• T ′ je extenze T , právě když ML(T ′) ⊆ ML(T ).

• T ′ je ekvivalentní s T , právě když ML(T ′) = ML(T ).

Jak je tomu v případě, kdy teorie T ′ je nad větším jazykem než T? Připomeňme situaci ve
výrokové logice, popsanou v Pozorování 1.4.7. Zformulujeme a dokážeme analogické tvrzení:
Zatímco ve výrokové logice jsme přidávali hodnoty pro nové prvovýroky, resp. je zapomínali,
v predikátové logice budeme expandovat resp. redukovat struktury, tj. přidávat nebo zapomí-
nat interpretace relačních, funkčních, a konstantních symbolů. Princip obou tvrzení (i jejich
důkazů) je ale stejný.

Tvrzení 5.7.3. Mějme jazyky L ⊆ L′, teorii T v jazyce L, a teorii T ′ v jazyce L′.

(i) T ′ je extenzí teorie T , právě když redukt každého modelu T ′ na jazyk L je modelem T .

(ii) Pokud je T ′ extenzí teorie T , a každý model T lze expandovat do jazyka L′ na nějaký
model teorie T ′, potom je T ′ konzervativní extenzí teorie T .

Poznámka 5.7.4. V části (ii) platí i opačná implikace, důkaz ale není tak jednoduchý, jako
ve výrokové logice, a proto ho neuvedeme. (Problémem je jak získat z modelu T který nelze
expandovat na model T ′ L-sentenci, která platí v T ale ne v T ′.)

Důkaz. Nejprve dokažme (i): Mějme model A′ teorie T ′ a označme jako A jeho redukt na
jazyk L. Protože T ′ je extenzí teorie T , platí v T ′, a tedy i v A′, každý axiom φ ∈ T . Potom
ale i A |= φ (φ obsahuje jen symboly z jazyka L), tedy A je modelem T .

Na druhou stranu, mějme L-sentenci φ takovou, že T |= φ. Chceme ukázat, že T ′ |= φ.
Pro libovolný model A′ ∈ ML′(T ′) víme, že jeho L-redukt A je modelem T , tedy A |= φ. Z
toho plyne i A′ |= φ (opět proto, že φ je v jazyce L).

Nyní (ii): Vezměme libovolnou L-sentenci φ, která platí v teorii T ′, a ukažme, že platí i v
T . Každý model A teorie T lze expandovat na nějaký model A′ teorie T ′. Víme, že A′ |= φ,
takže i A |= φ. Tím jsme dokázali, že T |= φ, tj. jde o konzervativní extenzi.
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5.7.1 Extenze o definice

Nyní si ukážeme speciální druh konzervativní extenze, tzv. extenzi o definice nových (relač-
ních, funkčních, konstantních) symbolů.

Definice relačního symbolu

Nejjednodušším případem je definování nového relačního symbolu R(x1, . . . , xn). Jako definice
může sloužit libovolná formule s n volnými proměnnými ψ(x1, . . . , xn).
Příklad 5.7.5. Uveďme nejprve několik příkladů:

• Jakoukoliv teorii v jazyce s rovností můžeme rozšířit o binární relační symbol ̸=, který
definujeme formulí ¬x1 = x2. To znamená, že požadujeme, aby platilo: x1 ̸= x2 ↔¬x1 =
x2.

• Teorii uspořádání můžeme rozšířit o symbol < pro ostré uspořádání, který definujeme
formulí x1 ≤ x2 ∧ ¬x1 = x2. To znamená, že požadujeme, aby platilo x1 < x2 ↔ x1 ≤
x2 ∧ ¬x1 = x2.

• V aritmetice můžeme zavést symbol ≤, pomocí x1 ≤ x2 ↔ (∃y)(x1 + y = x2).

Nyní uvedeme definici:

Definice 5.7.6 (Definice relačního symbolu). Mějme teorii T a formuli ψ(x1, . . . , xn) v jazyce
L. Označme jako L′ rozšíření jazyka L o nový n-ární relační symbol R. Extenze teorie T o
definici R formulí ψ je L′-teorie:

T ′ = T ∪ {R(x1, . . . , xn) ↔ ψ(x1, . . . , xn)}

Všimněte si, že každý model T lze jednoznačně expandovat na model T ′. Z Tvrzení 5.7.3
potom ihned plyne následující:

Důsledek 5.7.7. T ′ je konzervativní extenze T .

Ukážeme si ještě, že nový symbol lze ve formulích nahradit jeho definicí, a získat tak
(T ′-ekvivalentní) formuli v původním jazyce:

Tvrzení 5.7.8. Pro každou L′-formuli φ′ existuje L-formule φ taková, že T ′ |= φ′ ↔ φ.

Důkaz. Je třeba nahradit atomické podformule s novým symbolem R, tj. tvaru R(t1, . . . , tn).
Takovou podformuli nahradíme formulí ψ′(x1/t1, . . . , xn/tn), kde ψ′ je varianta ψ zaručující
substituovatelnost všech termů, tj. například přejmenujeme všechny vázané proměnné ψ na
zcela nové (nevyskytující se ve formuli φ′).

Definice funkčního symbolu

Nový funkční symbol definujeme obdobným způsobem, musíme si ale být jisti, že definice
dává jednoznačnou možnost, jak nový symbol interpretovat jako funkci.
Příklad 5.7.9. Opět začneme příklady:
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• V teorii grup můžeme zavést binární funkční symbol −b pomocí + a unárního − takto:

x1 −b x2 = y ↔ x1 + (−x2) = y

Je zřejmé, že pro každá x, y existuje jednoznačné z splňující definici.

• Uvažme teorii lineárních uspořádání, tj. teorii uspořádání spolu s axiomem linearity
x ≤ y ∨ y ≤ x. Definujme binární funkční symbol min takto:

min(x1, x2) = y ↔ y ≤ x1 ∧ y ≤ x2 ∧ (∀z)(z ≤ x1 ∧ z ≤ x2 → z ≤ y)

Existence a jednoznačnost platí díky linearitě. Pokud bychom ale měli pouze teorii uspo-
řádání, taková formule by nebyla dobrou definicí: v některých modelech by min(x1, x2)
pro některé prvky neexistovalo, selhala by tedy požadovaná existence.

Definice 5.7.10 (Definice funkčního symbolu). Mějme teorii T a formuli ψ(x1, . . . , xn, y) v
jazyce L. Označme jako L′ rozšíření jazyka L o nový n-ární funkční symbol f . Nechť v teorii
T platí:

• axiom existence (∃y)ψ(x1, . . . , xn, y),

• axiom jednoznačnosti ψ(x1, . . . , xn, y) ∧ ψ(x1, . . . , xn, z) → y = z.

Potom extenze teorie T o definici f formulí ψ je L′-teorie:

T ′ = T ∪ {f(x1, . . . , xn) = y ↔ ψ(x1, . . . , xn, y)}

Formule ψ tedy definuje v každém modelu (n + 1)-ární relaci, a po této relaci požadu-
jeme, aby byla funkcí, tj. aby pro každou n-tici prvků existovala jednoznačná možnost, jak ji
rozšířit do (n+ 1)-tice, která je prvkem této relace. Všimněte si, že je-li definující formule ψ
tvaru t(x1, . . . , xn) = y, kde x1, . . . , xn jsou proměnné L-termu t, potom axiomy existence a
jednoznačnosti vždy platí.

Opět platí, že každý model T lze jednoznačně expandovat na model T ′, tedy:

Důsledek 5.7.11. T ′ je konzervativní extenze T .

A platí také stejné tvrzení o rozvádění definic:

Tvrzení 5.7.12. Pro každou L′-formuli φ′ existuje L-formule φ taková, že T ′ |= φ′ ↔ φ.

Důkaz. Stačí dokázat pro formuli φ′ s jediným výskytem symbolu f ; je-li výskytů více, apli-
kujeme postup induktivně, v případě vnořených výskytů v jednom termu f(. . . f(. . . ) . . . )
postupujeme od vnitřních k vnějším.

Označme φ∗ formuli vzniklou z φ′ nahrazením termu f(t1, . . . , tn) novou proměnnou z.
Formuli φ zkonstruujeme takto:

(∃z)(φ∗ ∧ ψ′(x1/t1, . . . , xn/tn, y/z))

kde ψ′ je varianta ψ zaručující substituovatelnost všech termů.
Mějme model A teorie T ′ a ohodnocení e. Označme a = (f(t1, . . . , tn))A[e]. Díky existenci

a jednoznačnosti platí:

A |= ψ′(x1/t1, . . . , xn/tn, y/z)[e] právě když e(z) = a

Máme tedy A |= φ[e], právě když A |= φ∗[e(z/a)], právě když A |= φ′[e]. To platí pro libovolné
ohodnocení e, tedy A |= φ′ ↔ φ pro každý model T ′, tedy T ′ |= φ′ ↔ φ.
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Definice konstantního symbolu

Konstantní symbol je speciálním případem funkčního symbolu arity 0. Platí tedy stejná tvr-
zení. Axiomy existence a jednoznačnosti jsou: (∃y)ψ(y) a ψ(y) ∧ ψ(z) → y = z. A extenze o
definici konstantního symbolu c formulí ψ(y) je teorie T ′ = T ∪ {c = y ↔ ψ(y)}.
Příklad 5.7.13. Ukážeme si dva příklady:

• Libovolnou teorii v jazyce aritmetiky můžeme rozšířit o definici konstantního symbolu
1 formulí ψ(y) tvaru y = S(0), přidáme tedy axiom 1 = y ↔ y = S(0).

• Uvažme teorii těles a nový symbol 1
2 , definovaný formulí y · (1 + 1) = 1, tj. přidáním

axiomu:
1
2 = y ↔ y · (1 + 1) = 1

Zde nejde o korektní extenzi o definici, neboť neplatí axiom existence. Ve dvouprvkovém
tělese Z2 (a v každém tělese charakteristiky 2 ) nemá rovnice y · (1+1) = 1 řešení, neboť
1 + 1 = 0.
Pokud ale vezmeme teorii těles charakteristiky různé od 2, tj. přidáme-li k teorii těles
axiom ¬(1 + 1 = 0), potom už půjde o korektní extenzi o definici. Například v tělese Z3

máme 1
2
Z3 = 2.

Extenze o definice

Máme-li L-teorii T a L′-teorii T ′, potom řekneme, že T ′ je extenzí T o definice, pokud vznikla z
T postupnou extenzí o definice relačních a funkčních (příp. konstantních) symbolů. Vlastnosti,
které jsme dokázali o extenzích o jeden symbol (ať už relační nebo funkční), se snadno rozšíří
indukcí na více symbolů:

Důsledek 5.7.14. Je-li T ′ extenze teorie T o definice, potom platí:

• Každý model teorie T lze jednoznačně expandovat na model T ′.

• T ′ je konzervativní extenze T .

• Pro každou L′-formuli φ′ existuje L-formule φ taková, že T ′ |= φ′ ↔ φ.

Na závěr ještě jeden příklad, na kterém si ukážeme i rozvádění definic:
Příklad 5.7.15. V teorii T = {(∃y)(x + y = 0), (x + y = 0) ∧ (x + z = 0) → y = z} jazyka
L = ⟨+, 0,≤⟩ s rovností lze zavést < a unární funkční symbol − přidáním axiomů:

−x = y ↔ x+ y = 0
x < y ↔ x ≤ y ∧ ¬(x = y)

Formule −x < y (v jazyce L′ = ⟨+,−, 0,≤, <⟩ s rovností) je v této extenzi o definice ekviva-
lentní následující formuli:

(∃z)((z ≤ y ∧ ¬(z = y)) ∧ x+ z = 0)
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5.8 Definovatelnost ve struktuře
Formuli s jednou volnou proměnnou x můžeme chápat jako vlastnost prvků. V dané struktuře
taková formule definuje množinu prvků, které tuto vlastnost splňují, tj. takových, že formule
platí při ohodnocení e, ve kterém e(x) = a. Máme-li formuli se dvěma volnými proměn-
nými, definuje binární relaci, atp. Nyní tento koncept formalizujeme. Připomeňme, že zápis
φ(x1, . . . , xn) znamená, že x1, . . . , xn jsou právě všechny volné proměnné formule φ.

Definice 5.8.1 (Definovatelné množiny). Mějme formuli φ(x1, . . . , xn) a strukturu A v témž
jazyce. Množina definovaná formulí φ(x1, . . . , xn) ve struktuře A, značíme φA(x1, . . . , xn), je:

φA(x1, . . . , xn) = {(a1, . . . , an) ∈ An | A |= φ[e(x1/a1, . . . , xn/an)]}

Zkráceně totéž zapíšeme také jako φA(x̄) = {ā ∈ An | A |= φ[e(x̄/ā)]}.
Příklad 5.8.2. Uveďme několik příkladů:

• Formule ¬(∃y)E(x, y) definuje množinu všech izolovaných vrcholů v daném grafu.

• Uvažme těleso reálných čísel R. Formule (∃y)(y ·y = x)∧¬x = 0 definuje množinu všech
kladných reálných čísel.

• Formule x ≤ y ∧ ¬x = y definuje v dané uspořádané množině ⟨S,≤S⟩ relaci ostrého
uspořádání <S .

Často se také hodí mluvit o vlastnostech prvků relativně k jiným prvkům dané struktury.
To nelze vyjádřit čistě syntakticky, ale můžeme za některé z volných proměnných dosadit
prvky struktury jako parametry. Zápisem φ(x̄, ȳ) myslíme, že formule φ má volné proměnné
x1, . . . , xn, y1, . . . , yk (pro nějaká n, k).

Definice 5.8.3 (Definovaná množina s parametry). Mějme formuli φ(x̄, ȳ), kde |x̄| = n a
|ȳ| = k, strukturu A v témž jazyce, a k-tici prvků b̄ ∈ Ak. Množina definovaná formulí
φ(x̄, ȳ) s parametry b̄ ve struktuře A, značíme φA,b̄(x̄, ȳ), je:

φA,b̄(x̄, ȳ) = {ā ∈ An | A |= φ[e(x̄/ā, ȳ/b̄)]}

Pro strukturu A a podmnožinu B ⊆ A označíme Dfn(A, B) množinu všech množin definova-
telných ve struktuře A s parametry pocházejícími z B.

Příklad 5.8.4. Pro φ(x, y) = E(x, y) je φG,v(x, y) množina všech sousedů vrcholu v.

Pozorování 5.8.5. Množina Dfn(A, B) je uzavřená na doplněk, průnik, sjednocení, a obsa-
huje ∅ a An. Jde tedy o podalgebru potenční algebry P(An).

5.8.1 Databázové dotazy

Definovatelnost nachází přirozenou aplikaci v relačních databázích, např. ve známém dotazo-
vacím jazyce SQL. Relační databáze sestává z jedné nebo více tabulek, někdy se jim říká relace,
řádky jedné tabulky jsou záznamy (records), nebo také tice (tuples). Jde tedy v principu o
strukturu v čistě relačním jazyce. Představme si databázi obsahující dvě tabulky, Program a
Movies, znázorněné na Obrázku 5.3.

SQL dotaz ve své nejjednodušší formě (pomineme-li např. agregační funkce) je v podstatě
formule, a výsledkem dotazu je množina definovaná touto formulí (s parametry). Například,
kdy a kde můžeme vidět film s Tomem Hanksem?
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cinema title time
Atlas Forrest Gump 20:00
Lucerna Forrest Gump 21:00
Lucerna Philadelphia 18:30
...

...
...

title director actor
Forrest Gump R. Zemeckis T. Hanks
Philadelphia J. Demme T. Hanks
Batman Returns T. Burton M. Keaton
...

...
...

Obrázek 5.3: Tabulky Program a Movies

select Program.cinema, Program.time from Program, Movies where
Program.title = Movies.title and Movies.actor = ‘T. Hanks’

Výsledkem bude množina φDatabase,‘T. Hanks’(xcinema, xtime, yactor) definovaná ve struktuře
Database = ⟨D,Program,Movies⟩, kde D = {‘Atlas’, ‘Lucerna’, . . . , ‘M. Keaton’}, s parame-
trem ‘T. Hanks’ následující formulí φ(xcinema, xtime, yactor) :

(∃ztitle)(∃zdirector)(Program(xcinema, ztitle, xtime) ∧ Movies(ztitle, zdirector, yactor))

5.9 Vztah výrokové a predikátové logiky
Nyní si ukážeme, jak lze výrokovou logiku ‘simulovat’ v logice predikátové, a to v teorii
Booleových algeber. Nejprve představíme axiomy této teorie:

Definice 5.9.1 (Booleovy algebry). Teorie Booleových algeber je teorie jazyka L = ⟨−,∧,∨,⊥,⊤⟩
s rovností sestávající z následujících axiomů:27

• asociativita ∧ a ∨:

x ∧ (y ∧ z) = (x ∧ y) ∧ z

x ∨ (y ∨ z) = (x ∨ y) ∨ z

• komutativita ∧ a ∨:

x ∧ y = y ∧ x

x ∨ y = y ∨ x

• distributivita ∧ vůči ∨ a ∨ vůči ∧:

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

• absorpce:

x ∧ (x ∨ y) = x

x ∨ (x ∧ y) = x

• komplementace:

x ∧ (−x) = ⊥
x ∨ (−x) = ⊤

• netrivialita:

−(⊥ = ⊤)

Nejmenším modelem je 2-prvková Booleova algebra ⟨{0, 1}, f¬, f∧, f∨, 0, 1⟩. Konečné Bo-
oleovy algebry jsou (až na izomorfismus) právě ⟨{0, 1}n, fn¬ , fn∧ , fn∨ , (0, . . . , 0), (1, . . . , 1)⟩, kde
fn znamená, že funkci f aplikujeme po složkách.28

27Všimněte si duality: záměnou ∧ s ∨ a ⊥ s ⊤ získáme tytéž axiomy.
28Tyto Booleovy algebry jsou izomorfní potenčním algebrám P({1, . . . , n}), izomorfismus je daný bijekcí mezi

podmnožinami a jejich charakteristickými vektory.
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Výroky tedy můžeme chápat jako Booleovské termy (a konstanty ⊥,⊤ představují pravdu
a lež), pravdivostní hodnota výroku (při daném ohodnocení prvovýroků) je potom dána hod-
notou odpovídajícího termu v 2-prvkové Booleově algebře. Kromě toho, algebra výroků daného
výrokového jazyka nebo teorie je Booleovou algebrou (to platí i pro nekonečné jazyky).

Na druhou stranu, máme-li otevřenou formuli φ (bez rovnosti), můžeme reprezentovat
atomické výroky pomocí prvovýroků, a získat tak výrok, který platí, právě když platí φ.
Více o tomto směru se dozvíme v Kapitole 7 (o rezoluci v predikátové logice), kde se nejprve
zbavíme kvantifikátorů pomocí tzv. Skolemizace.

Výrokovou logiku bychom také mohli zavést jako fragment logiky predikátové, pokud
bychom povolili nulární relace (a nulární relační symboly v jazyce): A0 = {∅}, tedy na libo-
volné množině jsou právě dvě nulární relace RA ⊆ A0: RA = ∅ = 0 a RA = {∅} = {0} = 1.
To ale dělat nebudeme.
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Kapitola 6

Tablo metoda v predikátové logice

V této kapitole ukážeme, jak lze zobecnit metodu analytického tabla z výrokové na prediká-
tovou logiku.1 Metoda funguje velmi podobně, musíme si ale poradit s kvantifikátory.

6.1 Neformální úvod
V této sekci tablo metodu v predikátové logice neformálně představíme. K formálním definicím
se vrátíme později. Začneme dvěma příklady, na kterých ilustrujeme, jak tablo metoda v
predikátové logice funguje, a jak se vypořádává s kvantifikátory.
Příklad 6.1.1. Na Obrázku 6.1 jsou znázorněna dvě tabla. Jsou to tablo důkazy (v logice,
tj. z prázdné teorie) sentencí (∃x)¬P (x) → ¬(∀x)P (x) (vpravo) a ¬(∀x)P (x) → (∃x)¬P (x)
(vlevo) jazyka L = ⟨P ⟩ (bez rovnosti), kde P je unární relační symbol. Symbol c0 je pomocný
konstantní symbol, který do jazyka při konstrukci tabla přidáváme.

Položky

Formule v položkách musí být vždy sentence, neboť potřebujeme, aby měly v daném modelu
pravdivostní hodnotu (nezávisle na ohodnocení proměnných). To ale není zásadní omezení,
chceme-li dokázat, že formule φ platí v teorii T , můžeme nejprve nahradit formuli φ a všechny
axiomy T jejich generálními uzávěry (tj. univerzálně kvantifikujeme všechny volné proměnné).
Získáme tak uzavřenou teorii T ′ a sentenci φ′ a platí: T ′ |= φ′ právě když T |= φ.

Kvantifikátory

Redukce položek funguje stejně, použijeme tatáž atomická tabla pro logické spojky (viz Ta-
bulka 3.1, kde místo výroků jsou φ,ψ sentence). Musíme ale přidat 4 nová atomická tabla
pro T/F a univerzální/existenční kvantifikátor. Tyto položky dělíme na dva typy:

• typ “svědek”: položky tvaru T(∃x)φ(x) a F(∀x)φ(x)

• typ “všichni”: položky tvaru T(∀x)φ(x) a F(∃x)φ(x)

Příklady vidíme v tablech na Obrázku 6.1 (‘svědci’ jsou červeně, ‘všichni’ modře).
1Na tomto místě je dobré připomenout si tablo metodu ve výrokové logice, viz Kapitola 3.
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F(∃x)¬P (x) → ¬(∀x)P (x)

T(∃x)¬P (x)

F¬(∀x)P (x)

T(∀x)P (x)

T¬P (c0)

FP (c0)

T(∀x)P (x)

TP (c0)

⊗

F¬(∀x)P (x) → (∃x)¬P (x)

T¬(∀x)P (x)

F(∃x)¬P (x)

F(∀x)P (x)

FP (c0)

F(∃x)¬P (x)

F¬P (c0)

TP (c0)

⊗

Obrázek 6.1: Příklady tabel. Položky typu ‘svědek’ jsou znázorněny červeně, položky typu
‘všichni’ modře.

Kvantifikátor nemůžeme pouze odstranit, neboť výsledná formule φ(x) by nebyla sentencí.
Místo toho současně s odstraněním kvantifikátoru substituujeme za x nějaký konstantní term,
v nové položce tedy bude sentence φ(x/t). Jaký konstantní term t substituujeme záleží na
tom, zda jde o položku typu “svědek” nebo “všichni”.

Pomocné konstantní symboly

Jazyk L teorie T , ve které dokazujeme, rozšíříme o spočetně mnoho nových (pomocných)
konstantních symbolů C = {c0, c1, c2, . . . } (ale budeme psát i c, d, . . . ), výsledný rozšířený
jazyk označíme LC . Konstantní termy v jazyce LC tedy existují, i pokud původní jazyk L
nemá žádné konstanty. A vždy při konstrukci tabla máme k dispozici nějaký nový, dosud
nepoužitý (ani v teorii, ani v konstruovaném tablu) pomocný konstantní symbol c ∈ C.

Svědci

Při redukci položky typu “svědek” substituujeme za proměnnou jeden z těchto nových, po-
mocných symbolů, a to takový, který dosud nebyl na dané větvi použit. V případě položky
T(∃x)φ(x) tedy máme Tφ(x/c). Tento konstantní symbol c bude hrát roli (nějakého) prvku,
který danou formuli splňuje (resp. vyvrací, jde-li o položku tvaru F(∀x)φ(x)). Srovnejte s
Větou o konstantách (Věta 5.6.15). Je důležité, že symbol c dosud nebyl na větvi ani v teorii
nijak použit. Typicky ale poté použijeme položky typu “všichni”, abychom se dozvěděli, co
musí o tomto svědku platit.

Na Obrázku 6.1 vidíme příklad: položka T(∃x)¬P (x) v levém tablu je redukovaná, její
redukcí vznikla položka T¬P (c0); c0 ∈ C je pomocný symbol, na větvi se dosud nevyskytoval
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(a je první takový). Podobně pro položku F(∀x)P (x) a FP (c0) v pravém tablu.

Všichni

Při redukci položky typu “všichni” substituujeme za proměnnou x libovolný konstantní term
t rozšířeného jazyka LC . Z položky tvaru T(∀x)φ(x) tedy získáme položku Tφ(x/t).

Aby byla bezesporná větev dokončená, budou na ní ale muset být položky Tφ(x/t) pro
všechny konstantní LC-termy t. (Musíme ‘použít’ vše, co položka T(∀x)φ(x) ‘říká’.) A stejně
pro položku tvary F(∃x)φ(x).

Ve výrokové logice jsme používali konvenci, že při připojování atomických tabel vynechá-
váme jejich kořeny (jinak bychom opakovali na větvi tutéž položku dvakrát). V predikátové
logice použijeme stejnou konvenci, ale s výjimkou položek typu ‘všichni’. U těch zapíšeme i
kořen připojovaného atomického tabla. Proč to děláme? Abychom si připomněli, že s touto
položkou ještě nejsme hotovi, že musíme připojit atomická tabla s jinými konstantními termy.

Na Obrázku 6.1 v levém tablu není položka T(∀x)P (x) redukovaná. Její první výskyt
(4. vrchol shora) jsme zredukovali, substituujeme term t = c0, máme tedy φ(x/t) = P (c0).
Připojili jsme atomické tablo v sestávající z téže položky v kořeni T(∀x)P (x), kterou do
tabla zapíšeme, a z položky TP (c0) pod ní. Zatímco první výskyt položky T(∀x)P (x) je tímto
redukovaný, druhý výskyt (7. vrchol shora) redukovaný není. Podobně pro položku F(∃x)¬P (x)
v pravém tablu.

Tento poněkud technický přístup k definici redukovanosti (výskytů) položek typu ‘všichni’
se nám bude hodit v definici systematického tabla.

Jazyk

Nadále budeme předpokládat, že jazyk L je spočetný.2 Z toho plyne, že každá L-teorie T má
jen spočetně mnoho axiomů, a také že konstantních termů v jazyce LC je jen spočetně mnoho.
Toto omezení potřebujeme, neboť každé, i nekonečné tablo má jen spočetně mnoho položek,
a musíme být schopni použít všechny axiomy dané teorie, a substituovat všechny konstantní
termy jazyka LC .

Nejprve také budeme předpokládat, že jde o jazyk bez rovnosti, což je jednodušší. Pro-
blémem je, že tablo je čistě syntaktický objekt, ale rovnost má speciální sémantický význam,
totiž musí být v každém modelu interpretována relací identity. Jak adaptovat metodu pro
jazyky s rovností si ukážeme později.

6.2 Formální definice
V této sekci definujeme všechny pojmy potřebné pro tablo metodu pro jazyky bez rovnosti.
K jazykům s rovností se vrátíme v Sekci 6.3.

Buď L spočetný jazyk bez rovnosti. Označme jako LC rozšíření jazyka L o spočetně mnoho
nových pomocných konstantních symbolů C = {ci | i ∈ N}. Zvolme nějaké očíslování kon-
stantních termů jazyka LC , označme tyto termy {ti | i ∈ N}.

Mějme nějakou L-teorii T a L-sentenci φ.
2Z hlediska výpočetní logiky to není velké omezení.
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6.2.1 Atomická tabla

Položka je nápis Tφ nebo Fφ, kde φ je nějaká LC-sentence. Položky tvaru T(∃x)φ(x) a
F(∀x)φ(x) jsou typu ‘svědek’, položky tvaru T(∀x)φ(x) a F(∃x)φ(x) jsou typu ‘všichni’

Atomická tabla jsou položkami označkované stromy znázorněné v Tabulkách 6.1 a 6.2.

¬ ∧ ∨ → ↔

True

T¬φ

Fφ

Tφ ∧ ψ

Tφ

Tψ

Tφ ∨ ψ

Tφ Tψ

Tφ→ ψ

Fφ Tψ

Tφ↔ ψ

Tφ

Tψ

Fφ

Fψ

False

F¬φ

Tφ

Fφ ∧ ψ

Fφ Fψ

Fφ ∨ ψ

Fφ

Fψ

Fφ→ ψ

Tφ

Fψ

Fφ↔ ψ

Tφ

Fψ

Fφ

Tψ

Tabulka 6.1: Atomická tabla pro logické spojky; φ a ψ jsou libovolné LC-sentence.

∀ ∃

True

T(∀x)φ(x)

Tφ(x/ti)

T(∃x)φ(x)

Tφ(x/ci)

False

F(∀x)φ(x)

Fφ(x/ci)

F(∃x)φ(x)

Fφ(x/ti)

Tabulka 6.2: Atomická tabla pro kvantifikátory; φ je LC-sentence, x proměnná, ti libovolný
konstantní LC-term, ci ∈ C je nový pomocný konstantní symbol (který se dosud nevyskytuje
na dané větvi konstruovaného tabla).

6.2.2 Tablo důkaz

Definice v této části jsou téměř identické odpovídajícím definicím z výrokové logiky. Hlavní
technický problém je jak definovat redukovanost položek typu ‘všichni’ na větvi tabla: chceme
aby za proměnnou byly substituovány všechny konstantní LC-termy ti.

Definice 6.2.1 (Tablo). Konečné tablo z teorie T je uspořádaný, položkami označkovaný
strom zkonstruovaný aplikací konečně mnoha následujících pravidel:

• jednoprvkový strom označkovaný libovolnou položkou je tablo z teorie T ,
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• pro libovolnou položkou P na libovolné větvi V , můžeme na konec větve V připojit
atomické tablo pro položku P , přičemž je-li P typu ‘svědek’, můžeme použít jen pomocný
konstantní symbol ci ∈ C, který se na větvi V dosud nevyskytuje (pro položky typu
‘všichni’ můžeme použít libovolný konstantní LC-term ti),

• na konec libovolné větve můžeme připojit položku Tα pro libovolný axiom teorie α ∈ T .

Tablo z teorie T je buď konečné, nebo i nekonečné: v tom případě vzniklo ve spočetně mnoha
krocích. Můžeme ho formálně vyjádřit jako sjednocení τ = ⋃

i≥0 τi, kde τi jsou konečná tabla
z T , τ0 je jednoprvkové tablo, a τi+1 vzniklo z τi v jednom kroku.3

Tablo pro položku P je tablo, které má položku P v kořeni.

Připomeňme konvenci, že pokud P není typu ‘všichni’, potom kořen atomického tabla
nebudeme zapisovat (neboť vrchol s položkou P už v tablu je).
Cvičení 6.1. Ukažte v jednotlivých krocích jak byla tabla z Obrázku 6.1 zkonstruována.

Definice 6.2.2 (Tablo důkaz). Tablo důkaz sentence φ z teorie T je sporné tablo z teorie
T s položkou Fφ v kořeni. Pokud existuje, je φ (tablo) dokazatelná z T , píšeme T |− φ.
(Definujme také tablo zamítnutí jako sporné tablo s Tφ v kořeni. Pokud existuje, je φ (tablo)
zamítnutelná z T , tj. platí T |− ¬φ.)

• Tablo je sporné, pokud je každá jeho větev sporná.

• Větev je sporná, pokud obsahuje položky Tψ a Fψ pro nějakou sentenci ψ, jinak je
bezesporná.

• Tablo je dokončené, pokud je každá jeho větev dokončená.

• Větev je dokončená, pokud

– je sporná, nebo
– je každá položka na této větvi redukovaná a zároveň větev obsahuje položku Tα

pro každý axiom α ∈ T .

• Položka P je redukovaná na větvi V procházející touto položkou, pokud

– je tvaru Tψ resp. Fψ pro atomickou sentenci ψ (tj. R(t1, . . . , tn), kde ti jsou kon-
stantní LC-termy), nebo

– není typu ‘všichni’ a vyskytuje se na V jako kořen atomického tabla4 (tj., typicky,
při konstrukci tabla již došlo k jejímu rozvoji na V ), nebo

– je typu ‘všichni’ a všechny její výskyty na V jsou na větvi V redukované.

• Výskyt položky P typu ‘všichni’ na větvi V je i-tý, pokud má na V právě i− 1 předků
označených touto položkou, a i-tý výskyt je redukovaný na V , pokud

– položka P má (i+ 1)-ní výskyt na V , a zároveň
– na V se vyskytuje položka Tφ(x/ti) (je-li P = T(∀x)φ(x)) resp. Fφ(x/ti) (je-li
P = F(∃x)φ(x)), kde ti je i-tý konstantní LC-term.5

3Sjednocení proto, že v jednotlivých krocích přidáváme do tabla nové vrcholy, τi je tedy podstromem τi+1.
4Byť podle konvence tento kořen nezapisujeme.
5Tj. (typicky) už jsme za x substituovali term ti.
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Všimněte si, že je-li položka typu ‘všichni’ na nějaké větvi redukovaná, musí mít na této
větvi nekonečně mnoho výskytů, a museli jsme v nich použít při substituci všechny možnosti,
tj. všechny konstantní LC-termy.
Příklad 6.2.3. Jako příklad sestrojme tablo důkazy v logice (z prázdné teorie) následujících
sentencí:

(a) (∀x)(P (x) →Q(x)) → ((∀x)P (x) → (∀x)Q(x)), kde P,Q jsou unární relační symboly.

(b) (∀x)(φ(x)∧ψ(x))↔((∀x)φ(x)∧(∀x)ψ(x)), kde φ(x), ψ(x) jsou libovolné formule s jedinou
volnou proměnnou x.

Výsledná tabla jsou na Obrázcích 6.2 a 6.3. Dvojice sporných položek jsou znázorněny červeně.
Rozmyslete si, jak byla tabla po krocích zkonstruována.

F(∀x)(P (x) →Q(x)) → ((∀x)P (x) → (∀x)Q(x))

T(∀x)(P (x) →Q(x))

F(∀x)P (x) → (∀x)Q(x)

T(∀x)P (x)

F(∀x)Q(x)

FQ(c0)

T(∀x)P (x)

TP (c0)

T(∀x)(P (x) →Q(x))

TP (c0) →Q(c0)

FP (c0) TQ(c0)

⊗ ⊗

Obrázek 6.2: Tablo důkaz z Příkladu 6.2.3 (a).

6.2.3 Systematické tablo a konečnost důkazů

V Sekci 3.4 jsme ukázali, že neprodlužujeme-li sporné větve (což nemusíme dělat), potom
sporné tablo, speciálně tablo důkaz, bude vždy konečný. Stejný důkaz funguje i v logice
predikátové.
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F(∀x)(φ(x) ∧ ψ(x)) ↔ ((∀x)φ(x) ∧ (∀x)ψ(x))

T(∀x)(φ(x) ∧ ψ(x))

F(∀x)φ(x) ∧ (∀x)ψ(x)

F(∀x)φ(x)

Fφ(c0)

T(∀x)(φ(x) ∧ ψ(x))

Tφ(c0) ∧ ψ(c0)

Tφ(c0)

Tψ(c0)

F(∀x)ψ(x)

Fψ(c0)

T(∀x)(φ(x) ∧ ψ(x))

Tφ(c0) ∧ ψ(c0)

Tφ(c0)

Tψ(c0)

F(∀x)(φ(x) ∧ ψ(x))

T(∀x)φ(x) ∧ (∀x)ψ(x)

T(∀x)φ(x)

T(∀x)ψ(x)

F(φ(c0) ∧ ψ(c0))

Fφ(c0)

T(∀x)φ(x)

Tφ(c0)

Fψ(c0)

T(∀x)ψ(x)

Tψ(c0)

⊗ ⊗ ⊗ ⊗

Obrázek 6.3: Tablo důkaz z Příkladu 6.2.3 (b). Konstantu c0 můžeme použít jako novou ve
všech třech případech. Stačí, že se zatím nevyskytuje na dané větvi.
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Důsledek 6.2.4 (Konečnost důkazů). Pokud T |− φ, potom existuje i konečný tablo důkaz
φ z T .

Důkaz. Stejný jako ve ve výrokové logice, viz důkaz Důsledku 3.4.5.

Ve stejné sekci jsme si ukázali konstrukci systematického tabla. Tu lze také snadno adap-
tovat na predikátovou logiku. Musíme zajistit, abychom někdy zredukovali každou položku,
použili každý axiom, a nově v predikátové logice také substituovali každý LC term ti za
proměnnou v položkách typu ‘všichni’.

Definice 6.2.5 (Systematické tablo predikátové). Mějme položkuR a teorii T = {α0, α1, α2, . . . }.
Systematické tablo z teorie T pro položku R je tablo τ = ⋃

i≥0 τi, kde τ0 je jednoprvkové tablo
s položkou R, a pro každé i ≥ 0:

Buď P položka v nejlevějším vrcholu v na co nejmenší úrovni tabla τi, která není reduko-
vaná na nějaké bezesporné větvi procházející P (resp. jde-li o položku typu ‘všichni’, její výskyt
v tomto vrcholu není redukovaný). Potom τ ′

i je tablo vzniklé z τi připojením atomického tabla
pro P na každou bezespornou větev procházející v, kde

• je-li P typu ‘všichni’ a má-li ve vrcholu v k-tý výskyt, potom za proměnnou substituu-
jeme k-tý LC-term tk,

• je-li P typu ‘svědek’, potom na dané větvi V za proměnnou substituujeme ci ∈ C s
nejmenším možným i (takovým, že na V se ci dosud nevyskytuje).

Jinak, pokud taková položka P a vrchol v neexistují, tj. všechny položky jsou redukované,
definujeme τ ′

i = τi.
Tablo τi+1 je potom tablo vzniklé z τ ′

i připojením Tαi na každou bezespornou větev τ ′
i ,

pokud i ≤ |T |. Jinak (je-li T konečná a už jsme použili všechny axiomy) tento krok přeskočíme
a definujeme τi+1 = τ ′

i .

Stejně jako ve výrokové logice platí, že systematické tablo je vždy dokončené, a poskytuje
konečný důkaz:

Lemma 6.2.6. Systematické tablo je dokončené.

Důkaz. Obdobný jako důkaz ve výrokové logice (Lemma 3.4.2). Pro položky typu ‘všichni’
si všimněte, že k-tý výskyt redukujeme v momentě, kdy na něj při konstrukci narazíme:
připojením vrcholu s (k + 1)-ním výskytem a substitucí k-tého LC-termu tk.

Důsledek 6.2.7 (Systematičnost důkazů). Pokud T |− φ, potom systematické tablo je (ko-
nečným) tablo důkazem φ z T .

Důkaz. Stejný jako důkaz ve výrokové logice (Důsledek 3.4.6).

6.3 Jazyky s rovností
Nyní si ukážeme, jak aplikovat tablo metodu na jazyky s rovností. Co je to rovnost? V
matematice může v různém kontextu znamenat různé relace. Platí 1 + 0 = 0 + 1? Mluvíme-li
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o celých číslech, pak ano, ale máme-li na mysli aritmetické výrazy (nebo např. termy v jazyce
těles), potom si levá a pravá strana nejsou rovny: jde o jiné výrazy. 6

Představte si, že máme teorii T v jazyce s rovností obsahujícím konstantní symboly c1, c2,
unární funkční symbol f a unární relační symbol P . Mějme nějaké dokončené tablo z této
teorie, a v něm bezespornou větev, na kterém najdeme položku Tc1 = c2. Budeme chtít
sestrojit kanonický model A pro tuto větev, podobně jako ve výrokové logice. Položka bude
znamenat, že v kanonickém modelu platí cA

1 =A cA
2 , tj. (cA

1 , c
A
2 ) ∈ =A. To nám ale nestačí,

chceme také, aby platilo také např.:

• cA
2 =A cA

1 ,

• fA(cA
1 ) =A fA(cA

2 ),

• cA
1 ∈ PA, právě když cA

2 ∈ PA.

Obecně tedy chceme, aby relace =A byla tzv. kongruencí,7 tj. ekvivalencí, která se chová
‘dobře’ vůči funkcím a relacím struktury A. Toho docílíme tak, že k teorii T přidáme tzv.
axiomy rovnosti, které tyto vlastnosti vynutí, a tablo sestrojíme z výsledné teorie T ∗.

V modelu A potom bude relace =A kongruencí. To nám ale nestačí, chceme, aby rovnost
byla identita, tj. aby (a, b) ∈=A platilo jedině když a a b jsou týmž prvkem univerza. Toho
docílíme identifikací všech =A-ekvivalentních prvků do jediného prvku. Této konstrukci se
říká faktorstruktura podle kongruence =A.8 Nyní tyto pojmy formalizujeme.

Definice 6.3.1 (Kongruence). Mějme ekvivalenci ∼ na množině A, funkci f : An → A, a
relaci R ⊆ An. Říkáme, že ∼ je

• kongruencí pro funkci f , pokud pro všechna ai, bi ∈ A taková, že ai ∼ bi (1 ≤ i ≤ n)
platí f(a1, . . . , an) ∼ f(b1, . . . , bn),

• kongruencí pro relaci R, pokud pro všechna ai, bi ∈ A taková, že ai ∼ bi (1 ≤ i ≤ n)
platí (a1, . . . , an) ∈ R právě když (b1, . . . , bn) ∈ R.

Kongruence struktury A je ekvivalence ∼ na množině A, která je kongruencí pro všechny
funkce a relace A.

Definice 6.3.2 (Faktorstruktura). Mějme strukturu A a její kongruenci ∼. Faktorstruktura
(podílová struktura) A podle ∼ je struktura A/∼ v témž jazyce, jejíž univerzum A/∼ je
množina všech rozkladových tříd A podle ∼, a jejíž funkce a relace jsou definované pomocí
reprezentantů, tj:

• fA/∼([a1]∼, . . . , [an]∼) = [fA(a1, . . . , an)]∼, pro každý (n-ární) funkční symbol f , a

• RA/∼([a1]∼, . . . , [an]∼) právě když RA(a1, . . . , an), pro každý (n-ární) relační symbol R.

Definice 6.3.3 (Axiomy rovnosti). Axiomy rovnosti pro jazyk L s rovností jsou následující:
6Podobně např. t1 = t2 v Prologu neznamená, že jde o tentýž term, ale že termy t1 a t2 jsou unifikovatelné,

viz následující kapitola, Sekce 7.4.
7Název pochází z kongruence modulo n, která je kongruencí v tomto smyslu na množině všech celých čísel,

např. splňuje: a + b ≡ c + d (mod n) kdykoliv a ≡ c (mod n) a b ≡ d (mod n).
8Stejně jako grupa Zn je faktorstrukturou grupy Z podle ≡ (mod n); např. prvek 2 ∈ Zn představuje

množinu všech celých čísel, jejichž zbytek po dělení n je roven 2.
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(i) x = x,

(ii) x1 = y1 ∧ · · · ∧xn = yn→ f(x1, . . . , xn) = f(y1, . . . , yn) pro každý n-ární funkční symbol
f jazyka L,

(iii) x1 = y1∧· · ·∧xn = yn→(R(x1, . . . , xn)→R(y1, . . . , yn)) pro každý n-ární relační symbol
R jazyka L včetně rovnosti.

Cvičení 6.2. První z axiomů rovnosti znamená reflexivitu relace =A. Kam se poděly symetrie
a tranzitivita? Ukažte, že plynou z axiomu (iii) pro symbol rovnosti =.

Z axiomů (i) a (iii) tedy plyne, že relace =A je ekvivalence na A, a axiomy (ii) a (iii)
vyjadřují, že =A je kongruencí A. V tablo metodě v případě jazyka s rovností implicitně
přidáme všechny axiomy rovnosti:

Definice 6.3.4 (Tablo důkaz s rovností). Je-li T teorie v jazyce L s rovností, potom označme
jako T ∗ rozšíření teorie T o generální uzávěry9 axiomů rovnosti pro jazyk L. Tablo důkaz z
teorie T je tablo důkaz z T ∗, podobně pro tablo zamítnutí (a obecně jakékoliv tablo).

Platí následující jednoduché pozorování:

Pozorování 6.3.5. Jestliže A |= T ∗, potom platí i A/=A |= T ∗, a ve struktuře A/=A je
symbol rovnosti interpretován jako identita. Na druhou stranu, v každém modelu, ve kterém
je symbol rovnosti interpretován jako identita, platí axiomy rovnosti.

Toto pozorování využijeme při konstrukci kanonického modelu, který budeme potřebovat
v důkazu Věty o úplnosti. Nejprve ale dokážeme Větu o korektnosti.

6.4 Korektnost a úplnost
V této sekci dokážeme, že tablo metoda je i v predikátové logice korektní a úplná. Důkazy obou
vět mají stejnou strukturu jako ve výrokové logice, liší se jen v implementačních detailech.

6.4.1 Věta o korektnosti

Model (struktura) A se shoduje s položkou P , pokud P = Tφ a A |= φ, nebo P = Fφ a
A ̸|= φ. Dále A se shoduje s větví V , pokud se shoduje s každou položkou na této větvi.

Ukážeme nejprve pomocné lemma analogické Lemmatu 3.5.1:

Lemma 6.4.1. Shoduje-li se model A teorie T s položkou v kořeni tabla z teorie T (v jazyce
L), potom lze A expandovat do jazyka LC tak, že se shoduje s některou větví v tablu.

Všimněte si, že stačí expandovat A o nové konstanty cA vyskytující se na větvi V . Ostatní
konstantní symboly lze interpretovat libovolně.

Důkaz. Mějme tablo τ = ⋃
i≥0 τi z teorie T a model A ∈ ML(T ) shodující se s kořenem τ ,

tedy s (jednoprvkovou) větví V0 v (jednoprvkovém) τ0.
Indukcí podle i najdeme posloupnost větví Vi a expanzí Ai modelu A o konstanty cA ∈ C

vyskytující se na Vi takových, že Vi je větev v tablu τi shodující se s modelem Ai, Vi+1 je
prodloužením Vi, a Ai+1 je expanzí Ai (mohou si být i rovny). Požadovaná větev tabla τ je

9Neboť v tablo metodě potřebujeme sentence.
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potom V = ⋃
i≥0 Vi. Expanzi modelu A do jazyka LC získáme jako ‘limitu’ expanzí Ai, tj.

vyskytuje-li se symbol c ∈ C na V , vyskytuje se na nějaké z větví Vi a interpretujeme ho
stejně jako v Ai (ostatní pomocné symboly interpretujeme libovolně).

• Pokud τi+1 vzniklo z τi bez prodloužení větve Vi, definujeme Vi+1 = Vi a Ai+1 = Ai.

• Pokud τi+1 vzniklo z τi připojením položky Tα (pro nějaký axiom α ∈ T ) na konec větve
Vi, definujeme Vi+1 jako tuto prodlouženou větev a Ai+1 = Ai (nepřidali jsme žádný
nový pomocný konstantní symbol). Protože Ai+1 je modelem T , platí v něm axiom α,
tedy shoduje se i s novou položkou Tα.

• Nechť τi+1 vzniklo z τi připojením atomického tabla pro nějakou položku P na konec
větve Vi. Protože se model Ai shoduje s položkou P (která leží na větvi Vi), shoduje se
i s kořenem připojeného atomického tabla.

– Pokud jsme připojili atomické tablo pro logickou spojku, položíme Ai+1 = Ai

(nepřidali jsme nový pomocný symbol). Protože Ai+1 se shoduje s kořenem ato-
mického tabla, shoduje se i s některou z jeho větví (stejně jako ve výrokové logice);
definujeme Vi+1 jako prodloužení Vi o tuto větev.

– Je-li položka P typu ‘svědek’: Pokud je P = T(∃x)φ(x), potom Ai |= (∃x)φ(x),
tedy existuje a ∈ A takové, že Ai |= φ(x)[e(x/a)]. Větev Vi+1 definujeme jako
prodloužení Vi o nově přidanou položku Tφ(x/c) a model Ai+1 jako expanzi Ai o
konstantu cA = a. Případ P = F(∀x)φ(x) je obdobný.

– Je-li položka P typu ‘všichni’, větev Vi+1 definujeme jako prodloužení Vi o atomické
tablo. Nově přidaná položka je Tφ(x/t) nebo Fφ(x/t) pro nějaký LC-term t. Před-
pokládejme, že jde o první z těchto dvou možností, pro druhou je důkaz analogický.
Model Ai+1 definujeme jako libovolnou expanzi Ai o nové konstanty vyskytující
se v t. Protože Ai |= (∀x)φ(x), platí i Ai+1 |= (∀x)φ(x) a tedy i Ai+1 |= φ(x/t);
model Ai+1 se tedy shoduje s větví Vi.

Připomeňme stručně myšlenku důkazu Věty o korektnosti: Pokud by existoval důkaz a
zároveň protipříklad, protipříklad by se musel shodovat s některou větví důkazu, ty jsou ale
všechny sporné. Důkaz je tedy téměř stejný jako ve výrokové logice.

Věta 6.4.2 (O korektnosti). Je-li sentence φ tablo dokazatelná z teorie T , potom je φ pravdivá
v T , tj. T |− φ ⇒ T |= φ.

Důkaz. Předpokládejme pro spor, že T ̸|= φ, tj. existuje A ∈ M(T ) takový, že A ̸|= φ. Protože
T |− φ, existuje sporné tablo z T s Fφ v kořeni. Model A se shoduje s Fφ, tedy podle Lemmatu
6.4.1 lze expandovat do jazyka LC tak, že se expanze shoduje s nějakou větví V . Všechny
větve jsou ale sporné.

6.4.2 Věta o úplnosti

Stejně jako ve výrokové logice ukážeme, že bezesporná větev v dokončeném tablo důkazu
poskytuje protipříklad: model teorie T , který se shoduje s položkou Fφ v kořeni tabla, tj.
neplatí v něm φ. Takových modelů může být více, definujeme proto opět jeden konkrétní,
kanonický.
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Model musí mít nějakou doménu. Jak ji získat z tabla, což je čistě syntaktický objekt?
Využijeme standardní (v matematice) trik: ze syntaktických objektů uděláme sémantické.
Konkrétně, za doménu zvolíme množinu všech konstantních termů jazyka LC .10 Ty chápeme
jako konečné řetězce. V následujícím výkladu budeme někdy (neformálně) místo termu t psát
“t”, abychom zdůraznili, že v daném místě chápeme t jako řetězec znaků, a ne např. jako
termovou funkci, kterou je třeba vyhodnotit.11

Definice 6.4.3 (Kanonický model). Mějme teorii T v jazyce L = ⟨F ,R⟩ a nechť V je
bezesporná větev nějakého dokončeného tabla z teorie T . Potom kanonický model pro V je
LC-struktura A = ⟨A,FA ∪ CA,RA⟩ definovaná následovně:

Je-li jazyk L bez rovnosti, potom:

• Doména A je množina všech konstantních LC-termů.

• Pro každý n-ární relační symbol R ∈ R a “s1”, . . . , “sn” z A:

(“s1”, . . . , “sn”) ∈ RA právě když na větvi V je položka TR(s1, . . . , sn)

• Pro každý n-ární funkční symbol f ∈ F a “s1”, . . . , “sn” z A:

fA(“s1”, . . . , “sn”) = “f(s1, . . . , sn)”

Speciálně, pro konstantní symbol c máme cA = “c”.

Funkci fA tedy interpretujeme jako ‘vytvoření’ nového termu ze symbolu f a vstupních termů
(řetězců).

Nechť je L jazyk s rovností. Připomeňme, že naše tablo je nyní z teorie T ∗, tj. z rozšíření T
o axiomy rovnosti pro L. Nejprve vytvoříme kanonický model B pro V jako by byl L bez
rovnosti (jeho doména B je tedy množina všech konstantních LC-termů). Dále definujeme
relaci =B stejně jako pro ostatní relační symboly:

“s1” =B “s2” právě když na větvi V je položka Ts1 = s2

Kanonický model pro V potom definujeme jako faktorstrukturu A = B/=B .

Jak plyne z diskuze v Sekci 6.3, relace =B je opravdu kongruence struktury B, definice je
tedy korektní, a relace =A je identita na A. Platí následující jednoduché pozorování:

Pozorování 6.4.4. Pro každou formuli φ máme B |= φ (kde symbol = je interpretován jako
binární relace =B), právě když A = B/=B |= φ (kde = je interpretován jako identita).

Všimněte si, že v jazyce bez rovnosti je kanonický model vždy spočetně nekonečný. V
jazyce s rovností může ale být konečný, jak uvidíme v následujících příkladech.
Příklad 6.4.5. Nejprve si ukažme příklad kanonického modelu v jazyce bez rovnosti. Mějme
teorii T = {(∀x)R(f(x))} v jazyce L = ⟨R, f, d⟩ bez rovnosti, kde R je unární relační, f
unární funkční, a d konstantní symbol. Najděme protipříklad ukazující, že T ̸|= ¬R(d).

10Tj. termů zbudovaných aplikací funkčních symbolů jazyka L na konstantní symboly jazyka L (má-li nějaké)
a pomocné konstantní symboly z C.

11Srovnejte aritmetický výraz “1+1” a 1+1=2.
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Systematické tablo z T s položkou F¬R(d) v kořeni není sporné, obsahuje jedinou větev
V , která je bezesporná. (Sestrojte si tablo sami!) Kanonický model pro V je LC-struktura
A = ⟨A,RA, fA, dA, cA

0 , c
A
1 , c

A
2 , . . . ⟩, jejíž doména je

A = {“d”, “f(d)”, “f(f(d))”, . . . , “c0”, “f(c0)”, “f(f(c0))”, . . . , “c1”, “f(c1)”, “f(f(c1))”, . . . }

a interpretace symbolů jsou následující:

• dA = “d”,

• cA
i = “ci” pro všechna i ∈ N,

• fA(“d”) = “f(d)”, fA(“f(d)”) = “f(f(d))”, . . .

• RA = A\C = {“d”, “f(d)”, “f(f(d))”, . . . , “f(c0)”, “f(f(c0))”, . . . , “f(c1)”, “f(f(c1))”, . . . }.

Redukt kanonického modelu A na původní jazyk L je potom A′ = ⟨A,RA, fA, dA⟩.
Příklad 6.4.6. Nyní příklad v jazyce s rovností: Mějme teorii T = {(∀x)R(f(x)), (∀x)(x =
f(f(x)))} v jazyce L = ⟨R, f, d⟩ s rovností. Opět najděme protipříklad ukazující, že T ̸|=
¬R(d).

Systematické tablo z teorie T ∗ (tj. z T rozšířené o axiomy rovnosti pro L) s položkou
F¬R(d) v kořeni obsahuje bezespornou větev V . (Sestrojte si tablo sami!) Nejprve sestrojíme
kanonický model B pro tuto větev, jako by byl jazyk bez rovnosti:

B = ⟨B,RB, fB, dB, cB
0 , c

B
1 , c

B
2 , . . . ⟩

kde B je množina všech konstantních LC-termů. Relace =B je definovaná, jako by symbol
‘=’ byl ‘obyčejným’ relačním symbolem v L. Je to kongruence struktury B, a platí pro ni,
že s1 =B s2 právě když s1 = f(· · · (f(s2)) · · · ) nebo s2 = f(· · · (f(s1)) · · · ) pro sudý počet
aplikací f . Jako reprezentanty jednotlivých tříd tedy můžeme vybrat termy s žádným nebo
jedním výskytem symbolu f :

B/=B = {[“d”]=B , [“f(d)”]=B , [“c0”]=B , [“f(c0)”]=B , [“c1”]=B , [“f(c1)”]=B , . . . }

Kanonický model pro větev V je potom LC-struktura

A = B/=B = ⟨A,RA, fA, dA, cA
0 , c

A
1 , c

A
2 , . . . ⟩

kde A = B/=B a interpretace symbolů jsou následující:

• dA = [“d”]=B ,

• cA
i = [“ci”]=B pro všechna i ∈ N,

• fA([“d”]=B ) = [“f(d)”]=B , fA([“f(d)”]=B ) = [“f(f(d))”]=B = [“d”]=B , . . .

• RA = A = B/=B .

Redukt kanonického modelu A na původní jazyk L je opět A′ = ⟨A,RA, fA, dA⟩.
Cvičení 6.3. (a) Sestrojte dokončené tablo s položkou T(∀x)(∀y)(x = y) v kořeni. Sestrojte

kanonický model pro (jedinou, bezespornou) větev tohoto tabla.
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(b) Sestrojte dokončené tablo s položkou T(∀x)(∀y)(∀z)(x = y ∨ x = z ∨ y = z) v kořeni.
Sestrojte kanonické modely pro několik bezesporných větví a porovnejte je.
Nyní jsme připraveni dokázat Větu o úplnosti. Použijeme opět následující pomocné lemma,

jehož znění je zcela stejné, jako znění Lemmatu 3.5.4 a důkaz se liší jen v technických detailech.

Lemma 6.4.7. Kanonický model pro (bezespornou dokončenou) větev V se shoduje s V .

Důkaz. Nejprve uvažme jazyky bez rovnosti. Ukážeme indukcí podle struktury sentencí v
položkách, že kanonický model A se shoduje se všemi položkami P na větvi V .

Základ indukce, tj. případ, kdy φ = R(s1, . . . , sn) je atomická sentence, je jednoduchý:
Je-li na V položka Tφ, potom (s1, . . . , sn) ∈ RA plyne přímo z definice kanonického modelu,
máme tedy A |= φ. Je-li na V položka Fφ, potom na V není položka Tφ (V je bezesporná),
(s1, . . . , sn) ̸∈ RA, a A ̸|= φ

Nyní indukční krok. Rozebereme jen několik případů, ostatní se dokáží obdobně.
Pro logické spojky je důkaz zcela stejný jako ve výrokové logice, například je-li P = Fφ∧ψ,

potom protože je P na V redukovaná, vyskytuje se na V položka Fφ nebo položka Fψ. Platí
tedy A ̸|= φ nebo A ̸|= ψ, z čehož plyne A ̸|= φ ∧ ψ a A se shoduje s P .

Máme-li položku typu “všichni”, například P = T(∀x)φ(x) (případ P = F(∃x)φ(x) je
obdobný), potom jsou na V i položky Tφ(x/t) pro každý konstantní LC-term, tj. pro každý
prvek “t” ∈ A. Dle indukčního předpokladu je A |= φ(x/t) pro každé “t” ∈ A, tedy A |=
(∀x)φ(x).

Máme-li položku typu “svědek”, například P = T(∃x)φ(x) (případ P = F(∀x)φ(x) je
obdobný), potom je na V i položka Tφ(x/c) pro nějaké “c” ∈ A. Dle indukčního předpokladu
je A |= φ(x/c), tedy i A |= (∃x)φ(x).

Je-li jazyk s rovností, máme kanonický model A = B/=B , důkaz výše platí pro B, a zbytek
plyne z Pozorování 6.4.4.

Cvičení 6.4. Ověřte zbývající případy v důkazu Lemmatu 6.4.7.
Důkaz Věty o úplnosti je také analogický její verzi pro výrokovou logiku:

Věta 6.4.8 (O úplnosti). Je-li sentence φ pravdivá v teorii T , potom je tablo dokazatelná z
T , tj. T |= φ ⇒ T |− φ.

Důkaz. Ukážeme, že libovolné dokončené tablo z T s položkou Fφ v kořeni je nutně sporné.
Důkaz provedeme sporem: kdyby takové tablo nebylo sporné, existovala by v něm bezesporná
(dokončená) větev V . Uvažme kanonický model A pro tuto větev, a označme jako A′ jeho
redukt na jazyk L. Protože je V dokončená, obsahuje Tα pro všechny axiomy α ∈ T . Model
A se podle Lemmatu 6.4.7 shoduje se všemi položkami na V , splňuje tedy všechny axiomy
a máme i A′ |= T . Protože se ale A shoduje i s položkou Fφ v kořeni, platí i A′ ̸|= φ, což
znamená, že A′ ∈ ML(T ) \ ML(φ), tedy T ̸|= φ, a to je spor. Tablo tedy muselo být sporné,
tj. být tablo důkazem φ z T .

6.5 Důsledky korektnosti a úplnosti
Stejně jako ve výrokové logice, Věty o korektnosti a úplnosti dohromady říkají, že dokaza-
telnost je totéž, co platnost. To nám umožňuje obdobně zformulovat syntaktické analogie
sémantických pojmů a vlastností.
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Analogií důsledků jsou teorémy teorie T :

ThmL(T ) = {φ | φ je L-sentence a T |− φ}

Důsledek 6.5.1 (Dokazatelnost = platnost). Pro libovolnou teorii T a sentence φ,ψ platí:

• T |− φ právě když T |= φ

• ThmL(T ) = CsqL(T )

Platí například:

• Teorie je sporná, jestliže je v ní dokazatelný spor (tj. T |− ⊥).

• Teorie je kompletní, jestliže pro každou sentenci φ je buď T |− φ nebo T |− ¬φ (ale ne
obojí, jinak by byla sporná).

• Věta o dedukci: Pro teorii T a sentence φ,ψ platí T, φ |− ψ, právě když T |− φ → ψ.

Na závěr této sekce si ukážeme několik aplikací Vět o úplnosti a korektnosti.

6.5.1 Löwenheim-Skolemova věta

Věta 6.5.2 (Löwenheim-Skolemova). Je-li L spočetný jazyk bez rovnosti, potom každá beze-
sporná L-teorie má spočetně nekonečný model.

Důkaz. Vezměme nějaké dokončené (např. systematické) tablo z teorie T s položkou F⊥ v
kořeni. Protože T je bezesporná, není v ní dokazatelný spor, tedy tablo musí obsahovat
bezespornou větev. Hledaný spočetně nekonečný model je L-redukt kanonického modelu pro
tuto větev.

K této větě se ještě vrátíme v Kapitole 8, kde si ukážeme silnější verzi zahrnující i jazyky
s rovností (v nich je kanonický model spočetný, ale může být i konečný).

6.5.2 Věta o kompaktnosti

Stejně jako ve výrokové logice platí Věta o kompaktnosti, stejný je i její důkaz:

Věta 6.5.3 (O kompaktnosti). Teorie má model, právě když každá její konečná část má
model.

Důkaz. Model teorie je zřejmě modelem každé její části. Naopak, pokud T nemá model, je
sporná, tedy T |− ⊥. Vezměme nějaký konečný tablo důkaz ⊥ z T . K jeho konstrukci stačí
konečně mnoho axiomů T , ty tvoří konečnou podteorii T ′ ⊆ T , která nemá model.

6.5.3 Nestandardní model přirozených čísel

Na úplný závěr této sekce si ukážeme, že existuje tzv. nestandardní model přirozených čísel.
Klíčem je Věta o kompaktnosti.

Nechť N = ⟨N, S,+, ·, 0,≤⟩ je standardní model přirozených čísel. Označme Th(N) mno-
žinu všech sentencí pravdivých ve struktuře N (tzv. teorii struktury N). Pro n ∈ N definujme
n-tý numerál jako term n = S(S(· · · (S(0) · · · )), kde S je aplikováno n-krát.
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Vezměme nový konstantní symbol c a vyjádřeme, že je ostře větší než každý n-tý numerál:

T = Th(N) ∪ {n < c | n ∈ N}

Všimněte si, že každá konečná část teorie T má model. Z věty o kompaktnosti tedy plyne,
že i teorie T má model. Říkáme mu nestandardní model (označme ho A). Platí v něm tytéž
sentence, které platí ve standardním modelu, ale zároveň obsahuje prvek cA, který je větší
než každé n ∈ N (čímž zde myslíme hodnotu termu n v nestandardním modelu A).

6.6 Hilbertovský kalkulus v predikátové logice
Na závěr kapitoly si ukážeme, jak lze adaptovat Hilbertův kalkulus, představený v Sekci 3.8,
pro použití v predikátové logice. To není těžké, abychom se vypořádali s kvantifikátory, stačí
přidat dvě nová schémata logických axiomů a jedno nové inferenční pravidlo. Opět si ukážeme
korektnost tohoto dokazovacího systému, a jen zmíníme, že je také úplný.

Důkazy budou sestávat z libovolných formulí, nejen sentencí. Připomeňme, že Hilbertovský
kalkulus používá jen spojky ¬ a →. Budeme mít obdobné logické axiomy, jako ve výrokové
logice; v případě jazyka s rovností navíc přidáme axiomy rovnosti.

Definice 6.6.1 (Schémata axiomů v hilbertovském kalkulu v predikátové logice). Pro libo-
volné formule φ,ψ, χ, term t, a proměnnou x jsou následující formule logickými axiomy:

(i) φ→ (ψ → φ)

(ii) (φ→ (ψ → χ)) → ((φ→ ψ) → (φ→ χ))

(iii) (¬φ→ ¬ψ) → (ψ → φ)

(iv) (∀x)φ→ φ(x/t), je-li t substituovatelný za x do φ

(v) (∀x)(φ → ψ) → (φ→ (∀x)ψ), není-li x volná ve φ

Je-li jazyk s rovností, potom jsou logickými axiomy také axiomy rovnosti pro daný jazyk.

Všimněte si, že všechny logické axiomy jsou opravdu tautologie. Jako odvozovací pravidla
nám poslouží modus ponens a dále pravidlo generalizace:

Definice 6.6.2 (Modus ponens). Modus ponens říká, že pokud jsme již dokázali φ a také
φ→ ψ, můžeme odvodit i formuli ψ:

φ,φ→ ψ

ψ

Definice 6.6.3 (Pravidlo generalizace). Pravidlo generalizace říká, že pokud jsme dokázali
φ, lze odvodit i formuli (∀x)φ (pro libovolnou proměnnou x):

φ

(∀x)φ

Všimněte si, že obě odvozovací pravidla jsou korektní, tj. platí-li v nějaké teorii T |= φ a
T |= φ→ ψ, máme i T |= ψ, a podobně platí-li T |= φ, platí i T |= (∀x)φ.

Stejně jako ve výrokové logice, důkaz bude konečná posloupnost formulí, ve které je každá
nově napsaná formule buď axiomem (logickým, vč. axiomu rovnosti, nebo z teorie, ve které
dokazujeme), nebo lze odvodit z předchozích pomocí jednoho z odvozovacích pravidel:
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Definice 6.6.4 (Hilbertovský důkaz). Hilbertovský důkaz formule φ z teorie T je konečná
posloupnost formulí φ0, . . . , φn = φ, ve které pro každé i ≤ n platí:

• φi je logický axiom (včetně axiomu rovnosti, je-li jazyk s rovností), nebo

• φi je axiom teorie (φi ∈ T ), nebo

• φi lze odvodit z nějakých předchozích formulí φj , φk (kde j, k < i) pomocí modus
ponens, nebo

• φi lze odvodit z nějaké předchozí formule φj (kde j < i) pomocí pravidla generalizace.

Existuje-li hilbertovský důkaz, je φ (hilbertovsky) dokazatelná, píšeme T |−H φ.

I v predikátové logice je hilbertovský kalkulus korektní a úplný dokazovací systém.

Věta 6.6.5 (O korektnosti hilbertovského kalkulu). Pro každou teorii T a formuli φ platí:

T |−H φ ⇒ T |= φ

Důkaz. Indukcí dle indexu i ukážeme, že každá formule φi z důkazu (tedy i φn = φ) platí v
T .

Je-li φi logický axiom (včetně axiomu rovnosti), T |= φi platí protože logické axiomy jsou
tautologie. Je-li φi ∈ T , také jistě platí T |= φi. Zbytek plyne z korektnosti odvozovacích
pravidel.

Pro úplnost ještě vyslovme úplnost, důkaz ale neuvedeme.

Věta 6.6.6 (O úplnosti hilbertovského kalkulu). Pro každou teorii T a formuli φ platí:

T |= φ ⇒ T |−H φ
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Kapitola 7

Rezoluce v predikátové logice

V této kapitole si ukážeme, jak lze adaptovat rezoluční metodu, kterou jsme představili v
Kapitole 4, na predikátovou logiku. Tato kapitola, poslední v části o predikátové logice, je
poměrně rozsáhlá, proto uveďme přehled její struktury:

• Začneme neformálním úvodem (Sekce 7.1).

V následujících třech sekcích představíme nástroje, které nám umožní vypořádat se se speci-
fiky predikátové logiky: s kvantifikátory, proměnnými a termy.

• V Sekci 7.2 si ukážeme, jak pomocí Skolemizace odstranit kvantifikátory, abychom získali
otevřené formule, které už lze převést do CNF.

• V Sekci 7.3 vysvětlíme, že rezoluční zamítnutí bychom mohli hledat ‘na úrovni výrokové
logiky’ (tzv. grounding), pokud bychom nejprve za proměnné substituovali ‘vhodné’
konstantní termy.

• V Sekci 7.4 ukážeme, jak takové ‘vhodné’ substituce hledat pomocí unifikačního algo-
ritmu.

Tím budeme mít všechny potřebné nástroje k představení vlastní rezoluční metody. Zbytek
kapitoly má podobnou strukturu jako Kapitola 4.

• Rezoluční pravidlo, rezoluční důkaz a související pojmy jsou popsány v Sekci 7.5.

• Sekce 7.6 je věnována důkazu korektnosti a úplnosti.

• Na závěr, v Sekci 7.7, popíšeme LI-rezoluci a její aplikaci v Prologu.

7.1 Úvod
Stejně jako ve výrokové logice, i v predikátové logice je rezoluční metoda založena na důkazu
sporem. Chceme-li dokázat, že v teorii T platí sentence φ (tj. T |= φ), začneme s teorií
T ∪ {¬φ}. Tuto teorii ‘převedeme’ do CNF, a výslednou množinu klauzulí S zamítneme
rezolucí (tj. ukážeme, že S |−R □) čímž ukážeme, že je nesplnitelná.

Co myslíme konjunktivní normální formou? Roli literálu hraje atomická formule1 nebo její
negace. Klauzule (v množinové reprezentaci) je konečná množina literálů, a formule je množina

1Tj. R(t1, . . . , tn) resp. t1 = t2, kde ti jsou L-termy a R je n-ární relační symbol z L.
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klauzulí.2 Jinak používáme stejnou terminologii, např. mluvíme o pozitivních, negativních,
opačných literálech, □ značí prázdnou klauzuli (která je nesplnitelná), apod.

Nejprve si neformálně ukážeme specifika rezoluce v predikátové logice na několika velmi
jednoduchých příkladech.

Všimněme si nejprve, že jsou-li teorie T a sentence φ otevřené (neobsahují-li kvantifiká-
tory), můžeme snadno sestrojit CNF formuli S ekvivalentní teorii T ∪{¬φ} (tj. mající stejnou
množinu modelů). Nevadí ani univerzální kvantifikátory na začátku formule, ty můžeme od-
stranit beze změny významu.3

Příklad 7.1.1. Nechť T = {(∀x)P (x), (∀x)(P (x) → Q(x))} a φ = (∃x)Q(x). Je snadno vidět,
že platí

T ∼ {P (x), P (x) →Q(x)} ∼ {P (x),¬P (x) ∨Q(x)}

a také:
¬φ = ¬(∃x)Q(x) ∼ (∀x)¬Q(x) ∼ ¬Q(x)

Teorii T ∪ {¬φ} tedy můžeme převést na ekvivalentní CNF formuli

S = {{P (x)}, {¬P (x), Q(x)}, {¬Q(x)}}

kterou snadno zamítneme rezolucí ve dvou krocích. (Představte si místo P (x) výrokovou
proměnnou p a místo Q(x) výrokovou proměnnou q.)

Obecně se nám to ale nepodaří, problémy dělá zejména existenční kvantifikátor. Na rozdíl
od výrokové logiky není každá teorie ekvivalentní CNF formuli. Ukážeme si ale postup, kterým
lze vždy najít ekvisplnitelnou CNF formuli, tj. takovou, která je nesplnitelná, právě když
T ∪{¬φ} je nesplnitelná, což nám k důkazu sporem stačí. Této konstrukci se říká Skolemizace
a spočívá v nahrazení existenčně kvantifikovaných proměnných nově přidanými konstantními
resp. funkčními symboly.

Například, formuli (∃x)ψ(x) nahradíme formulí ψ(x/c), kde c je nový konstantní symbol,
který reprezentuje svědka, tj. prvek, díky kterému je existenční kvantifikátor splněn. Protože
takových prvků může být mnoho, ztrácíme ekvivalenci teorií, platí ale, že je-li splnitelná
původní formule, je splnitelná, i nová formule, a naopak.
Příklad 7.1.2. Máme-li T = {(∃x)P (x), P (x) ↔Q(x)} a φ = (∃x)Q(x), potom

¬φ ∼ (∀x)¬Q(x) ∼ ¬Q(x)

a ekvivalenci můžeme převést do CNF jako obvykle, dostáváme:

T ∪ {¬φ} ∼ {(∃x)P (x),¬P (x) ∨Q(x),¬Q(x) ∨ P (x),¬Q(x)}

Formuli (∃x)P (x) nyní nahradíme P (c), kde c je nový konstantní symbol. Tím dostáváme
CNF formuli:

S = {{P (c)}, {¬P (x), Q(x)}, {¬Q(x), P (x)}, {¬Q(x)}}

Ta není ekvivalentní teorii T ∪ {¬φ}, ale je s ní ekvisplnitelná (v tomto případě jsou obě
nesplnitelné).

2Jako ve výrokové logice připouštíme i nekonečné množiny klauzulí.
3Libovolná formule je ekvivalentní svému generálnímu uzávěru, a ekvivalence platí oběma směry.
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Skolemizace může být i složitější, ne vždy stačí konstantní symbol. Pokud máme formuli
tvaru (∀x)(∃y)ψ(x, y), závisí zvolený svědek pro y na zvolené hodnotě pro x, tedy ‘y je funkcí
x’. V tomto případě musíme y nahradit f(x), kde f je nový unární funkční symbol. Tím
dostáváme formuli (∀x)ψ(x, y/f(x)) a univerzální kvantifikátor nyní můžeme odstranit a psát
jen ψ(x, y/f(x)), což už je otevřená formule, byť v jiném jazyce (rozšířeném o symbol f).
Skolemizaci formálně popíšeme, a potřebné vlastnosti dokážeme, v Sekci 7.2.

Nyní se podívejme na rezoluční pravidlo. To je v predikátové logice složitější. Ukážeme si
opět jen několik příkladů, formální definici necháme na později (Sekce 7.5).
Příklad 7.1.3. V předchozím příkladu jsme dospěli k následující CNF formuli S, která je
nesplnitelná, a chtěli bychom ji tedy rezolucí zamítnout:

S = {{P (c)}, {¬P (x), Q(x)}, {¬Q(x), P (x)}, {¬Q(x)}}

Pokud bychom se na ni podívali ‘na úrovni výrokové logiky’ (‘ground level’) a nahradili každou
atomickou formuli novou výrokovou proměnnou, dostali bychom {{r}, {¬p, q}, {¬q, p}, {¬q}},
což není nesplnitelné. Potřebujeme využít toho, že P (c) a P (x) mají ‘podobnou strukturu’
(jsou unifikovatelné).

Protože v S platí klauzule {¬P (x), Q(x)} (je to axiom), platí i po provedení libovolné
substituce, tj. klauzule {¬P (x/t), Q(x/t)} je důsledkem S pro libovolný term t. Mohli bychom
si představit, že do S ‘přidáváme’ všechny takto získané klauzule.4 Výsledná CNF formule by
po převedení na ‘úroveň výrokové logiky’ už byla nesplnitelná.

Unifikační algoritmus nám ale rovnou řekne, že správná substituce je x/c, a toto zahrneme
už do rezolučního pravidla, tedy rezolventou klauzulí {P (c)} a {¬P (x), Q(x)} bude klauzule
{Q(c)}.

Unifikace může být i složitější, a upozorněme ještě na jeden rozdíl oproti výrokové lo-
gice: dovolíme si udělat rezoluci přes více literálů najednou, a to v případě, že jsou všechny
dohromady unifikovatelné:
Příklad 7.1.4. Z klauzulí {R(x, f(x)), R(g(y), z)} a {¬R(g(c), u), P (u)} (kde R je binární
relační, f a g jsou unární funkční, a c konstantní symbol) bude možné odvodit rezolventu
{P (f(g(c))} za použití substituce (unifikace) {x/g(c), y/c, z/f(g(c)), u/f(g(c))}, kde z první
klauzule vybíráme oba literály najednou.
Poznámka 7.1.5. To, že proměnné mají ‘lokální význam’ v jednotlivých klauzulích (tj. můžeme
za ně substituovat v jedné klauzuli aniž by to ovlivnilo ostatní klauzule), plyne z následující
jednoduché tautologie, která platí pro libovolné formule ψ, χ (i pokud je v obou proměnná x
volná):

|= (∀x)(ψ ∧ χ) ↔ (∀x)ψ ∧ (∀x)χ
Jak je vidět v předchozím příkladě, budeme také vyžadovat, aby klauzule v rezolučním

pravidle měly disjunktní množiny proměnných; toho lze dosáhnout přejmenováním proměn-
ných, což je speciální případ substituce.

7.2 Skolemizace
V této sekci ukážeme postup, jak redukovat otázku splnitelnosti dané teorie T na otázku
splnitelnosti otevřené teorie T ′. Připomeňme, že T a T ′ obecně nebudou ekvivalentní, budou

4Těch je nekonečně mnoho, nekonečně mnoho je už jen variant jedné klauzule, tj. klauzulí vzniklých pouhým
přejmenováním proměnných. To nám ale nevadí, CNF formule může být dle definice nekonečná.
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ale ekvisplnitelné:
Definice 7.2.1 (Ekvisplnitelnost). Mějme teorii T v jazyce L a teorii T ′ v ne nutně stejném
jazyce L′. Říkáme, že T a T ′ jsou ekvisplnitelné, pokud platí:

T má model ⇔ T ′ má model

Celá konstrukce sestává z následujících kroků, které vysvětlíme níže:
1. Převod do prenexní normální formy (vytýkání kvantifikátorů).

2. Nahrazení formulí jejich generálními uzávěry (abychom získali sentence).

3. Odstranění existenčních kvantifikátorů (nahrazení sentencí Skolemovými variantami).

4. Odstranění zbývajících univerzálních kvantifikátorů (výsledkem jsou otevřené formule).

7.2.1 Prenexní normální forma

Nejprve ukážeme postup, jakým můžeme z libovolné formule ‘vytknout’ kvantifikátory, tj.
převést do tzv. prenexní normální formy, která začíná posloupností kvantifikátorů, a pokračuje
už jen volnou formulí.
Definice 7.2.2 (PNF). Formule φ je v prenexní normální formě (PNF), je-li tvaru

(Q1x1) . . . (Qnxn)φ′

kde Qi je kvantifikátor (∀ nebo ∃) a formule φ′ je otevřená. Formuli φ′ potom říkáme otevřené
jádro φ a (Q1x1) . . . (Qnxn) je kvantifikátorový prefix.

Je-li φ formule v PNF a jsou-li všechny kvantifikátory univerzální, potom říkáme, že φ je
univerzální formule.

Cílem této podsekce je ukázat následující tvrzení:
Tvrzení 7.2.3 (Převod do PNF). Ke každé formuli φ existuje ekvivalentní formule v prenexní
normální formě.

Algoritmus bude podobně jako převod do CNF založen na nahrazování podformulí ekvi-
valentními podformulemi, s cílem posunout kvantifikátory blíže ke kořeni stromu formule.
Co myslíme ekvivalencí formulí φ ∼ φ′? To, že mají stejný význam, tj. v každém modelu a
při každém ohodnocení proměnných mají touž pravdivostní hodnotu. Ekvivalentně, že platí
|= φ↔ φ′. Budeme potřebovat následující jednoduché pozorování:
Pozorování 7.2.4. Nahradíme-li ve formuli φ nějakou podformuli ψ ekvivalentní formulí ψ′,
potom je i výsledná formule φ′ ekvivalentní formuli φ.

Převod je založen na opakovaném použití následujících syntaktických pravidel:
Lemma 7.2.5. Označme jako Q kvantifikátor opačný ke Q. Nechť φ a ψ jsou formule, a
proměnná x nechť není volná ve formuli ψ. Potom platí:

¬(Qx)φ ∼ (Qx)¬φ
(Qx)φ ∧ ψ ∼ (Qx)(φ ∧ ψ)
(Qx)φ ∨ ψ ∼ (Qx)(φ ∨ ψ)

(Qx)φ→ ψ ∼ (Qx)(φ→ ψ)
ψ → (Qx)φ ∼ (Qx)(ψ → φ)
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Důkaz. Pravidla lze snadno ověřit sémanticky, nebo dokázat tablo metodou (v tom případě
nejde-li o sentence, musíme je nahradit jejich generálními uzávěry).

Všimněte si, že v pravidle (Qx)φ→ψ ∼ (Qx)(φ→ψ) pro vytýkání z antecendentu implikace
musíme změnit kvantifikátor (z ∀ na ∃ a naopak) zatímco při vytýkání z konsekventu zůstává
kvantifikátor stejný. Proč tomu tak je vidíme nejlépe pokud přepíšeme implikaci pomocí
disjunkce a negace:

(Qx)φ→ ψ ∼ ¬(Qx)φ ∨ ψ ∼ (Qx)(¬φ) ∨ ψ ∼ (Qx)(¬φ ∨ ψ) ∼ (Qx)(φ→ ψ)

Všimněte si také předpokladu, že x není volná v ψ. Bez něj by pravidla nefungovala, viz např:

(∃x)P (x) ∧Q(x) ̸∼ (∃x)(P (x) ∧Q(x))

V takové situaci nahradíme formuli variantou, ve které přejmenujeme vázanou proměnnou x
na nějakou novou proměnnou:

(∃x)P (x) ∧Q(x) ∼ (∃y)P (y) ∧Q(x) ∼ (∃y)(P (y) ∧Q(x))

Cvičení 7.1. Dokažte Pozorování 7.2.4 a všechna pravidla z Lemmatu 7.2.5.
Ukažme si postup na jednom příkladě:

Příklad 7.2.6. Převeďme formuli ((∀z)P (x, z) ∧ P (y, z)) → ¬(∃x)P (x, y) do PNF. Zapíšeme
jen jednotlivé mezikroky. Všimněte si, jaké pravidlo na jakou podformuli bylo použito (a také
přejmenování proměnné v prvním kroku), a sledujte postup na stromu formule.

(∀z)P (x, z) ∧ P (y, z) → ¬(∃x)P (x, y)
∼ (∀u)P (x, u) ∧ P (y, z) → (∀x)¬P (x, y)
∼ (∀u)(P (x, u) ∧ P (y, z)) → (∀v)¬P (v, y)
∼ (∃u)(P (x, u) ∧ P (y, z) → (∀v)¬P (v, y))
∼ (∃u)(∀v)(P (x, u) ∧ P (y, z) → ¬P (v, y))

Nyní nám již nic nebrání dokázat Tvrzení 7.2.3:

Důkaz Tvrzení 7.2.3. Indukcí podle struktury formule φ s využitím Lemmatu 7.2.5 a Pozo-
rování 7.2.4.

Protože je každá formule φ(x1, . . . , xn) ekvivalentní svému generálnímu uzávěru

(∀x1) . . . (∀xn)φ(x1, . . . , xn)

můžeme Tvrzení 7.2.3 vyslovit také takto:

Důsledek 7.2.7. Ke každé formuli φ existuje ekvivalentní sentence v PNF.

Například v Příkladě 7.2.6 je výsledná sentence (∀x)(∀y)(∀z)(∃u)(∀v)(P (x, u) ∧P (y, z) →
¬P (v, y)).
Poznámka 7.2.8. Prenexní forma není jednoznačná, pravidla pro převod můžeme apliko-
vat v různém pořadí. Jak uvidíme v následující podsekci, je výhodné vytýkat přednostně
kvantifikátory [ze kterých se stanou] existenční: Máme-li na výběr mezi (∀x)(∃y)φ(x, y) a
(∃y)(∀x)φ(x, y), volíme druhou variantu, neboť v první je ‘y závislé na x’.
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7.2.2 Skolemova varianta

Nyní jsme převedli naše axiomy na ekvivalentní sentence v prenexním tvaru. Pokud by některá
sentence obsahovala pouze univerzální kvantifikátory, tj. byla tvaru

(∀x1) . . . (∀xn)φ(x1, . . . , xn)

kde φ je otevřená, mohli bychom ji prostě nahradit jejím otevřeným jádrem φ, které je jí v
tomto případě ekvivalentní. Jak si ale poradit s existenčními kvantifikátory, např. (∃x)φ(x),
(∀x)(∃y)φ(x, y), apod? Ty nejprve nahradíme jejich Skolemovou variantou.

Definice 7.2.9 (Skolemova varianta). Mějme L-sentenci φ v PNF, a nechť všechny její vá-
zané proměnné jsou různé. Nechť existenční kvantifikátory z prefixu φ jsou (∃y1), . . . , (∃yn)
(v tomto pořadí), a nechť pro každé i jsou (∀x1), . . . , (∀xni) právě všechny univerzální kvan-
tifikátory předcházející kvantifikátor (∃yi) v prefixu φ.

Označme L′ rozšíření L o nové ni-ární funkční symboly f1, . . . , fn, kde symbol fi je arity
ni, pro každé i. Skolemova varianta sentence φ je L′-sentence φS vzniklá z φ tak, že pro každé
i = 1, . . . , n:

• odstraníme z prefixu kvantifikátor (∃yi), a

• substituujeme za proměnnou yi term fi(x1, . . . , xni).

Tomuto procesu říkáme také skolemizace.

Příklad 7.2.10. Skolemova varianta sentence

φ = (∃y1)(∀x1)(∀x2)(∃y2)(∀x3)R(y1, x1, x2, y2, x3)

je sentence
φS = (∀x1)(∀x2)(∀x3)R(f1, x1, x2, f2(x1, x2), x3)

kde f1 je nový konstantní symbol a f2 je nový binární funkční symbol.
Poznámka 7.2.11. Nezapomeňte, že při skolemizaci musíme vycházet ze sentence! Například,
máme-li formuli (∃y)E(x, y), není E(x, c) její Skolemova varianta. Musíme napřed provést
generální uzávěr (∀x)(∃y)E(x, y), a potom správně skolemizovat jako (∀x)E(x, f(x)), což je
ekvivalentní otevřené formuli E(x, f(x)) (která říká něco mnohem slabšího než E(x, c)).

Je také důležité, aby každý symbol použitý při skolemizaci byl opravdu nový, jeho jedinou
‘rolí’ v celé teorii musí být reprezentovat ‘existující’ prvky v této formuli.

V následujícím lemmatu ukážeme klíčovou vlastnost skolemovy varianty:

Lemma 7.2.12. Mějme L-sentenci φ = (∀x1) . . . (∀xn)(∃y)ψ a nechť φ′ je sentence

(∀x1) . . . (∀xn)ψ(y/f(x1, . . . , xn))

kde f je nový funkční symbol. Potom:

(i) L-redukt každého modelu φ′ je modelem φ, a

(ii) každý model φ lze expandovat na model φ′.
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Důkaz. Nejprve dokažme část (i): Mějme model A′ |= φ′ a nechť A je jeho redukt na jazyk L.
Pro každé ohodnocení proměnných e platí A |= ψ[e(y/a)] pro a = (f(x1, . . . , xn))A′ [e], tedy
A |= φ.

Nyní část (ii): Protože A |= φ, existuje funkce fA : An → A taková, že pro každé ohod-
nocení proměnných e platí A |= ψ[e(y/a)], kde a = fA(e(x1), . . . , e(xn)). To znamená, že
expanze struktury A vzniklá přidáním funkce fA je modelem φ′.

Poznámka 7.2.13. Expanze modelu ve druhé části tvrzení nemusí být (a typicky není) jedno-
značná, na rozdíl od extenze o definici nového funkčního symbolu.

Aplikujeme-li předchozí lemma opakovaně (postupně pro všechny existenční kvantifiká-
tory), získáme následující důsledek:

Důsledek 7.2.14. Sentence φ a její skolemova varianta φS jsou ekvisplnitelné.

7.2.3 Skolemova věta

V této podsekci shrneme celý postup popsaný v předchozích podsekcích. Klíčem je následující
věta norského logika Thoralfa Skolema:

Věta 7.2.15 (Skolemova věta). Každá teorie má otevřenou konzervativní extenzi.

Důkaz. Mějme L-teorii T . Každý axiom nahradíme jeho generálním uzávěrem (není-li to už
sentence) a převedeme do PNF, tím získáme ekvivalentní teorii T ′. Nyní nahradíme každý
axiom teorie T ′ jeho Skolemovou variantou. Tím získáme teorii T ′′ v rozšířeném jazyce L′. Z
Lemmatu 7.2.12 plyne, že L-redukt každého modelu T ′′ je modelem T ′, tedy T ′′ je extenzí
T ′, a že každý model T ′ lze expandovat do jazyka L′ na model T ′′, tedy jde o konzervativní
extenzi. Teorie T ′′ je axiomatizovaná univerzálními sentencemi, odstraníme-li kvantifikátorové
prefixy (tj. vezmeme-li jádra axiomů), získáme otevřenou teorii T ′′′, která ekvivalentní s T ′′

a tedy je také konzervativní extenzí T .

Ze sémantické charakterizace konzervativní extenze snadno plyne následující důsledek:

Důsledek 7.2.16. Ke každé teorii můžeme pomocí skolemizace najít ekvisplnitelnou otevře-
nou teorii.

Otevřenou teorii už můžeme snadno převést do CNF (vyjádřit formulí S v množinové
reprezentaci) pomocí ekvivalentních syntaktických úprav, stejně jako ve výrokové logice (viz
Sekce 1.3.2).

7.3 Grounding
V této sekci si ukážeme, že máme-li otevřenou teorii, která je nesplnitelná, můžeme její nespl-
nitelnost doložit ‘na konkrétních prvcích’. Co tím myslíme? Existuje konečně mnoho základ-
ních (ground) instancí axiomů (instancí, kde za proměnné substituujeme konstantní termy),
takových, že jejich konjunkce (která neobsahuje žádnou proměnnou) je nesplnitelná.

Definice 7.3.1 (Základní instance). Mějme otevřenou formuli φ ve volných proměnných
x1, . . . , xn. Řekneme, že instance φ(x1/t1, . . . , xn/tn) je základní (ground) instance, jsou-li
všechny termy t1, . . . , tn konstantní (ground).
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Příklad 7.3.2. Teorie T = {P (x, y) ∨ R(x, y),¬P (c, y),¬R(x, f(x))} v jazyce L = ⟨P,R, f, c⟩
nemá model. Můžeme to doložit následující konjunkcí základních instancí axiomů, kde za
proměnnou x substituujeme konstantu c a za y konstantní term f(c):

(P (c, f(c)) ∨R(c, f(c))) ∧ ¬P (c, f(c)) ∧ ¬R(c, f(c))

Tato sentence je zjevně nesplnitelná. Základní atomické sentence (P (c, f(c)) a R(c, f(c))
můžeme navíc (díky tomu, že neobsahují proměnné) chápat jako výrokové proměnné p1, p2,
kde p1 znamená ‘platí P (c, f(c))’ a p2 znamená ‘platí R(c, f(c))’. Dostáváme potom následující
výrok, který lze snadno zamítnout rezolucí:

(p1 ∨ p2) ∧ ¬p1 ∧ ¬p2

Tomuto procesu převedení na základní instance (a tím do výrokové logiky) říkáme ‘grounding’.
Za chvíli ho zformalizujeme a dokážeme Herbrandovu větu,5 která říká, že taková nesplnitelná
konjunkce základních instancí axiomů existuje pro každou nesplnitelnou teorii.

7.3.1 Přímá redukce do výrokové logiky

Uvědomme si nyní, že díky Herbrandově větě grounding umožňuje následující postup, byť
neefektivní, jak zamítat formule rezolucí ‘na úrovni výrokové logiky’: Ve vstupní formuli S
nahradíme každou klauzuli množinou všech jejích základních instancí (pokud žádné nejsou,
tedy pokud jazyk neobsahuje konstantní symbol, jeden konstantní symbol do jazyka přidáme).
Ve výsledné množině klauzulí S′ chápeme atomické sentence jako výrokové proměnné, a S′

zamítneme výrokovou rezolucí (o které víme, že je korektní a úplná).
Problémem tohoto přístupu je, že klauzulí v S′ (základních instancí klauzulí z S) může být

mnoho, i nekonečně mnoho, např. kdykoliv je v jazyce alespoň jeden funkční (nekonstantní)
symbol.
Příklad 7.3.3. Máme-li CNF formuli S = {{P (x, y), R(x, y)}, {¬P (c, y)}, {¬R(x, f(x))}} v
jazyce L = ⟨f, c⟩, nahradíme ji následující nekonečnou formulí S′:

S′ = {{P (c, c), R(c, c)}, {P (c, f(c)), R(c, f(c))}, {P (f(c), c), R(f(c), c)}, . . . ,
{¬P (c, c)}, {¬P (c, f(c))}, {¬P (c, f(f(c)))}, {¬P (c, f(f(f(c))))}, . . . ,
{¬R(c, f(c))}, {¬R(f(c), f(f(c)))}, {¬R(f(f(c)), f(f(f(c))))}, . . . }

Ta je nesplnitelná, neboť obsahuje následující konečnou podmnožinu, která je nesplnitelná,
což snadno ukážeme výrokovou rezolucí:

{{P (c, f(c)), R(c, f(c))}, {¬P (c, f(c))}, {¬R(c, f(c))}} |−R □

V Sekci 7.4 si ukážeme efektivní postup jak hledat vhodné základní instance klauzulí,
pomocí tzv. unifikace.

5Francouzský matematik Jacques Herbrand pracoval na konci 20. let 20. století. Během své krátké kariéry
(zemřel tragicky ve věku 23 let) objevil několik dalších důležitých výsledků, a mimo jiné formalizoval pojem
rekurzivní funkce.
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7.3.2 Herbrandova věta

V této podsekci vyslovíme a dokážeme Herbrandovu větu. Budeme předpokládat, že jazyk
obsahuje nějaký konstantní symbol: pokud v jazyce žádný není, jeden přidáme. Konstantní
symbol potřebujeme k tomu, aby existovaly konstantní termy, a my mohli vytvořit tzv. Her-
brandův model. Jde o konstrukci sémantického objektu (modelu) ze syntaktických objektů
(konstantních termů) velmi podobnou kanonickému modelu (Definice 6.4.3).6

Definice 7.3.4 (Herbrandův model). Mějme jazyk L = ⟨R,F⟩ s alespoň jedním konstantním
symbolem. L-struktura A = ⟨A,RA,FA⟩ je Herbrandův model, jestliže:

• A je množina všech konstantních L-termů (tzv. Herbrandovo univerzum), a

• pro každý n-ární funkční symbol f ∈ F a konstantní termy “t1”, . . . , “tn” ∈ A platí:

fA(“t1”, . . . , “tn”) = “f(t1, . . . , tn)”

• Speciálně, pro každý konstantní symbol c ∈ F je cA = “c”.

Na interpretace relačních symbolů neklademe žádné podmínky.

Připomeňme, že uvozovky okolo termů píšeme jen neformálně, abychom jasněji odlišili
termy jako syntaktické objekty (řetězce symbolů) od jejich interpretací (funkcí).
Příklad 7.3.5. Mějme jazyk L = ⟨P, f, c⟩, kde P je unární relační, f je binární funkční, a c
konstantní symbol. Herbrandovo univerzum pro tento jazyk je množina

A = {“c”, “f(c, c)”, “f(c, f(c, c))”, “f(f(c, c), c)” . . . }

Struktura A = ⟨A,PA, fA, cA⟩ je Herbrandův model, jestliže cA = “c” a funkce fA splňuje:

• fA(“c”, “c”) = “f(c, c)”,

• fA(“c”, “f(c, c)”) = “f(c, f(c, c))”,

• fA(“f(c, c)”, “c”) = “f(f(c, c), c)”, atd.

Relace PA může být libovolná podmnožina A.
Nyní jsme připraveni vyslovit Herbrandovu větu. Neformálně řečeno, je-li teorie splni-

telná, tj. má-li model, potom má dokonce Herbrandův model, a v opačném případě najdeme
nesplnitelnou konjunkci základních instancí axiomů, použitelnou pro rezoluční zamítnutí ‘na
úrovni výrokové logiky’.

Věta 7.3.6 (Herbrandova věta). Mějme otevřenou teorii T v jazyce L bez rovnosti a s alespoň
jedním konstantním symbolem. Potom buď má T Herbrandův model, nebo existuje konečně
mnoho základních instancí axiomů T , jejichž konjunkce je nesplnitelná.

6Rozdíl je v tom, že nepřidáváme spočetně mnoho nových konstantních symbolů (vycházíme jen z konstant-
ních symbolů, které už v jazyce jsou), a také nijak nepředepisujeme, jak mají vypadat relace modelu.
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Důkaz. Označme jako Tground množinu všech základních instancí axiomů teorie T . Zkonstruu-
jeme systematické7 tablo z teorie Tground s položkou F⊥ v kořeni, ale z jazyka L, bez rozšíření
o pomocné konstantní symboly na jazyk LC .8

Pokud tablo obsahuje bezespornou větev, potom je kanonický model pro tuto větev (opět
bez přidání pomocných konstantních symbolů) Herbrandovým modelem T . V opačném pří-
padě máme tablo důkaz sporu, tedy teorie Tground, a tím pádem i T , je nesplnitelná. Protože
je tablo důkaz konečný, použili jsme v něm jen konečně mnoho základních instancí axiomů
αground ∈ Tground. Jejich konjunkce je tedy nesplnitelná.

Poznámka 7.3.7. Máme-li jazyk s rovností, potom nejprve teorii T rozšíříme o axiomy rovnosti
na teorii T ∗, a má-li T ∗ Herbrandův model A, faktorizujeme ho podle kongruence =A, stejně
jako v případě kanonického modelu.

Na závěr této sekce vyslovíme dva důsledky Herbrandovy věty.

Důsledek 7.3.8. Mějme otevřenou formuli φ(x1, . . . , xn) v jazyce L s alespoň jedním kon-
stantním symbolem. Potom existují konstantní L-termy tij (1 ≤ i ≤ m, 1 ≤ j ≤ n) takové, že
sentence

(∃x1) . . . (∃xn)φ(x1, . . . , xn)

je pravdivá, právě když je následující formule (výroková) tautologie:

φ(x1/t11, . . . , xn/t1n) ∨ · · · ∨ φ(x1/tm1, . . . , xn/tmn)

Důkaz. Sentence (∃x1) . . . (∃xn)φ(x1, . . . , xn) je pravdivá, právě když (∀x1) . . . (∀xn)¬φ je ne-
splnitelná, neboli když ¬φ je nesplnitelná. Tvrzení plyne z Herbrandovy věty aplikované na
teorii T = {¬φ}.

Důsledek 7.3.9. Mějme otevřenou teorii T v jazyce s alespoň jedním konstantním symbolem.
Teorie T má model, právě když má model teorie Tground sestávající ze všech základních instancí
axiomů teorie T .

Důkaz. V modelu teorie T platí všechny axiomy, tedy i všechny základní instance axiomů.
Je tedy i modelem Tground. Pokud T nemá model, podle Herbrandovy věty je nějaká konečná
podmnožina teorie Tground nesplnitelná.

7.4 Unifikace
Místo substitucí všech základních termů a práce s touto novou, obrovskou a typicky nekoneč-
nou množinou klauzulí, je lepší najít v konkrétním rezolučním kroku ‘vhodnou’ substituci a
pracovat jen s ní. V této sekci vysvětlíme, co znamená ‘vhodná’ (tzv. unifikace) a jak ji lze
hledat (pomocí unifikačního algoritmu).

7Nebo libovolné dokončené tablo, ale tak, abychom sporné větve už neprodlužovali.
8Protože v Tground nejsou žádné kvantifikátory, pomocné symboly nikde v tablu nejsou použity.
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7.4.1 Substituce

Nejprve uveďme několik příkladů ‘vhodných’ substitucí:
Příklad 7.4.1. • Z klauzulí {P (x), Q(x, a)} a {¬P (y),¬Q(b, y)} získáme pomocí substi-

tuce {x/b, y/a} klauzule {P (b), Q(b, a)} a {¬P (a),¬Q(b, a)}, a z nich potom rezolucí
klauzuli {P (b),¬P (a)}. Mohli bychom také použít substituci {x/y} a rezolucí přes P (y)
získat rezolventu {Q(y, a),¬Q(b, y)}.

• Máme-li klauzule {P (x), Q(x, a), Q(b, y)} a {¬P (v),¬Q(u, v)}, vhodnou substitucí je
{x/b, y/a, u/b, v/a}; dostáváme {P (b), Q(b, a)} a {¬P (a),¬Q(b, a)}, jejichž rezolventou
je {P (b),¬P (a)}.

• Podívejme se ještě na klauzule {P (x), Q(x, z)} a {¬P (y),¬Q(f(y), y)}. Mohli bychom
použít substituci {x/f(a), y/a, z/a} a získat tak dvojici klauzulí {P (f(a)), Q(f(a), a)}
a {¬P (a),¬Q(f(a), a)}, rezolucí potom {P (f(a)),¬P (a)}.
Lepší ale bude využít substituce {x/f(z), y/z}, po které máme {P (f(z)), Q(f(z), z)}
a {¬P (z),¬Q(f(z), z)}, a rezolventu {P (f(z)),¬P (z)}. Tato substituce je obecnější, a
výsledná rezolventa ‘říká více’ než {P (f(a)),¬P (a)} (ta je jejím důsledkem, ale naopak
to neplatí).

Nyní zavedeme potřebnou terminologii týkající se substitucí. Substituce budeme aplikovat
na termy nebo na literály (atomické formule nebo jejich negace), označme tyto dohromady
jako výrazy.

Definice 7.4.2 (Substituce). Substituce je konečná množina σ = {x1/t1, . . . , xn/tn}, kde xi
jsou navzájem různé proměnné a ti jsou termy, přičemž vyžadujeme, aby term ti nebyl roven
proměnné xi. Substituce σ je

• základní, jsou-li všechny termy ti konstantní,

• přejmenování proměnných, jsou-li všechny termy ti navzájem různé proměnné.

Instance výrazu (termu nebo literálu) E při substituci σ = {x1/t1, . . . , xn/tn} je výraz vzniklý
z E simultánním nahrazením všech výskytů proměnných xi termy ti, označme jej Eσ. Je-li S
množina výrazů, potom značíme Sσ = {Eσ | E ∈ S}.

Protože proměnné nahrazujeme simultánně pro všechny proměnné zároveň, případný
výskyt proměnné xi v termu tj nepovede ke zřetězení substitucí.
Příklad 7.4.3. Například pro S = {P (x), R(y, z)} a substituci σ = {x/f(y, z), y/x, z/c} máme:

Sσ = {P (f(y, z)), R(x, c)}

Substituce můžeme přirozeně skládat. Složení substitucí σ a τ , kde nejprve aplikujeme σ a
potom τ , budeme zapisovat jako στ . Bude tedy platit E(στ) = (Eσ)τ , pro libovolný výraz E.
Příklad 7.4.4. Začněme opět příkladem. Máme-li výraz E = P (x,w, u), a substituce

σ = {x/f(y), w/v}
τ = {x/a, y/g(x), v/w, u/c}

potom je Eσ = P (f(y), v, u) a (Eσ)τ = P (f(g(x)), w, c). Musí tedy platit:

στ = {x/f(g(x)), y/g(x), v/w, u/c}
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Nyní formální definice:

Definice 7.4.5 (Skládání substitucí). Mějme substituce σ = {x1/t1, . . . , xn/tn} a τ =
{y1/s1, . . . , ym/sm}. Složení substitucí σ a τ je substituce

στ = {xi/tiτ | xi ∈ X,xi ̸= tiτ} ∪ {yj/sj | yj ∈ Y \X}

kde X = {x1, . . . , xn} a Y = {y1, . . . , ym}.

Všimněte si, že skládání substitucí není komutativní, στ je typicky zcela jiná substituce
než τσ.
Příklad 7.4.6. Jsou-li σ a τ jako v Příkladu 7.4.4, potom:

τσ = {x/a, y/g(f(y)), u/c, w/v} ̸= στ

Nyní ukážeme, že takto definované skládání substitucí splňuje požadovanou vlastnosti, a
také že je asociativní. Z asociativity plyne, že nemusíme (a také nebudeme) psát závorky ve
složení στϱ, σ1σ2 · · ·σn apod.

Tvrzení 7.4.7. Mějme substituce σ, τ , ϱ, a libovolný výraz E. Potom platí:

(i) (Eσ)τ = E(στ)

(ii) (στ)ϱ = σ(τϱ)

Důkaz. Nechť σ = {x1/t1, . . . , xn/tn} a τ = {y1/s1, . . . , ym/sm}. Stačí dokázat v případě, kdy
výraz E je jediná proměnná, zbytek snadno plyne indukcí. (Substituce nijak nemění ostatní
symboly.) Rozdělíme na tři případy:

• Je-li E = xi pro nějaké i, potom Eσ = ti a (Eσ)τ = tiτ = E(στ), kde druhá rovnost je
z definice στ .

• Je-li E = yj pro nějaké j, kde yj /∈ {x1, . . . , xn}, potom Eσ = E a (Eσ)τ = Eτ = sj =
E(στ) opět z definice στ .

• Je-li E jiná proměnná, potom (Eσ)τ = E = E(στ).

Tím jsme dokázali (i). Asociativitu (ii) snadno dokážeme opakovaným užitím (i). Následující
platí pro každý výraz E, tedy i pro každou proměnnou:

E((στ)ϱ) = (E(στ))ϱ = ((Eσ)τ)ϱ = (Eσ)(τϱ) = E(σ(τϱ)).

Z toho plyne, že (στ)ϱ a σ(τϱ) jsou touž substitucí.9
9Podrobněji: používáme zřejmou vlastnost, že pro substituci π platí π = {z1/v1, . . . , zk/vk}, právě když

Eπ = vi pro E = zi a Eπ = E je-li E proměnná různá od všech zi.
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7.4.2 Unifikační algoritmus

Které substituce jsou tedy ‘vhodné’? Takové, po jejichž provedení se dané výrazy ‘stanou
stejnými’, tj. unifikovanými (viz Příklad 7.4.1).

Definice 7.4.8 (Unifikace). Mějme konečnou množinu výrazů S = {E1, . . . , En}. Substituce
σ je unifikace pro S, pokud E1σ = E2σ = · · · = Enσ, neboli Sσ obsahuje jediný výraz. Pokud
existuje, potom říkáme také, že S je unifikovatelná.

Unifikace pro S je nejobecnější, pokud pro každou unifikaci τ pro S existuje substituce λ
taková, že τ = σλ. Všimněte si, že nejobecnějších unifikací pro S může být více, ale liší se jen
přejmenováním proměnných.

Příklad 7.4.9. Uvažme množinu výrazů S = {P (f(x), y), P (f(a), w)}. Nejobecnější unifikací
pro S je σ = {x/a, y/w}. Jinou unifikací je např. τ = {x/a, y/b, w/b}, není ale nejobec-
nější, nelze z ní získat např. unifikaci ϱ = {x/a, y/c, w/c}. Unifikaci τ naopak lze získat z
nejobecnější unifikace σ, a to pomocí substituce λ = {w/b}: τ = σλ

Nyní představíme unifikační algoritmus. Jeho vstupem je neprázdná, konečná množina
výrazů S, a výstupem je buď nejobecnější unifikace pro S, nebo informace, že S není unifi-
kovatelná. Algoritmus postupuje od začátku výrazů a postupně aplikuje substituce tak, aby
se výrazy stávaly více podobnými. Potřebujeme následující definici:

Nechť p je první (nejlevější) pozice, na které se nějaké dva výrazy z S liší. Potom neshoda
v S, označme D(S), je množina všech podvýrazů začínajících na pozici p výrazů z S.
Příklad 7.4.10. Pro S = {P (x, y), P (f(x), z), P (z, f(x))} je p = 3 a D(S) = {x, f(x), z}.

Algoritmus (Unifikační algoritmus).

• vstup: konečná množina výrazů S ̸= ∅,

• výstup: nejobecnější unifikace σ pro S nebo informace, že S není unifikovatelná

(0) nastav S0 := S, σ0 := ∅, k := 0

(1) pokud |Sk| = 1, vrať σ = σ0σ1 · · ·σk

(2) zjisti, zda v D(Sk) existuje proměnná x a term t neobsahující x

(3) pokud ano, nastav σk+1 := {x/t}, Sk+1 := Skσk+1, k := k + 1, a jdi na (1)

(4) pokud ne, odpověz, že S není unifikovatelná

Poznámka 7.4.11. Hledání proměnné x a termu t v kroku (2) může být relativně výpočetně
náročné.

Než se pustíme do důkazu korektnosti, ukážeme si běh algoritmu na příkladě
Příklad 7.4.12. Aplikujme unifikační algoritmus na následující množinu:

S = {P (f(y, g(z)), h(b)), P (f(h(w), g(a)), t), P (f(h(b), g(z)), y)}

(k = 0) Množina S0 = S není jednoprvková, D(S0) = {y, h(w), h(b)} obsahuje term h(w) a
proměnnou y nevyskytující se v h(w). Nastavíme σ1 = {y/h(w)} a S1 = S0σ1, tj.
máme:

S1 = {P (f(h(w), g(z)), h(b)), P (f(h(w), g(a)), t), P (f(h(b), g(z)), h(w))}
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(k = 1) D(S1) = {w, b}, σ2 = {w/b}, S2 = S1σ2, tj.

S2 = {P (f(h(b), g(z)), h(b)), P (f(h(b), g(a)), t)}

(k = 2) D(S2) = {z, a}, σ3 = {z/a}, S3 = S2σ3, tj.

S3 = {P (f(h(b), g(a)), h(b)), P (f(h(b), g(a)), t)}

(k = 3) D(S3) = {h(b), t}, σ4 = {t/h(b)}, S4 = S3σ4, tj.

S4 = {P (f(h(b), g(a)), h(b))}

(k = 4) S4 je jednoprvková, nejobecnější unifikace pro S je následující:

σ = σ1σ2σ3σ4 = {y/h(w)}{w/b}{z/a}{t/h(b)} = {y/h(b), w/b, z/a, t/h(b)}

Tvrzení 7.4.13. Unifikační algoritmus je korektní. Pro každý vstup S skončí v konečně mnoha
krocích, a je-li S unifikovatelná, odpoví nejobecnější unifikaci σ, jinak odpoví, že S není uni-
fikovatelná.

Je-li S unifikovatelná, potom pro sestrojenou nejobecnější unifikaci σ navíc platí, že je-li
τ libovolná unifikace, potom τ = στ .

Důkaz. V každém kroku k eliminujeme nějakou proměnnou, algoritmus tedy musí skončit.
Pokud algoritmus skončí neúspěchem v kroku k, potom nelze unifikovat množinu Sk. Lze
snadno nahlédnout, že v tom případě nelze unifikovat ani S.

Pokud algoritmus odpoví σ = σ0σ1 · · ·σk, zjevně jde o unifikaci. Zbývá dokázat, že je
nejobecnější, k tomu stačí dokázat silnější vlastnost (‘navíc’) popsanou v tvrzení.

Mějme libovolnou unifikaci τ pro S. Ukážeme indukcí, že pro každé 0 ≤ i ≤ k platí:

τ = σ0σ1 · · ·σiτ

Pro i = 0 je σ0 = ∅ a τ = σ0τ tedy platí triviálně. Předpokládejme, že to platí pro nějaké i, a
dokažme pro i+ 1. Nechť σi+1 = {x/t}. Stačí dokázat, že pro libovolnou proměnnou u platí:

uσi+1τ = uτ

Z toho už okamžitě plyne i τ = σ0σ1 · · ·σiσi+1τ .
Je-li u ̸= x, potom uσi+1 = u, tedy i uσi+1τ = uτ . V případě u = x máme uσi+1 =

xσi+1 = t. Protože τ unifikuje množinu Si = Sσ0σ1 · · ·σi, a proměnná x i term t jsou v
neshodě D(Si), musí τ unifikovat x a t. Jinými slovy, tτ = xτ , neboli uσi+1τ = uτ , což jsme
chtěli dokázat.

7.5 Rezoluční metoda
Chceme-li dokázat, že T |= φ, umíme díky Skolemizaci najít CNF formuli S, která je nesplni-
telná, právě když je nesplnitelná teorie T ∪ {¬φ}, neboli právě když T |= φ. Stačí tedy najít
rezoluční zamítnutí S.

V této sekci popíšeme vlastní rezoluční metodu. Většina pojmů i tvrzení bude velmi po-
dobná výrokové logice. Jediným podstatným rozdílem bude rezoluční pravidlo.
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7.5.1 Rezoluční pravidlo

Rezolventou dvojice klauzulí bude klauzule, kterou z nich lze odvodit aplikací (nejobecnější)
unifikace. Nejprve příklad:
Příklad 7.5.1. Mějme klauzule C1 = {P (x), Q(x, y), Q(x, f(z))} a C2 = {¬P (u),¬Q(f(u), u)}.
Vyberme z první oba pozitivní literály začínající Q a ze druhé negativní literál začínající
¬Q. Množinu výrazů S = {Q(x, y), Q(x, f(z)), Q(f(u), u)} lze unifikovat pomocí nejobecnější
unifikace σ = {x/f(f(z)), y/f(z), u/f(z)}. Po aplikaci této unifikace získáme klauzule C1σ =
{P (f(f(z))), Q(f(f(z)), f(z))} a C2σ = {¬P (f(z)),¬Q(f(f(z)), f(z))}, z nichž odvodíme
klauzuli C = {P (f(f(z))),¬P (f(z))}. Té budeme říkat rezolventa původních klauzulí C1 a
C2.

Definice 7.5.2 (Rezoluční pravidlo). Mějme klauzule C1 a C2 s disjunktními množinami
proměnných a nechť jsou tvaru

C1 = C ′
1 ⊔ {A1, . . . , An}, C2 = C ′

2 ⊔ {¬B1, . . . ,¬Bm}

kde n,m ≥ 1 a množinu výrazů S = {A1, . . . , An, B1, . . . , Bm} lze unifikovat.10 Buď σ nejo-
becnější unifikace S.11 Rezolventa klauzulí C1 a C2 je následující klauzule:

C = C ′
1σ ∪ C ′

2σ

Poznámka 7.5.3. Podmínku o disjunktních množinách proměnných můžeme vždy splnit, po-
kud přejmenujeme proměnné v jedné z klauzulí. Proč je to potřeba? Například, z klauzulí
{{P (x)}, {¬P (f(x))}} můžeme získat prázdnou klauzuli □, pokud nahradíme klauzuli {P (x)}
klauzulí {P (y)}. Množina výrazů {P (x), P (f(x))} ale není unifikovatelná, bez přejmenování
proměnných by to tedy nešlo.

7.5.2 Rezoluční důkaz

Jakmile máme definované rezoluční pravidlo, můžeme zavést rezoluční důkaz a související po-
jmy. Definice budou stejné jako ve výrokové logice, s jedním rozdílem: dovolíme si přejmenovat
proměnné v klauzulích, viz Poznámka 7.5.3.

Definice 7.5.4 (Rezoluční důkaz). Rezoluční důkaz (odvození) klauzule C z formule S je
konečná posloupnost klauzulí C0, C1, . . . , Cn = C taková, že pro každé i je

• buď Ci = C ′
iσ pro nějakou klauzuli C ′

i ∈ S a přejmenování proměnných σ, nebo

• Ci je rezolventou nějakých Cj , Ck kde j < i a k < i.

Pokud rezoluční důkaz existuje, říkáme, že C je rezolucí dokazatelná z S, a píšeme S |−R C.
(Rezoluční) zamítnutí formule S je rezoluční důkaz □ z S, v tom případě je S (rezolucí)
zamítnutelná.

Poznámka 7.5.5. Proč potřebujeme v rezolučním kroku odstranit více literálů z jedné klauzule
najednou? Uvažte formuli S = {{P (x), P (y)}, {¬P (x),¬P (y)}}. Ta je rezolucí zamítnutelná,
ale neexistuje zamítnutí, které by v každém kroku eliminovalo jen jeden literál.

10Symbol ⊔ označuje disjunktní sjednocení.
11Připomeňme, že unifikace znamená, že A1σ = A2σ = · · · = B1σ = · · · = Bmσ.
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□

{¬P (x′, x′)}{P (x, x)}

{P (f(x′), x′)}

{P (x′, f(x′))}{¬P (x, y), P (y, x)}

{¬P (f(x), z), P (x, z)}

{P (x′, f(x′))}{¬P (x, y),¬P (y, z), P (x, z)}

x′/x

z/x, x′/x

x/x′, y/f(x′)y/f(x′), x′/x

Obrázek 7.1: Rezoluční zamítnutí formule S z Příkladu 7.5.6. U každého rezolučního kroku
je zapsána použitá unifikace.

Nyní si ukážeme příklad použití rezoluční metody k důkazu platnosti sentence.
Příklad 7.5.6. Nechť T = {¬P (x, x), P (x, y) → P (y, x), P (x, y) ∧ P (y, z) → P (x, z)} a nechť
φ je sentence (∃x)¬P (x, f(x)). Chceme ukázat, že T |= φ. Teorie T ∪ {¬φ} je ekvisplnitelná
(v tomto případě dokonce ekvivalentní) s následující CNF formulí:

S = {{¬P (x, x)}, {¬P (x, y), P (y, x)}, {¬P (x, y),¬P (y, z), P (x, z)}, {P (x, f(x))}}

Ukážeme, že S |−R □. Rezolučním důkazem je například následující posloupnost:

{¬P (x, y),¬P (y, z), P (x, z)}, {P (x′, f(x′))}, {¬P (f(x), z), P (x, z)}, {¬P (x, y), P (y, x)},
{P (x′, f(x′))}, {P (f(x′), x′)}, {P (x, x)}, {¬P (x′, x′)},□

Názornější je ale rezoluční strom, který je znázorněný na Obrázku 7.5.2.

7.6 Korektnost a úplnost
V této sekci dokážeme, že rezoluční metoda je i v predikátové logice korektní a úplná.

7.6.1 Věta o korektnosti

Začneme důkazem korektnosti rezolučního pravidla. Princip je stejný jako u analogického
pozorování ve výrokové logice. Důkaz je o trochu techničtější:

Tvrzení 7.6.1 (Korektnost rezolučního kroku). Mějme klauzule C1, C2 a nechť C je jejich
rezolventou. Platí-li v nějaké struktuře A klauzule C1 a C2, potom v ní platí i C.

Důkaz. Z definice rezolučního pravidla víme, že klauzule a jejich rezolventu lze vyjádřit jako
C1 = C ′

1 ⊔ {A1, . . . , An}, C2 = C ′
2 ⊔ {¬B1, . . . ,¬Bm}, a C = C ′

1σ ∪C ′
2σ, kde σ je nejobecnější

unifikace množiny výrazů S = {A1, . . . , An, B1, . . . , Bm}, neboli Sσ = {A1σ}.
Protože klauzule C1 a C2 jsou otevřené formule platné v A, platí v A i jejich instance po

substituci σ tj. máme A |= C1σ a A |= C2σ. Víme také, že C1σ = C ′
1σ ∪ {A1σ} a podobně

C2σ = C ′
2σ ∪ {¬A1σ}.

122



Naším cílem je ukázat, že A |= C[e] pro libovolné ohodnocení proměnných e. Pokud
A |= A1σ[e], potom A ̸|= ¬A1σ[e] a musí být A |= C ′

2σ[e]. Tedy i A |= C[e]. V opačném
případě A ̸|= A1σ[e], musí tedy platit A |= C ′

1σ[e], a opět A |= C[e].

Znění i důkaz Věty o korektnosti jsou nyní stejné jako ve výrokové logice:

Věta 7.6.2 (O korektnosti rezoluce). Pokud je CNF formule S rezolucí zamítnutelná, potom
je nesplnitelná.

Důkaz. Víme, že S |−R □, vezměme tedy nějaký rezoluční důkaz □ z S. Kdyby existoval
model A |= S, díky korektnosti rezolučního pravidla bychom mohli dokázat indukcí podle
délky důkazu, že i A |= □, což ale není možné.

7.6.2 Věta o úplnosti

Větu o úplnosti rezoluce v predikátové logice, totiž že nesplnitelné formule lze zamítnout
rezolucí, dokážeme převedením na případ výrokové logiky. Ukážeme, že rezoluční důkaz ‘na
úrovni výrokové logiky’ je možné ‘zvednout’ (‘lift’) na úroveň predikátové logiky.

Klíčem je následující lemma, které zaručuje takové ‘zvednutí’ v jednom rezolučním kroku.
Jeho důkaz je poněkud technický.

Lemma 7.6.3 (Lifting lemma). Mějme klauzule C1 a C2 s disjunktními množinami proměn-
ných. Jsou-li C∗

1 a C∗
2 základní instance klauzulí C1 a C2 a je-li C∗ je rezolventou C∗

1 a C∗
2 ,

potom existuje rezolventa C klauzulí C1 a C2 taková, že C∗ je základní instancí C.

Důkaz. Nechť C∗
1 = C1τ1 a C∗

2 = C2τ2, kde τ1 a τ2 jsou základní substituce, které nesdílejí
žádnou proměnnou. Najdeme rezolventu C takovou, že C∗ = Cτ1τ2.

Nechť C∗ je rezolventou C∗
1 a C∗

2 přes literál P (t1, . . . , tk). Víme, že klauzule C1 a C2 mů-
žeme vyjádřit jako C1 = C ′

1⊔{A1, . . . , An} a C2 = C ′
2⊔{¬B1, . . . ,¬Bm}, kde {A1, . . . , An}τ1 =

{P (t1, . . . , tk)} a {¬B1, . . . ,¬Bm}τ2 = {¬P (t1, . . . , tk)}.
To znamená, že (τ1τ2) unifikuje množinu výrazů S = {A1, . . . , An, B1, . . . , Bm}. Nyní

vezměme nejobecnější unifikaci σ pro S získanou pomocí Unifikačního algoritmu. Jako C
zvolme rezolventu C = C ′

1σ ∪ C ′
2σ.

Zbývá ukázat, že C∗ = Cτ1τ2. Díky vlastnosti ‘navíc’ z Tvrzení 7.4.13 o korektnosti Uni-
fikačního algoritmu víme, že (τ1τ2) = σ(τ1τ2), což využíváme ve třetí rovnosti z následujícího
výpočtu. Ve čtvrté rovnosti využíváme faktu, že C ′

1τ1τ2 = C ′
1τ1, a C ′

2τ1 = C ′
2, což plyne

z toho, že jde o základní substituce nesdílející žádnou proměnnou, a že C ′
1τ1 a C ′

2τ2 jsou
základní instance:

Cτ1τ2 = (C ′
1σ ∪ C ′

2σ)τ1τ2

= C ′
1στ1τ2 ∪ C ′

2στ1τ2

= C ′
1τ1τ2 ∪ C ′

2τ1τ2

= C ′
1τ1 ∪ C ′

2τ2

= (C1 \ {A1, . . . , An})τ1 ∪ (C2 \ {¬B1, . . . ,¬Bm})τ2

= (C∗
1 \ {P (t1, . . . , tk)}) ∪ (C∗

2 \ {¬P (t1, . . . , tk)}) = C∗

Indukcí podle délky rezolučního důkazu snadno získáme následující důsledek:
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Důsledek 7.6.4. Mějme CNF formuli S a označme jako S∗ množinu všech jejích základních
instancí. Pokud S∗ |−R C∗ (‘na úrovni výrokové logiky’) pro nějakou základní klauzuli C∗,
potom existuje klauzule C a základní substituce σ taková, že C∗ = Cσ a S |−R C (‘na úrovni
predikátové logiky’).

Nyní už je snadné dokázat úplnost:

Věta 7.6.5 (O úplnosti rezoluce). Je-li CNF formule S nesplnitelná, potom je zamítnutelná
rezolucí.

Důkaz. Označme jako S∗ množinu všech základních instancí klauzulí z S. Protože je S ne-
splnitelná, je díky Herbrandově větě (konkrétně Důsledek 7.3.9) nesplnitelná i S∗. Z věty o
úplnosti výrokové rezoluce víme, že S∗ |−R □ (‘na úrovni výrokové logiky’). Z Lifting lemmatu
(resp. z Důsledku 7.6.4) dostáváme klauzuli C a základní substituci σ takové, že Cσ = □ a
S |−R C (‘na úrovni predikátové logiky’). Ale protože prázdná klauzule □ je instancí C, musí
být C = □. Tím jsme našli rezoluční zamítnutí S |−R □.

7.7 LI-rezoluce
V této sekci připomeneme pojmy lineárního a linear-input důkazu, LI-rezoluci a její úplnost
pro Hornovské formule. Definice i znění vět jsou stejné jako ve výrokové logice (jediným rozdí-
lem je, že v důkazech můžeme používat varianty klauzulí z S), důkaz lze provést převedením
na výrokovou logiku opět pomocí Herbrandovy věty a Lifting lemmatu.

Definice 7.7.1 (Lineární a LI důkaz). Lineární důkaz (rezolucí) klauzule C z formule S je
konečná posloupnost [

C0
B0

]
,

[
C1
B1

]
, . . . ,

[
Cn
Bn

]
, Cn+1

kde Ci říkáme centrální klauzule, C0 je počáteční, Cn+1 = C je koncová, Bi jsou boční klauzule,
a platí:

• C0 je varianta klauzule z S, pro i ≤ n je Ci+1 rezolventou Ci a Bi,

• B0 je varianta klauzule z S, pro i ≤ n je Bi varianta klauzule z S nebo Bi = Cj pro
nějaké j < i.

Lineární zamítnutí S je lineární důkaz □ z S.
LI-důkaz je lineární důkaz, ve kterém je každá boční klauzule Bi variantou klauzule z

S. Pokud existuje LI-důkaz, říkáme, že je C LI-dokazatelná z S, a píšeme S |−LI C. Pokud
S |−LI □, je S LI-zamítnutelná.

V Poznámce 4.4.3 jsme poznamenali, že ‘lineární’ rezoluce (založená na lineárních důka-
zech) je úplná.12 Stejné tvrzení platí i v predikátové rezoluci:

Věta 7.7.2 (O úplnosti lineární rezoluce). Klauzule C má lineární důkaz z CNF formule S,
právě když má rezoluční důkaz z S (tj. S |−R C).

Důkaz. Z lineárního důkazu snadno vyrobíme rezoluční strom. Opačná implikace plyne z
Poznámky 4.4.3 a z Lifting lemmatu (jehož použití zachovává linearitu rezolučního důkazu).

12Důkaz těžší implikace jsme vynechali, najdete ho v A. Nerode, R. Shore: Logic for Applications [1].
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7.7.1 Úplnost LI-rezoluce pro Hornovy formule

Připomeňme terminologii týkající se hornovskosti a programů: Hornova klauzule je klauzule
obsahující nejvýše jeden pozitivní literál. Hornova formule je (konečná, nebo i nekonečná)
množina Hornových klauzulí. Fakt je pozitivní jednotková (Hornova) klauzule, pravidlo je
(Hornova) klauzule s právě jedním pozitivním a alespoň jedním negativním literálem, a cíl je
neprázdná (Hornova) klauzule bez pozitivního literálu. Pravidlům a faktům říkáme progra-
mové klauzule.

Stejně jako ve výrokové logice, LI-rezoluce je úplná pro Hornovské formule:

Věta 7.7.3 (O úplnosti LI-rezoluce pro Hornovy formule). Je-li Hornova formule T splni-
telná, a T ∪ {G} je nesplnitelná pro cíl G, potom T ∪ {G} |−LI □, a to LI-zamítnutím, které
začíná cílem G.

Důkaz. Plyne z analogické věty ve výrokové logice, z Herbrandovy věty, a z Lifting lemmatu.

7.7.2 Rezoluce v Prologu

Na závěr si ukážeme aplikaci LI-rezoluce v programovacím jazyce Prolog. Program v Prologu
je Hornova formule obsahující pouze programové klauzule, tj. pravidla a fakta.
Příklad 7.7.4. Jako příklad vezměme jednoduchý program popisující rodinné vztah třech osob,
popsaný v Tabulce 7.7.4. Na levé straně vidíme syntaxi Prologu, a vpravo je množinový zápis
odpovídajících klauzulí; příslušnou CNF formuli označíme P .

son(X,Y):-father(Y,X),man(X). {son(X,Y ),¬father(Y,X),¬man(X)}
son(X,Y):-mother(Y,X),man(X). {son(X,Y ),¬mother(Y,X),¬man(X)}
man(charlie). {man(charlie)}
father(bob,charlie). {father(bob, charlie)}
mother(alice,charlie). {mother(alice, charlie)}

?-son(charlie,X). {¬son(charlie,X)}

Tabulka 7.1: Ukázkový program v Prologu

Poslední řádek v tabulce není součástí programu, jde o existenční dotaz. Zajímá nás,
zda v programu platí: P |= (∃X)son(charlie,X)? Všimněte si, že negací dotazu získáme cíl
G = {¬son(charlie,X)}. Chceme tedy zamítnout CNF formuli P ∪ {G}.

Stejně jako ve výrokové logice (Důsledek 4.4.10) platí následující jednoduchý důsledek
úplnosti LI-rezoluce pro Hornovy formule.

Důsledek 7.7.5. Pro program P a cíl G = {¬A1, . . . ,¬Ak} v proměnných X1, . . . , Xn jsou
následující podmínky ekvivalentní:

• P |= (∃X1) . . . (∃Xn)(A1 ∧ · · · ∧Ak)

• P ∪ {G} má LI-zamítnutí začínající cílem G.

Důkaz. Není těžké nahlédnout, že program P je vždy splnitelná Hornova formule. První pod-
mínka je ekvivalentní nesplnitelnosti P ∪{G}. Ekvivalence potom plyne z úplnosti LI-rezoluce
pro Hornovy formule (Věta 7.7.3).
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Je-li odpověď na dotaz kladná, chceme znát i výstupní substituci σ, tj. složení unifikací z
jednotlivých rezolučních kroků, zúžené na proměnné v G. Platí:

P |= (A1 ∧ · · · ∧Ak)σ

Příklad 7.7.6. Pokračujme v Příkladu 7.7.4. Najdeme všechny výstupní substituce pro náš
dotaz:

?-son(charlie,X).
X = bob ;
X = alice ;
No

Záleží na tom, které ze dvou pravidel aplikujeme na cíl. Příslušná zamítnutí jsou znázor-
něna níže. Výstupní substituci získáme složením substitucí z jednotlivých kroků, a zúžením
na proměnnou X. (Pro nedostatek místa jsme zkrátili konstantní symboly na a, b, c.)

(a) Výstupní substituce σ = {X/b}:

□{¬father(X, c)}{¬father(X, c),¬man(c)}{¬son(c,X)}

{son(X ′, Y ′),¬father(Y ′, X ′),¬man(X ′)} {man(c)} {father(b, c)}
{X ′/c, Y ′/X} ∅ {X/b}

(b) Výstupní substituce σ = {X/a}:

□{¬mother(X, c)}{¬mother(X, c),¬man(c)}{¬son(c,X)}

{son(X ′, Y ′),¬mother(Y ′, X ′),¬man(X ′)} {man(c)} {mother(a, c)}
{X ′/c, Y ′/X} ∅ {X/a}

126



Část III

Pokročilé partie
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Kapitola 8

Teorie modelů

V této kapitole se trochu vzdálíme typickým aplikacím logiky v informatice1 a nahlédneme
o úroveň abstrakce výše, do oblasti matematické logiky. Teorie modelů se snaží popsat vztah
mezi obecnými vlastnostmi teorií (predikátové logiky) a tříd jejich modelů. Nevyhneme se
práci s nekonečnými teoriemi a s nekonečnými strukturami. Jde jen o ukázku několika vy-
braných výsledků, které jsou pro nás dostupné. Ani se nepokusíme obsáhnout všechny hlavní
oblasti teorie modelů, která je velmi bohatá a hluboká. Do této kapitoly jsme také přidali
materiál týkající se vlastností modelů, který se nehodil jinam.

8.1 Elementární ekvivalence
Nejprve se podíváme na několik vlastností souvisejících s pojmem elementární ekvivalence.
Připomeňme, že L-struktury A a B jsou elementárně ekvivalentní (A ≡ B), pokud v nich
platí tytéž L-sentence.

V teorii modelů nás často zajímá, jaké vlastnosti (sentence) platí v dané, konkrétní struk-
tuře:

Definice 8.1.1 (Teorie struktury). Mějme L-strukturu A. Teorie struktury A, značíme Th(A)
je množina všech L-sentencí platných v A:

Th(A) = {φ | φ je L-sentence a A |= φ}

Příklad 8.1.2. Jako důležitý příklad vezměme standardní model aritmetiky, strukturu N =
⟨N, S,+, ·, 0,≤⟩. Teorii Th(N) říkáme aritmetika přirozených čísel. V následující kapitole si
ukážeme, že je (algoritmicky) nerozhodnutelná.2

Několik jednoduchých vlastností teorie struktury shrneme v následujícím pozorování:

Pozorování 8.1.3. Nechť A je L-struktura a T je L-teorie. Potom:

(i) Teorie Th(A) je kompletní.

(ii) Je-li A ∈ ML(T ), potom Th(A) je (kompletní) jednoduchá extenze teorie T .
1Například použití rezoluce k řešení otázky, zda v dané konečné teorii T platí daná sentence φ.
2Teorie T je (algoritmicky) rozhodnutelná, pokud existuje algoritmus, který pro každou vstupní sentenci φ

doběhne a odpoví, zda T |= φ.
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(iii) Pokud A ∈ ML(T ) a T je kompletní, potom je Th(A) ekvivalentní s T , v tom případě
Th(A) = CsqL(T ).

Pomocí pojmu teorie struktury můžeme také vyjádřit elementární ekvivalenci, pro L-
struktury A,B platí:

A ≡ B právě když Th(A) = Th(B).
Příklad 8.1.4. Podívejme se standardní uspořádání reálných, racionálních, a celých čísel, tj.
na struktury ⟨R,≤⟩, ⟨Q,≤⟩, ⟨Z,≤⟩. Jak jsme již zmínili v Příkladu 5.5.3, není těžké ukázat,
že ⟨R,≤⟩ ≡ ⟨Q,≤⟩ (pomocí hustoty těchto uspořádání). Struktury ⟨Q,≤⟩ a ⟨Z,≤⟩ ale elemen-
tárně ekvivalentní nejsou: V ⟨Z,≤⟩ má každý prvek bezprostředního následníka, což v ⟨Q,≤⟩
neplatí. Pro následující sentenci φ tedy máme φ ∈ Th(⟨Z,≤⟩) ale φ ̸∈ Th(⟨Q,≤⟩):

φ = (∀x)(∃y)(x ≤ y ∧ ¬x = y ∧ (∀z)(x ≤ z → z = x ∨ y ≤ z))

8.1.1 Kompletní jednoduché extenze

Máme-li teorii T , zajímá nás, jak vypadají její modely. Připomeňme, že:

• Teorie je kompletní, právě když má jediný model až na elementární ekvivalenci.3

• Modely teorie T , až na elementární ekvivalenci, jednoznačně odpovídají kompletním
jednoduchým extenzím T , až na ekvivalenci.

Kompletní jednoduché extenze L-teorie T jsou tedy (až na ekvivalenci) tvaru Th(A) pro
A ∈ ML(T ), a (jak jsme už zmínili výše) A ≡ B právě když Th(A) = Th(B). Místo hledání
všech modelů tedy stačí najít všechny kompletní jednoduché extenze.
Poznámka 8.1.5. Jednou z motivací, proč se zabývat kompletními jednoduchými extenzemi,
je Tvrzení 9.1.6 z následující kapitoly, které říká, že pokud lze efektivně (algoritmicky) popsat
všechny kompletní jednoduché extenze4 efektivně dané teorie T ,5 potom je T (algoritmicky)
rozhodnutelná.

Schopnost (efektivně) popsat všechny kompletní jednoduché extenze je poměrně vzácná,
a vyžaduje silné předpoklady. Přesto to lze provést u mnoha důležitých teorií. Uveďme jeden
příklad: teorii hustého lineárního uspořádání (dense linear order).

Příklad: DeLO*

Teorie hustého lineárního uspořádání (DeLO*) je extenze teorie uspořádání o následující axi-
omy:

• axiom linearity (někdy se mu říká také dichotomie):

x ≤ y ∨ y ≤ x

• axiom hustoty

x ≤ y ∧ ¬x = y → (∃z)(x ≤ z ∧ z ≤ y ∧ ¬ z = x ∧ ¬ z = y)
3Tedy všechny její modely jsou elementárně ekvivalentní.
4Představte si algoritmus, který pro daná vstupní i, j odpoví j-tý axiom i-té kompletní jednoduché extenze

(v nějakém pevném očíslování); takový algoritmus ne vždy existuje!
5T může být nekonečná, ale musí existovat algoritmus, který postupně vygeneruje všechny axiomy T .
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Někdy se přidává i axiom netriviality (∃x)(∃y)(¬x = y) zakazující jednoprvkový model. Tato
teorie není kompletní, umíme ale popsat všechny její kompletní jednoduché extenze:
Tvrzení 8.1.6. Mějme sentence φ = (∃x)(∀y)(x ≤ y) a ψ = (∃x)(∀y)(y ≤ x) vyjadřující
existenci minimálního resp. maximálního prvku. Následující čtyři teorie jsou právě všechny
(až na ekvivalenci) kompletní jednoduché extenze teorie DeLO*:

• DeLO = DeLO∗ ∪ {¬φ,¬ψ}

• DeLO+ = DeLO∗ ∪ {¬φ,ψ}

• DeLO− = DeLO∗ ∪ {φ,¬ψ}

• DeLO± = DeLO∗ ∪ {φ,ψ}
Stačí ukázat, že tyto čtyři teorie jsou kompletní. Potom už je zřejmé, že žádná další

kompletní jednoduchá extenze DeLO* nemůže existovat. Jak vysvětlíme v Sekci 8.3, jejich
kompletnost plyne z faktu, že jsou ω-kategorické, tj. mají jediný spočetný model až na izo-
morfismus. Viz Důsledek 8.3.5.

8.1.2 Důsledky Löwenheim-Skolemovy věty

V Sekci 6.5.1 jsme dokázali tzv. Löwenheim-Skolemovu větu, konkrétně její variantu pro
jazyky bez rovnosti:
Věta (Löwenheim-Skolemova). Je-li L spočetný jazyk bez rovnosti, potom každá bezesporná
L-teorie má spočetně nekonečný model.

Tato věta má následující jednoduchý důsledek:
Důsledek 8.1.7. Je-li L spočetný jazyk bez rovnosti, potom ke každé L-struktuře existuje
elementárně ekvivalentní spočetně nekonečná struktura.
Důkaz. Mějme L-strukturu A. Teorie Th(A) je bezesporná (má model A), tedy dle Löwenheim-
Skolemovy věty má spočetně nekonečný model B |= Th(A). To ale znamená, že B ≡ A.

V jazyce bez rovnosti tedy nemůžeme vyjádřit například ‘model má právě 42 prvků’.
V důkazu Löwenheim-Skolemovy věty jsme sestrojený model získali jako kanonický model

pro bezespornou větev tabla z T pro položku F⊥. Stejným způsobem se dokáže následující
verze pro jazyky s rovností, stačí faktorizovat dle relace =A:
Věta (Löwenheim-Skolemova s rovností). Je-li L spočetný jazyk s rovností, potom každá be-
zesporná L-teorie má spočetný model (tj. konečný, nebo spočetně nekonečný).

I tato verze má snadný důsledek pro konkrétní struktury:
Důsledek 8.1.8. Je-li L spočetný jazyk s rovností, potom ke každé nekonečné L-struktuře
existuje elementárně ekvivalentní spočetně nekonečná struktura.
Důkaz. Mějme nekonečnou L-strukturu A. Stejně jako v důkazu Důsledku 8.1.7 (ale za použití
Löwenheim-Skolemovy věty s rovností) najdeme spočetnou strukturu B ≡ A. Protože v A
platí pro každé n ∈ N sentence vyjadřující ‘existuje alespoň n prvků’ (což lze pomocí rovnosti
snadno zapsat), platí tato sentence i v B, B tedy nemůže být konečná a musí být spočetně
nekonečná.

Tento důsledek použijeme, abychom ukázali, že existuje spočetné těleso, které je alge-
braicky uzavřené:
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Spočetné algebraicky uzavřené těleso

Těleso A je algebraicky uzavřené, pokud každý polynom nenulového stupně v něm má kořen.
Těleso reálných čísel R není algebraicky uzavřené, neboť x2 + 1 nemá v R kořen, stejně tak
těleso Q (v něm nemá kořen ani x2 − 2). Těleso komplexních čísel C algebraicky uzavřené je,
je ale nespočetné.

Algebraickou uzavřenost lze vyjádřit pomocí následujících sentencí ψn, pro každé n > 0:

(∀xn−1) . . . (∀x0)(∃y)(yn + xn−1 · yn−1 + · · · + x1 · y + x0) = 0

kde yk je zkratka za term y · y · · · · · y (kde · je aplikováno (k − 1)-krát).

Důsledek 8.1.9. Existuje spočetné algebraicky uzavřené těleso.

Důkaz. Dle Důsledku 8.1.8 existuje spočetně nekonečná struktura A elementárně ekvivalentní
tělesu C. Protože C je těleso a splňuje sentence ψn pro všechna n > 0, je i A algebraicky
uzavřené těleso.

8.2 Izomorfismus struktur
Podívejme se blíže na pojem izomorfismu struktur, který zobecňuje izomorfismus grafů, vek-
torových prostorů, apod. Neformálně řečeno, struktury jsou izomorfní, pokud se liší jen po-
jmenováním konkrétních prvků.

Definice 8.2.1 (Izomorfismus struktur). Mějme struktury A,B jazyka L = ⟨R,F⟩. Izomor-
fismus A a B (nebo ‘A na B’) je bijekce h : A → B splňující následující vlastnosti:

• Pro každý (n-ární) funkční symbol f ∈ F a pro všechna ai ∈ A platí:

h(fA(a1, . . . , an)) = fB(h(a1), . . . , h(an))

(Speciálně, je-li c ∈ F konstantní symbol, platí h(cA) = cB.)

• Pro každý (n-ární) relační symbol R ∈ R a pro všechna ai ∈ A platí:

RA(a1, . . . , an) právě když RB(h(a1), . . . , h(an))

Pokud existuje, říkáme, že A a B jsou izomorfní (nebo ‘A je izomorfní s B via h’) a píšeme
A ≃ B (nebo A ≃h B). Automorfismus A je izomorfismus A na A.

Všimněte si, že relace ‘býti izomorfní’ je ekvivalence. Ukažme si jeden příklad:
Příklad 8.2.2. Je-li |X| = n, je potenční algebra P(X) = ⟨P(X),−,∩,∪, ∅, X⟩ izomorfní s
Booleovou algebrou 2n = ⟨{0, 1}n,−n,∧n,∨n, (0, . . . , 0), (1, . . . , 1)⟩ (kde operace aplikujeme
po složkách) via h(A) = χA, kde χA je charakteristický vektor podmnožiny A ⊆ X.

Nyní ukážeme, že izomorfismus je bijekce ‘zachovávající sémantiku’:

Tvrzení 8.2.3. Mějme struktury A,B jazyka L = ⟨R,F⟩. Bijekce h : A → B je izomorfismus
A a B, právě když platí následující:

(i) pro každý L-term t a ohodnocení proměnných e : Var → A:

h(tA[e]) = tB[e ◦ h]
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(ii) pro každou L-formuli φ a ohodnocení proměnných e : Var → A:

A |= φ[e] právě když B |= φ[e ◦ h]

Důkaz. Je-li h izomorfismus, vlastnosti snadno dokážeme indukcí podle struktury termu resp.
formule. Naopak, je-li h bijekce splňující (i) a (ii), dosazením t = f(x1, . . . , xn) resp. φ =
R(x1, . . . , xn) dostáváme vlastnosti z definice izomorfismu.

Jako okamžitý důsledek dostáváme fakt, že izomorfní struktury jsou elementárně ekviva-
lentní:

Důsledek 8.2.4. Pokud A ≃ B, potom A ≡ B.

Poznámka 8.2.5. Obrácená implikace ale obecně neplatí, například pro uspořádané množiny
racionálních a reálných čísel platí ⟨Q,≤⟩ ≡ ⟨R,≤⟩ ale ⟨Q,≤⟩ ̸≃ ⟨R,≤⟩ neboť Q je spočetná
množina zatímco R není (neexistuje tedy mezi nimi žádná bijekce).

Pro konečné modely ale platí, že izomorfismus je totéž co elementární ekvivalence, máme-li
jazyk s rovností, jak dokážeme v následujícím tvrzení:

Tvrzení 8.2.6. Je-li L jazyk s rovností a A,B konečné L-struktury, potom platí:

A ≃ B právě když A ≡ B

Důkaz. Jednu implikaci jsme dokázali v Důsledku 8.2.4. Předpokládejme, že A ≡ B a ukažme,
že existuje izomorfismus A na B. Protože je jazyk s rovností, můžeme vyjádřit sentencí, že
‘existuje právě n prvků’. Z toho plyne, že |A| = |B|.

Označme jako A′ expanzi A o jména prvků z A; jde o strukturu v jazyce L′ = L ∪ {ca |
a ∈ A}. Ukážeme, že B lze expandovat na L′-strukturu B tak, že A′ ≡ B′. Potom, jak lze
snadno ověřit, je zobrazení h(a) = cB′

a izomorfismem A′ na B′, a tedy i izomorfismem jejich
L-reduktů a A ≃ B.

Stačí ukázat, že pro každé cA′
a = a ∈ A existuje prvek b ∈ B takový, že pro expanze o

interpretaci konstantního symbolu ca platí ⟨A, a⟩ ≡ ⟨B, b⟩. Označme jako Ω množinu formulí
φ(x) takových, že ⟨A, a⟩ |= φ(x/ca), neboli A |= φ[e(x/a)]. Protože je A konečná množina,
existuje konečně mnoho formulí φ1(x), . . . , φm(x) takových, že pro každou formuli φ ∈ Ω
existuje i takové, že A |= φ ↔ φi. Potom i B |= φ ↔ φi (neboť A ≡ B, stačí vzít generální
uzávěr této formule, což je sentence).

Protože v A platí sentence (∃x) ∧m
i=1 φi (je splněna díky prvku a ∈ A) a B ≡ A, máme

i B |= (∃x) ∧m
i=1 φi. Jinými slovy, existuje b ∈ B takové, že B |= ∧m

i=1 φi[e(x/b)]. Tedy pro
každou φ ∈ Ω platí B |= φ[e(x/b)], tj. ⟨B, b⟩ |= φ(x/ca), což jsme chtěli dokázat.

Důsledek 8.2.7. Pokud má kompletní teorie v jazyce s rovností konečný model, potom jsou
všechny její modely izomorfní.

8.2.1 Definovatelnost a automorfismy

Připomeňme si pojem definovatelné množiny, viz Sekce 5.8. Ukážeme si užitečnou vlastnost
definovatelných množin: jsou uzavřené (‘invariantní’) na automorfismy dané struktury.

Nikoho nepřekvapí, že při automorfismu se musí izolovaný vrchol daného grafu zobrazit na
izolovaný vrchol, vrchol stupně 4 na vrchol stejného stupně, nebo třeba trojice vrcholů, která
tvoří trojúhelník, na trojúhelník. To nám může pomoci například při hledání automorfismů.
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Tvrzení 8.2.8. Je-li D ⊆ An definovatelná ve struktuře A, potom pro každý automorfismus
h ∈ Aut(A) platí h[D] = D (kde h[D] značí {h(a) | a ∈ D}).

Je-li D definovatelná s parametry b, platí totéž pro automorfismy identické na b (fixující
b), tj. takové, že h(b) = b (neboli h(bi) = bi pro všechna i).

Důkaz. Ukážeme jen verzi s parametry. Nechť D = φA,b(x, y). Potom pro každé a ∈ An platí
následující ekvivalence:

a ∈ D ⇔ A |= φ[e(x/a, y/b)]
⇔ A |= φ[(e ◦ h)(x/a, y/b)]
⇔ A |= φ[e(x/h(a), y/h(b))]
⇔ A |= φ[e(x/h(a), y/b)]
⇔ h(a) ∈ D.

Příklad 8.2.9. Uvažme následující graf G. Najděme všechny množiny definovatelné z G s pa-
rametrem 0, tj. množinu Df1(G, {0}).

1

0

4 2

3

Tento graf má jediný netriviální automorfismus zachovávající vrchol 0: h(i) = (5 − i) mod 5.
Jeho orbity jsou {0}, {1, 4}, a {2, 3}. Tyto množiny jsou definovatelné:

• {0} je definované formulí x = y, tj. (x = y)G,{0} = {0},

• {1, 4} lze definovat pomocí formule E(x, y), a

• {2, 3} formulí ¬E(x, y) ∧ ¬x = y.

Množina Df1(G, {0}) je podalgebra potenční algebry P(V (G)), musí tedy být uzavřená na
doplněk, sjednocení, průnik, a obsahovat ∅ a V (G). Podalgebra generovaná {{0}, {1, 4}, {2, 3}}
už ale obsahuje všechny podmnožiny zachovávající automorfismus h. Dostáváme:

Df1(G, {0}) = {∅, {0}, {1, 4}, {2, 3}, {0, 1, 4}, {0, 2, 3}, {1, 4, 2, 3}, {0, 1, 2, 3, 4}}

Cvičení 8.1. Uvažme následující graf. Najděte všechny automorfismy. Určete, které podmno-
žiny jsou definovatelné, uveďte definující formule. Které binární relace jsou definovatelné?

1 2

34 5
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8.3 ω-kategorické teorie
Nyní se podíváme na teorie, které mají jediný spočetně nekonečný model (až na izomorfismus),
říkáme jim ω-kategorické.6

Definice 8.3.1 (Izomorfní spektrum, κ-kategoricita). Izomorfní spektrum teorie T je po-
čet I(κ, T ) modelů T kardinality κ až na izomorfismus, pro každou kardinalitu κ (včetně
transfinitních). Teorie T je κ-kategorická, pokud I(κ, T ) = 1.

Nadále nás bude zajímat jen případ κ = ω, totiž teorie s jediným spočetně nekonečným
modelem (až na izomorfismus). Jako příklad uveďme teorii hustého lineárního uspořádání bez
konců:
Tvrzení 8.3.2. Teorie DeLO je ω-kategorická.

Důkaz. Vezměme dva spočetně nekonečné modely A,B a očíslujme jejich prvky: A = {ai |
i ∈ N}, B = {bi | i ∈ N}. Indukcí podle n lze díky hustotě nalézt posloupnost h0 ⊆ h1 ⊆
h2 ⊆ . . . prostých (parciálních) funkcí z A do B, takových, že {a0, . . . , an−1} ⊆ dom hn,
{b0, . . . , bn−1} ⊆ rng hn,7 a zachovávají uspořádání 8 Potom A ≃ B via h = ⋃

n∈N hn.

Důsledek 8.3.3. Izomorfní spektrum teorie DeLO* je následující:

I(κ,DeLO∗) =
{

0 pro κ ∈ N,
4 pro κ = ω.

Spočetné modely až na izomorfismus jsou například:

Q = ⟨Q,≤⟩ ≃ Q ↾ (0, 1), Q ↾ (0, 1], Q ↾ [0, 1), Q ↾ [0, 1]

Důkaz. Husté uspořádání jistě nemůže být konečné. Izomorfismus musí zobrazit nejmenší
prvek na nejmenší prvek, a největší na největší.

Pojem ω-kategoricity lze chápat jako zeslabení pojmu kompletnosti. Platí následující uži-
tečné kritérium:
Věta 8.3.4 (ω-kategorické kritérium kompletnosti). Mějme ω-kategorickou teorii T ve spo-
četném jazyce L. Je-li

• L bez rovnosti, nebo

• L s rovností a T nemá konečné modely,

potom je teorie T kompletní.

Důkaz. Pro jazyk bez rovnosti víme z Důsledku 8.1.7 Löwenheim-Skolemovy věty, že každý
model je elementárně ekvivalentní nějakému spočetně nekonečnému modelu. Ten je ale až na
izomorfismus jediný, takže všechny modely jsou elementárně ekvivalentní, což je sémantická
definice kompletnosti.

Máme-li jazyk s rovností, použijeme podobně Důsledek 8.1.8 a dostaneme, že všechny ne-
konečné modely jsou elementárně ekvivalentní. Mohly by existovat elementárně neekvivalentní
konečné modely, to jsme ale zakázali.

6Symbol ω se používá pro nejmenší nekonečné ordinální číslo, jinými slovy, pro množinu všech přirozených
čísel.

7Zde dom značí doménu a rng značí obor hodnot (‘range’) funkce.
8Tj. je-li ai, aj ∈ dom hn, potom ai ≤A aj právě když h(ai) ≤B h(aj).
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Důsledek 8.3.5. Teorie DeLO, DeLO+, DeLO−, a DeLO± jsou kompletní. Jsou to všechny
(navzájem neekvivalentní) kompletní jednoduché extenze teorie DeLO∗.

Poznámka 8.3.6. Analogické kritérium platí i pro kardinality κ větší než ω.

8.4 Axiomatizovatelnost
Na závěr této kapitoly se podíváme, za jakých okolností lze ‘popsat’ (axiomatizovat) třídu
modelů respektive teorii. Zajímat nás bude také kdy si vystačíme s konečně mnoha axiomy,
a kdy to lze pomocí otevřených axiomů (kterých může být i nekonečně mnoho). Srovnejte s
Tvrzením 1.3.4 z výrokové logiky.

Definice 8.4.1 (Axiomatizovatelnost). Mějme třídu struktur K ⊆ ML v nějakém jazyce L.
Říkáme, že K je

• axiomatizovatelná, pokud existuje L-teorie T taková, že ML(T ) = K,

• konečně axiomatizovatelná, pokud je axiomatizovatelná konečnou teorií, a

• otevřeně axiomatizovatelná, pokud je axiomatizovatelná otevřenou teorií.

O L-teorii T ′ říkáme, že je konečně resp. otevřeně axiomatizovatelná, pokud to platí o třídě
modelů K = ML(T ′).

Příklad 8.4.2. Uveďme několik příkladů:

• grafy nebo částečná uspořádání jsou konečně i otevřeně axiomatizovatelné,

• tělesa jsou konečně, ale ne otevřeně axiomatizovatelná,

• nekonečné grupy jsou axiomatizovatelné, ale ne konečně axiomatizovatelné,

• konečné grafy nejsou axiomatizovatelné.

Proč tomu tak je ukážeme níže.
Začněme jednoduchým faktem:

Pozorování 8.4.3. Je-li K axiomatizovatelná, musí být uzavřená na elementární ekvivalenci.

Z věty o kompaktnosti snadno získáme následující tvrzení, pomocí kterého lze ukázat
neaxiomatizovatelnost např. konečných grafů, konečných grup, konečných těles.

Věta 8.4.4 (Neaxiomatizovatelnost konečných modelů). Pokud má teorie libovolně velké ko-
nečné modely, potom má i nekonečný model. V tom případě není třída všech jejích konečných
modelů axiomatizovatelná.

Důkaz. Je-li jazyk bez rovnosti, stačí vzít kanonický model pro některou bezespornou větev
v tablu z T pro položku F⊥ (T je bezesporná, neboť má model(y), tedy tablo není sporné).

Mějme jazyk s rovností a označme jako T ′ následující extenzi teorie T do jazyka rozšíře-
ného o spočetně mnoho nových konstantních symbolů ci:

T ′ = T ∪ {¬ci = cj | i ̸= j ∈ N}
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Každá konečná část teorie T ′ má model: nechť k je největší takové, že symbol ck se vysky-
tuje v této konečné části T ′. Potom stačí vzít libovolný alespoň (k + 1)-prvkový model T a
interpretovat konstanty c0, . . . , ck jako navzájem různé prvky tohoto modelu.

Dle věty o kompaktnosti má potom i T ′ model. Ten je nutně nekonečný. Jeho redukt na
původní jazyk (zapomenutí konstant cA

i ) je nekonečným modelem T .

Poznámka 8.4.5. Třída všech nekonečných modelů teorie ale je vždy axiomatizovatelná, máme-
li jazyk s rovností: stačí k teorii přidat pro každé n ∈ N axiom vyjadřující ‘existuje alespoň n
prvků’.

8.4.1 Konečná axiomatizovatelnost

Ukážeme následující kritérium konečné axiomatizovatelnosti: jak třída struktur K tak i K
musí být axiomatizovatelné.

Věta 8.4.6 (O konečné axiomatizovatelnosti). Mějme třídu struktur K ⊆ ML a uvažme také
její doplněk K = ML \K. Potom K je konečně axiomatizovatelná, právě když K i K jsou
axiomatizovatelné.

Důkaz. Je-li K konečně axiomatizovatelná, potom je axiomatizovatelná i konečně mnoha sen-
tencemi φ1, . . . , φn (nahradíme formule jejich generálními uzávěry). Jako axiomatizaci K stačí
vzít sentenci ψ = ¬(φ1 ∧ φ2 ∧ · · · ∧ φn). Zřejmě platí M(ψ) = K.

Naopak, nechť T a S jsou teorie takové, že M(T ) = K a M(S) = K. Uvažme teorii T ∪S.
Tato teorie je sporná, neboť:

M(T ∪ S) = M(T ) ∩ M(S) = K ∩K = ∅

Podle věty o kompaktnosti9 existují konečné podteorie T ′ ⊆ T a S′ ⊆ S takové, že:

∅ = M(T ′ ∪ S′) = M(T ′) ∩ M(S′)

Nyní si všimněme, že platí

M(T ) ⊆ M(T ′) ⊆ M(S′) ⊆ M(S) = M(T )

tím jsme dokázali, že M(T ) = M(T ′), tj. teorie T ′ je hledanou konečnou axiomatizací K.

Jako aplikaci si dokážeme, že tělesa charakteristiky 0 nejsou konečně axiomatizovatelná.

Příklad: tělesa charakteristiky 0

Nechť T je teorie těles. Charakteristika tělesa je nejmenší počet jedniček, které je třeba sečíst,
abychom dostali nulu (v tom případě musí být charakteristika prvočíslo—dokažte si!), nebo,
pokud nikdy nedostaneme sčítáním jedniček nulu, říkáme že je charakteristika 0. Trochu
formálněji:

Definice 8.4.7 (Charakteristika tělesa). Říkáme, že těleso A = ⟨A,+,−, 0, ·, 1⟩ je

• charakteristiky p, je-li p nejmenší prvočíslo takové, že A |= p1 = 0, kde p1 označuje term
1 + 1 + · · · + 1 s p jedničkami, nebo

9Vidíte, jak je užitečná!
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• charakteristiky 0, pokud není charakteristiky p pro žádné prvočíslo p.

Nechť T je teorie těles. Potom třída těles charakteristiky p je konečně axiomatizována
teorií T ∪ {p1 = 0}. Třída těles charakteristiky 0 je axiomatizována následující (nekonečnou)
teorií:

T ′ = T ∪ {¬ p1 = 0 | p je prvočíslo}

Konečná axiomatizace ale neexistuje.

Tvrzení 8.4.8. Třída K těles charakteristiky 0 není konečně axiomatizovatelná.

Důkaz. Díky Větě 8.4.6 stačí ukázat, že K (sestávající z těles nenulové charakteristiky a
struktur, které nejsou tělesa) není axiomatizovatelná, což dokážeme sporem. Nechť existuje
teorie S taková, že M(S) = K. Potom teorie S′ = S ∪ T ′ má model, neboť každá její konečná
část má model: stačí vzít těleso prvočíselné charakteristiky větší než jakékoliv p z axiomu T ′

tvaru ¬ p1 = 0. Nechť A je model S′. Potom je i A ∈ M(S) = K. Zároveň je ale A ∈ M(T ′) =
K, což je spor.

8.4.2 Otevřená axiomatizovatelnost

Pro otevřenou axiomatizovatelnost existuje jednoduché sémantické kritérium: třída jejích mo-
delů musí být uzavřená na podstruktury. Platí dokonce ekvivalence, dokážeme ale jen jednu
implikaci (důkaz druhé je obtížnější).

Věta 8.4.9 (Otevřená axiomatizovatelnost). Pokud je teorie T otevřeně axiomatizovatelná,
potom je každá podstruktura modelu T také modelem T .

Poznámka 8.4.10. Platí i obrácená implikace: Je-li každá podstruktura modelu T také mode-
lem, potom je T otevřeně axiomatizovatelná. Důkaz zde ale neuvedeme.

Důkaz. Nechť T ′ je otevřená axiomatizace T . Mějme model A |= T ′ a podstrukturu B ⊆ A.
Pro každou formuli φ ∈ T ′ platí B |= φ (neboť φ je otevřená), tedy i B |= T ′.

Příklad 8.4.11. Uveďme několik příkladů:

• Teorie DeLO není otevřeně axiomatizovatelná, například žádná konečná podstruktura
modelu DeLO nemůže být hustá.

• Teorie těles není otevřeně axiomatizovatelná, podstruktura Z ⊆ Q tělesa racionálních
čísel není tělesem, v Z neexistuje inverzní prvek vůči násobení k číslu 2.

• Pro dané n ∈ N jsou nejvýše n-prvkové grupy otevřeně axiomatizovatelné(podgrupy jsou
jistě také nejvýše n-prvkové). Jako otevřenou axiomatizaci lze vzít následující extenzi
(otevřené) teorie grup T :

T ∪ {
∨

1≤i<j≤n+1
xi = xj}
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Kapitola 9

Nerozhodnutelnost a neúplnost

V této, závěrečné kapitole se budeme zabývat tím, jak lze s teoriemi pracovat algoritmicky.
Zlatým hřebem budou Gödelovy věty o neúplnosti z roku 1931, které ukazují limity formálního
přístupu, a které zastavily desetiletí trvající program formalizace matematiky. Nemáme zde
dostatek prostoru k uvedení formálních definic a úplných důkazů, proto se místy budeme
pohybovat na poněkud intuitivní úrovni. Zaměříme se na pochopení smyslu tvrzení a myšlenek
důkazů.

Pojem algoritmu budeme chápat také jen intuitivně. Pokud bychom ho chtěli formalizovat,
potom nejběžnější (ale zdaleka ne jedinou) volbou je koncept Turingova stroje.1

9.1 Rekurzivní axiomatizace a rozhodnutelnost
V dokazovacích systémech, kterými jsme se zabývali (tablo metoda, rezoluce, hilbertův kal-
kulus) jsme povolili, aby teorie T , ve které dokazujeme, byla nekonečná. Vůbec jsme se ale
zatím nezabývali tím, jak je zadaná. Pokud chceme ověřit, že je daný objekt (tablo, rezoluční
strom, posloupnost formulí) korektním důkazem, potřebujeme nějaký algoritmický přístup ke
všem axiomům T .

Jednou z možností by bylo požadovat enumerátor T , tj. algoritmus, který vypisuje na
výstup axiomy z T , a každý axiom někdy vypíše.2 Potom by bylo snadné potvrdit, že je daný
důkaz korektní. Pokud bychom ale dostali důkaz, který použil chybný axiom, který v T není,
nikdy bychom se to nedozvěděli: nekonečně dlouho bychom čekali, zda jej enumerátor přeci
jen nevypíše. Požadujeme proto silnější vlastnost, která umožňuje rozpoznat i chybné důkazy:
rekurzivní axiomatizaci.3

Definice 9.1.1 (Rekurzivní axiomatizace). Teorie T je rekurzivně axiomatizovaná, pokud
existuje algoritmus, který pro každou vstupní formuli φ doběhne a odpoví, zda φ ∈ T .

Poznámka 9.1.2. Ve skutečnosti by nám stačil enumerátor pro T , pokud by bylo garantováno,
že vypisuje axiomy v lexikografickém uspořádání. To už je ekvivalentní rekurzivní axiomati-
zaci. (Rozmyslete si proč.)

1Viz přednášky NTIN071 Automaty a gramatiky, NTIN090 Základy složitosti a vyčíslitelnosti.
2Nutným předpokladem je, aby T byla spočetná. K tomu stačí předpokládat, že jazyk je spočetný.
3Slovo rekurzivní zde neznamená běžně známou rekurzi, ale odkazuje na formalizaci algoritmu pomocí

‘rekurzivních funkcí’ od Gödela. Rekurzivní funkce zde znamená totéž, co vyčíslitelná nějakým Turingovým
strojem, a teorii vyčíslitelnosti (computability theory) se někdy také říká recursion theory.
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Zaměříme se na otázku, zda můžeme v dané teorii T ‘algoritmicky rozhodovat pravdu’ (tj.
platnost vstupní formule). Pokud ano, říkáme, že je teorie rozhodnutelná. To je ale poměrně
silná vlastnost, definujeme proto také částečnou rozhodnutelnost, která znamená, že pokud
formule platí, algoritmus nám to řekne, ale pokud neplatí, nikdy se nemusíme dočkat odpovědi.

Definice 9.1.3 (Rozhodnutelnost). O teorii T říkáme, že je

• rozhodnutelná, pokud existuje algoritmus, který pro každou vstupní formuli φ doběhne
a odpoví, zda T |= φ,

• částečně rozhodnutelná, pokud existuje algoritmus, který pro každou vstupní formuli:

– pokud T |= φ, doběhne a odpoví “ano”,
– pokud T ̸|= φ, buď nedoběhne, nebo doběhne a odpoví “ne”.

Můžeme jako obvykle předpokládat, že φ v definici je sentence. Ukážeme si jednoduché
tvrzení:

Tvrzení 9.1.4. Nechť T je rekurzivně axiomatizovaná. Potom:

(i) T je částečně rozhodnutelná,

(ii) je-li T navíc kompletní, potom je rozhodnutelná.

Důkaz. Algoritmem ukazujícím částečnou rozhodnutelnost je konstrukce systematického tabla
z teorie T pro položku Fφ.4 Pokud φ v T platí, konstrukce skončí v konečně mnoha krocích
a snadno ověříme, že je tablo sporné, jinak ale skončit nemusí.

Je-li T kompletní, víme, že platí právě jedna z následujících možností: buď T |− φ nebo
T |− ¬φ. Budeme tedy paralelně konstruovat tablo pro Fφ a tablo pro Tφ (důkaz a zamítnutí
φ z T ): jedna z konstrukcí po konečně mnoha krocích skončí.

9.1.1 Rekurzivně spočetná kompletace

Požadavek kompletnosti je příliš silný, ukážeme, že stačí pokud jsme schopni efektivně popsat
všechny kompletní jednoduché extenze.5

Definice 9.1.5 (Rekurzivně spočetná kompletace). Řekneme, že teorie T má rekurzivně spo-
četnou kompletaci, pokud má až na ekvivalenci jen spočetně mnoho kompletních jednoduchých
extenzí a (nějaká) množina až na ekvivalenci všech kompletních jednoduchých extenzí teorie
T je rekurzivně spočetná, tj. existuje algoritmus, který pro danou vstupní dvojici přirozených
čísel (i, j) vypíše na výstup i-tý axiom j-té extenze (v nějakém pevně daném uspořádání6),
nebo odpoví, že takový axiom už neexistuje.7

Tvrzení 9.1.6. Pokud je teorie T rekurzivně axiomatizovaná a má rekurzivně spočetnou
kompletaci, potom je T rozhodnutelná.

4Zde nám stačí enumerátor axiomů T , nebo postupně generujeme všechny sentence (např. v lexikografickém
pořadí) a pro každou testujeme, zda je axiomem.

5Tj. ‘všechny modely až na elementární ekvivalenci’.
6Zde potřebujeme, aby byl jazyk spočetný.
7Je-li extenzí méně než j, nebo má-li j-tá extenze méně než i axiomů.
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Důkaz. Pro danou sentenci φ buď T |− φ, nebo existuje protipříklad A ̸|= φ, tedy kompletní
jednoduchá extenze Ti teorie T taková, že Ti ̸|− φ. Z kompletnosti ale plyne, že Ti |− ¬φ. Náš
algoritmus bude paralelně konstruovat tablo důkaz φ z T a (postupně) tablo důkazy ¬φ ze
všech kompletních jednoduchých extenzí T1, T2, . . . teorie T .8 Víme, že alespoň jedno z para-
lelně konstruovaných tabel je sporné, a můžeme předpokládat, že konečné (neprodlužujeme-li
sporné větve tabla), tedy algoritmus ho po konečně mnoha krocích zkonstruuje.

Cvičení 9.1. Ukažte, že následující teorie mají rekurzivně spočetnou kompletaci:

• Teorie čisté rovnosti (prázdná teorie v jazyce L = ⟨⟩ s rovností),

• Teorie unárního predikátu (prázdná teorie v jazyce L = ⟨U⟩ s rovností, kde U je unární
relační symbol),

• Teorie hustých lineárních uspořádání DeLO* (kompletní jednoduché extenze jsou po-
psané v Důsledku 8.3.5),

Jde o rekurzivně axiomatizované teorie (neboť jsou konečné), jsou tedy rozhodnutelné.
Příklad 9.1.7. Na závěr uveďme bez důkazu několik dalších příkladů rozhodnutelných teorií:

• Teorie Booleových algeber (Alfred Tarski 1940),

• Teorie algebraicky uzavřených těles (Tarski 1949),

• Teorie komutativních grup (Wanda Szmielew 1955).

Tyto teorie jsou také nekompletní, ale rekurzivně axiomatizované a mají rekurzivně spočetnou
kompletaci.

9.1.2 Rekurzivní axiomatizovatelnost

V předchozí kapitole, konkrétně v Sekci 8.4, jsme se zabývali otázkou, kdy lze popsat nějakou
třídu struktur [resp. teorii] pomocí axiomů [určitého tvaru]. Nyní se zaměřme na otázku, kdy
to lze udělat algoritmicky.

Definice 9.1.8 (Rekurzivní axiomatizovatelnost). Třída L-struktur K ⊆ ML je rekurzivně
axiomatizovatelná, pokud existuje rekurzivně axiomatizovaná L-teorie T taková, že K =
ML(T ). Teorie T ′ je rekurzivně axiomatizovatelná, pokud je rekurzivně axiomatizovatelná
třída jejích modelů, neboli pokud je T ′ ekvivalentní nějaké rekurzivně axiomatizované teorii.

Poznámka 9.1.9. Podobně bychom mohli definovat rekurzivně spočetnou axiomatizovatelnost.
Ukažme si následující jednoduché tvrzení:

Tvrzení 9.1.10. Je-li A konečná struktura v konečném jazyce s rovností, potom je teorie
Th(A) rekurzivně axiomatizovatelná.

Poznámka 9.1.11. Z toho plyne i že Th(A) je rozhodnutelná, což ale není překvapivé: platnost
sentence φ v konečné struktuře A můžeme snadno ověřit.

8Nevadí, že je jich nekonečně mnoho, můžeme využít tzv. dovetailing: Provedeme 1. krok konstrukce 1.
tabla, potom 2. krok 1. tabla a 1. krok 2. tabla, 3. krok 1. tabla, 2. krok 2. tabla, 1. krok 3. tabla, atd.
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Důkaz. Očíslujme prvky domény jako A = {a1, . . . , an}. Teorii Th(A) lze axiomatizovat jedi-
nou sentencí, která je tvaru “existuje právě n prvků a1, . . . , an splňujících právě ty základní
vztahy o funkčních hodnotách a relacích, které platí ve struktuře A”.9

Uveďme několik standardních příkladů struktur, které lze ‘algoritmicky popsat’:
Příklad 9.1.12. Pro následující struktury je Th(A) rekurzivně axiomatizovatelná, a tedy i
rozhodnutelná:

• ⟨Z,≤⟩, jde o tzv.teorii diskrétních lineárních uspořádání,

• ⟨Q,≤⟩, jde o teorii DeLO,

• ⟨N, S, 0⟩, teorie následníka s nulou,

• ⟨N, S,+, 0⟩, Presburgerova aritmetika,

• ⟨R,+,−, ·, 0, 1⟩, teorie reálně uzavřených těles,10

• ⟨C,+,−, ·, 0, 1⟩, teorie algebraicky uzavřených těles charakteristiky 0.

Důsledek 9.1.13. Pro struktury uvedené v Příkladu 9.1.12 platí, že Th(A) je rozhodnutelná.

Poznámka 9.1.14. Jak ale vyplývá z První Gödelovy věty o neúplnosti (viz níže), standardní
model aritmetiky, tj. struktura N = ⟨N, S,+, ·, 0,≤⟩, nemá rekurzivně axiomatizovatelnou
teorii.

9.2 Aritmetika
Vlastnosti přirozených čísel hrají důležitou roli nejen v matematice, ale například také v
kryptografii. Připomeňme, že jazyk aritmetiky je jazyk L = ⟨S,+, ·, 0,≤⟩ s rovností. Jak jsme
zmínili v Poznámce 9.1.14, tzv. standardní model aritmetiky N = ⟨N, S,+, ·, 0,≤⟩ nemá re-
kurzivně axiomatizovatelnou teorii. Proto používáme rekurzivně axiomatizované teorie, které
se snaží vlastnosti N popsat částečně; těmto teoriím říkáme aritmetiky.

9.2.1 Robinsonova a Peanova aritmetika

Uvedeme jen dva nejdůležitější příklady aritmetik: Robinsonovu a Peanovu.

Definice 9.2.1 (Robinsonova aritmetika). Robinsonova aritmetika je teorie Q v jazyce arit-
metiky sestávající z následujících (konečně mnoha) axiomů:

¬S(x) = 0 x · 0 = 0
S(x) = S(y) → x = y x · S(y) = x · y + x

x+ 0 = x ¬x = 0 → (∃y)(x = S(y))
x+ S(y) = S(x+ y) x ≤ y ↔ (∃z)(z + x = y)

9Například, pokud fA(a4, a2) = a17, přidáme do konjunkce atomickou formuli f(xa4 , xa2 ) = xa17 (kde xai

jsou proměnné odpovídající jednotlivým prvkům). A pokud (a3, a3, a1) /∈ RA, přidáme ¬R(xa3 , xa3 , xa1 ).
10Tento významný výsledek A. Tarského (1949) také znamená, že lze algoritmicky rozhodovat, které vlast-

nosti platí v Euklidovské geometrii.
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Robinsonova aritmetika je velmi slabá, nelze v ní dokázat například komutativitu ani
asociativitu sčítání či násobení, nebo tranzitivitu uspořádání.

Na druhou stranu v ní lze dokázat všechna existenční tvrzení o numerálech, která jsou
pravdivá v N. Tím myslíme formule, které v prenexním tvaru mají pouze existenční kvantifi-
kátory, a do kterých jsme za volné proměnné substituovali numerály n = S(. . . S(0) . . . ).
Příklad 9.2.2. Například, pro formuli φ(x, y) tvaru (∃z)(x + z = y) je Q |− φ(1, 2), kde
1 = S(0) a 2 = S(S(0)).

Platí tedy následující tvrzení, které ponecháme bez důkazu.
Tvrzení 9.2.3. Je-li φ(x1, . . . , xn) existenční formule a a1, . . . , an ∈ N, potom platí:

Q |− φ(x1/a1, . . . , xn/an) právě když N |= φ[e(x1/a1, . . . , xn/an)]

Užitečným rozšířením Robinsonovy aritmetiky je tzv. Peanova aritmetika, ve které lze
dokazovat indukcí :
Definice 9.2.4 (Peanova aritmetika). Peanova aritmetika PA je extenze Robinsonovy arit-
metiky Q o schéma indukce, tj. pro každou L-formuli φ(x, y) přidáme následující axiom:

(φ(0, y) ∧ (∀x)(φ(x, y) → φ(S(x), y))) → (∀x)φ(x, y)

Peanova aritmetika je mnohem lepší aproximací teorie Th(N), lze v ní dokázat všechny
‘základní’ vlastnosti platné v N (například komutativitu a asociativitu sčítání). Stále ale
existují sentence v jazyce aritmetiky, které platí v N, ale v Peanově aritmetice jsou nezávislé.11

Poznámka 9.2.5. Pokud bychom se přesunuli do logiky 2. řádu, potom bychom už mohli
strukturu N axiomatizovat (až na izomorfismus), a to extenzí Peanovy aritmetiky o následující
formuli 2. řádu, tzv. axiom indukce:

(∀X)((X(0) ∧ (∀x)(X(x) →X(S(x)))) → (∀x)X(x))

Připomeňme, že X reprezentuje (libovolnou) unární relaci, neboli podmnožinu univerza. Po-
užitím axiomu indukce na množinu následníků 0 získáme, že každý prvek (daného modelu)
je následníkem nuly. Tak můžeme sestrojit izomorfismus s N.

9.3 Nerozhodnutelnost predikátové logiky
V této sekci si ukážeme, že nelze (algoritmicky) rozhodovat logickou platnost formulí prvního
řádu. (Jinými slovy, nerozhodnutelnost prázdné teorie nad jazykem daným na vstupu.)
Věta 9.3.1 (O nerozhodnutelnosti predikátové logiky). Neexistuje algoritmus, který by pro
danou vstupní formuli φ rozhodl, zda je logicky platná.12

Protože zatím neznáme potřebný formalismus týkající se algoritmů, např. pojem Turingova
stroje, zvolíme jako výchozí bod jiný nerozhodnutelný problém. Nejznámějším je tzv. Halting
problem, tj. otázka, zda se daný program zastaví na daném vstupu.13 My si ale usnadníme
práci tím, že zvolíme jiný nerozhodnutelný problém, tzv. Hilbertův desátý problém.14

11Jak si ukážeme v Gödelově První větě o neúplnosti.
12Tj. zda je formule φ tautologie, neboli zda |= φ. Zde mluvíme o formulích 1. řádu, v libovolném jazyce.
13Jeho nerozhodnutelnost si dokážete v předmětech NTIN071 Automaty a gramatiky a poté znovu v

NTIN090 Základy složitosti a vyčíslitelnosti.
14Hilbert jej vyslovil v roce 1900, a publikoval v roce 1902 spolu s 22 dalšími problémy, které významně

ovlivnily matematiku 20., i 21. století. Některé zůstávají nevyřešeny, např. Riemannova hypotéza, viz Wikipe-
dia.
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9.3.1 Hilbertův desátý problém

Mějme polynom p(x1, . . . , xn) s celočíselnými koeficienty. Hilbertův desátý problém se ptá po
algoritmu, který rozhodne, zda má takový vstupní polynom celočíselný kořen, neboli zda má
Diofantická rovnice p(x1, . . . , xn) = 0 (celočíselné) řešení:

“Nalezněte algoritmus, který po konečně mnoha krocích určí, zda daná Diofan-
tická rovnice s libovolným počtem proměnných a celočíselnými koeficienty má
celočíselné řešení.”

Kdyby se Hilbert dožil vyřešení svého desátého problému v roce 1970, byl by překvapen,
že žádný takový algoritmus neexistuje.
Věta 9.3.2 (Matiyasevich, Davis, Putnam, Robinson). Problém existence celočíselného řešení
dané Diofantické rovnice s celočíselnými koeficienty je (algoritmicky) nerozhodnutelný.

Důkaz zde pro nedostatek místa neuvedeme. K důkazu nerozhodnutelnosti ve skutečnosti
použijeme následující důsledek, který mluví o polynomech s přirozenými koeficienty, a o řešení
v přirozených číslech.
Důsledek 9.3.3. Neexistuje algoritmus, který by pro danou dvojici polynomů p(x1, . . . , xn),
q(x1, . . . , xn) s přirozenými koeficienty rozhodl, zda mají přirozené řešení, tj. zda platí:

N |= (∃x1) . . . (∃xn) p(x1, . . . , xn) = q(x1, . . . , xn)

Důkaz důsledku. Důkaz je snadný, využívá faktu, že každé celé číslo lze vyjádřit jako rozdíl
dvojice přirozených čísel, a naopak, každé přirozené číslo lze vyjádřit jako součet čtyř čtverců
(celých čísel).15 Každou Diofantickou rovnici lze tedy transformovat na rovnici z důsledku, a
naopak.

9.3.2 Důkaz nerozhodnutelnosti

Připomeňme, že Robinsonova aritmetika Q má jen konečně mnoho axiomů, N je jejím mo-
delem, a lze v ní dokázat všechna existenční tvrzení o numerálech platná v N. Nyní jsme
připraveni dokázat Větu o nerozhodnutelnosti predikátové logiky.

Důkaz věty o nerozhodnutelnosti predikátové logiky. Uvažme formuli φ tvaru

(∃x1) . . . (∃xn) p(x1, . . . , xn) = q(x1, . . . , xn)

kde p a q jsou polynomy s přirozenými koeficienty. Dle Tvrzení 9.2.3 platí:

N |= φ právě když Q |− φ

Označme jako ψQ konjunkci (generálních uzávěrů) všech axiomů Q. Zřejmě Q |− φ, právě
když ψQ |− φ, což platí právě když |− ψQ → φ. Dle vět o korektnosti a o úplnosti je to ale
ekvivalentní |= ψQ → φ. Dostáváme tedy následující ekvivalenci:

N |= φ právě když |= ψQ → φ

To znamená, že pokud existoval algoritmus rozhodující logickou platnost, mohli bychom roz-
hodovat i existenci přirozeného řešení rovnice p(x1, . . . , xn) = q(x1, . . . , xn), neboli Hilbertův
desátý problém by byl rozhodnutelný.16 Což by byl spor.

15Tzv. Lagrangeova věta o čtyřech čtvercích.
16Ukazujeme, že existuje redukce ‘těžkého’ problému (Hilbertova desátého) na náš problém, tedy i náš pro-

blém je ‘těžký’.
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9.4 Gödelovy věty
Na závěr přednášky představíme slavné Gödelovy věty o neúplnosti, jejichž pochopení by
mělo být samozřejmou součástí vzdělání každého informatika. Pokusíme se vysvětlit i princip
důkazů, ale vynecháme veškeré technické detaily.

9.4.1 První věta o neúplnosti

Nejprve vyslovíme Gödelovu První větu o neúplnosti, a vysvětlíme smysl jejích předpokladů.

Věta 9.4.1 (První věta o neúplnosti). Pro každou bezespornou rekurzivně axiomatizovanou
extenzi T Robinsonovy aritmetiky existuje sentence, která je pravdivá v N, ale není dokazatelná
v T .

Takové sentenci se říká Gödelova sentence. Velmi neformálně řečeno, Gödelova První věta
o neúplnosti říká, že vlastnosti aritmetiky přirozených čísel nelze ‘rozumně’, efektivně popsat
(v logice 1. řádu), každý takový popis je nutně ‘neúplný’. Je důležité si uvědomit, že mluvíme
o pravdivosti ve standardním modelu aritmetiky, tj. ve struktuře N, zatímco dokazatelnost
je v teorii T . (Z Věty o úplnosti samozřejmě plyne, že každá sentence pravdivá v T je v T i
dokazatelná.)

Bezespornost je nutným předpokladem, neboť ve sporné teorii je dokazatelná každá sen-
tence. Připomeňme, že rekurzivní axiomatizovanost můžeme chápat jako ‘efektivní zadání’
axiomů (pomocí algoritmu), bez této vlastnosti by taková teorie nebyla užitečná. Požadavek
aby teorie byla extenzí Robinsonovy aritmetiky chápejte jako předpoklad, že má alespoň ‘zá-
kladní aritmetickou sílu’, že v ní lze určitým způsobem ‘mluvit’ o přirozených číslech. Existují
různé varianty tohoto předpokladu, s jinými teoriemi než je Robinsonova aritmetika, a není
například nutné, aby šlo přímo o extenzi, stačí, když je v teorii Robinsonova aritmetika v
jistém smyslu ‘definovatelná’. Ale teorie, ve které ‘nelze zakódovat přirozená čísla’ (a zde je
důležité, že můžeme mluvit nejen o sčítání, ale i o násobení), je ‘příliš slabá’.

Je dobré si uvědomit, že speciálně platí i následující tvrzení ‘o nekompletnosti’:

Důsledek 9.4.2. Splňuje-li teorie T předpoklady První věty o neúplnosti a je-li navíc N
modelem teorie T , potom T není kompletní.

Důkaz. Předpokládejme pro spor, že T je kompletní. Vezměme sentenci φ, která je pravdivá v
N ale není dokazatelná v T . Díky kompletnosti víme, že T |− ¬φ, potom ale Věta o korektnosti
říká, že T |= ¬φ, tedy φ je lživá v N, což je spor.

Zajímavé je nejen samotné tvrzení První věty o neúplnosti, ale také její důkaz: Gödel v něm
přišel se zcela novou, na svou dobu převratnou důkazovou technikou. Sentence sestrojená v
důkazu formalizuje tvrzení “Nejsem dokazatelná v T”, důkaz je založen na následujících dvou
principech, které níže poněkud neformálně popíšeme:

• aritmetizace syntaxe, tedy zakódování sentencí a jejich dokazatelnosti do přirozených
čísel,

• self-reference, tedy schopnost sentence ‘mluvit sama o sobě’ (o svém kódu).
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Aritmetizace dokazatelnosti

Konečné syntaktické objekty, jako jsou termy, formule, konečná tabla, a tedy i tablo důkazy, lze
‘rozumně’ zakódovat do přirozených čísel.17 Konkrétní způsob jak to lze provést, tzv. Gödelovo
číslování, jako technický detail přeskočíme. Stačí nám, že jsme schopni objekty ‘algoritmicky’
kódovat a dekódovat (případně ‘simulovat manipulaci s objekty’ na jejich kódech).

Označme kód formule φ jako ⌈φ⌉, podobně pro jiné syntaktické objekty. Numerál odpoví-
dající kódu φ, tedy ⌈φ⌉-tý numerál, budeme značit φ. Pro danou teorii T definujme následující
binární relaci na množině všech přirozených čísel:

(n,m) ∈ ProofT právě když n = ⌈φ⌉ a m = ⌈τ⌉, kde τ je tablo důkaz sentence φ z T

Máme-li efektivní přístup k axiomům, umíme také efektivně zkontrolovat zda τ je opravdu
důkazem φ (kde τ a φ získáme dekódováním m a n), tedy platí:

Pozorování 9.4.3. Je-li T rekurzivně axiomatizovaná, je relace ProofT ⊆ N2 rekurzivní.

Zde rekurzivní znamená, že existuje algoritmus, který vždy zastaví, a správně odpoví na
otázku, zda pro dané n,m ∈ N platí (n,m) ∈ ProofT .

Klíčovou, ale velmi technickou částí důkazu První věty je následující tvrzení, které pone-
cháme bez důkazu.

Tvrzení 9.4.4. Je-li T navíc extenzí Robinsonovy aritmetiky Q, potom existuje formule
Prf T (x, y) v jazyce aritmetiky, která reprezentuje relaci ProofT , tj. pro každá n,m ∈ N platí:

• Je-li (n,m) ∈ ProofT , potom Q |− Prf T (n,m),

• jinak Q |− ¬Prf T (n,m).

Formule Prf T (x, y) tedy vyjadřuje “y je důkaz x v T”.18 Potom můžeme vyjádřit, že “x
je dokazatelná v T”, a to formulí (∃y)Prf T (x, y). Všimněte si, že platí následující pozorování,
neboť svědek poskytuje kód nějakého tablo důkazu, a N splňuje axiomy Q:

Pozorování 9.4.5. T |− φ právě když N |= (∃y)Prf T (φ, y).

Budeme potřebovat i následující důsledek, který vyslovíme také bez důkazu:

Důsledek 9.4.6 (O predikátu dokazatelnosti). Je-li T |− φ, potom T |− (∃y)Prf T (φ, y).

Umíme tedy vyjádřit, že daná sentence je, nebo není, dokazatelná. Jak ale může sentence
říci ‘sama o sobě’, že není dokazatelná? K tomu použijeme princip self-reference.

Self-reference

Abychom ilustrovali princip self-reference, pro názornost si místo logické sentence představme
větu v češtině, a místo vlastnosti “být dokazatelný” tvrzení o počtu znaků. Podívejme se na
následující větu:

17Představte si jakýkoliv rozumný způsob, jak daný objekt zapsat do souboru. Soubor v binárním kódu je
posloupnost 0 a 1. Připíšeme na začátek jedničku, abychom nezačínali nulou, a máme binární zápis přirozeného
čísla.

18Přesněji, tablo jehož kódem je y je důkazem sentence jejíž kódem je x.
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Tato věta má 22 znaků.

V přirozeném jazyce snadno vyjádříme self-referenci zájmenem “Tato”, z kontextu víme, že
myslíme větu samou. Ve formálních systémech ale typicky nemáme self-referenci přímo k
dispozici. Přímou referenci obvykle máme k dispozici, stačí umět ‘mluvit’ o posloupnostech
symbolů, jako v následujícím příkladě:

Následující věta má 29 znaků. "Následující věta má 29 znaků."

Zde se ale není žádná self-reference. Pomůžeme si trikem, kterému budeme říkat ‘zdvojení’:

Následující věta zapsaná jednou a ještě jednou v uvozovkách má 149
znaků. "Následující věta zapsaná jednou a ještě jednou v uvozovkách
má 149 znaků."

Pomocí přímé reference a zdvojení tedy můžeme získat self-referenci.
Poznámka 9.4.7. Stejný princip lze použít k sestrojení programu v C, jehož výstupem je jeho
vlastní kód (34 je ASCII kód uvozovek):
main(){char *c="main(){char *c=%c%s%c; printf(c,34,c,34);}"; printf(c,34,c,34);}

9.4.2 Důkaz a důsledky

V této podsekci dokážeme První Gödelovu větu o neúplnosti a řekneme si i něco o jejích dů-
sledcích. Budeme potřebovat následující větu, která popisuje, jak technicky využijeme princip
self-reference. Lze na ní nahlížet jako na formu ‘diagonalizačního argumentu’,19 proto se to-
muto tvrzení také někdy říká diagonální lemma.

Věta 9.4.8 (Věta o pevném bodě). Je-li T extenzí Robinsonovy aritmetiky, potom pro každou
formuli φ(x) (v jazyce teorie T ) existuje sentence ψ taková, že platí:

T |− ψ ↔ φ(ψ)

Sentence ψ je tedy self-referenční, říká o sobě: “splňuji vlastnost φ”.20 Vysvětlíme si jen
myšlenku důkazu. Všimněte si, jak se v důkazu použije přímá reference a zdvojení.

Důkaz. Uvažme zdvojující funkci, funkci d : N → N takovou, že pro každou formuli χ(x) platí:

d(⌈χ(x)⌉) = ⌈χ(χ(x))⌉

Funkce d tedy dostane na vstupu přirozené číslo n, které dekóduje jako formuli v jedné
proměnné, dosadí do této formule numerál n,21 a výslednou sentenci znovu zakóduje.

S využitím předpokladu, že T je extenzí Q, lze dokázat, že tato funkce je v T reprezento-
vatelná. Pro jednoduchost předpokládejme, že je reprezentovatelná termem,22 a označme ho
také d. To znamená, že pro každou formuli χ(x) platí:

T |− d(χ(x)) = χ(χ(x))

19Diagonalizací se myslí argument připomínající Cantorův diagonální argument, známý z důkazu nespočet-
nosti R. Podobný argument, používající self-referenci, potkáme třeba v Holičově paradoxu, nebo v důkazu
nerozhodnutelnosti Halting problému.

20Přesněji, říká to o numerálu odpovídajícímu jejímu kódu.
21Zde numerál odpovídá ‘uvozovkám’ z předchozího neformálního popisu self-reference, a d(⌈χ⌉) znamená

“χ napsaná jednou a ještě jednou v uvozovkách.”
22Byť ve skutečnosti je reprezentovaná (složitou) formulí.
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Tedy Robinsonova aritmetika, a tím pádem i naše teorie T , dokazuje o numerálech, že d
opravdu ‘zdvojuje’.

Hledaná self-referenční sentence ψ je sentence:23

φ(d(φ(d(x))))

Chceme dokázat, že platí T |− ψ ↔ φ(ψ), neboli T |− φ(d(φ(d(x)))) ↔ φ(φ(d(φ(d(x))))).
K tomu stačí ověřit, že:

T |− d(φ(d(x))) = φ(d(φ(d(x))))

To ale víme z reprezentovatelnosti d, kde za formuli χ(x) dosadíme φ(d(x)).

Než přistoupíme k samotnému důkazu Gödelovy věty, ukážeme si jako rozcvičku jeden
důsledek Věty o pevném bodě: Definicí pravdy v aritmetické teorii T myslíme formuli τ(x)
takovou, že pro každou sentenci ψ platí:

T |− ψ ↔ τ(ψ)

Pokud by definice pravdy existovala, znamenalo by to, že místo dokazování sentence stačí
spočíst její kód, substituovat příslušný numerál do τ , a vyhodnotit.

Věta 9.4.9 (Nedefinovatelnost pravdy). V žádném bezesporném rozšíření Robinsonovy arit-
metiky neexistuje definice pravdy.

Důkaz využívá Paradox lháře, vyjádříme větu “Nejsem pravdivá v T”.

Důkaz. Předpokládejme pro spor, že existuje definice pravdy τ(x). Použijeme Větu o pevném
bodě, kde za formuli φ(x) vezmeme ¬τ(x). Dostáváme existenci sentence ψ takové, že:

T |− ψ ↔ ¬τ(ψ)

Protože τ(x) je definice pravdy, platí ale i T |− ψ ↔ τ(ψ), tedy i T |− τ(ψ) ↔ ¬τ(ψ). To by
ale znamenalo, že T je sporná.

Důkaz Gödelovy věty používá tentýž trik, ale pro větu “Nejsem dokazatelná v T”.

Důkaz První věty o neúplnosti. Mějme bezespornou rekurzivně axiomatizovanou extenzi T
Robinsonovy aritmetiky. Chceme najít Gödelovu sentenci ψT , která je pravdivá v N, ale není
dokazatelná v T .

Takovou sentenci získáme z Věty o pevném bodě jako sentenci vyjadřující “Nejsem doka-
zatelná v T”. Nechť φ(x) je formule ¬(∃y)Prf T (x, y) (“x není dokazatelná v T”). Podle Věty
o pevném bodě existuje sentence ψT splňující:

T |− ψT ↔ ¬(∃y)Prf T (ψT , y)

Sentence ψT je tedy v T ekvivalentní sentenci, která vyjadřuje, že ψT není dokazatelná v T .
Lze ukázat, že stejná ekvivalence platí i v N (neboť tak jsme Prf T a ψT zkonstruovali):

N |= ψT právě když N |= ¬(∃y)Prf T (ψT , y)
23Následující věta zapsaná jednou a ještě jednou v uvozovkách má vlastnost φ. “Následující věta zapsaná

jednou a ještě jednou v uvozovkách má vlastnost φ.”
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Z Pozorování 9.4.5 získáváme, že

N |= ψT právě když T ̸|− ψT

neboli ψT je pravdivá v N, právě když není dokazatelná v T . Stačí tedy ukázat, že ψT
není dokazatelná v T . Předpokládejme pro spor, že T |− ψT . Ze self-reference víme, že
platí T |− ¬(∃y)Prf T (ψT , y). Z Důsledku 9.4.6 o predikátu dokazatelnosti ale dostáváme
T |− (∃y)Prf T (ψT , y), což by znamenalo, že T je sporná.

Na závěr si ukážeme dva důsledky a jedno zesílení. Následující okamžitý důsledek už jsme
zmínili dříve:

Důsledek 9.4.10. Je-li T rekurzivně axiomatizovaná extenze Robinsonovy aritmetiky a je-li
navíc N modelem teorie T , potom T není kompletní.

Důkaz. Protože má T model, není sporná. Splňuje tedy předpoklady První věty o neúpl-
nosti, tedy v ní není dokazatelná Gödelova sentence ψT . Pokud by byla kompletní, musela
by dokazovat ¬ψT . To by ale znamenalo, že platí i N |= ¬ψT , přičemž víme, že ψT je v N
pravdivá.

Z toho plyne, že nelze rekurzivně axiomatizovat standardní model přirozených čísel:

Důsledek 9.4.11. Teorie Th(N) není rekurzivně axiomatizovatelná.

Důkaz. Teorie Th(N) je extenzí Robinsonovy aritmetiky a platí v modelu N. Pokud by byla
rekurzivně axiomatizovatelná, její (libovolná) rekurzivní axiomatizace by podle předchozího
důsledku nemohla být kompletní. Ale Th(N) kompletní je.

Jedním ze zesílení Gödelovy První věty je následující tvrzení, které uvedeme bez důkazu.
Ukazuje, že předpoklad N |= T v prvním důsledku výše je ve skutečnosti nadbytečný.

Věta 9.4.12 (Rosserův trik, 1936). V každé bezesporné rekurzivně axiomatizované extenzi
Robinsonovy aritmetiky existuje nezávislá sentence. Tedy taková teorie není kompletní.

9.4.3 Druhá věta o neúplnosti

Druhá Gödelova věta o neúplnosti říká, neformálně řečeno, že efektivně daná, dostatečně bo-
hatá teorie nemůže sama dokázat svou bezespornost. Bezespornost (“konzistenci”) vyjádříme
následující sentencí, kterou označíme jako ConT :

¬(∃y)Prf T (0 = S(0), y)

Všimněte si, že platí N |= ConT , právě když T ̸|− 0 = S(0). Neboli sentence ConT opravdu
vyjadřuje, že “Teorie T je bezesporná”.

Věta 9.4.13 (Druhá věta o neúplnosti). Pro každou bezespornou rekurzivně axiomatizovanou
extenzi T Peanovy aritmetiky platí, že ConT není dokazatelná v T .

Všimněte si, že sentence ConT je přitom pravdivá v N (neboť T je opravdu bezesporná).
Zmiňme také, že není třeba plná síla Peanovy aritmetiky, stačí slabší předpoklad. Nyní si
ukážeme hlavní myšlenku důkazu Druhé věty:
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Důkaz Druhé věty o neúplnosti. Vezměme Gödelovu sentenci ψT vyjadřující “nejsem dokaza-
telná v T”. V důkazu První věty o neúplnosti (konkrétně v první části) jsme ukázali, že:

“Pokud je T bezesporná, potom ψT není dokazatelná v T .”

Z toho jednak plyne, že T ̸|− ψT , neboť T bezesporná je. Na druhou stranu to lze formulovat
jako “platí ConT → ψT ” a je-li T extenze Peanovy aritmetiky, lze důkaz tohoto tvrzení
zformalizovat v rámci teorie T , tedy ukázat, že:

T |− ConT → ψT

Kdyby platilo T |− ConT , dostali bychom i T |− ψT , což by byl spor.

Na závěr si ukážeme tři důsledky Druhé věty.

Důsledek 9.4.14. Existuje model PA, ve kterém platí sentence (∃y)Prf PA(0 = S(0), y).

Důkaz. Sentence ConPA není dokazatelná, tedy ani pravdivá v PA. Platí ale v N (neboť PA je
bezesporná), což znamená, že je ConPA nezávislá v PA. V nějakém modelu tedy musí platit
její negace, která je ekvivalentní (∃y)Prf PA(0 = S(0), y).

Uvědomme si, že musí jít o nestandardní model PA, svědkem musí být nestandardní prvek
(tj. takový, který není hodnotou žádného numerálu).

Důsledek 9.4.15. Existuje bezesporná rekurzivně axiomatizovaná extenze T Peanovy arit-
metiky, která ‘dokazuje svou spornost’, tj. taková, že T |− ¬ConT .

Důkaz. Uvažme teorii T = PA ∪ {¬ConPA}. Tato teorie je bezesporná, neboť PA ̸|− ConPA.
Také triviálně platí T |− ¬ConPA (tj. T ‘dokazuje spornost’ teorie PA). Protože je PA ⊆ T ,
platí i T |− ¬ConT .

Zde si uvědomme, že N nemůže být modelem teorie T .
Nakonec se podívejme na teorii ZFC, tj. Zermelovu–Fraenkelovu teorii množin s axiomem

výběru, na které je založena formalizace matematiky. Tato teorie není formálně vzato extenzí
PA, ale není problém v ní Peanovu aritmetiku (v jistém smyslu) ‘interpretovat’. To znamená,
že ani tato teorie neumí dokázat svou vlastní bezespornost.

Důsledek 9.4.16. Je-li teorie množin ZFC bezesporná, nemůže být sentence ConZFC v teorii
ZFC dokazatelná.

Pokud by tedy někdo v rámci teorie ZFC dokázal, že je ZFC bezesporná, znamenalo by
to, že je ZFC sporná. Což bude taková pěkná tečka za naší přednáškou.
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