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Kapitola 1

Syntaxe a sémantika vyrokové
logiky

Syntaze je soubor formdlnich pravidel pro tvoreni korektnich vét sestavajicich ze slov (v
pripadé prirozenych jazyku), nebo forméalnich vyrazu sestdvajicich ze symbola (napt. prikazy
v programovacim jazyce). Naproti tomu sémantika popisuje vyznam takovych vyrazi. Vztah
mezi syntaxi a sémantikou se prolind celou logikou a je klicem k jejimu pochopeni.

1.1 Syntaxe vyrokové logiky

Nejprve definujeme formalni ‘napisy’, se kterymi budeme v logice pracovat.

1.1.1 Jazyk

Jazyk vyrokové logiky je urc¢eny neprazdnou mnozinou vyrokovjch proménngch P (také jim
fikdme prvovyroky nebo atomické vyroky). Tato mnozina muze byt koneéna nebo i nekoneéna,
obvykle ale bude spoéetnéﬂ (pokud nefekneme jinak), a bude mit dané usporadédni. Pro vy-
rokové proménné budeme obvykle pouzivat oznaceni p; (od slova “proposition”), ale pro lepsi
¢itelnost, zejména je-li P konecnd, také p,q,r,... Napriklad:

Py ={p,q,r}
]P)Q = {p07p17p27p37 .. } = {pl | 1€ N}

Do jazyka patii kromé vyrokovych proménnych také logické symboly: symboly pro logické
spojky —, A, V, —, <> a zavorky (,). Budeme ale pro jednoduchost mluvit o “jazyce P”.

Pozndmka 1.1.1. Pokud budeme potirebovat formalnéji vyjadrit usporadani jazyka P, predsta-
vime si ho jako bijekci ¢: {0,1,...,n—1} — P (pro koneény, n-prvkovy jazyk) resp. :: N — P
(je-li P spocetné nekone¢ny). V nasich ptikladech ¢1(0) = p, t1(1) = q, t1(2) =7, a w2(i) = p;
pro viechna i € NJ

'To je dilezité v mnoha aplikacich v informatice, nespodetné mnoziny se do (ani nekoneéného) poéitace
nevejdou.
2Mno#ina piirozenych &isel N obsahuje nulu, viz standard ISO 80000-2:2019.
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1.1.2 Vyrok

Zakladnim stavebnim kamenem vyrokové logiky je vyrok neboli vyrokovd formule. Je to ko-
necny retézec sestaveny z vyrokovych proménnych a logickych symbolu podle jistych pravidel.
Prvovyroky jsou vyroky, a dale miizeme vytvaret vyroky z jednodussich vyrokt a logickych
symboli: napiiklad pro logickou spojku A vypiSeme nejprve symbol ‘(’, potom prvni vyrok,
symbol ‘A’; druhy vyrok, a nakonec symbol ‘).

Definice 1.1.2 (Vyrok). Vygrok (virokovd formule) v jazyce P je prvek mnoziny VFp defino-
vané nasledovné: VFp je nejmensi mnozina splﬁujicﬁ

e pro kazdy prvovyrok p € P plati p € VFp,
o pro kazdy vyrok ¢ € VFp je (—p) také prvek VFp
+ pro kazdé p,1 € VFp jsou (¢ Av), (pV 1), (9 = 1), a (p ¢ ) také prvky VFp.

Vyroky oznacujeme obvykle feckymi pismeny ¢, 1, x (¢ od slova “formule”). Abychom
nemuseli vypisovat vSechny Ctyri binarni logické spojky, pouzivame pro né nékdy zastupny
symbol [J. Treti bod definice bychom tedy mohli vyjadrit takto:

o pro kazdé ¢, € VFp a0 € {A,V,—, <} je (¢ O9) také prvek VFp.

Podvyrok (podformule) je podrietézec, ktery je sdm o sobé vyrokem. Uvédomte si, Ze
vSechny vyroky jsou nutné konecéné tetézce, vzniklé aplikaci koneé¢né mnoha kroku z defi-
nice na své podvyroky.

Priklad 1.1.3. Vyrok ¢ = ((pV (=q)) <> (r— (pAq))) md ndsledujici podvyroky: p,q, (=), (pV
(—@),m, (P A @), (r—= (PN Q)), ¢

Vyrok v jazyce P nemusi obsahovat vsechny prvovyroky z P (ani nemuze pokud je P
nekone¢nd mnozina). Bude se ndm proto hodit znac¢eni Var(yp) pro mnozinu prvovyroki vy-
skytujicich se ve <pE| V nasem piikladé Var(¢) = {p, q,r}.

Zavedeme si zkratky pro dva specidlni vyroky: T = (p V (-p)) (pravda) a L = (p A (—p))
(spor), kde p € P je pevné zvoleny (napf. prvni prvovyrok z IP). Tedy vyrok T je vzdy pravdivy
a vyrok L je vzdy nepravdivy.

Pii zapisu vyrokid mtzeme pro lepsi Citelnost nékteré zavorky vynechat. Napri. vyrok ¢
z prikladu muzeme reprezentovat napisem p V —¢q <> (r — p A ¢). Vynechdvame vnéjsi
zévorky a pouzivame prioritu operatori: — ma nejvyssi prioritu, dale A,V, a koneéné —, <
maji r%niiéi prioritu. Déle napisem p A ¢ Ar A s myslime vyrok (p A (gA (rAs))), a podobné
pro V

3Takovému druhu definice ¥kdme induktivni. Lze také piirozené vyjadiit pomoci formdlni gramatiky, viz
predmét NTINO71 Automaty a gramatiky.

4Pokud nespecifikujeme v jakém jazyce je vyrok (a pokud to neni jasné z kontextu), myslime tim, ze je v
jazyce Var(yp).

5Diky asociativité A,V na uzévorkovani nezslezi.

5Nekdy se zavadi jemnéjsi priority, A mivé vyssi prioritu nez V, — vyssi nez <. A nékdy se pise p—q— 7
misto (p — (r — q)), byt — neni asociativn{ a na uzdvorkovani zlezi. Obojimu se ale radéji vyhneme.
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Obrazek 1.1: Strom vyroku ¢ = ((pV (—q)) <> (r— (p A q)))

1.1.3 Strom vyroku

V definici vyroku jsme zvolili infizovy zapis se zavorkami Cisté z diivodu ¢itelnosti pro ¢lovéka.
Nic by ndm nebranilo pouzit prefizovy zapis (“polskou notaci”), tj. definovat vyroky takto:

e kazdy prvovyrok je vyrok, a
e jsou-li o, vyroky, jsou také —p, Apy, Vb, =i, a <> vyroky.

Vyrok ¢ = ((pV (=q)) <> (r — (p A q))) bychom potom zapsali jako ¢ = <>Vp—g—rApq. Také
bychom mohli pouzit postfizovy zapis a psiat ¢ = pg—VrpgA—+<>. VSe podstatné o vyroku ve
skutec¢nosti obsahuje jeho stromova struktura, kterd zachycuje, jak je sestaven z jednodussich
vyrokiu, obdobné jako strom aritmetického vyrazu.

Priklad 1.1.4. Strom vyroku ¢ = ((pV (—q)) <> (r = (p A q))) je zndzornény na obrézku
Vsimnéte si také, ze podvyroky ¢ odpovidaji podstromtim. Vyrok ¢ ziskdme prichodem
stromem od korene, v kazdém vrcholu:

e pokud je label prvovyrok, vypiseme ho
o pokud je label negace: vypiseme ‘(—’, rekurzivné zavolame syna, vypiseme ‘)’

e jinak (pro bindrni logické spojky): vypiseme ‘(’, zavolame levého syna, vypiSeme label,
zavolame pravého syna, vypiseme ‘)ﬂ

Nyni si strom vyroku definujeme formalné, indukci podle struktury vgjmkuﬁ

Definice 1.1.5 (Strom vyroku). Strom vyroku ¢, ozna¢me Tree(p) je zakorenény usporadany
strom, definovany induktivné takto:

o Je-li ¢ prvovyrok p, obsahuje Tree(y) jediny vrchol, jeho label je p.

o Jeli p tvaru (—¢'), ma Tree(p) kofen s labelem —, a jeho jediny syn je kofen Tree(y').

"Prefixovy a postfixovy zapis bychom ziskali podobné, ale nevypisujeme zavorky a label vypiseme hned pii
vstupu resp. tésné pred opusténim vrcholu.

8 Jakmile mame definovany strom vyroku, mtzeme indukci podle struktury vyroku chépat jako indukci
podle hloubky stromu. Zatim tim ale chiapejme indukci podle poc¢tu kroku z definice kterymi vyrok
vznikl. Alternativné postaci indukce podle délky vyroku, nebo podle poc¢tu logickych spojek.
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o Jeli ¢ tvaru (¢’ O¢") pro O € {A,V,—, <}, ma Tree(p) kofen s labelem O a dvéma
syny: levy syn je kofen stromu Tree(¢'), pravy je kofen Tree(¢”).

Cwviceni 1.1. Dokazte, ze kazdy vyrok mé jednozna¢né urceny strom vyroku, a naopak.

1.1.4 Teorie

V praktickych aplikacich nevyjadiime pozadované vlastnosti jedinym vyrokem — to by musel
byt velmi dlouhy a slozity a Spatné by se s nim pracovalo — ale mnoha jednodussimi vyroky.

Definice 1.1.6 (Teorie). Teorie v jazyce P je libovolnd mnozina vyroku v P, tedy libovolnd
podmnozina T C VFp. Jednotliviym vyrokim ¢ € T fikdme také aziomy.

Konecéné teorie by tedy bylo mozné (byt ne praktické) nahradit jedinym vyrokem: kon-
junkei vSech jejich axiomu. Pripoustime ale i nekoneéné teorie (trividlnim piikladem je teorie
T = VFp), a prazdnou teorii T' = @ﬂ

1.2 Sémantika vyrokové logiky

V nasi logice je sémantika dand jednou ze dvou moznych hodnot: pravda, nebo nepravda. (V
jinych logickych systémech muze byt sémantika zajimavéjsi.)

1.2.1 Pravdivostni hodnota

Vyrokum muzeme prifadit jednu ze dvou moznych pravdivostnich hodnot: pravdivy ( True, 1),
nebo IZivy (False, 0). Prvovyroky reprezentuji jednoduchd, nadale nedélitelnd tvrzeni (proto
jim také fikdme atomické vyroky); pravdivostni hodnotu jim musime pritadit tak, aby od-
povidala tomu, co chceme modelovat (proto jim rikdme vyrokové promeénné). Jakmile ale
ohodnotime prvovyroky, pravdivostni hodnota libovolného slozeného vyroku je jednoznacné
urcend, a snadno ji spoéteme podle stromu vyroku:

Priklad 1.2.1. Spo¢téme pravdivostni hodnotu vyroku ¢ = ((p V (—=q)) <> (r = (p A q))) pii
ohodnoceni (a) p=0,¢q=0,r =0, (b) p=1, ¢ =0, r = 1. Postupujeme od listi smérem
ke koreni, podobné jako bychom vyhodnocovali napi. aritmeticky vyraz. Vyrok ¢ plati pti
ohodnoceni z (a), neplati pfi ohodnoceni z (b). Viz obrazek

Logické spojky ve vnitinich vrcholech vyhodnocujeme podle jejich pravdivostnich tabulek,

viz tabulka [L.11M]

1.2.2 Vyroky a booleovské funkce

Abychom mohli formalizovat pravdivostni hodnotu vyroku, podivame se nejprve na souvislost
vyroku a booleovskych funkeci.

Booleovskd funkce je funkce f: {0,1}"™ — {0,1}, tedy vstupem je n-tice nul a jednicek, a
vystupem 0 nebo 1. Kazd4a logicka spojka reprezentuje booleovskou funkci. V pripadé negace
jde o unarni funkci f.(z) = 1 — z, ostatnim logickym spojkdm odpovidaji bindrni funkce
popsané v tabulce [1.2]

9Nekonecné teorie se hodi napifklad pro popis vyvoje néjakého systému v (diskrétnim) ¢ase t = 0,1,2,...
Prazdné teorie se nehodi k nicemu, ale bylo by nesikovné formulovat véty o logice, pokud by teorie musely byt
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Obréazek 1.2: Pravdivostni ohodnoceni vyroku

p pANq pVq p—q prq

p q

0 0] 1 0
0 1|1 0
1 00 0
1 110 1

0

1
1
1

1

1
0
1

1

0
0
1

Tabulka 1.1: Pravdivostni tabulky logickych spojek.

— O~

O =IO

0 1 1
fV(xvy): 010 1 f_>(x,y): 0 1 f<—>($7y): 0
111 1 1 1 1

Tabulka 1.2: Booleovské funkce logickych spojek
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Definice 1.2.2 (Pravdivostni funkce). Pravdivostni funkce vyroku ¢ v kone¢ném jazyce P je
funkee f,p: {0, 1}Fl — {0,1} definovand induktivné:

o je-li ¢ i-ty prvovyrok z P, potom f, p(xo,...,Tn-1) = 4,
o je-li ¢ = (—¢'), potom
for(x0, - s Tn-1) = f~(forp(T0, ..., Tn-1)),
o je-li o= (¢ O¢") kde O € {A,V,—, >}, potom
fop(@o, .. xn1) = fa(fo p(@os- s Tn-1), for p(To, ..., Tn-1)).
Priklad 1.2.3. Spoc¢téme pravdivostni funkci vyroku ¢ = ((p V (—q)) <> (r = (p A q))) v
jazyce P = {p,q,r, s}:
fop (@0, w1, 2, 23) = fos (fv(@o, f-(71)), [ (@2, fa(T0, 1))

Pravdivostni hodnotu vyroku ¢ pfi ohodnoceni p =1, ¢ =0, r = 1, s = 1 spocteme takto
(srovnejte s obrazkem [1.2|(b)):

for(1,0,1,1) = fo, (fu(1, £=(0)), f= (1, fa(1,0)))
= f<—>(f\/(17 1)7 fﬁ(la O))
= f<—>(17 0)
=0
Pozorovani 1.2.4. Pravdivostni funkce vijroku ¢ nad P zdvisi pouze na proménnych odpovi-
dagicich prvovyrokim z Var(p) C P.

Tedy i pokud mame vyrok ¢ v nekonecném jazyce P, mizeme se omezit na jazyk Var(p)
(ktery je konecny) a uvazovat pravdivostni funkei nad timto jazykem.

1.2.3 Modely

Konkrétni pravdivostni ohodnoceni vyrokovych proménnych predstavuje reprezentaci ‘real-
ného svéta’ (systému) v ndmi zvoleném ‘formalnim svété’, proto mu také fikdme model.

Definice 1.2.5 (Model jazyka). Model jazyka P je libovolné pravdivostni ohodnoceni v: P —
{0,1}. Mnozinu (vsech) modeli jazyka P oznac¢ime Mp:
Mp = {v|v: P— {0,1}} = {0,1}F
Modely budeme oznacovat pismeny v, u,w apod. (v od slova ‘valuation’). Model jazyka

je tedy funkce, formalné mnozina dvojic (vstup, vystup). Naptiklad pro jazyk P = {p,q,r} a
pravdivostni ohodnoceni ve kterém p je pravda, ¢ nepravda, a r pravda méme model

v={(p1),(q,0), (r, 1)}

Pro jednoduchost ale budeme psat jen v = (1,0, 1). Pro jazyk P = {p, q,7} tedy mame 23 = 8
modelu:

Mp = {(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0),(1,0,1),(1,1,0),(1,1,1)}

neprazdné.
10Pfipomenme jesté jednou, ze disjunkce neni exkluzivni, tj. p V ¢ plati i pokud plati p i ¢, a Ze implikace je
cisté logicka, tj. p — ¢ plati kdykoliv p neplati.
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Pozndmka 1.2.6. Formalné vzato, ztotoziiujeme mnozinu {0, 1}¥ s mnozinou {0, 1}/* pomoci
usporddani ¢ jazyka P (viz Pozndmkal[l.1.1)). Konkrétné, misto prvku v = {(p, 1), (¢,0), (r,1)} €
{0,1}P piseme (1,0,1) = (vor)(0,1,2) = (v((0)),v(¢(1)),v(¢(2))) € {0,1}P (kde funkcim v, ¢
dovolime pusobit ‘po sloikéeh’)m Pokud by se to zddlo matouci, predstavte si model v jako
mnozinu prvovyroki, které jsou ohodnocené jako pravda, tj. {p,r} C P, nas zapis v = (1,0, 1)
je potom charakteristicky vektor této mnoziny. Toto ztotoznéni budeme nadéle pouzivat bez
dalsiho upozornéni.

1.2.4 Platnost

Nyni miuzeme definovat klicovy pojem logiky, platnost vyroku v daném modelu. Neformalné,
vyrok plati v modelu (tj. pfi konkrétnim pravdivostnim ohodnoceni prvovyrokit), pokud jeho
pravdivostni hodnota, tak jak jsme ji poéitali v Piikladu[I.2.1] je rovna 1. Ve formdln{ definici
vyuzijeme pravdivostni funkci vyroku (Definice E

Definice 1.2.7 (Platnost vyroku v modelu, model vyroku). Méjme vyrok ¢ v jazyce P a
model v € Mp. Pokud plati f,p(v) = 1, potom fikdme, Ze vyrok ¢ plati v modelu v, v je
modelem @, a piSeme v = . Mnozinu vSech modelu vyroku ¢ oznac¢ujeme Mp(p).

Modeltim jazyka, které nejsou modely ¢, budeme nékdy fikat nemodely ¢. Tvoii doplnék
mnoziny modelld ¢. S pomoci standardniho zapisu pro inverzni funkci mizeme psat:

Mp(p) = {v € Mp | v = ¢} = £, 3[1]
Mp(p) = Mp \ Mp(p) = {v € Mp | v = ¢} = £, p[0]

Je-li jazyk zfejmy z kontextu, muzeme psat jen M(p). Musime si ale byt opravdu jisti:
napiiklad v jazyce P = {p, ¢} mame

Mp,q3(p = @) = {(0,0),(0,1), (1,1)},
zatimco v jazyce P’ = {p, ¢,r} bychom méli
Mp (p — q) = {(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,1,0),(1,1,1)}.

Definice 1.2.8 (Platnost teorie, model teorie). Je-li T teorie v jazyce P, potom T plati v
modelu v, pokud kazdy axiom ¢ € T plati ve v. V tom pripadé rikdme také, ze v je modelem
T, a piseme v = T. Mnozinu vSech modelu teorie T' v jazyce P oznac¢ime Mp(T)).

Pracujeme-li s konec¢nou teorii, nebo pridavame-li k néjaké teorii kone¢né mnoho novych
axiomu, budeme pouzivat néasledujici zjednoduseny zapis:

* MIP’(SOM P2y .- 79071) misto M]P’({Qpla P25, ‘Pn})a
o Mp(T, ¢) misto Mp(T' U {p}).

Viimnéte si, ze Mp(T, ) = Mp(T) N Mp(p), Mp(T) = N, er Mp(p), a Ze pro koneénou
teorii (podobné i pro spocetnou) plati

Mp(p1) 2 Mp(p1, p2) 2 Mp(p1,92,93) 2 -+ 2 Mp(p1, 92, ..., @n).

Toho mizeme vyuzit pti hledani modelt hrubou silou.

' Alternativné bychom mohli pii formalizaci syntaxe vyzadovat (alespoii pro spodetné jazyky), aby jazyk
byl P ={0,1,2,...} a symboly po,p1,p,q, r pouzivat jen pro zvySeni ¢itelnosti.
12Pro platnost pouzivime symbol =, ktery éteme jako ‘splituje’ nebo ‘modeluje’, v ITEXu \models.

17



Priklad 1.2.9. Modely teorie T'={pV qV r,q —r,—r} (v jazyce P = {p, ¢,r}) mizeme najit
tak, najdeme tak, ze nejprve najdeme modely vyroku —r:

Mp(r) = {(z,9,0) | z,y € {0,1}} = {(0,0,0),(0,1,0),(1,0,0),(1,1,0)},
poté urcime, ve ktery z téchto modelt plati vyrok g — 7:

0,0,0) Eq—r,

(
(0,1,0) frq—r,
(

)
1,0,0) Fq—r,
e (1,1,0) Fqg—r,

Tedy Mp(r,q— 1) = {(0,0,0),(1,0,0)}. Vyrok pV ¢V r plati jen ve druhém z téchto model,
dostavame tedy
Mp(r,q—=r,pVqVr)=Mp(T)={(1,0,0)}.

Tento postup je efektivnéjsi nez urcit mnoziny modeli jednotlivych axiomt a udélat jejich
prunik. (Ale mnohem méné efektivni nez postup zalozeny na tablo metodé, ktery si ukdzeme
pozdéji.)

1.2.5 Dalsi sémantické pojmy

V navaznosti na pojem platnosti budeme pouzivat fadu dalsich pojmi. Pro nékteré vlastnosti
existuje vice riznych termind, v zavislosti na kontextu v jakém se vyskytnou.

Definice 1.2.10 (Sémantické pojmy). Rikdme, Ze vyrok ¢ (v jazyce P) je

o pravdivy, tautologie, plati (v logice/logicky), a piseme |= ¢, pokud plati v kazdém modelu
(Jazyka IP), Mp(p) = Mp,

o [Zivg, sporny, pokud nemd zadny model, Mp(p) = (Z)E

e nezavisly, pokud plati v néjakém modelu, a neplati v néjakém jiném modelu, tj. neni
pravdivy ani 1zivy, 0 C Mp(p) € Mp,

o splnitelny, pokud mé néjaky model, tj. neni 1zivy, Mp(p) # 0.

Daéle fikdme, ze vyroky ¢, (ve stejném jazyce IP) jsou (logicky) ekvivalentni, piSeme ¢ ~ 1
pokud maji stejné modely, tj.

¢ ~ 1 prave kdyz Mp(p) = Mp(¥).
Priklad 1.2.11. Napriklad plati nasledujici:
e vyroky T, pV q<>qV p jsou pravdivé,
o vyroky L, (pV q)A(pV —q)A—p jsou lzivé,

e vyroky p,p A q jsou nezavislé, a také splnitelné, a

13V&imnéte si, Ze byt IFivg neni totéz, co nebyt pravdivy!
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o néasledujici vyroky jsou ekvivalentni:

—p~pVp~pVpVp,
—p—=qg~-pVg,
- mp—=(pP—=q ~T.

Pojmy z Definice [1.2.10| miizeme také relativizovat vzhledem k dané teorii. To znamen4,
ze se v jednotlivych definicich omezime na modely této teorie:

Definice 1.2.12 (Sémantické pojmy vzhledem k teorii). Mé&jme teorii T’ v jazyce P. Rikdme,
ze vyrok ¢ v jazyce P je

o pravdivy v T, dusledek T', plati v T, a piseme T = ¢, pokud ¢ plati v kazdém modelu
teorie T', neboli Mp(T") C Mp(y),

o Zivj v T, sporng v T, pokud neplati v zidném modelu T, neboli Mp(p) N Mp(T') =
M]P’(Ta (P> = @

e nezavisly v T, pokud plati v néjakém modelu T, a neplati v néjakém jiném modelu T,
tj. neni pravdivy v T ani lzivy v T, § € Mp(T, ¢) € Mp(T),

o splnitelny v T, konzistentni s T, pokud plati v néjakém modelu 7T, tj. neni 1zivy v T,

A fikédme, ze vyroky ¢, (ve stejném jazyce IP) jsou ekvivalentni v T, T-ekvivalentni, piseme
 ~7 1 pokud plati v tychz modelech T, tj.

@ ~r ¢ prévé kdyz Mp(T, ) = Mp(T, ).

Vsimnéte si, ze pro prazdnou teorii T = () plati Mp(7') = Mp a vySe uvedené pojmy pro
T se proto shoduji s pivodnimi. Opét si pojmy ilustrujeme na nékolika piikladech:

Priklad 1.2.13. Mé&jme teorii T'= {p V ¢, —r}. Plati nasledujici:
e vyroky qV p, =pV —qV —r jsou pravdivé v T,
o vyrok (=p A —q) Vr je v T 1zivy,
e vyroky p <> q,p A q jsou v T nezavislé, a také splnitelné, a

e platip~ppVr (alep LpVr).

1.2.6 Univerzalnost logickych spojek

V jazyce vyrokové logiky pouzivame nasledujici logické spojky: —, A, V,—, <. To ale neni
jedind mozna volba, k vybudovani plnohodnotné logiky by nam stacila napiiklad negace a
implikace,lﬂ nebo negace, konjunkce, a disjunkceH A jak uvidime nize, mohli bychom pouzit
i jiné logické spojky. Nase volba je zlatou stfedni cestou mezi bohatosti vyjadfovani na jedné
strané, a uspornosti syntaktickych pravidel na strané druhé.

HMNegaci potiebujeme k popisu stavu systému, a implikaci k popisu chovani v &ase.
157y staéi k vybudovani logickych obvodii.
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Co myslime tim, Ze je logika plnohodnotna? Rekneme, ze mnozina logickych spojek S je
univerzdlni, pokud lze kazdou booleovskou funkci f vyjadiit jako pravdivostni funkci f,p
néjakého vyroku ¢ vybudovaného z logickych spojek z S (kde |P| = n je-li f n-arni funkce).
Ekvivalentné, pro kazdy konecny jazyk P (feknéme, ze n-prvkovy) a kazdou mnozinu modela
M C Mp musi existovat vyrok ¢ takovy, ze Mp(¢) = M. (Ekvivalence téchto dvou vyjadreni
plyne z toho, ze mame-li booleovskou funkci f a zvolime-li M = f~![1], potom fop = f pravé
kdyZ Mp (i) = M.)

Tvrzeni 1.2.14. Mnoziny logickyjch spojek {—,\,V} a {—,—} jsou univerzdlni.

Diikaz. Méjme funkci f: {0,1}" — {0,1}, resp. mnozinu modelt M = f~1[1] C {0,1}"™.
N&s jazyk bude P = {pi,...,pn}. Pokud by mnozina M obsahovala jediny model, napf.
v = (1,0,1,0) mohli bychom ji reprezentovat vyrokem ¢, = p; A =pa A p3 A —pyg, ktery 1ika
‘musim byt model v’. Pro obecny model v bychom vyrok ¢, zapsali takto:

n
oo =p{ PR A A = A = A\ p®
i=1 peP

kde zavadime nésledujici uzite¢né znaceni: pv(®) je vyrok p pokud v(p) = 1, a vyrok —p pokud

v(p) =0.
Obsahuje-li mnozina M vice modelti, fekneme ‘musim byt alespon jeden z modelt z M:

ev=\ vo=V\V Ap'?

veM veM peP

Ztejmé plati Mp(¢p) = M neboli fy,,, p = f. (Pokud M = (), potom z definice \/ s v =
L)

Univerzalnost {—, —} plyne z univerzdlnosti {—, A,V} a faktu, Ze konjunkci a disjunkci
mizeme vyjadiit pomoci negace a implikace: pA g~ —(p— —q) apV g~ —p—q. O

Pozndmka 1.2.15. Vsimnéte si, ze pri konstrukei vyroku ¢y je klicové, ze mnozina M je ko-
necnd (ma nejvyse 2" prvku). Kdyby byla nekone¢nd, symbol ‘\/,c,,” by znamenal ‘disjunkci’
nekonecné mnoha vyrokt, a vysledkem by tedy nebyl konecny napis, tj. ‘@ps’ by viitbec nebyl
vyrok. (Mame-li spo¢etné nekonecny jazyk P, potom ne kazdou podmnozinu M C Mp: lze
reprezentovat vyrokem—takovych podmnozin je nespocetné mnoho, zatimco vyrokl je jen
spocetné mnoho.)

Jaké dalsi logické spojky bychom mohli pouzit? Nularni booleovské funkceE neboli kon-
stanty 0, 1, bychom mohli zavést jako symboly TRUE a FALSE, my si ale vysta¢ime s vyroky
T, L. Unérni booleovské funkce jsou ¢tyfi (4 = 221), ale negace je jedind ‘zajimava’: ostatni
jsou f(x) =z, f(z) = 0, a f(z) = 1. Zajimavych bindrnich logickych spojek uz je vice, v
prirodé se vyskytuji napiiklad tyto:

o NAND neboli Shefferova spojka, nékdy se pouziva symbol p 1 ¢, plati p T g ~ =(p A q),

e NOR neboli Pierceova spojka, nékdy se pouziva symbol p | ¢, plati p | ¢ ~ =(p V q),

16Podobné jako soudet prazdné mnoziny séitanct je roven 0.

17Ve formalizaci matematiky resp. informatiky funkce arity 0 znamen4, 7e nem4 zadné vstupy, vystup tedy
nemize zaviset na vstupu a je konstantni. Formdalng, jde o funkce f: § — {0, 1}. Pokud je to matouci, piedstavte
si, Zze funkce musi mit aritu alespon 1, a misto ‘nularni funkce’ fikejme ‘konstanta’.
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o XOR, neboli exclusive-OR, nékdy se pise také @, plati p& g ~ (pV q) A =(p A q), neboli
soucet pravdivostni hodnot modulo 2.

Cwviceni 1.2. Vyjadriete (p @ q) @ r pomoci {—, A, V}.
Cuicent 1.3. Ukazte, ze {NAND} a také {NOR} jsou univerzalni.

Cwiceni 1.4. Uvazme ternarni logickou spojku IFTE, kde IFTE(p, q,r) je splnéno, prave kdyz
plati ‘if p then ¢ else . Urcete pravdivostni tabulku této logické spojky (tj. funkei fiprr) a
ukazte, ze {TRUE, FALSE, IFTE} je univerzalni.

1.3 Normalni formy

Pripomenime, ze vyroky jsou ekvivalentni, pokud maji stejnou mnozinu modeld. Pro kazdy

vyrok existuje nekone¢né mnoho ekvivalentnich vyroku; ¢asto se hodi vyjadrit vyrok v néjakém

‘hezkém’ (uzitecném) ‘tvaru’, tj. najit ekvivalentni vyrok v daném tvaru. Takovému konceptu

tvaru se v matematice rikd normdlni forma. My si predstavime dvé nejzndméjsi: konjunktivni

normdlni formu (conjunctive normal form, CNF) a disjunktioni normdlni formu (DNF).
Pouziva se nasledujici terminologie a znaceni:

e Literdl ¢ je bud prvovyrok p nebo negace prvovyroku —p. Pro prvovyrok p oznacme
P’ = —pap = np. Je-li ¢ literal, potom ¢ oznacuje opacny literdl k . Je-li £ = p

(pozitivnd literdl), potom £ = —p, je-li £ = —p (negativni literdl), potom £ = p

o Klauzule (clause) je disjunkce literalu C = 01 V by V - -V £,,. Jednotkovd klauzule (unit
clause) je samotny literdl (n = 1) a prdzdnou klauzuli (n = 0) myslime L.

o Vyrok je v konjunktivni normdlni formé (v CNF) pokud je konjunkei klauzuli. Prdzdny
vyrok v CNF je T.

o Elementarni konjunkce je konjunkce literalt E = €1 AloA- - - ALy, Jednotkovd elementdrni
konjunkce je samotny literdl (n = 1). Prdzdnd elementdrni konjunkce (n = 0) je T.

o Vyrok je v disjunktivni normdalni formé (v DNF) pokud je disjunkci elementarnich kon-
junkci. Prdzdny vyrok v DNF je L.

Priklad 1.3.1. Vyrok pV ¢V —r je v CNF (je to jedind klauzule) a zarovenn v DNF (je to
disjunkce jednotkovych elementdrnich konjunkcei). Vyrok (pV ¢) A (p V —q) A —p je v CNF,
vyrok —pV (p A q) je v DNF.

Priklad 1.3.2. Vyrok ¢, z dikazu Tvrzeni |[1.2.14] je v CNF (je to konjunkce jednotkovych
klauzuli, tj. literali) a také v DNF (je to jedind elementarni konjunkce). Vyrok ¢,s je v DNF.

Pozorovani 1.3.3. Vsimnéte si, Ze vgrok v CNF je tautologie, prdve kdyz kazdd jeho klau-
zule obsahuje dvojici opacnych literdli. Podobne, vyrok v DNF je splnitelny, pokud ne kaZdd
elementdrni konjunkce obsahuje dvojici opacnych literdli.

1.3.1 O dualité

Vsimnéte si, ze pokud ve vyrokové logice zaménime hodnoty pro pravdu a nepravdu, tj. 0
a 1, pravdivostni tabulka negace zustava stejnd, z konjunkce se stava disjunkce, a naopak.
Tomuto konceptu se fika dualita; v logice uvidime mnoho priklada.
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Plati =(pAq) ~ (-pV—q) a z duality vime také —=(—pV —q) ~ (=—pA—-—q), z ¢ehoZ snadno
odvodime —(pVq) ~ (ﬂp/\ﬂq)EObecnéji, n-arni booleovské funkce f, g jsou navzajem duding,
pokud plati pokud f(—z) = —g(x). Mame-li vyrok ¢ vybudovany z {—, A, V} a zaménime-li v
ném A a V, a znegujeme-li vyrokové proménné (resp. zaménime-li literdly za opacné literdly),
dostavame vyrok ¢ ~ —p (tj. modely ¢ jsou nemodely 9 a naopak), a funkce f,p, fyp jsou
navzajem dudlni.

Pojem DNF je dudlni k pojmu CNF, ‘je tautologie’ je dualni k ‘neni splnitelny’, predchozi
pozorovani tedy muzeme chapat jako priklad duality. Ke kazdému tvrzeni ve vyrokové logice
ziskavame ‘zdarma’ tvrzeni dudini, vzniklé zaménou A a V, pravdy a nepravdy.

1.3.2 Prevod do normalni formy

Disjunktivni normdln{ formu jsme jiz potkali, v dikazu Tvrzeni [[.2.14] Klicovou ¢4st dikazu
bychom mohli zformulovat takto: ‘Je-li jazyk konecny, 1ze kazdou mnozinu modelt axiomati-
zovat vyrokem v DNF’. Z duality dostavame také axiomatizaci v CNF, nebof doplnék mnoziny
modelt je také mnozina modelu:

Tvrzeni 1.3.4. Méjme konecny jazyk P a libovolnou mnoZinu modeli M C Mp. Potom
existuje vyrok opng v DNF a vyrok pcng v CNF takovy, Ze M = Mp(¢pnr) = Mp(@oNE)-
Konkrétne:

eone =\ A p'®

veM peP
ponr =\ \/W: A \/Pl_v(p)
veM PEP vg M p€eP

Diikaz. Pro vyrok ¢png viz dikaz Tvrzeni kazd4 elementdrni konjunkce popisuje
jeden model. Vyrok ¢cenr je dudlni k vyroku ¢}y sestrojenému pro doplnék M’ = M. Nebo
muzeme dokdzat piimo: modely klauzule C, =V cp p'=®) jsou vSechny modely kromé v,
M¢ = Mp \{v}, tedy kazda klauzule v konjunkeci zakazuje jeden nemodel. O

Tvrzeni dava ndvod, jak prevadét vyrok do disjunktivni nebo do konjunktivni nor-
malni formy:
Priklad 1.3.5. Uvazme vyrok ¢ = p <> (¢ V —r). Nejprve najdeme mnozinu modelt: M =
M(p) = {(0,0,1),(1,0,0),(1,1,0),(1,1,1)}. Nyni najdeme vyroky ¢pnr, pcnr podle Tvrzeni
ty maji stejnou mnozinu modell jako ¢, jsou tedy ekvivalentni.

Vyrok ppnr najdeme tak, ze pro kazdy model sestrojime elementarni konjunkci vynucujici
pravé tento model:

¢pNF = (PAgAT)V (PAgA-T)V (DAGA-T)V (DAGAT)

Pii konstrukei pcng budeme potiebovat nemodely p, M = {(0,0,0), (0,1,0), (0,1,1),(1,0,1)}.
Kazda klauzule zakaze jeden nemodel:

wonE = (PVaVTr)A(PVogVr)A(pV gV -r)A(-pVaqV-r)

8Protoze p, ¢ jsou vyrokové proménné, mohou za né byt dosazeny obé hodnoty 0 i 1, tedy je mizeme zaménit
za k nim opacné literaly.
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Daisledek 1.3.6. Kazdy vijrok (v libovolném, i nekonecném jazyce P) je ekvivalentni néjakému
vyroku v CNF' a néjakému vyroku v DNF.

Diikaz. 1 kdyz je jazyk PP nekonecny, vyrok ¢ obsahuje jen kone¢né mnoho vyrokovych pro-
ménnych, muzeme tedy pouzit Tvrzeni pro jazyk P’ = Var(y), a mnozinu modelu
M = Mp/((p). Protoze M = M]p/ (@DNF) = MIP”(SDCNF)a mame @ ~ @DNF ™~ @CNF- ]

Cvicent 1.5. Rozmyslete si, jak lze z DNF vyroku snadno vygenerovat jeho modely, a z CNF
vyroku jeho nemodely.

Pozndmka 1.3.7. Kdy lze axiomatizovat teorii vyrokem v DNF nebo vyrokem v CNF? Méjme
jazyk P’ = Var(T) (tj. vSechny vyrokové proménné vyskytujici se v axiomech T'). Ma-li T v
jazyce P’ konené mnoho modelu (tj. je-li Mp/(T") koneénd), miuZzeme sestrojit vyrok v DNF, a
ma-li kone¢né mnoho nemodeli, miazeme sestrojit vyrok v CNF. Obecné ale ne kazdou teorii
lze axiomatizovat jedingm vyrokem v CNF nebo v DNF. Vzdy mutzeme pievést jednotlivé
axiomy do CNF (nebo DNF), a muzeme také axiomatizovat teorii jen pomoci (potencidlné
nekone¢né mnoha) klauzuli.

Tento zpiisob prevodu do CNF resp. do DNF vyzaduje znalost mnoziny modelt vyroku, je
tedy pomérné neefektivni. A také vysledna normalni forma muze byt velmi dlouhd. Ukézeme

.....

Prevod pomoci ekvivalentnich tprav

Vyuzijeme nasledujictho pozorovani: Nahradime-li néjaky podvyrok ¢ vyroku ¢ ekvivalentnim
vyrokem ', vysledny vyrok ¢’ bude také ekvivalentni ¢. Nejprve si ukéZeme postup na
prikladeé:

Priklad 1.3.8. Prevedeme opét vyrok ¢ = p <> (¢ V —r). Nejprve se zbavime ekvivalence,
vyjadrime ji jako konjunkci dvou implikaci. V dalsim kroku odstranime implikace, pomoci
pravidla ¢ — ¢ ~ = V :

pr(gV-or)~(p—(¢Vv-r)A(lgV-r)—p)
~ (=pVaqV-r)A(=(gV-r)Vp)

Nyni si predstavme strom vyroku, v dalsim kroku chceme dostat negace na co nejnizsi iroven
stromu, bezprostfedné nad listy: vyuzijeme toho, ze —(qV—r) ~ =g A——r a zbavime se dvojité
negace -1 ~ 1. Dostavame vyrok

(=pVaqV-r)A((mgAT) VD)

Nyni jiz nechame literaly nedotcené, a pouzijeme distributivitu A vi¢i V, nebo naopak, podle
toho, zda chceme DNF nebo CNF. Pro prevod do CNF pouzijeme tpravu (—g A7)V p ~
(—q V p) A (rV p), kterou jsme dostali symbol V na nizsi iroven stromu. (Nakreslete si!) Tim
uz dostavame vyrok v CNF, pro prehlednost jesté sefadime literdly v klauzulich:

(pVgV-r)A(V-g) A(pVr)

Pri prevodu do DNF bychom postupovali obdobné, opakovanou aplikaci distributivity. Zde
vyjdeme z CNF formy a zkombinujeme kazdy literdl z prvni klauzule s kazdym literdlem z
druhé a s kazdym literdlem z tfeti klauzule. VSimneme si, ze stejny literal nemusime v ele-
mentarni konjunkci opakovat dvakrat, a ze obsahuje-li elementarni klauzule dvojici opa¢nych
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literali, je spornd, a muzeme ji tedy v DNF vynechat. Také muzeme vynechat elementdrni
konjunkci F, pokud mdme jinou elementdrni konjunkci E’ takovou, Ze literdly obsazené v E’
jsou podmnozinou literali obsazenych v E, napt. E = (pAgA—r) a E' = (pA—r). (Rozmyslete
si pro¢, a zformulujte dudlni zjednoduseni pii prevodu do CNF.) Vysledny vyrok v DNF je:

(~pA—gAT)V(DANGAT)V (DA —T)

Nyni vypiSeme vsechny potiebné ekvivalentni tpravy. Dukaz, ze kazdy vyrok lze prevést
do DNF a do CNF lze snadno provést indukei podle struktury vyroku (podle hloubky stromu
vyroku).

o Implikace a ekvivalence: o Konjunkce (prevod do DNF):

PP~ VY AWV X)~ (@AY V(e AX)
p P GV A ERY @) (VY)AX~ (@A) V@B AX)

o Negace:
o Disjunkce (prevod do CNF):
(e AY) ~ oV
(e V)~ Ay eV (W AX)~ (Vi) A(pVX)
e~ (@A) V X~ (eVX)A ([ VX)

Jak uvidime v pristi kapitole, CNF je v praxi mnohem dulezitéjsi nez DNF (byt jde o du-
alni pojmy). P¥i popisu redlného systému je prirozenéjsi vyjadieni pomoci konjunkce mnoha
jednodussich vlastnosti, nez jako jednu velmi dlouhou disjunkci. Existuje mnoho dalsich forem
reprezentace booleovskych funkci. Podobné jako datové struktury, vhodnou formu reprezen-
tace volime podle toho, jaké operace potiebujeme s funkci délatH

1.4 Vlastnosti a diasledky teorii

Podivejme se nyni hloubéji na vlastnosti teorii. Podobné jako pro vyroky rekneme, ze dvé
teorie T, T" v jazyce P jsou ekvivalentni, pokud maji stejnou mnozinu modeli:

T ~ T’ prévé kdyz Mp(T) = Mp(T")

Jde tedy o teorie vyjadiujici tytéz vlastnosti modeld, jen jinak vyjadiené (aziomatizované).
V logice nas prevazné zajimaji ty vlastnosti teorii, které nezavisi na konkrétni azxiomatizaci.
Priklad 1.4.1. Napiiklad teorie T = {p— ¢, p+>r} je ekvivalentni teorii 7" = {(-pV ¢) A (—pV
r)A(pV-r)}.

Definice 1.4.2 (Vlastnosti teorii). Rekneme, Ze teorie T v jazyce P je

o spornd, jestlize v ni plati L (spor), ekvivalentné, jestlize nemda zadny model, ekviva-
lentné, jestlize v ni plati vSechny vyroky,

o bezespornd (splnitelnd), pokud neni spornd, tj. ma néjaky model,

9Viz napiiklad predniska NAIL0O31 Reprezentace booleovskych funkci.
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o kompletnd, jestlize neni sporna a kazdy vyrok je v ni pravdivy nebo 1zivy (tj. nema zadné
nezavislé vyroky), ekvivalentné, pokud ma pravé jeden model.

Rozmysleme si, pro¢ plati ekvivalence vlastnosti v definici. Uvédomme si, Ze ve sporné
teorii plati skute¢né plati vSechny vyroky! Vskutku, vyrok plati v T, pokud plati v kazdém
modelu T, ty ale zddné nejsou. Naopak, pokud teorie mé alespon jeden model, v tomto modelu
nemtze platit L =p A —p.

A je-li teorie kompletni, nemtze mit dva rtizné modely v # v'. Vyrok ¢, = Nper p?®)
(ktery jsme potkali v dikazu Tvrzeni by totiz byl nezévisly v T, protoze plati v
modelu v ale ne v modelu v’. Naopak, ma-li T' jediny model v, potom kazdy vyrok bud plati
ve v, a tedy plati v T', nebo neplati ve v a potom je lzivy v T.

Priklad 1.4.3. Pfikladem sporné teorie je tfeba 17 = {p,p — ¢, ~q}. Teorie To = {p V ¢, 7} je
bezespornd, ale neni kompletni, napiiklad vyrok p A ¢ v ni neni pravdivy (neplati v modelu
(1,0,1)) ale ani 1zivy (plati v modelu (1, 1,1)). Teorie T» U {—p} je kompletni, jejim jedinym
modelem je (0,1,1).

1.4.1 Ddusledky teorii

Pripomenme, ze dusledek teorie T je kazdy vyrok, ktery v T plati (tj. plati v kazdém modelu
T) a ozna¢me si mnozinu vsech dusledki teorie T v jazyce P jako

Csap(T') = {p € VFp | T |= ¢}
Pokud je teorie T' v jazyce P, mizeme psat:
Csqp(T') = {¢ € VFp | Mp(T) C Mp(p)}

(Dava ale smysl mluvit i o disledcich teorie v néjakém mensim jazyce, ktery je podmnozinou
jazyka T).
Ukéazeme si nékolik jednoduchych vlastnosti dusledkii:

Tvrzeni 1.4.4. Méjme teorie T, T’ a vijroky @, 1, ..., on v jazyce P. Potom plati:
(i) T C Csqp(T),

(i1) Csap(T) = Csqp(Csqp(T)),

(iii) pokud T C T', potom Csqp(T) C Csqp(T"),

(iv) ¢ € Csqp({¥1,---,pn}) pravé kdyz je vijrok (o1 A -+ A pn) — @ tautologie.

Dikaz. Dikaz je snadny, pouzijeme-li, ze ¢ je disledek T pravé kdyz Mp(T) C Mp(p), a
uvédomime-li si nésledujici vztahy:

« M(Csq(T)) = M(T),
e je-li T C T' potom M(T) 2 M(T") 7]
e ¢ —  je tautologie, pravé kdyz plati M(¢) C M(yp),

o M(p1 A+ App) =M(p1,...,0n)-

Cviceni 1.6. Dokazte podrobné Tvrzeni [1.4.4

20Cim vice vlastnosti predepiSseme, tim méné objekti je bude viechny spliiovat.
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1.4.2 Extenze teorii

Neformalné Feceno, rozsifenim, neboli extenzi teorie T myslime jakoukoliv teorii 1", ktera
splituje vSe, co plati v teorii T’ (a néco navic, nejde-li o trividlni pripad). Modeluje-li T' néjaky
systém, lze ji rozsitit dvéma zpusoby: pridanim dodatecnych pozadavki o systému (tomu
budeme fikat jednoduchd extenze) nebo i rozsifenim systému o néjaké nové ¢éasti. Pokud
ve druhém pripadé nemame dodatecné pozadavky na puvodni Cast systému, tedy plati-li o
ptvodni Casti totéz, co predtim, Fikdme, Ze je extenze konzervativni.

Priklad 1.4.5. Vratme se k ivodnimu prikladu o barveni grafu, Piiklad ??. Teorie T3 (iplna
obarveni grafu zachovéavajici hranovou podminku) je jednoduchou extenzi teorie T (Casteéna
obarven{ mnoziny vrcholi bez ohledu na hrany). Teorie T4 z Sekce ?? (pfidédn{ nového vrcholu
do grafu) je konzervativni, ale ne jednoduchou extenzi T3. A jde o extenzi 17, kterd neni ani
jednoducha ani konzervativni.

Uvedme nyni konec¢né formalni definice:

Definice 1.4.6 (Extenze teorie). Mé&jme teorii T' v jazyce P.
o FEzxtenze teorie T je libovolnd teorie T” v jazyce P’ D P spliujici Csqp(T") € Csqp (T7),
e je to jednoduchd extenze, pokud P’ = P,

o je to konzervativni extenze, pokud Csqp(T) = Csqp(T”) = Csqp (T") N VFp.

Extenze tedy znamena, ze spliiuje vsechny dusledky ptvodni teorie. Extenze je jednodu-
chda, pokud do jazyka nepriddvame zadné nové vyrokové proménné, a konzervativni, pokud
neménime platnost tvrzeni vyjadritelnych v piivodnim jazyce, kazdy novy dtsledek tedy musi
obsahovat néjakou nové pridanou vyrokovou proménnou.

Co tyto pojmy znamenaji sémanticky, v fe¢i modelt? Zformulujme nejprve obecné pozo-
rovani, které ihned poté ilustrujeme na prikladeé:

Pozorovani 1.4.7. Je-li T teorie v jazyce P a T teorie v jazyce P’ obsahujicim jazyk P.
Potom plati:

o T’ je jednoduchou extenzi T, pravé kdyz P’ =P a Mp(T") C Mp(T),

o T je extenzi T, prdvé kdyZ Mp (T') C Mp(T). Uvazujeme tedy modely teorie T nad
rozsirenym jazykem P’ H Jinymi slovy, restrikc@ libovolného modelu v € Mp/(T") na
puvodni jazyk P musi byt modelem T, mohli bychom psdt vlp € Mp(T') nebo:

{1) r]p | NS M[p/ (T/)} C M[p(T)

o T je konzervativni extenzi T, pokud je extenzi a navic plati, Ze kazdy model T (v jazyce
P) Ize néjak expandovat (rozsvﬁitﬂ na model T' (v jazyce P'), neboli kazdy model T (v
jazyce P) ziskdme restrikei néjakého modelu T' na jazyk P. Mohli bychom psdt:

{1) hp | NS M[p/ (T/)} = M[p(T)

21Pozor, nemtizeme psat Mp(T”), protoze modely 7’ musi byt ohodnocenimi vétstho jazyka P’, hodnoty jen
pro proménné z P nestadi k uréeni pravdivostni hodnoty. A nelze psit ani Mp/(T”) C Mp(T), jde o mnoziny
vektoru jiné dimenze.

22 Restrikce znamend zapomenuti hodnot pro nové vyrokové proménné, resp. smazani piislusngch soufadnic
pri reprezentaci modelu vektorem.

2Ptidénim hodnot pro nové vyrokové proménné, resp. piiddnim odpovidajicich soufadnic ve vektorové
reprezentaci.
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o T’ je extenzi T a zdroven T je extenzi T, prdvé kdyz P’ =P a Mp(T') = Mp(T'), neboli
T ~T.

o Kompletni jednoduché extenze T jednoznacné az na ekvivalenci odpovidaji modelum T.

Priklad 1.4.8. Mé&jme teorii T = {p — q} v jazyce P = {p,q}. Teorie Ty = {p A q} v jazyce
P je jednoduchou extenzi T', mame Mp(71) = {(1,1)} € {(0,0),(0,1),(1,1)} = Mp(T). Je
to kompletni teorie, dalsi kompletni jednoduché extenze teorie T' jsou napt. T = {-p, ¢} a
T3 = {—p, ~q}. Kazda kompletni jednoduché extenze teorie T je ekvivalentni s T}, T5, nebo
Ts.

Uvazme nyni teorii 77 = {p +> (¢ A r)} v jazyce P’ = {p,q,r}. Je extenzi T, nebot P =
{p,a} € {p.q,r} =P a plati:

M (T") = {(0,0,0), (0,0,1),(0,1,0), (1,1,1)}

(0,0,0),(0,0,1), (0,1,0), (0,1,1),(1,1,0), (1,1,1)} = Mp:(T)

Jinymi slovy, ztizenim modeli 7" na jazyk P dostavame {(0,0), (0,1), (1,1)} coz je podmnozina
Mp(T).

Protoze plati dokonce {(0,0), (0,1), (1,1)} = Mp(T), jinymi slovy, kazdy model v € Mp(T)
1ze rozsitit na model v' € Mp/(T") (napf. (0,1) lze rozsifit dodefinovanim v'(r) = 0 na model
(0,1,0)), je T' dokonce konzervativni extenz{ T. To znamen4, ze kazdy vyrok v jazyce P plati
v T, pravé kdyz plati v T'. Ale vyrok p — r (ktery je v jazyce P, ale ne v jazyce PP) je novym
dusledkem: plati v 7" ale ne v T' (viz model (1,1,0)).

Teorie T = {-pV q,—qV r,—rV p} v jazyce P’ je extenzi T, ale ne konzervativni extenzi,
nebot v ni plati p <> ¢, coz neplati v T'. Nebo také proto, ze model (0, 1) teorie T' nelze rozsitit
na model teorie T"”: (0, 1,0) ani (0,1, 1) nespliuji axiomy 7".

Teorie T je (jednoduchou) extenzi teorie {—p V q} v jazyce P a naopak, T' ~ {—p V q}. Je
také, jako kazda teorie, jednoduchou konzervativni extenzi sebe sama.

Cwviceni 1.7. Ukazte (podrobné), ze ma-li teorie T" kompletni konzervativni extenzi, potom je
sama nutné kompletni.

V logice nas Vétéinoﬂ zajimaji vyroky (resp. teorie) aZ na ekvivalenci@ Na otazku ‘Ko-
lik existuje ruznych vyroku v jazyce P = {p,q,r}?’ je spravnd odpovéd ‘Nekoneéné mnoho.
NejspiSe nas ale zajimaly vyroky aZ na ekvivalenci (neboli navzdjem neekvivalentni). Téch
je tolik, kolik existuje rtiznych podmnoZin modeli jazyka, tedy 2/Mel = 28 —= 256. Sku-
tecné, maji-li dva vyroky stejnou mnozinu modeli, jsou z definice ekvivalentni. A pro kazdou
mnozinu modeli mizeme najit odpovidajici vyrok, napt. v DNF (viz . Zkusme trochu

vvvvv

Priklad 1.5.1. Mé&jme teorii T' v jazyce P = {p, q,r} majici pravé pét modeli. Kolik existuje
(az na ekvivalenci) vyroku nad P, které jsou nezévislé v teorii 77 Oznacme |P| = n = 3 a
| Mp(T)| = s = 5.

Pocitdme mnoziny M = Mp(p) a pozadujeme, aby 0 # M NMp(T) # Mp(T). Mame tedy
celkem 2F — 2 = 30 moznosti, jak mfize vypadat mnozina M N Mp(T). A pro kazdy model

24Pokud nap¥. neprovadime konkrétni algoritmus zaloZeny na syntaktickych tipravéch, tfeba prevod do CNF.
2 Muzeme je chapat jako jakési abstraktni ‘vlastnosti’ model@ bez ohledu na jejich konkrétni vyjadieni.
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jazyka, ktery neni modelem T (téch je 2" — k = 3) muzeme zvolit libovolné, zda bude ¢i
nebude v M. Celkové tedy dostdvame (2F — 2)-22"~% = 30 . 2875 = 240 moznych mnozin M,
tolik je tedy vyroku nezavislych v T', az na ekvivalenci.

Podivejme se na véc abstraktnéji. Formélné, uvazujeme mnozinu ekvivalenénich tiid ~ na
mnoziné vsech vyroki VFp, kterou oznac¢ime VFr/~. Prvky této mnoziny jsou mnoziny ekvi-
valentnich vyroku, napt. [p—¢q|~ = {p—¢q,pVq,~(pA—q),pVqVg,...}. A mime zobrazeni
h:VFe/~ — P(Mp) (kde P(X) je mnozina vsech podmnozin X) definované pfedpisem:

tj. tridé ekvivalentnich vyroku priradime mnozinu modelt libovolného z nich. Je snadné ovérit,
ze toto zobrazeni je korektné definované (nezalezi na tom, jaky vyrok z t¥idy ekvivalence jsme
si vybrali) a prosté, a zZe je-li jazyk P konec¢ny, je h dokonce bijekce. (Ovérte!)

Na mnoziné VFr/~ muzeme zavést operace —, A,V pomoci predpisu

=[]~ = [Pe]~
[l A []n = [ A Y]
[Pl V [l = [ VYl

tedy vybereme reprezentanta resp. reprezentanty, a provedeme operaci s nimi, napfr. ‘kon-
junkce’ tiid [p — ¢]~ a [q V =]~ je:

[p—=ql~AlgV-rle=[p—q) A(gV-r)
Priddme-li také konstanty L = [L]. a T = [T]., dostdvame (matematickou) strukturﬂ
AVP = <VFP/N; ) /\7 \/7 J—v T>

které fikame algebra vyroki jazyka P. Je to ptiklad tzv. Booleovy algebry. To znamena, Ze jeji
operace se ‘chovaji’ jako operace ~, N, U na mnoziné vSech podmnozin P(X) néjaké nepréazdné
mnoziny X, a konstanty odpovidaji (), X (takové Booleové algebie fikdme potencni algebm)m
Zobrazeni h : VFr/~ — P(Mp) je tedy prosté zobrazeni z algebry vyrokii AVp do poten¢ni
algebry
P(Mp) = (P(Mp); —,N, U, 0, Mp)

a je-li jazyk konecny, je to bijekce. Toto zobrazeni ‘zachovavd’ operace a konstanty, tj. plati
h(L) =0, h(T) = Mp, a

h(=lgl~) = h([e]~) = M(p) = Mp \ M(p)
h(lel~ A TY]e) = h(pl~) N A([~) = M(p) N M(4)
h(lel~ v [¥]n) = h(lpl~) U A([]~) = M(p) UM()

Takovému zobrazeni rikdme homomorfismus Booleovych algeber, a je-li to bijekce, jde o izo-
morfismus.

26Struktura je neprazdnd mnozina spolu s relacemi, operacemi, a konstantami. Napifklad (orientovany) graf,
grupa, téleso, vektorovy prostor. Struktury budou hrat dilezitou roli v predikatové logice.

27Ty, spliji uréité algebraické zakony, napiiklad distributivitu A vaci V. Booleovy algebry definujeme for-
malné pozdéji, uvedme ale jesté jeden dilezity priklad: mnozina vSech n-bitovych vektort s operacemi ~, &, |
(po slozkach) a s konstantami (0,0,...,0) a (1,1,...,1).
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Pozndmka 1.5.2. Tyto vztahy muzeme také vyuzit pii hledani modela: naptiklad pro vyrok
© — (m) A x) plati (s vyuzitim toho, ze M(p — ¢') = M(—¢p V ¢')):

M(e — (= A x)) = M(p) U (M(¢) N M(x))

Vsechny predchozi ivahy muzeme také relativizovat vzhledem k dané teorii T' v jazyce P, a
to tak, ze ekvivalenci ~ nahradime T-ekvivalenci ~7 a mnozinu modeli jazyka Mp nahradime
mnozinou modelu teorie Mp(T'). Dostavame:

(L) =0,
(T) =M(T)
(=lpl~r) = M(T) \ M(T, )
h([)g A [9]nrg) = M(T, ) N M(T, )
h(lplar V [$lnr) = M(T, ) UM(T, 4)

Vyslednou algebru vgrokiu vzhledem k teorii T oznac¢ime AVp(T). Algebra vyroku jazyka je
tedy totéz co algebra vyrokl vzhledem k prazdné teorii. Z technickych divoda potrebujeme,
aby M(T) byla neprazdnd, tj. T musi byt bezesporné. Shriime nase Gvahy:

Disledek 1.5.3. Je-li T' bezespornd teorie nad koneénym jazykem P, potom je algebra vyroki
AVp(T) izomorfni potencni algebre P(Mp(T)) prostrednictvim zobrazeni h([¢]~,) = M (T, ¢).

Vime tedy, Ze negace, konjunkce, a disjunkce odpovidaji dopliiku, priniku a sjednoceni
mnozin modell, a ze chceme-li najit pocet vyrokl az na ekvivalenci resp. T-ekvivalenci, staci
urcit pocet prislusnych mnozin modelt. Shriime si nékolik takovych vypoctii ve formé tvrzeni,
jeho dtkaz nechame jako cviceni.

Tvrzeni 1.5.4. Meéjme n-prvkovy jazyk P a bezespornou teorii T majici pravé k modeli.
Potom v jazyce P existuje az na ekvivalenci:

o 22" wgroki (resp. teorii),
o 22"k yygrokd pravdivijch (resp. lZivijch) v T,
o 22" —2.922"F yyroki nezdvisljch v T,

k jednoduchyjch extenzi teorie T (z toho 1 spornd),

k kompletnich jednoduchych extenzi T
Ddle az na T-ekvivalenci existuje:

o 2F wyrokd,

o 1 vyrok pravdivy vT, 1 IZivg v T,

o 28 — 2 wygroki nezdvislijch v T.

Cwviceni 1.8. Zvolte vhodnou teorii T a ukazte na jejim prikladé, ze plati Tvrzeni
Cuiceni 1.9. Dokazte podrobné Tvrzeni[1.5.4] (Nakreslete si Vennilv diagram.)

Cviceni 1.10. Dokazte podrobné, ze zobrazeni h z Dusledku je korektné definované,
prosté, a je-li jazyk koneény, potom i na.
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Kapitola 2

Problém splnitelnosti

Problém splnitelnosti vgrokovych formuli, znamy také jako problém SATE| je nasledujici vy-
pocetni problém: Vstupem je vyrok ¢ v CNF (v néjakém rozumném kédovénﬂ), a tkolem je
rozhodnout, zda je ¢ splnitelny. E|

Jak jsme si ukazali v predchozi kapitole, mizeme kazdy vyrok, nebo i kazdou vyrokovou
teorii v kone¢ném jazyce, prevést na CNF formuli. Problém SAT je tedy v jistém smyslu
univerzalni; odpovida na otazku, zda existuje model.

Znadmé Cook-Levinova véta 1k, ze problém SAT je NP-uping, tedy je v t¥idé NP (pokud
nam orakulum prozradi spravné ohodnoceni proménnych, mizeme snadno ovérit, ze vsechny
klauzule jsou splnény) a kazdy problém z tfidy NP na néj 1ze prevést v polynomidlnim case
(konkrétne, vypocet Turingova stroje lze popsat pomoci vyroku v CNF)E|

Praktické SAT solvery si ale umi poradit s instancemi obsahujicimi mnoho (az desitky
milioni) vyrokovych proménnych a klauzuli. V této kapitole si nejprve ukazeme praktickou
aplikaci SAT solveru na problém ‘ze zivota’, potom dva fragmenty problému SAT, tzv. 2-SAT
a Horn-SAT, pro které existuji polynomialni algoritmy, a na zavér si ukdzeme také algoritmus
DPLL, ktery je zdkladem (téméf) vsech SAT solvert. (Pozdéji, v Kapitole (3] uvidime také
souvislost s rezolucni metodou.)

Prvni fesice SAT byly vyvinuty v 60. letech 20. stoleti. Jejich zdkladem je témér vzdy algorit-
mus DPLL (Davis-Putnam-Logemann-Loveland), ktery predstavime v Sekci respektive
nékteré z jeho vylepseni. Po roce 2000 dochézi k ponékud prekvapivému, dramatickému vyvoji
technologii pro fesice SAT a tim i k rapidnimu rastu jejich uziteénosti v riiznych oblastech
aplikované informatiky.

Moderni SAT solvery pouzivaji celou fadu technologii pro efektivni feseni typickych in-
stanci pochézejicich z ruznych aplika¢nich domén, strategii a heuristik pro exploraci prostoru
feSeni (napriklad i za pouZiti strojového uceni a neuronovych siti), a dalsich vylepseni. Tyto
moderni nastroje maji typicky nékolik desitek tisic radku kédu. Dostupnost efektivnich SAT

17 anglického ‘Boolean satisfiability problem’.

2Napt. format DIMACS-CNF.

3Pozor, v nékteré literatufe se jako SAT oznacuje splnitelnost libovolného vyroku, a na CNF je potom
omezen az problém k-SAT (viz nize).

4Viz predmét NTIN09O Zaklady slozitosti a vycislitelnostil
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solvertl vyznamné ovlivnila vyvoj napriklad v oblasti softwarové verifikace, analyzy programi,
optimalizace, nebo umélé inteligence. Nejlepsi SAT solvery spolu pravidelné soutézi v ramci
SAT competitionl

Pro vyzkouseni SAT solvingu nam poslouzi fesi¢ [Glucosel Ten pfijima vstup v jednodu-
chém formatu DIMACS CNEF. Ukazme si postup pouziti na nasledujici hii¢ce zvané boardo-
mino:
Priklad 2.1.1 (Boardomino). Lze pokryt sachovnici s chybéjicimi dvéma protilehlymi rohy
perfektné pokryt kostkami domina?

Jak tento problém formalizovat? Zvolme vyrokové proménné h; j,v;; (1 < i,5 < n), kde
hi ; znamenda “na pozici (4, j) lezi leva polovina horizontélné orientované kostky” a podobné
v;,; pro horni polovinu vertikalni kostky. Zde n = 8, ale mizeme vyzkouset i pro jiné (sudé)
rozméry Sachovnice. Nyni axiomatizujeme vsechny pozadované vlastnosti:

e levy horni a pravy dolni roh chybi: =hi1, =v11, =l n—1, "Vn—1n

kostky nevy¢nivaji z sachovnice (vpravo ani doli): —h;,, v, pro 1 <i<n

kazdé policko je pokryto alespon jednou kostkou (prvni fadek a sloupec zvlast):

h@j_l V hi,j Vv;—1,; Vv pro 1<i4,5<n
hl’jfl V th V v1; pro 1<7<n
hi,l Vvj—1,1V v;1 pro 1<i<n

kazdé policko je pokryto nejvyse jednou kostkou (prvni fadek a sloupec zvlast):

(mhij—1 V —hig) A (mhij—1V —wi—15) A (2hij—1 V i) A
(mhi; V —0i—15) A (2hij V=i 5) A (—vi—15 V —vi5) pro 1 < i, <n
(mh1j—1V =hij) A (mhij—1V i) A(mhi; Vo) prol <j<n
(_\hz‘71 V _‘Ui—l,l) VAN (ﬂh@l vV —\Ui71) A\ (_‘Uz 1,1V 1) prol<i<n

Vyslednd teorie uz je v CNF, snadno ji mizeme zapsat ve formatu DIMACS CNF, a vyTesit
pomoci solveru Glucose. V praxi bychom mohli tento pfevod naprogramovat, nebo vyuzit
jednoho z mnoha vysokouroviovych jazyki z oblasti constraint programming umoznujicich
preklad do SATu.

Uvidime, ze takové instance problému SAT budou pro fesice tézké a uz pro pomérné malé
rozmeéry sachovnice se feSeni nedockdme. Jako matematici snadno nahlédneme, ze feseni nee-
xistuje: Kazda kostka domina pokryva jedno bilé a jedno ¢erné policko, ale odebrali jsme dvé
bila, nutné tedy zbudou dvé ¢erna. Tento pohled ale neni v zakdédovani do CNF dostupny. Lze
najit ¢astecna ohodnoceni témér vsech proménnych, aniz bychom néjakou podminku poru-
sili. Solver tedy bude muset prohledat témér cely prostor reseni, nez dokaze nesplnitelnostﬂ
Klicovym nahledem do SAT solvingu je fakt, ze takové tézké instance se v praxi témér nikdy
nevyskytuji.

5Podobné vlastnosti mé také zakédovani holubnikového principu do SATu.
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2.2 2-SAT a implikacni graf

Vyrok ¢ je v k-CNF, pokud je v CNF a kazdé klauzule méa nejvyse k literali. Problém k-SAT
se pté, zda je dany k-CNF vyrok splnitelny. Pro k > 3 je k-SAT nadale NP-tuplny, kazdou
CNF formuli lze zakédovat do 3-CNF vyroku:

Cwviceni 2.1. Ukazte, ze pro kazdy vyrok ¢ v CNF existuje ekvisplnitelny vyrok v ¢’ 3-CNF
(tj- ¢ je splnitelny, pravé kdyz ¢’ je splnitelny), ktery lze zkonstruovat v linedrnim case.

Pro problém 2-SAT ale existuje polynomiélni (dokonce linedrni) algoritmus, ktery si nyni
predstavime. Algoritmus vyuziva tzv. implikacniho grafu. Ukazeme si postup na prikladé:

Priklad 2.2.1. Méjme nasledujici 2-CNF vyrok ¢:
(mp1 Vp2) A (—p2 V —p3) A (p1 V p3) A (p3V —pa) A (=p1 V ps) A (p2 Vps) Apt A —ps

Implikac¢ni graf

Implikacéni graf 2-CNF vyroku ¢ je zaloZeny na myslence, ze 2-klauzuli £1 V £ (kde ¢1, ¢ jsou
literdly) lze chapat jako dvojici implikaci: /1 — £ a 5 — Elﬁ Napriklad, z klauzule —p; V pa
vzniknou implikace p1 — ps a také ,—py — —p1. Tedy pokud p; plati v néjakém modelu,
musi platit i po, a pokud po neplati, nesmi platit ani p;. Jednotkovou klauzuli £ miZzeme také
vyjadiit pomoci implikace jako £ — ¢, napi. z p; dostavame —p; — p.

Implikac¢ni graf G, je tedy orientovany graf, jehoz vrcholy jsou vSechny literdly (proménné
z Var(p) a jejich negace) a hrany jsou dané implikacemi popsanymi vyse:

« V(Gy) ={p,~p|p € Var(p)},
o E(Gy) = {(f1,02),(l2,01) | L1V l3 je kKlauzule o} U {(¢,¢) | ¢ je jednotkovd klauzule o}

V nasem piikladé mame mnozinu vrcholt

V(gip) = {plap27p3ap47p57 —P1, P2, P35 P4, _'p5}

a hrany jsou:

E(gSD) = {(p17p2)7 (_‘p27 _‘p1)7 (p27 _'p3)7 (p3a _'p2>7 (_‘p17p3)5 (_'p37p1)7 (_'p3a _'p4>7
(p47p3)7 (pl7p5)7 ("p5) ﬁp].)7 ("p27p5)) ("p57p2)7 ("pl)pl)a (p4) "p4)}

Vysledny graf je zndzornény na Obrazku

2.2.1 Silné souvislé komponenty

Nyni musime najit komponenty silné souvislostﬂ tohoto grafu. V nasem piikladé dostavame
nésledujici komponenty: C1 = {-ps}, C2 = {pa}, C5 = {-p1, p2,p3}, C3 = {p1,p2, p3},
Cy = {-pa}, C1 = {ps}.

Vsechny literaly v jedné komponenté musi byt ohodnoceny stejné. Pokud bychom tedy
nasli dvojici opacnych literald v jedné komponenté, znamena to, ze vyrok je nesplnitelny. V
opac¢ném piipadé vzdy mizeme najit spliujici ohodnoceni, jak si dokdzeme v Tvrzeni 2.2.2]

6V predchozi kapitole jsme vyjadfovali p1 — pa jako —p1 V pa, zde provadime opaény postup.
7Silnd souvislost znamen4, e existuje orientovand cesta z u do v i z v do u, neboli kazdé dva vrcholy v jedné
komponenté lezi v orientovaném cyklu. A naopak, kazdy orientovany cyklus lezi uvnitt néjaké komponenty.
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(3d

Obrazek 2.1: Implikacni graf G,. Komponenty silné souvislosti jsou odliSeny barevné.

5]

Obrazek 2.2: Implikacni graf G,. Graf silné souvislych komponent gj,;.

Potrebujeme zajistit, aby z zadné komponenty ohodnocené 1 nevedla hrana do komponenty
ohodnocené 0. Provedeme-li kontrakeci komponent (a odstranime-li smycky), vysledny graf gs
je acyklicky (kazdy cyklus byl uvniti néjaké komponenty), viz Obréazek To znamena, ze
ho muzeme nakreslit v topologickém uspordaddni (tj. usporadani na pfimce, kde hrany vedou
jen doprava), viz Obrézek nize.

P1i hledéni spliujictho ohodnoceni (pokud ndm nestaci informace, ze vyrok je splnitelny)
potom postupujeme tak, ze vezmeme nejlevéjsi dosud neohodnocenou komponentu, ohod-
notime ji 0, opacnou komponentu ohodnotime 1, a postup opakujeme dokud zbyva néjaka
neohodnocend komponenta. Napiiklad, topologické uspofddani na Obrazku [2.3] odpovid4 mo-
delu v = (1,1,0,0,1).

Na zavér shrneme nase tvahy do nésledujiciho tvrzeni:

Tvrzeni 2.2.2. Vyrok ¢ je splnitelny, pravé kdyZ Zidnd silné souvisld komponenta v G,
neobsahuje dvojici opacnych literdli £, ¢.

Dukaz. Kazdy model, neboli splinujici ohodnoceni, musi ohodnotit vSechny literdly ze stejné
komponenty stejnou hodnotou. (V opacném piipadé by nutné existovala implikace ¢1 — /o,
kde ¢; v modelu plati ale #3 neplati.) V jedné komponenté tedy nemohou byt opacné literaly.
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Obrézek 2.3: Implikacni graf G,. Topologické usporddani grafu G7 a spliujici ohodnoceni
komponent.

Naopak predpokladejme, ze zadna komponenta neobsahuje dvojici opacnych literald, a
ukazme, ze potom existuje model. Oznac¢me G graf vznikly z G, kontrakei silné souvis-
Iych komponent (a odstranénim smycek). Tento graf je acyklicky, zvolme néjaké topologické
usporadani. Model zkonstruujeme tak, ze zvolime prvni dosud neohodnocenou komponentu
v nasem topologickém usporadani, vSechny literadly v ni obsazené ohodnotime 0, a opacné
literaly ohodnotime 1. Takto pokracujeme dokud nejsou vSsechny komponenty ohodnoceny.

Pro¢ v takto ziskaném modelu plati vyrok ¢? Kdyby ne, neplatila by néktera z klauzuli.
Jednotkova klauzule ¢ musi platit, nebot v grafu G, mdme hranu 0 — (. Stejna hrana je i
v grafu komponent, tedy ¢ predchézi v topologickém usporadani komponentu obsahujici .
Pfi konstrukci modelu jsme museli ohodnotit ¢ diive nez ¢, tedy ¢ = 0 a £ = 1. Podobné,
2-klauzule ¢1 V /5 také musi platit: mame hrany ¢; — ¢ a f5 — ¢1. Pokud jsme ¢; ohodnotili
difve nez ¢», museli jsme kviili hrané ¢; — ¢ ohodnotit ¢1 = 0, tedy ¢; plati. Podobné pokud
jsme ohodnotili nejdiive £, musi byt fo =0 a ¢5 = 1. O

Dusledek 2.2.3. Problém 2-SAT je resitelng v linedrnim case. V linedrnim case muzeme
také zkonstruovat model, pokud existuje.

Diikaz. Komponenty silné souvislosti 1ze snadno nalézt v ¢ase O(|V |+ |E|), topologické uspo-
radani muzeme také zkonstruovat v ¢ase O(|V| + |E|). O

Cuiceni 2.2. Najdéte néjaky nesplnitelny 2-CNF vyrok, sestrojte jeho implikacni graf, a pre-
svédcete se, ze existuje dvojice opacnych literal ve stejné komponenté silné souvislosti.

Cviceni 2.3. Najdéte vsechna topologickd usporadani grafu G z prikladu vyse a jim odpovi-
dajici modely. Rozmyslete si, pro¢ takto ziskdme pravé vSechny modely vyroku ¢.

Cviceni 2.4. Rozmyslete si, pro¢ lze komponenty i topologické usporadani nalézt v Case
o(|V]+ |E]).

2.3 Horn-SAT a jednotkova propagace

Nyni si ukdzeme dalsi fragment SATu TeSitelny v polynomidlnim ¢éase, tzv. Horn-SAT neboli
problém splnitelnosti hornovskych vyroki. Vyrok je v hornovsky (v Hornové tvaruﬂ pokud
je konjunkci hornovskyjch klauzuld, tj. klauzuli obsahujicich nejvgse jeden *pozitivni* literdl.
Vyznam Hornovskych klauzuli vyplyva z ekvivalentniho vyjadfeni ve formé implikace:

“p1Vope Ve Vp, Vg ~ (prApaA---App) —q

8Matematik Alfred Horn objevil v§znam tohoto tvaru logickych formuli (a poloZil tak zdklad logickému
programovani) v roce 1951.
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Hornovské vyroky tedy dobie modeluji systémy, kde splnéni urcitych podminek zarucuje
splnéni jiné podminky. Upozornéme, ze jednotkova klauzule ¢ je také hornovské. V kontextu
logického programovani se ji fika fakt, pokud je literdl pozitivni, a cil pokud je negativniﬂ
Hornovské vyroky s alespon jednim pozitivnim a alespon jednim negativnim literdlem jsou
pravidla.

Priklad 2.3.1. Prikladem vyroku, ktery je v CNF, ale neni hornovsky, je tfeba (p1Vp2V-p3) A
(=p1 V p3). Jako priklad, na kterém budeme ilustrovat algoritmus, ndm poslouzi nasledujici
hornovsky vyrok:

@ =(=p1Vp2)A(=p1V-p2Vp3)A(—p2V=p3) A(=ps V —ps) A pa

Polynomialni algoritmus pro reseni problému Horn-SAT je zalozeny na jednoduché mys-
lence jednotkové propagace: Pokud nas vyrok obsahuje jednotkovou klauzuli, vime, jak musi
byt ohodnocena vyrokova proménna obsazena v této klauzuli. A tuto znalost mizeme propa-
govat—vyuzit k zjednoduseni vyroku.

N&s vyrok ¢ obsahuje jednotkovou klauzuli ps. Vime tedy, Ze v kazdém jeho modelu
v € M(¢) musi platit v(ps) = 1. To ale znamend, ze v libovolném modelu vyroku ¢

e kazda klauzule obsahujici pozitivni literdl ps je splnéna, mtzeme ji tedy z vyroku od-
stranit,

e negativni literal —p4 nemiize byt splnén, mizeme ho tedy odstranit ze vSech klauzuli,
které ho obsahuji.

Tomu kroku se 1iké jednotkovd propagace. Vysledkem je néasledujici zjednoduseny vyrok, ktery
oznacéime P4 (obecné ¢’ mame-li jednotkovou klauzuli £):

@P* = (=p1 V p2) A (—p1 V —p2 V p3) A (—p2 V —p3) A —ps

Pozorovani 2.3.2. Vsimnéte si, ze ¢° uz neobsahuje literdl ¢ ani 0, a zrejmé plati, Ze modely
@ jsou prdavé modely {©°, £}, neboli modely ©* v piivodnim jazyce P, ve kteryjch plati £.

Jednotkovou propagaci jsme ziskali ve vyroku P4 novou jednotkovou klauzuli —ps, mi-
zeme tedy pokracovat nastavenim v(ps) = 0 a dalsi jednotkovou propagaci:

(@P*)™P5 = (=p1 V p2) A (mp1 V —p2 V p3) A (—p2 V —p3)

Vysledny vyrok uz neobsahuje jednotkovou klauzuli. To ale znamend, ze kazda klauzule ob-
sahuje alespon dva literaly, a nejvyse jeden z nich muze byt pozitivni! (Zde potfebujeme hor-
novskost vyroku.) Protoze kazda klauzule obsahuje negativni literédl, sta¢i ohodnotit vSechny
zbyvajici proménné 0, a vyrok bude splnén: v(p1) = v(p2) = v(p3) = 0. Dostavame tedy model
v =1(0,0,0,1,0).

Priklad 2.3.3. Co by se stalo, pokud by vyrok nebyl splnitelny? Podivejme se na vyrok

Y=pA(pVg@A(=gVr)A-r

9Nebot dokazujeme sporem, vice v pozdéjsi kapitole o rezoluci a Prologu.
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a provadéjme jednotkovou propagaci jako v predchozim prikladé: mame v(p) = 1 a P =
g (—qVr)A-r,dile v(qg) =1 a (¢¥P)? = r A —r. Tento vyrok je nesplnitelny, nebot obsahuje
dvojici opacnych jednotkovych klauzuli. E

Shriime si nyni algoritmus pro reseni problému Horn-SAT:

Algoritmus (Horn-SAT). vstup: vyrok ¢ v Hornové tvaru, vystup: model ¢ nebo infor-
mace, ze ¢ neni splnitelny

1. Pokud ¢ obsahuje dvojici opaénych jednotkovych klauzuli 4, ¢, neni splnitelny.
2. Pokud ¢ neobsahuje zadnou jednotkovou klauzuli, je splnitelny, ohodnot vSechny zby-
vajici proménné 0.
3. Pokud ¢ obsahuje jednotkovou klauzuli £, ohodnot literal £ hodnotou 1, proved jednot-
kovou propagaci, nahrad ¢ vyrokem ¢!, a vrat se na zacatek.
Tvrzeni 2.3.4. Algoritmus je korektnd.
Diikaz. Korektnost plyne z Pozorovani a z predchozi diskuze. ]

Dusledek 2.3.5. Horn-SAT lze resit v linedrnim case.

Dukaz. V kazdém kroku staci projit vyrok jednou, a jednotkova propagace vyrok vzdy zkrati.
7 toho snadno plyne kvadraticky horni odhad, ale pri vhodné implementaci lze dosdhnout
linedrniho casu vzhledem k délce . O

Cwiceni 2.5. Navrhnéte implementaci algoritmu pro Horn-SAT v linedrnim case.

Cuiceni 2.6. Navrhnéte modifikaci algoritmu pro Horn-SAT, ktera najde vSechny modely.

Na zavér kapitoly o problému splnitelnosti si predstavime zdaleka nejpouzivanéjsi algoritmus
pro feseni obecného problému SAT, algoritmus DPLLE Ackoliv v nejhorsim pripadé ma
exponencialni slozitost, v praxi funguje velmi efektivneé.

Algoritmus pouziva jednotkovou propagaci spolu s nasledujicim pozorovanim: Rekneme, Ze
literdl ¢ ma cisty vijskyt v o, pokud se vyskytuje ve ¢, ale opaény literdl £ se ve ¢ nevyskytuje.
Méme-li literal s ¢istym vyskytem, mizeme jeho hodnotu nastavit na 1, a splnit (a odstranit)
tak vSechny klauzule, které ho obsahuji. Pokud vyrok neumime takto zjednodusit, rozvétvime
vypocet dosazenim obou moznych hodnot pro vybranou vyrokovou proménnou.

Algoritmus (DPLL). vstup: vyrok ¢ v CNF, vystup: model ¢ nebo informace, ze ¢ neni
splnitelny

1. Dokud ¢ obsahuje jednotkovou klauzuli ¢, ohodnot literal £ hodnotou 1, proved jednot-
kovou propagaci, a nahrad ¢ vyrokem .

10 Jinymi slovy, v dalsim kroku bychom provedli jednotkovou propagaci 7, odstranili jednotkovou klauzuli 7,
a ze zbyvajici jednotkové klauzule —r bychom odstranili literdl —r, ¢imz by vznikla prdzdnd klauzule, ktera je
nesplnitelna.

"Pojmenovany po svych tvircich, Davis-Putnam-Logemann-Loveland, pochazi z roku 1961.
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2. Dokud existuje literal ¢, ktery ma ve ¢ Cisty vyskyt, ohodnot ¢ hodnotou 1, a odstran
klauzule obsahujici .

3. Pokud ¢ neobsahuje zadnou klauzuli, je splnitelny.
4. Pokud ¢ obsahuje prazdnou klauzuli, neni splnitelny.

5. Jinak zvol dosud neohodnocenou vyrokovou proménnou p, a zavolej algoritmus rekur-
zivné na ¢ A p a na ¢ A —p.

Algoritmus bézi v exponencidlnim ¢ase: pocet vétveni vypoctu nemiize byt vétsi nez po-
¢et proménnych. Lze ukazat, ze v nejhorsim pripadé je opravdu potfeba exponencidlni Cas.
Korektnost algoritmu neni tézké ovérit.

Tvrzeni 2.4.1. Algoritmus DPLL resi problém SAT.

Priklad 2.4.2. Ukazeme si béh algoritmu na nasledujicim ptikladeé:
(—=pVagV-r)A(=pV =gV -s)A(pV-rV-s)A(gV-rVs)ApVs)ApV-s)A(qVs)

Vyrok nemd zadnou jednotkovou klauzuli. Literdl —r mé ¢isty vyskyt, nastavime v(r) = 0 a
odstranime klauzule obsahujici —r:

(Vg Vos)A(pVs)A(pV-s)A(gVs)
Zadny dalsf literdl nemé Gisty vyskyt. Spustime proto rekurzivné algoritmus:
(p=1) Pridame jednotkovou klauzuli p:
(pV =gV os)A(pVs)A(pVos)A(gVs)Ap

Nastavime v(p) = 1 a provedeme jednotkovou propagaci: (—q V —s) A (¢ V s). Nyni
rozvétvime na proménné q:

(q=1) (=g V =s) A (qV s) A q. Po nastaveni v(q) = 1 a jednotkové propagaci dostavame
—s, po nastaveni v(s) = 0 a jednotkové propagaci dostavame vyrok neobsahujici
zadnou klauzuli, je tedy splnitelny ohodnocenim (1,1,0,0). Odpovéd na problém
splnitelnosti uz mame, ostatni vétve vypoctu nemusime dokoncovat. Pro ilustraci
to ale provedeme.

(q=0) (=qV—s)A(qVs)A—q. Jednotkovou propagaci s v(q) = 0 dostavame s, po nastaveni
v(s) = 1 a jednotkové propagaci mame prazdnou mnozinu klauzuli. Dostdvame
model (1,0,0,1).

(p=0) Pridame jednotkovou klauzuli —p:
(=pV gV as)A(pVs)A(pV-s)A(gVs)A-p

Po provedeni jednotkové propagace —p méme s A —=s A (¢ V s). Po provedeni jednotkové
propagace s mame [JA g, kde [ je prazdna klauzule. Vyrok je tedy nesplnitelny a v této
vétvi nedostaneme zadné modely.
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Zjistili jsme, Ze puvodni vyrok je splnitelny. Nasli jsme 2 modely: (1,1,0,0) a (1,0,0,1).
Mohou ale existovat i dalsi modely, ohodnoceni v(r) = 0 pro literdl —r s ¢istym vyskytem
nemusi byt nutné pro splnéni vSech klauzuli; tento krok nezachovavd mnozinu modeld, jen
splnitelnost.

Co dale? Zakladni algoritmus DPLL, ktery systematicky prohledava prostor moznych
feseni, byl na konci 90. let 20. stoleti riznymi zptisoby doplnén a rozsiren. Zminme algoritmus
zvany Conflict-driven clause learning (CDCL). Ten je zalozeny na myslence, ze ze selhéni
vétve prohledavaciho stromu se muzeme naucit novou klauzuli, kterd tomuto konkrétnimu
selhani (“konfliktu”) zabranuje. Kromé toho se muzeme vratit zpét ve stromu o vice trovni
najednou (tzv. back-jumping) na misto, kde jsme zacali ohodnocovat proménné v této nové

klauzuli. Tim zabranime opakovanému nalezeni “téhoz” konfliktu. Vice o SAT solverech se
dozvite napiiklad v predmétu NAIL094 Decision procedures and SAT/SMT solvers.
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Kapitola 3

Metoda analytického tabla

V této kapitole predstavime Metodu analytického tabla. Jde o syntaktickou proceduru, kterou
muzeme pouzit pro zjisténi, zda dany vyrok plati v dané teorii, aniz bychom se museli zabyvat
sémantikou (napf. hledat vSechny modely, coz je nepraktické). Dokézeme si jeji korektnost
(‘davé spravné odpovédi’) a uplnost (‘funguje vzdy’), a pouzijeme ji také k diukazu tzv. Véty
o kompaktnosti (‘vlastnosti nekonec¢ného objektu stac¢i ukazat pro jeho konecné ¢asti’).

3.1 Formalni dokazovaci systémy

Formdalni dokazovaci systém formalizuje ‘dokazovani’ (napf. v matematice) jako presné (al-
goritmicky) danou syntaktickou proceduru. Dikaz faktu, Ze v teorii T plati vyrok ¢ (neboli
T & ¢) je kone¢ny syntakticky objekt vychdzejici z axiomu T a vyroku ¢. Pokud dukaz
existuje, 1ze ho nalézt ‘algoritmicky’ﬂ Navic musime byt schopni algoritmicky (a rozumné
efektivné) ovérit, ze je dany objekt opravdu korektni dikaz.

Existuje-li dukaz, fikdme, ze ¢ je [v daném dokazovacim systému| dokazatelny z T, a
pisSeme T' |- ¢. Po dokazovacim systému pozadujeme dvé vlastnosti:

o korektnost: je-li vyrok dokazatelny z teorie, je v ni pravdivy (T | ¢ = T E @)
e dplnost: je-li vyrok pravdivy v teorii, je z ni dokazatelny (T'= ¢ = T | ¢)

(Pri¢emz korektnost vyzadujeme vzdy, ale efektivni dokazovaci systém muze byt prakticky, i
pokud nenfi tplny, zejména pokud je tplny pro néjakou zajimavou t¥idu vyroku resp. teorii.)

V této kapitole si ukdzeme kromé tablo metody také hilbertovsky kalkulus, a v pristi kapitole
predstavime dalsi dokazovaci systém, tzv. rezolucni metodu.

3.2 Uvod do tablo metody

Po zbytek této kapitoly budeme predpokladat, ze mame dany spocetny jazyk IP. Z toho plyne,
ze i kazda teorie nad P je spocetnd. Nejprve se soustfedime na priipad, kdy 7' = (), tedy
dokazujeme, ze vyrok ¢ plati logicky (je to tautologie).

Tablo je olabelovany strom predstavujici hledani protiprikladu, tj. modelu, ve kterém ¢
neplati. Labely na vrcholech, kterym budeme fikat polozky, sestdvaji ze symbolu T resp. F

17de ale musime byt opatrni v pfipadé nekoneéné teorie T, jak je zadand? Algoritmus musi mit efektivni
pristup ke vSem axiomum.
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(‘True’/‘False’) nasledovaného néjakym vyrokem 1 a predstavuji predpoklad (pozadavek), ze
v modelu vyrok ¥ plati resp. neplati. Do kotene tabla ddme polozku Fe, tj. hleddme model,
ve kterém neplati . Dale budeme tablo rozvijet pomoci pravidel pro redukci polozek. Tato
pravidla zajistuji nasledujici invariant:

Kazdy model, ktery se shoduje s polozkou v kofeni (tj. ve kterém neplati ¢), se
musi shodovat i s nékterou vétvi tabla (tj. spliiovat vsechny pozadavky vyjadiené
polozkami na této vétvi).

Pokud na nékteré vétvi dostaneme polozky tvaru T a Fi (pro totéz ), fikdme, Ze vétev
selhala (je spornd) a vime, ze zadny model s ni nemize souhlasit. Pokud selzou vsechny vétve,
vime, zZe neexistuje zadny model, ve kterém by neplatilo ¢, a mame tedy dikaz, ze ¢ plati.
(Vsimneéte si, ze jde o dikaz sporem.)

Pokud néjaka vétev neselhala, a je dokoncend, tj. vsechny polozky jsou zredukované, vime,
ze ¢ neplati, a budeme z této vétve schopni zkonstruovat konkrétni model, ve kterém neplati.

Priklad 3.2.1. Ukazme si cely postup na dvou piikladech, viz Obrézek [3.2.1]

(a)

Nejprve sestrojme tablo dukaz vyroku ¢ = ((p — ¢) — p) — p. Zatneme kofenem s
polozkou Fep. Tato polozka je tvaru Fyp; — ¢y (‘neplati implikace’), pokud se s ni shoduje
néjaky model, musi spliiovat T(p — ¢) — p a Fp, pfipojime tedy tyto dvé polozky. (Ve
skutecnosti pripojime atomické tablo pro tento pripad, viz Tabulka kotren tohoto
atomického tabla ale vynechdme, abychom zbyte¢né nezopakovali tutéz polozku.) Tim
jsme zredukovali polozku v koreni.

Pokracujeme polozkou T(p — ¢q) — p, ta je tvaru ‘plati implikace’, rozvétvime na dvé
vétve: model souhlasi s F(p — ¢) nebo s Tp (nebo s obéma). Prava vétev selhala (je
spornd), nebot obsahuje polozky Tp, Fp, neshoduje se tedy s zddnym modelem, ozna¢ime
ji symbolem ®. V levé vétvi jesté zredukujeme polozku Fp— ¢ a také dostaneme spornou
vétev. VSechny vétve jsou sporné, neexistuje tedy zadny protipiiklad a mame diikaz
vyroku ¢. PiSeme |- .

Nyni sestrojime tablo s polozkou F(—q V p) — p v kofeni. Snazime se tedy najit proti-
priklad: model, ve kterém neplati (=g V p) — p. Nejprve jsme pouzili atomické tablo pro
‘neplati implikace’, a dale redukujeme polozku T—q V p pripojenim atomického tabla
pro ‘plati disjunkce’ Prava vétev selhala. V levé vétvi jesté zredukujeme T—q na Fq
(atomické tablo pro ‘plati negace’) tim dostdvame dokoncenou vétev, nebotf vsechny
polozky uz jsme zredukovali. Tato dokoncéend vétev ale neni spornéd (oznac¢ime ji tedy
symbolem v'). To znamend, ze protipiiklad existuje: méme polozky Fp a Fgq, kterym
odpovida model (0,0), ve kterém opravdu (—q V p) — p neplati.

V nésledujici sekci cely postup zformalizujeme a vysvétlime, co délat, kdyz chceme doka-
zovat ne v logice, ale v néjaké teorii T' (spoiler alert: pti konstrukei pfipojujeme polozky T«
pro axiomy « € T'). Také si ukdzeme priklad s nekoneénou teorii, kde dokoncend vétev nékdy
musi byt nekonecna.

Ve zbytku této sekce predstavime vsechna atomickd tabla potifebna pii konstrukei, a také
formalizujeme pojem stromu.
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F((p—q)—p)—p

|
T(p—q)—p

Fp
/N

Fp—q Tp
| ®
Tp
|
Fq
®

Obrazek 3.1: Priklady tabel. (a) Tablo dikaz vyroku ((p — q) — p) — p. (b) Tablo pro vyrok

(=g V p) — p. Leva vétev dava protipiiklad, model (0,0) ve kterém vyrok neplati.

3.2.1 Atomicka tabla

Atomicka tabla predstavuji pravidla, pomoci kterych redukujeme polozky. Pro kazdou logic-
kou spojku a kazdy ze dvou priznaki T/ F mame jedno atomické tablo, znédzornéné v Tabulce

B
[ A vV — VAN
ToAY To <y
| / N\
T Te ToVy To—1 Te Fo
| / N\ /\ I
True || F¥ Ty T Ty | Fo Ty | Ty Fo
Fo vy Fo— 1 Fo<y
| | / N\
F-¢ FoAnd Fey Te Te Fo
| / \ | | I
False || T¥ | Fo F9 Fy Fy Fy Ty

Tabla z Piikladu [3:277] jsou zkonstruovand postupnym pfipojovanim atomickych tabel,
viz Obrazek Koreny atomickych tabel jsou oznacené modre, zavedeme konvenci, Ze je

nebudeme zakreslovat.

Cwiceni 3.1. Pokuste se zkonstruovat tablo s polozkou F((=p A =¢) V p) — (—p A —¢) v kofeni
a také tablo s polozkou T(p — q) <> (p A =q). Pti konstrukei pouzivejte jen atomicka tabla
(zkontrolujte, zda vase konstrukce souhlasi s definici tabla z nasledujici sekce). Rozmyslete si,

Tabulka 3.1: Atomicka tabla

co tato tabla fikaji o vyrocich ve svych kofenech.
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| F(-qVp)—p
F((p—q)—p)—p |
| F(=qVp)—p
T(p—q)—p |
| T-qVp
Fp ‘
| Fp
T(p—q)—p |
/ \ T(~qV p)
Fp—q Tp / \
| 2 qu Tp
Fp—q | ®
| T—q
Tp |
| Fq
Fq v
®

Obréazek 3.2: Konstrukce tabel z P¥ikladu B.2.11

Cuicent 3.2. Ovéite, ze vSechna atomicka tabla splnuji invariant: shoduje-li se model s poloz-
kou v koreni, shoduje se s nékterou z vétvi.

Cuiceni 3.3. Navrhnéte atomicka tabla pro logické spojky NAND, NOR, XOR, IFTE.

3.2.2 O stromech

Nez se pustime do formalni definice a dukazi, specifikujme, co myslime pojmem strom. V
teorii grafii bychom stromem nazvali souvisly graf bez cykli, nase stromy jsou ale zakorenéné,
uspordadané (tzv. pravolevym uspordddnim mnoziny synu kazdého vrcholu), a oznackované.
A mohou, ¢asto i budou, nekonecné. Formalné:

Definice 3.2.2 (Strom). e Strom je neprazdnd mnozina T s ¢astecnym uspordadanim <,
které ma (jediny) minimalni prvek (koren) a ve kterém je mnozina predku libovolného
vrcholu dobre usporddand

o Veétev stromu T je maximélnﬁ linedrné usporadana podmnozina T

o Uspordadany strom je strom T spolu s linedrnim usporadanim < mnoziny synt kazdého
vrcholu. Uspotfadéani synd budeme fikat pravolevé zatimco usporadani <r je stromowvé.

o Oznackovany strom je strom spolu se znackovaci funkei label: V(T') — Labels.

2Tj. kazda jeji neprézdnd podmnoZina méi nejmensi prvek. (Tim zakdZeme nekonecné klesajici fetézce
predki.)
3Tj. nelze do nf piidat dalsi vrcholy stromu.
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Budeme pouzivat standardni terminologii o stromech, napt. budeme mluvit o n-té urovns
stromu, nebo o hloubce stromu (ta je nekonec¢nd, pravé kdyz mame nekonecnou vétev). V
jedné vété, kterou si nize dokazeme, budeme potiebovat néasledujici slavné tvrzeni, které je
disledkem axiomu vybéru.

Lemma 3.2.3 (Kénigovo lemma). Nekonecny, konecné vétvici strom md nekonecnou vétev.

(Strom je konecné vétvici, pokud mé kazdy vrchol kone¢né mnoho syni.)

3.3 Tablo dukaz

Nyni uvedeme formalni definici tabla. Do definice pridame také teorii T, jejiz axiomy muzeme
pri konstrukei pripojovat s priznakem T (“true”). Pfipomenme, ze polozka je napis T¢ nebo
Fp, kde ¢ je néjaky vyrok.

Definice 3.3.1 (Tablo). Konecné tablo z teorie T je usporadany, polozkami oznackovany
strom zkonstruovany aplikaci kone¢né mnoha nasledujicich pravidel:

¢ jednoprvkovy strom oznackovany libovolnou polozkou je tablo z teorie T',

e pro libovolnou polozkou P na libovolné vétvi V, mizeme na konec vétve V pripojit
atomické tablo pro polozku P,

¢ na konec libovolné vétve muzeme pripojit polozku Ta pro libovolny axiom teorie o € T.

Tablo z teorie T je bud konec¢né, nebo i nekonecné: v tom pripadé vzniklo ve spocetné mnoha
krocich. Mtzeme ho formélné vyjadrit jako sjednoceni 7 = | J;~o 7, kde 7; jsou konecna tabla
z T, 19 je jednoprvkové tablo, a 7;41 vzniklo z 7; v jednom kr(;kuﬁ

Tablo pro polozku P je tablo, které mé polozku P v koteni.

Pripomenme konvenci, ze kofen atomického tabla nebudeme zapisovat (nebotf vrchol s
polozkou P uz v tablu je). V definici neurc¢ujeme, v jakém poradi provadét jednotlivé kroky,
pozdéji ale specifikujeme konkrétni postup konstrukce (algoritmus), kterému budeme tikat
systematické tablo.

Abychom ziskali dokazovaci systém, zbyva definovat pojem tablo dikazu (a souvisejici
pojmy). Pripomenme jesté jednou, ze jde o dikaz sporem, tedy predpokladdme, ze vyrok
neplati, a najdeme spor(né tablo):

Definice 3.3.2 (Tablo dikaz). Tablo dikaz vyroku ¢ z teorie T je sporné tablo z teorie T' s
polozkou Fp v koreni. Pokud existuje, je ¢ (tablo) dokazatelny z T, piseme T' |- . (Definujme
také tablo zamitnuti jako sporné tablo s Ty v koreni. Pokud existuje, je ¢ (tablo) zamitnutelny
z T, tj. plati T - —p.)

o Tablo je sporné, pokud je kazda jeho vétev sporna.

e Vétev je spornd, pokud obsahuje polozky T a Fi) pro néjaky vyrok v, jinak je beze-
spornd.

e Tablo je dokoncené, pokud je kazda jeho vétev dokoncenad.

4Sjednoceni proto, ze v jednotlivich krocich pfiddvame do tabla nové vrcholy, 7; je tedy podstromem 7 ;.
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Obrézek 3.3: Tabla z Prikladu [3.3:3] Polozky vychdzejici z axiomt jsou oznaceny modre.

e Vétev je dokoncend, pokud

— je spornd, nebo
— je kazda jeji polozka na této vétvi redukovand a zaroven obsahuje polozku Ta pro
kazdy axiom a € T'.

e Polozka P je redukovand na vétvi V' prochazejici touto polozkou, pokud

— je tvaru Tp resp. Fp pro néjakou vyrokovou proménnou p € P, nebo

— vyskytuje se na V jako koren atomického tablalﬂ (tj., typicky, pti konstrukei tabla
jiz. doslo k jejimu rozvoji na V).

Priklad 3.3.3. Ukézeme si dva piiklady. Tabla jsou zndzornéna na Obréazku [3.3]

(a) Tablo dikaz vyroku ¢ z teorie T = {p, o — ¥}, tj. T | ¢ (kde ¢, 1) jsou néjaké pevné
dané vyroky). Tomuto faktu se fikd Véta o dedukci.

(b) Dokoncené tablo pro vyrok pg z teorie T' = {pn+1 — pn | n € N}. Nejlevéjsi vétev je
bezesporna dokoncéena. Obsahuje polozky Tp;+1 — p; a Fp; pro vSechna ¢ € N. Shoduje
se tedy s modelem v = (0,0,...), tj. v: P — {0,1} kde v(p;) = 0 pro vSechna i.

Cvicent 3.4. Vratme se k tablim z Cviceni Jde o tablo dikazy nebo zamitnuti (z teorie
T = 0)? Které polozky na kterych vétvich jsou redukované? Které vétve jsou sporné, které
jsou dokoncené?

3.4 Konecnost a systematicnost dikazt

V této sekci dokazeme, ze pokud existuje tablo dilkaz, existuje vzdy také konecny tablo
dikaz. Predstavime také algoritmus, kterym néjaky tablo dikaz mtzeme vzdy najit, pro
dukaz tohoto faktu ale budeme potiebovat Véty o korektnosti a tiplnosti z nasledujici sekce.
Prozatim ukazeme, zZe tento algoritmus nam umozni vzdy sestrojit dokoncené tablo.

5Byt podle konvence tento kofen nezapisujeme.
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Vsimnéte si, ze pri redukci polozky pridavime do tabla pouze polozky obsahujici kratsi
vyroky. Pokud tedy mame kone¢nou teorii, a nedélame zbytec¢né kroky (naptiklad nepriddvame
opakované tentyz axiom, nebo totéz atomické tablo), je snadné sestrojit dokonc¢ené tablo, které
bude konec¢né.

Je-li teorie T' nekonecnd, musime ale byt opatrnéjsi. Mohli bychom nekonec¢né dlouho
konstruovat tablo, a pritom se nikdy nedostat k redukci urcité polozky, nebo nikdy nepou-
zit néktery z axiomui. Definujeme tedy konkrétni algoritmus pro konstrukci tabla, vysledku
budeme tikat systematické tablo. Myslenka konstrukce je jednoducha: striddme krok redukce
polozky (zaroven na vsech bezespornych vétvich, které ji prochdzeji) a krokem pouziti axi-
omu. Polozky prochazime po trovnich, a v rdmci irovné v pravolevém usporadani. A axiomy
teorie ve zvoleném ocislovani.

Definice 3.4.1 (Systematické tablo). Mé&jme polozku R a (kone¢nou nebo nekoneénm@
teorii T' = {au, aa, ... }. Systematické tablo z teorie T' pro polozku R je tablo 7 = Ui>o 7is kde
7o je jednoprvkové tablo s polozkou R, a pro kazdé ¢ > 0:

e Necht P je nejlevéjsi polozka v co nejmensi trovni, kterd neni redukovand na néjaké
bezesporné vétvi prochdzejici P. Definujeme nejprve tablo 7/ jako tablo vzniklé z 7
pripojenim atomického tabla pro P na kazdou bezespornou vétev prochézejici P. (Pokud
takova polozka neexistuje, potom 7, = 7;.)

o Nésledné, 7,41 je tablo vzniklé z 7/ pfipojenim Ta;41 na kazdou bezespornou vétev 7;.
To v pripadé, ze i < |T'|, jinak (je-li T kone¢n4 a uz jsme pouzili vSechny axiomy) tento
krok presko¢ime a definujeme 7,11 = 7;.

Lemma 3.4.2. Systematické tablo je dokoncené.

Ditkaz. Ukazeme, ze kazda vétev je dokoncend. Sporné vétve jsou dokoncené. Bezesporné
vétve obsahuji polozky Ta; (ty jsme pripojili v i-tém kroku) a kazdd polozka na nich je
redukovand. Vskutku, kdyby P byla neredukovand na bezesporné vétvi V, prisla by na ni
v néjakém kroku trada, nebotf v trovnich nad P a vlevo od P existuje jen konec¢né mnoho
polozek. (Pouzivime zjevného faktu, ze kazdy prefix bezesporné vétve je také bezesporna
vétev, tedy béhem konstrukce V' nikdy neni sporni.) O

Nyni se vratme k otdzce konecnosti dukazi:

Véta 3.4.3 (Konecnost sporu). Je-li 7 = Ui>o i sporné tablo, potom existuje n € N takové,
zZe T, je sporné konecné tablo.

Diikaz. Uvazme mnozinu S vSech vrchola stromu 7, které nad sebou (ve stromovém uspofa-
déni) neobsahuji spor, tj. dvojici polozek T, Fi.

Kdyby mnozina S byla nekonec¢né, podle Kénigova lemmatu pouzitého na podstrom 7 na
mnoziné S bychom meéli nekoneénou, bezespornou vétev v S. To by ale znamenalo, ze mame
i bezespornou vétev v 7, coz je ve sporu s tim, ze 7 je sporné. (Podrobnéji: Vétev na S by
byla podvétvi néjaké vétve V' v 7, kterd je spornd, tj. obsahuje néjakou (konkrétni) spornou
dvojici polozek, kterd ale existuje uz v néjakém konecném prefixu V.)

Mnozina S je tedy konec¢na. To znamend, zZe existuje d € N takové, ze cela S lezi v hloubce
nejvyse d. Kazdy vrchol na drovni d + 1 méa tedy nad sebou spor. Zvolme n tak, ze 7,, uz
obsahuje vsechny vrcholy 7 z prvnich d 4+ 1 drovni: kazda vétev 7, je tedy sporna. O

SPfipometime, 7e T je spodetnd, nebot jazyk je (v celé kapitole) spocetny.
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Dadsledek 3.4.4. Pokud pri konstrukci tabla nikdy neprodluZujeme sporné vetve, napr. pro
systematické tablo, potom sporné tablo je konecné.

Dikaz. Pouzijeme Vétu [3.4.3] méme 7 = 7, nebot sporné tablo uz neménime. O

Disledek 3.4.5 (Koneé¢nost dukazi). Pokud T |- ¢, potom existuje i kone¢ny tablo dikaz
pzT.

Dijkaz. Snadno plyne z Dusledku [3:4.4} staci pti konstrukei 7 ignorovat kroky, které by pro-
dlouzily spornou vétev. ]

Vyslovime zde také nasledujici diisledek. Dokazeme ho ale az v pristi sekci.

Disledek 3.4.6 (Systematic¢nost dikazi). Pokud T |- ¢, potom systematické tablo je (ko-
necnym) tablo dikazem ¢ z T.

K diikazu budeme potiebovat dvé fakta: pokud je ¢ dokazatelna z T, potom v T plati
(Véta o korektnosti), tj. nemuze existovat protiptiklad. A déle pokud by systematické tablo
mélo bezespornou vétev, znamenalo by to, Ze existuje protiptiklad (to je klicem k Vété o
uplnosti).

3.5 Korektnost a uplnost

V této sekci dokdzeme, Ze je tablo metoda korektni a tiuplny dokazovaci systém, tj. ze T |- ¢
plati pravé kdyz T | .

3.5.1 Véta o korektnosti

Rekneme, model v se shoduje s polozkou P, pokud P = Ty a v = ¢, nebo P = Fp a v [~ .
Daéle v se shoduje s vétvi V, pokud se shoduje s kazdou polozkou na této vétvi.

Jak uz jsme zminili, design atomickych tabel zarucuje, ze shoduje-li se model s polozkou
v koteni tabla, shoduje se s nékterou vétvi. Neni tézké indukci podle konstrukce tabla ukézat
nasledujici lemma:

Lemma 3.5.1. Shoduje-li se model teorie T' s polozkou v koreni tabla z teorie T', potom se
shoduje s nékterou vétvi.

Diikaz. Méjme tablo 7 = ;> 7i z teorie T a model v € M(T') shodujici se s kofenem 7, tedy
s (jednoprvkovou) vétvi Vp v (jednoprvkovém) .

Indukei podle ¢ (podle kroku v pii konstrukei tabla) najdeme posloupnost Vo C V; C ...
takovou, ze V; je vétev v tablu 7; shodujici se s modelem v, a V;y; je prodlouzenim V;.
Pozadovana vétev tabla 7 je potom V = {J;5q Vi.

e Pokud 7;41 vzniklo z 7; bez prodlouzeni vétve V;, definujeme V;11 = V;.

o Pokud 7;41 vzniklo z 7; pfipojenim polozky Ta (pro néjaky axiom a € T') na konec
vétve V;, definujeme V41 jako tuto prodlouzenou vétev. Protoze v je model T, plati v
ném axiom «, tedy shoduje se i s novou polozkou Ta.
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e Necht 7;41 vzniklo z 7; pripojenim atomického tabla pro néjakou polozku P na konec
vétve V;. Protoze se model v shoduje s polozkou P (kterd lezi uz na vétvi V;), shoduje
se i s kofenem pripojeného atomického tabla, a proto se shoduje i s nékterou z jeho
vétvi. (Tuto vlastnost snadno ovéfime pro vSechna atomicka tabla.) Definujeme V;y;
jako prodlouzeni V; o tuto vétev atomického tablam

O]

Nyni uz muzeme dokazat Vétu o korektnosti. Zkracené feceno, pokud by existoval dikaz
a zaroven protipriklad, protipriklad by se musel shodovat s nékterou vétvi dikazu, ty jsou ale
vSechny sporné.

Véta 3.5.2 (O korektnosti). Je-li vyrok ¢ tablo dokazatelny z teorie T, potom je ¢ pravdivy
v, . THe = TEe.

Diikaz. Dokézeme sporem. Predpokladejme, ze ¢ v T neplati, tj. existuje protipiiklad: model
v € M(T), ve kterém ¢ neplati.
Protoze je ¢ dokazatelna z T, existuje tablo ditkaz ¢ z T', coz je sporné tablo z T' s polozkou
F v kofeni. Model v se shoduje s polozkou F, tedy podle Lemmatu[3.5.1]se shoduje s néjakou
vétvi V. VSechny vétve jsou ale sporné, véetné V. Takze V obsahuje polozky T a Fi (pro
néjaky vyrok ¢), a model v se s témito polozkami shoduje. Mame tedy v = ¢ a zéroven
v £ 1, coZ je spor.
O

3.5.2 Véta o uplnosti

Ukéazeme, ze pokud selze dokazovani, tj. pokud dostaneme bezespornou vétev v dokonceném
tablu z teorie T' pro polozku F¢p, potom tato vétev poskytuje protiptiklad: model teorie T,
ktery se shoduje s polozkou Fp v koreni tabla, tj. neplati v ném ¢. Takovych modelt muze
byt vice, definujeme proto jeden konkrétni:

Definice 3.5.3 (Kanonicky model). Je-li V' bezesporna vétev dokoncéeného tabla, potom
kanonicky model pro V je model definovany predpisem (pro p € P):

1 pokud se na V vyskytuje polozka Thp,

v(p) =19 ..
0 jinak.

Lemma 3.5.4. Kanonicky model pro (bezespornou dokoncenou) vétev V' se shoduje s V.

Diikaz. Ukazeme, ze kanonicky model v se shoduje se vSemi polozkami P na vétvi V, a to
indukeci podle struktury vyroku v poloiceﬁ Nejprve zaklad indukce:

o Je-li P = Tp pro néjaky prvovyrok p € P, mdme podle definice v(p) = 1; v se s P
shoduje.

e Je-li P = Fp, potom se na vétvi V nemiize vyskytovat polozka Tp, jinak by V byla
spornd. Podle definice mame v(p) = 0 a v se s P opét shoduje.

"Resp. o libovolnou takovou vétev: model v se miize shodovat s vice vétvemi atomického tabla.
8P¥ipometime, Ze to znamen4 indukei podle hloubky stromu vyroku.
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Nyni indukéni krok. Rozebereme dva pripady, ostatni se dokézi obdobné.

e Necht P = Ty A 1. Protoze je V dokoncena vétev, je na ni polozka P redukovana. To
znamend, ze se na V vyskytuji i polozky Ty a T. Podle indukéniho predpokladu se s
nimi model v shoduje, tedy v = ¢ a v = 1. Takze platii v = ¢ A a v se shoduje s P.

e Necht P = Fp A1. Protoze je P na V redukovand, vyskytuje se na V polozka Fp nebo
polozka F1). Plati tedy v [~ ¢ nebo v [~ 1), z ¢ehoz plyne v = ¢ A1) a v se shoduje s P.

O]

Véta 3.5.5 (O tuplnosti). Je-li vgrok ¢ pravdivy v teorii T, potom je tablo dokazatelny z T,
4. TEe = T .

Dikaz. Ukazeme, zZe libovolné dokoncené (tedy napt. i systematické) tablo z T s polozkou
Fy v koreni je nutné sporné. Dlkaz provedeme sporem: kdyby takové tablo nebylo sporné,
existovala by v ném bezesporné (dokoncend) vétev V. Uvazme kanonicky model v pro tuto
vétev. Protoze je V dokoncend, obsahuje Ta pro vSechny axiomy a € T. Model v se podle
Lemmatu shoduje se vSemi polozkami na V', spliiuje tedy vSechny axiomy a mame v = T
Protoze se ale v shoduje i s polozkou Fy v kofeni, médme v [~ ¢, coz znamend, ze T [~ ¢,
spor. Tablo tedy muselo byt sporné, tj. byt tablo dikazem ¢ z T. O

Diikaz Disledku [3.4.6. Z predchoziho dikazu také dostdvdme ‘systematicnost dikazi’, tj. ze
dukaz muzeme vzdy hledat konstrukei systematického tabla: Pokud T |= ¢, tak je i systema-
tické tablo pro polozku Fy nutné sporné, a je tedy tablo dikazem ¢ z T'. ]

Cviceni 3.5. Ovéite zbyvajici piipady v dikazu Lemmatu [3.5.4]

Cwiceni 3.6. Popiste, jak vypadaji vsechny modely shodujici se s danou bezespornou dokon-
¢enou vetvi.

Cviceni 3.7. Navrhnéte postup, kterym muzeme za pouziti tablo metody najit vSechny modely
dané teorie T

3.6 Dausledky korektnosti a aplnosti

Véty o korektnosti a iplnosti dohromady tikaji, ze dokazatelnost je totéz, co platnost. To nam
umoznuje zformulovat syntaktické analogie sémantickych pojmu a vlastnosti.
Analogii dusledki jsou teorémy teorie T

Thmp(T) = {p € VFp | T |- ¢}
Disledek 3.6.1 (Dokazatelnost = platnost). Pro libovolnou teorii T' a vyroky ¢, plati:
o T ¢ pravé kdyz T = ¢
o Thmp(T) = Csqp(T)
Diikaz. Plyne okamzité z Véty o korektnosti a z Véty o tplnosti. O
Ve vsech definicich a vétach miizeme tedy nahradit pojem ‘platnost’ pojmem ‘dokazatel-

nost’ (tj. symbol ‘=" symbolem ‘') a pojem ‘dusledek’ pojmem ‘teorém’. Napriklad:
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o Teorie je spornd, jestlize je v ni dokazatelny spor (tj. T |- L).

o Teorie je kompletni, jestlize pro kazdy vyrok ¢ je bud T' |- ¢ nebo T' |- —p (ale ne
oboji, jinak by byla spornd).

Uvedme jesté jeden snadny dusledek:
Véta 3.6.2 (O dedukci). Pro teorii T a vyroky v, plati: T, o | ¢ prdvé kdyz T |- ¢ — 1.
Diikaz. Staci dokdzat T,p = < T | ¢ — 1), coz je snadné. O

Cuiceni 3.8. Dokazte Vétu o dedukci primo, pomoci transformace tablo dukazii.

3.7 Véta o kompaktnosti

Dtlezitym duasledkem vét o korektnosti a tplnosti je také tzv. Véta o kompaktnostiﬂ Tento
princip umoznuje prevadét tvrzeni o nekonecnych objektech/procesech na tvrzeni o (vSech)
jejich koneénych ¢astech.

Véta 3.7.1 (O kompaktnosti). Teorie md model, privé kdyz kaZdd jeji konecnd édst md
model.

Dikaz. Kazdy model teorie T je zjevné modelem kazdé jeji ¢asti. Druhou implikaci dokdzeme
neprimym dtkazem: Predpokladejme, ze T nema model, tj. je spornd, a najdéme konecnou
Cast T" C T, kterd je také spornd.

Protoze je T spornd, plati T' - L (zde potfebujeme Vétu o uplnosti). Podle Dusledku
potom existuje konecng tablo dikaz 7 vyroku 1 z T. Konstrukce tohoto dikazu ma
jen kone¢né mnoho krokd, pouzili jsme tedy jen konec¢né mnoho axiomtu z 7T'. Definujeme-li
T' ={a € T | Ta je polozka v tablu 7}, potom 7 je také tablo dikaz sporu z teorie T". Teorie
T’ je tedy sporné konecné ¢dst T. O

3.7.1 Aplikace kompaktnosti

Nasledujici jednoduchou aplikaci Véty o kompaktnosti muzete chapat jako Sablonu, kterou

vvvvvv

Dusledek 3.7.2. Spocetne nekonecny graf je bipartitni, prdvé kdyz je kazdy jeho konecng
podgraf bipartitni.

Dikaz. Kazdy podgraf bipartitniho grafu je zjevné také bipartitni. Ukazme opacnou impli-
kaci. Graf je bipartitni, pravé kdyz je obarvitelny 2 barvami. Oznac¢me barvy 0, 1.

Sestrojime vyrokovou teorii T v jazyce P = {p, | v € V(G)}, kde hodnota vyrokové
proménné p, reprezentuje barvu vrcholu v.

T = {py < —py | {u,v} € E(G)}

Ziejmé plati, ze G je bipartitni, pravé kdyz T' ma model. Podle Véty o kompaktnosti staci
ukéazat, ze kazdd konecnd ¢ast T méa model. Vezméme tedy konecnou 77 C T. Bud G’ podgraf

9Slovo kompaktnost pochizi z kompaktnich (tj. omezenych a uzavienych) mnozin v Euklidovskych prosto-
rech, ve kterych 1ze z kazdé posloupnosti vybrat konvergentni podposloupnost. MiiZete si predstavit posloupnost
zvétsujicich se konecnych casti ‘konvergujici’ k nekone¢nému celku.
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G indukovany na mnoziné vrcholtli, o kterych se zmiruje teorie 77, tj. V(G') = {v € V(G) |
py € Var(T")}. ProtozZe je T' koneénad, je G’ také koneény, a podle predpokladu je 2-obarvitelny.
Libovolné 2-obarveni V(G’) ale uréuje model teorie T". O

Zakladem této techniky je popis pozadované vlastnosti nekoneéného objektu pomoci (ne-
koneéné) vyrokové teorie. Dale si vSimnéte, jak z konecné Casti teorie sestrojime konecény
podobjekt majici danou vlastnost (v nasem piipadé koneény podgraf, ktery je bipartitni).
Cuiceni 3.9. Zobecnéte Dusledek pro vice barev, tj. ukazte, ze spocetné nekonecny graf
je k-obarvitelny, pravé kdyz je kazdy jeho kone¢ény podgraf k-obarvitelny. (Viz Sekce ?7.)
Cviceni 3.10. Ukazte, ze kazdé ¢astecné usporadani na spocetné mnoziné lze rozsirit na line-
arni usporadani.

Cvicent 3.11. Vyslovte a dokazte ‘spocetné nekonecnou’ analogii Hallovy véty.

Na zavér kapitoly o tablo metodé si pro srovnani ukazeme jiny dokazovaci systém, tzv. hil-
bertovsky deduktivni systém neboli hilbertovsky kalkulus. Jde o nejstarsi dokazovaci systém,
modelovany podle matematickych dikazt. Jak uvidime na piikladé, dokazovani je v ném po-
mérné pracné, hodi se tedy spise pro teoretické ucely. Jde také o korektni a iplny dokazovaci
systém. (Korektnost ukézeme, uplnost ale nechame bez dikazu.)

Hilbertovsky kalkulus pouziva jen dvé zdkladni logické spojky: negaci a implikaci. (Pfi-
pomenme, ze ostatni logické spojky z nich 1ze odvodit.) Systém sestava z logickych axiomu
danych nasledujicimi schématy, a z jednoho odvozovaciho pravidla, tzv. modus ponens:

Definice 3.8.1 (Schémata axiomu v hilbertovském kalkulu). Pro libovolné vyroky ¢, v, x
jsou nasledujici vyroky logickymi axiomy:

1) o= (W —y)
(i) (p—= W —=x) = (¢ —=9) = (p— X))
(iii) (= = ) = (Y = )

Vsimnéte si, ze vSechny logické axiomy jsou opravdu tautologie. Poznamenejme, ze lze
zvolit i jiny systém logickych axiomi, existuje jich cela fada, viz ¢lanek |List of Hilbert systems
na Wikipedii.

Definice 3.8.2 (Modus ponens). Odvozovaci pravidlo modus ponens ¥iké, ze pokud jsme jiz
dokézali vyrok ¢ a také vyrok ¢ — 1, mizeme odvodit i vyrok 1. Zapisujeme ho nasledovné:

o, 0 =Y
(0

Vsimnéte si, ze modus ponens je korektnd, tj. plati-li v néjaké teorii T = a T = ¢ — 1,
méme i T = .

Nyni jsme jiz pripraveni definovat dukaz. Pujde o kone¢nou posloupnost vyroku, ve které
kazdy nové napsany vyrok je bud axiomem (logickym nebo z teorie, ve které dokazujeme),
nebo 1ze odvodit z predchozich pomoci modus ponens:
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Definice 3.8.3 (Hilbertovsky dukaz). Hilbertovsky dikaz vyroku ¢ z teorie T je konecnd
posloupnost vyrokl ¢y, ..., e, = ¢, ve které pro kazdé ¢ < n plati:

e (; je logicky axiom, nebo
o ; je axiom teorie (y; € T'), nebo

e ; lze odvodit z néjakych predchozich vyroku ¢j, i (kde j,k < i) pomoci modus
ponens.

Existuje-li hilbertovsky dukaz, fikdme, Ze je ¢ (hilbertovsky) dokazatelny, a piseme T |-p .

Pojem hilbertovského dtikazu si ilustrujeme na jednoduchém prikladé:

Priklad 3.8.4. Ukazme, Ze pro teorii T = {—¢} a pro libovolny vyrok ¢ plati T g ¢ — 1.
Hilbertovskym dukazem je nasledujici posloupnost vyrokii:

1. —p axiom teorie
2. = — (—) = ) logicky axiom dle (i)
3. Y — modus ponens na 1. a 2.
4. (7Y = ) = (@ =) logicky aziom dle (iii)
5. p—=1 modus ponens na 3. a 4.

Jak jsme jiz zminili, hilbertovsky kalkulus je korektni a tuplny dokazovaci systém.

Véta 3.8.5 (O korektnosti hilbertovského kalkulu). Pro kazdou teorit T a vyrok ¢ plati:

Thtne = TEe

Diikaz. Indukcei dle indexu i ukédzeme, ze kazdy vyrok ¢; z diukazu (tedy i ¢, = ¢) plati v T.

Je-li p; logicky axiom, T' = ¢; plati protoze logické axiomy jsou tautologie. Je-li ¢; € T,
také jisté plati T' |= ¢;. Ziskame-li ¢; pomoci modus ponens z ¢; a @i = @; — ¢; (pro néjaka
J.k < i), vime z indukéniho predpokladu, ze plati T |= ¢; a T' = ¢; — ¢;. Potom ale z
korektnosti modus ponens plati i T |= ¢;. ]

Pro tplnost jesté vyslovme dplnost, diikaz ale neuvedeme.

Véta 3.8.6 (O uplnosti hilbertovského kalkulu). Pro kaZdou teorii T a virok ¢ plati:

Tkye = Thkue
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Kapitola 4

Rezolu¢éni metoda

V této kapitole predstavime jiny dokazovaci systém, vhodnéjsi pro praktické aplikace, tzv.
rezolucni metodu. Tato metoda je zakladem napt. logického programovdni nebo systému auto-
matického dokazovdni a softwarové verifikace. V této kapitole se omezime na rezolu¢ni metodu
ve vyrokové logice, ale pozdéji, v Kapitole [7] si ukdzeme koncept unifikace, ktery umoznuje
hledat rezoluéni dukazy v logice predikatové.

Rezoluéni metoda pracuje s vyroky v konjunktivni normdlni formé (CNF). Pfipomenme,
ze kazdy vyrok lze prevést do CNF. Tento prevod je v nejhorsim pripadé v exponencidlnim
¢ase (dokonce existuji vyroky jejichz nejkratsi CNF ekvivalent je exponencidlné delsi), v praxi
to ale neni problém.

Podobné jako tablo metoda je zalozena na dikazu sporem, tj. pridame k teorii, ve které
dokazujeme, negaci vyroku, ktery chceme dokazat (oboji prevedené do CNF), a ukizeme, ze
to vede ke sporu.

K hledani sporu pouziva rezolu¢ni metoda jediné inferencéni pravidlo, tzv. rezolucni pravi-
dlo. To je specialnim pripadem pravidla rezu, které fika: “z vgroki oV a oV x lze odvodit
vyrok ¥ V x,” piseme:

eV, oV x
YV x
V rezolucnim pravidle, které si ukazeme za chvili, bude ¢ literdl, a ¢, x budou klauzule.

Cviceni 4.1. Rozmyslete si, ze pravidlo fezu je korektni. (Co to znamend, a pro¢ to plati?)

4.1 Mnozinova reprezentace

Nejprve predstavime tspornéjsi zapis CNF vyroki, tzv. mnoZinovy zdpis. Bylo by totiz ne-
praktické zapisovat vyroky véetné zavorek a logickych symboli.

« Pfipomerime, ze Literdl ¢ je prvovyrok nebo negace prvovyroku a ze ¢ oznatuje opacni
literdl k £.

e Klauzule C je konetnd mnozina literdlu. Prdzdnou klauzuli, ktera neni nikdy splnénaE]
oznacime [J.

'Reprezentuje disjunkci prazdné mnoziny literald, z4dny z disjunktt tedy neni splnény.
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o (CNF) formule S je (kone¢nd, nebo i nekoneénd) mnozina klauzuli. Prdzdnd formule ()
je vzdy splnénaﬂ

Pozndmka 4.1.1. Vsimnéte si, ze CNF formule mize byt i nekonecnd mnozina klauzuli. Po-
kud tedy prevadime nekonec¢nou vyrokovou teorii do CNF, zapiSseme v mnozinové reprezentaci
vSech nekonecné mnoho klauzuli jako prvky jediné formule (mnoziny). V praktickych aplika-
cich je samoziejmé formule (témér vzdy) konecna.

V mnozinové reprezentaci odpovidaji modely mnozinam literall, které obsahuji pro kazdou
vyrokovou proménnou p prave jeden z literdla p, —p:

o (Cistecné) ohodnoceni V je libovolnad mnozina literald, ktera je konzistentnd, tj. neob-
sahuje dvojici opacnych literdli.

e Ohodnoceni je uplné, pokud obsahuje pozitivni nebo negativni literal pro kazdou vyro-
kovou proménnou.

e Ohodnoceni V spliuje formuli S, piseme V = S, pokud V obsahuje néjaky literal z
kazdé klauzule v S, tj.:
VN C # 0 pro kazdou C € S

Priklad 4.1.2. Vyrok ¢ = (—p1 Vp2) A(—p1V—p2Vp3) A(—p3V —ps) A(—psV —ps) Apy zapiseme
v mnozinové reprezentaci takto:

S = {{_'plvp2}7 {_'pla _'p27p3}7 {_‘p37 _‘p4}7 {_'p47 _'p5}7 {p4}}

Ohodnoceni V = {—p1, -3, ps, 7ps} spliuje S, piSeme V |= S. Neni uplné, ale muzeme ho
rozsirit libovolnym literdlem pro po: plati VU {p2} = S 1 VU {-p2} = S. Tato dvé tplna
ohodnoceni odpovidaji modelam (0,1,0,1,0) a (0,0,0,1,0).

4.2 Rezolucni dukaz

Nejprve definujeme jeden krok inference v rezolu¢nim dikazu, tzv. rezolucni pravidlo, které
aplikujeme na dvojici klauzuli; jeho vysledkem je klauzule, které rikdme rezolventa, a ktera je
logickym dusledkem pavodni dvojice klauzuli:

Definice 4.2.1 (Rezoluéni pravidlo). Méjme klauzule Cy a Cs a literél £ takovy, ze £ € C1 a
¢ € Cy. Potom rezolventa klauzuli C1 a Co pres literdl ¢ je klauzule

C=(Ci\{}) U(C2\ {e}).

Z prvni klauzule tedy odstranfme literal ¢ a z druhé literdl ¢ (které tam musely byt!) a
vSechny zbylé literaly sjednotime do vysledné rezolventy. S pomoci symbolu LI pro disjunktni
sjednoceni bychom také mohli psat:

C1 U €Y je rezolventou klauzuli C} U1 {¢} a C4 1 {¢}

Priklad 4.2.2. Z klauzuli C; = {—q,r} a Cy = {-p, ~q, r} lze odvodit rezolventu {-p, ~q}
pres literdl r. Z klauzuli {p, ¢} a {—p, —q} lze odvodit {p, —p} pTes literdl ¢ nebo {q, ~q} pres
literdl p (oboji jsou ale tautologie)ﬂ

2Reprezentuje konjunkci prazdné mnoziny klauzuli, viechny klauzule v S jsou tedy splnény.
3Nelze ale odvodit O ‘rezoluci pfes p a ¢ najednou’ (coz je Castd chyba). Viimnéte si, ze {{p, q}, {-p, ¢} }
nen{ nesplnitelna, napt. (1,0) je modelem.
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Pozorovani 4.2.3 (Korektnost rezolu¢niho pravidla). Rezolucni pravidlo je korektni, tj. pro
libovolné ohodnoceni V' plati:

PokudV = Cy a V |= Cy, potom V = C.

Rezoluc¢ni ditkkaz definujeme podobné jako v Hilbertové kalkulu jako kone¢nou posloupnost
klauzuli, kde je zarucena platnost kazdé klauzule v této posloupnosti: v kazdém kroku mtzeme
bud napsat ‘axiom’ (klauzuli z S), nebo rezolventu néjakych dvou uz napsanych klauzuli.

Definice 4.2.4 (Rezolu¢ni dukaz). Rezolucni dikaz (odvozent) klauzule C' z CNF formule S
je konecnd posloupnost klauzuli Cy, C1,...,C, = C takova, ze pro kazdé i bud C; € S nebo
C; je rezolventou néjakych Cj,Cy, kde j <7 a k < i.

Pokud rezolu¢ni ditkaz existuje, fikdme, ze C' je rezoluci dokazatelnd z S, a piseme S |-r C.
(Rezolucni) zamitnuti CNF formule S je rezoluéni dukaz [J z S, v tom piipadé je S (rezoluct)
zamitnutelnd.

Priklad 4.2.5. CNF formule S = {{p,—q,7}, {p,—r},{-p, v}, {-p, -7} {q,r}} je (rezoluci)
zamitnutelnda, jedno z moznych zamitnuti je:

{p, g, 7'}7 {q, T‘}, {p7 T}v {_‘p, 7’}, {T}v {p, _'T}v {_‘p7 _'T}v {—\7“}, g

Rezolu¢ni dikaz mé prirozenou stromovou strukturu: v listech jsou axiomy a vnitfni
vrcholy predstavuji jednotlivé rezolu¢ni kroky.

Definice 4.2.6 (Rezolu¢ni strom). Rezolu¢ni strom klauzule C' z CNF formule S je konecny
bindrni strom s vrcholy oznac¢enymi klauzulemi, kde

e v kofeni je C,
e v listech jsou klauzule z S,

e v kazdém vnitfnim vrcholu je rezolventa klauzuli ze syna tohoto vrcholu.

Priklad 4.2.7. Rezolu¢ni strom prézdné klauzule OJ z CNF formule S z Ptikladu [£.2.5] je:

{pa —q, T} {Qa T‘}

N/
{p,?“} {"p,?“} {pv _'T} {_'pv _'T}
N/ N/

{r} {=r}
\ . /

Je snadné ukazat nasledujici pozorovani, indukci podle hloubky stromu a délky rezolu¢niho
dikazu:

Pozorovani 4.2.8. Klauzule C md rezolucni strom z CNF formule S, prdavé kdyz S g C.
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Kazdému rezoluénimu dikazu odpovida jednoznaény rezolu¢ni strom. Naopak, z jednoho
rezolu¢niho stromu miiZzeme ziskat vice rezoluc¢nich dikazi: jsou dané libovolnou prochézkou
po vrcholech stromu, pii které navstivime vnitini vrchol az poté, co jsme navstivili oba jeho

syny.

Zavedme jesté jeden pojem, tzv. rezolucni uzdveér, ktery obsahuje vsechny klauzule, které
se muzeme ‘naucit’ rezoluci z dané formule. Jde spiSe o uzitec¢ny teoreticky pohled na rezoluci,
v aplikacich by bylo nepraktické konstruovat cely rezolucni uzavér

Definice 4.2.9 (Rezolu¢ni uzavér). Rezolucéni uzdver R(S) formule S je definovan induktivné
jako nejmensi mnozina klauzuli splnujici:

o C € R(S) pro vsechna C € S,
o jsou-li C1,Cy € R(S) a je-li C rezolventa C1,Ca, potom také C' € R(S).

Priklad 4.2.10. Spo¢téme rezolu¢ni uzavér formule S = {{p, ~q,},{p, —r}, {-p, 7}, {-p, 7}, {¢, 7} }.
Klauzule z S jsou modie, dalsi klauzule ziskdvame postupnym rezolvovanim (prvni s prvni,
druhd s prvni, druhd s druhou atd., pres vSechny mozné literély):

R(S> = {{p7 -q, T}v {p7 —\T’}, {ﬁpv 70}7 {p, 3}7 {Q7 T}u
{p,~q}, {~q, 7}, {r,~r} A, ~p}, {r, s} {p, v} Ap 4, {r} {p}}

4.3 Korektnost a tplnost rezolucni metody

Rezolu¢ni metoda je také korektni i tiplna.

4.3.1 Korektnost rezoluce
Korektnost dokazeme snadno indukci podle délky rezolu¢niho dukazu.

Véta 4.3.1 (O korektnosti rezoluce). Je-li formule S rezoluci zamitnutelnd, potom je S
nesplnitelnd.

Dikaz. Necht S g O a vezméme néjaky rezoluéni dikaz Cy,C,...,C, = 0. Predpokla-
dejme pro spor, Ze S je splnitelnd, tedy V = S pro néjaké ohodnoceni V. Indukei podle 4
dokézeme, ze V = C;. Pro i = 0 to plati, nebot Cy € S. Pro ¢ > 0 mame dva pripady:

o (C; €S, vtom pripadé V = C; plyne z predpokladu, ze V | S,

o Cj je rezolventou Cj, Cy, kde j, k < i: z indukéntho predpokladu vime V |= Cj a V = Cy,
V |= C; plyne z korektnosti rezoluéniho pravidla.

(Alternativné bychom mohli v diitkazu postupovat indukei podle hloubky rezoluéniho stromu.)
O

4.3.2 Strom dosazeni

V diikazu tplnosti budeme potfebovat zkonstruovat rezolucni strom, jeho konstrukee je zalo-
zena na tzv. stromu dosazeni. Dosazenim literalu do formule myslime zjednoduseni formule
za predpokladu, ze dany literal plati. Dosazeni jsme uz potkali v Sekci pti jednotkové pro-
pagaci: odstranime klauzule obsahujici tento literal, a z ostatnich klauzuli odstranime literal
opacny.
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Definice 4.3.2 (Dosazeni literdlu). Je-li S formule a ¢ literdl, potom dosazenim ¢ do S
myslime formuli:

st={C\{&}|t¢Ces)

Pozorovani 4.3.3. Zde shrneme nekolik jednoduchijch fakti o dosazeni:

St je vijsledkem jednotkové propagace aplikované na S U {{f}}.

S neobsahuje v Zddné klauzuli literdl € ani £ (vibec tedy neobsahuje prvovyrok z £)

Pokud S neobsahovala literdl ¢ ani ¢, potom S* = S.

o Pokud S obsahovala jednotkovou klauzuli {¢}, potom 0 € S¢, tedy S* je spornd.
Klic¢ovou vlastnost dosazeni vyjadiuje nasledujici lemma:
Lemma 4.3.4. S je splnitelnd, prave kdy# je spinitelnd S* nebo Se.

Diikaz. Mé&me ohodnoceni V = S, to nemiize obsahovat £ i £ (musi byt konzistentn{); bez
Gijmy na obecnosti predpokliadejme, ze £ ¢ V, a ukazme, ze V = S¢. Vezméme libovolnou
klauzuli v S¢. Ta je tvaru C'\ {£} pro klauzuli C' € S (neobsahujici literal £). Vime, 7e V |= C,
protoze ale V neobsahuje ¢, muselo ohodnoceni V splnit né&jaky jiny literdl C, takze plati i
VEC\{¢}.

Naopak, predpokliddejme Ze existuje ohodnoceni V splijici S¢ (opét bez Gjmy na obec-
nosti). Protoze se £ (ani ¢) nevyskytuje v S, plati také V \ {£} = S’. Ohodnoceni V' =
(V\ {£}) U {¢} potom spliuje kazdou klauzuli C € S: pokud ¢ € C, potom £ € C NV’ a
CNV' #0, jinak CNY = (C\{€})NV # @ nebot V\ {£} = C\ {£} € S*. Ovéiili jsme, ze
V' E S, tedy S je splnitelna. O

Zda je dana konecnd formule splnitelnd bychom tedy mohli zjistovat rekurzivné (metodou
rozdél a panuj), dosazenim obou moznych literdli pro (néjakou, tfeba prvni) vyrokovou pro-
ménnou vyskytujici se ve formuli, a rozvétvenim vypoctu. V zdsadé jde o podobny princip
jako v algoritmu DPLL (viz Sekce . Vyslednému stromu fikame strom dosazeni.

Priklad 4.3.5. Tlustrujme si tento koncept na ptikladé, zkonstruujme strom dosazeni pro for-

muli S = {{p}, {=q}, {-p, ~q}}:
/ ’ \
SP={{-a}} S7={0,{~q}}
/N ®
Spe = {00} SPI=1()
® V={p.q}
Jakmile vétev obsahuje prazdnou klauzuli [J, je nesplnitelnd a nemusime v ni pokracovat.

V listech jsou bud nesplnitelné teorie, nebo prazdna teorie: v tom ptipadé z posloupnosti
dosazeni ziskame spliujici ohodnoceni.

7Z konstrukee je vidét, jak postupovat v pripadé kone¢né formule. Strom dosazeni ale dava
smysl, a nasledujici diusledek plati, i pro nekonecné formule:
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Daisledek 4.3.6. Formule S (nad spocetngm jazykem) je nesplnitelnd, pravé kdyz kazdd vétev
stromu dosazeni obsahuje prdzdnou klauzuli CJ.

Diikaz. Pro konecnou formuli S plyne z diskuze vyse, mizeme snadno dokédzat indukci podle
velikosti Var(S):

o Jeli | Var(S)| = 0, mdme S = ) nebo S = {J}, v obou pfipadech je strom dosazeni
jednoprvkovy a tvrzeni plati.

o V indukénim kroku vybereme libovolny literdl £ € Var(S) a aplikujeme Lemma [4.3.4]

Je-li S nekonec¢na a splnitelnd, potom ma splnujici ohodnoceni, to se ‘shoduje’ s odpovidajici
(nekonecnou) vétvi ve stromu dosazeni. Je-li nekoneénd a nesplnitelnd, potom podle Véty o
kompaktnosti existuje konecénd ¢ast S C S, kterd je také nesplnitelna. Po dosazeni pro vSechny
proménné z Var(S’) bude v kazdé vétvi O, to nastane po koneéné mnoha krocich. O

4.3.3 Uplnost rezoluce
Véta 4.3.7 (O uplnosti rezoluce). Je-li S nesplnitelnd, je rezoluci zamitnutelnd (tj. S - O).

Diikaz. Je-li S nekonecnd, mé z Véty o kompaktnosti kone¢nou nesplnitelnou ¢ést S’. Rezo-
lu¢ni zamitnuti S’ je také rezoluénim zamitnutim S. Predpoklddejme tedy, Ze S je konecn4.

Diikaz provedeme indukei podle po¢tu proménnych v S. Je-li | Var(S)| = 0, jedind mozné
nesplnitelnd formule bez proménnych je S = {0} a mame jednokrokovy dikaz S |-z 0. Jinak
vyberme p € Var(S). Podle Lemmatum jsou SP i SP nesplnitelné. Maji o jednu proménnou
méné, tedy podle indukéniho predpokladu existuji rezoluéni stromy T pro SP |- O a T pro
SP |-g O

Ukézeme, jak ze stromu T' vyrobit rezolu¢ni strom T pro S |-r —p. Analogicky vyrobime
T pro S g p a potom uz snadno vyrobime rezolucni strom pro S g O: ke koteni [
pripojime koreny stromt TaT jako levého a pravého syna (tj. v poslednim kroku rezolu¢niho
dikazu ziskdme O rezoluci z {—p} a {p}).

Zbyva ukazat konstrukci stromu T: mnozina vrchold i usporadani jsou stejné, zménime
jen nékteré klauzule ve vrcholech, a to pridanim literdlu —p. Na kazdém listu stromu T je
néjakd klauzule C' € SP, a bud je C' € S, nebo neni, ale C' U {-p} € S. V prvnim piipadé
nechame label stejny. Ve druhém pripadé priddme do C' a do vsech klauzuli nad timto listem
literal —p. V listech jsou nyni jen klauzule z S, v koreni jsme [J zménili na —p. A kazdy vnitini
vrchol je nadale rezolventou svych synil. O

Cuiceni 4.2. Dlikaz Véty o tplnosti rezoluce dava navod, jak rekurzivné ‘vypéstovat’ rezolucni
zamitnuti. Rozmyslete si jak a provedte na néjakém piikladé nesplnitelné formule.

Zacneme jinym pohledem na rezolucni dikaz, tzv. linedrnim dukazem.

4.4.1 Linearni dukaz

Rezolucni ditkaz muzeme kromé rezolu¢niho stromu zorganizovat také ve formeé tzv. linedrniho
dikazu, kde v kazdém kroku mame jednu centrdlni klauzuli, kterou rezolvujeme s bocni (‘side’)
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klauzuli, ktera je bud jednou z predchozich centralnich klauzuli, nebo axiomem z S. Rezolventa
je potom novou centralni klauzuliﬁ

Definice 4.4.1 (Linedrni dikaz). Linedrni dikaz (rezoluci) klauzule C z formule S je kone¢na

posloupnost
C’0 Cl Cn C
BO ) Bl e ey Bn s Un+1

kde C; fikame centrdini klauzule, Cy je pocdatecni, Cn11 = C' je koncovd, B; jsou bocni klauzule,
a plati:

e Cy€e S, proi <n je Ciyq rezolventou C; a B;,
e By S, proi<njeB; €S nebo B; = Cj pro néjaké j < i.
Linedrni zamitnuti S je linedrni diikaz [ z S. Linearni dikaz miizeme znézornit takto:

Cop—Cp — Cg—— eeeennn — Cp— Cpia
A -

B() Bl Bn—l Bn

Priklad 4.4.2. Zkonstruujme linedrni zamitnuti formule S = {{p, ¢}, {p, ~¢}, {-p, 4}, {—p, ¢} }
(tj. linedrni dikaz O z S). Linearni dikaz muze vypadat tieba takto:

O

{p,q} {r} {4} {-»r}
/

—

{r,—q} {-p,q} {-p,—~q} {r}

Posledni bo¢ni klauzule {p} (Cervené) neni z S, ale je rovna predchozi centrélni klauzuli
(modfe).

Ciceni 4.3. Prevedte linearni dukaz z Prikladu [4.4.2 na rezoluc¢ni strom.
Poznamka 4.4.3. C' ma linedrni diukaz z S, pravé kdyz S |-r C.

Z linearniho dikazu snadno vyrobime rezoluc¢ni strom. Indukei podle délky dikazu: zaklad
indukce je zfejmy, a mame-li bo¢ni klauzuli B; kterd neni axiomem z S, potom B; = C; pro
néjaké j < ¢ a staci pripojit misto B; rezolu¢ni strom pro dikaz C; z S. Vsimnéte si, Ze z
toho plyne i korektnost linedrni rezoluce.

Dtikaz opacné implikace neuvedeme. Plyne z dplnosti linearni rezoluce, jejiz dikaz najdete
v ucebnici A. Nerode, R. Shore: Logic for Applications [1].

4.4.2 LI-rezoluce

V obecném linearnim ditkazu mutze byt kazda nasledujici bo¢ni klauzule bud axiom z S nebo
jedna z predchozich centralnich klauzuli. Pokud zakazeme druhou moznost, budeme-li tedy
pozadovat, aby vSechny bo¢ni klauzule byly z S, dostaneme tzv. LI (linear-input) rezoluci:

4Zatimco konstrukei rezoluéniho stromu lze snadno popsat rekurzivné, linedrni dikaz lépe odpovida pro-
cedurdlnimu vypoctu. Jde jen o to, jak najit vhodnou boc¢ni klauzuli.
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Definice 4.4.4 (LI-dikaz). LI-dikaz (rezoluci) klauzule C' z formule S je linearni dukaz

5] (5] e

ve kterém je kazdd bocéni klauzule B; axiom z S. Pokud LI-dikaz existuje, fikdme, ze je C
LI-dokazatelnd z S, a piseme S |- C. Pokud S |-r; O, je S LI-zamitnutelnd.

Pozndmka 4.4.5. LI-diukaz primo davé rezolu¢ni strom (vSechny listy jsou axiomy), a to ve spe-
cidlnim tvaru, kterému bychom mohli fikat ‘chlupata cesta’. A naopak, z rezolué¢niho stromu
ve tvaru chlupaté cesty okamzité ziskdme LI-dtikaz: vrcholy na cesté jsou centralni klauzule,
chlupy jsou boc¢ni klauzule.

Zatimco linedrni rezolucdﬂ je jen jiny pohled na obecny rezoluc¢ni dikaz, LI-rezoluce pri-
nasi zasadni omezeni: ztracime dplnost (ne kazdéd nesplnitelnd formule mé LI-zamitnuti). Na
druhou stranu, LI-dikazy je jednodussi konstruovatﬁ

4.4.3 Uplnost LI-rezoluce pro Hornovy formule

Jak si nyni ukazeme, LI-rezoluce je tiplnd pro Hornovy formule. A jak uvidime v nasledujici
sekci, je zdkladem interpretert jazyka Prolog, ktery s Hornovymi formulemi pracuje. Nej-
prve pripomenme terminologii tykajici se hornovskosti a také programi, a to v mnozinové
reprezentaci:

e Hornova klauzule je klauzule obsahujici nejvyse jeden pozitivni literdl.
o Hornova formule je (kone¢nd, nebo i nekonecnd) mnozina Hornovych klauzuli.
o Fakt je pozitivni jednotkova (Hornova) klauzule, tj. {p}, kde p je vyrokovd proménna.

e Pravidlo je (Hornova) klauzule s préavé jednim pozitivnim a alespon jednim negativnim
literdlem.

e Pravidlim a faktim tikame programové klauzule.

Cil je neprazdné (Hornova) klauzule bez pozitivniho literélum

Bude se nam hodit nésledujici jednoduché pozorovani:
Pozorovani 4.4.6. Je-li Hornova formule S nesplnitelnd a O ¢ S, potom obsahuje fakt i cil.

Dikaz. Neobsahuje-li fakt, mizeme ohodnotit vsechny proménné 0; neobsahuje-li cil, ohod-
notime 1. O

Nyni vyslovime a dokadzeme Vétu o tplnosti LI-rezoluce pro Hornovské formule. Diikaz
dava také navod, jak LI-zamitnuti zkonstruovat, a to na zakladé priubéhu jednotkové propa-
gace. Tento postup ilustrujeme na prikladu nize, ktery muzete sledovat soubézné s ¢tenim
dukazu.

5Tj. dokazovaci systém zalozeny na hledani linedrnich dtikazi resp. zamitnuti.
5V kazdém kroku mame k volbé jen klauzule z S, nikoliv pfedchozi dokdzané centralni klauzule.
"P¥ipometime, e dokazujeme sporem, tedy cil je negaci toho, co bychom chtéli dokézat.
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Véta 4.4.7 (O tuplnosti Ll-rezoluce pro Hornovy formule). Je-li Hornova formule T splni-
telnd, a T'U{G} je nesplnitelnd pro cil G, potom T U{G} 11 O, a to LI-zamitnutim, které
zacind cilem G.

Ditkaz. Podobné jako ve Vété o tuplnosti rezoluce muzeme diky Vété o kompaktnosti pred-
poklddat, ze T je kone¢na. Dikaz (konstrukei LI-zamitnuti) provedeme indukei podle poctu
proménnych v T

7, Pozorovani m plyne, ze T obsahuje fakt {p} pro néjakou vyrokovou proménnou p.
Protoze T'U {G} je nesplnitelnd, je podle Lemmatu nesplnitelna také (T'U {G})P =
TP U{GP}, kde GP = G\ {—p}.

Pokud GP = O, potom G = {—p}, O je rezolventa G a {p} € T, a mame jednokrokové
LI-zamitnuti T"U {G} (to je baze indukce).

Jinak vyuzijeme indukéniho predpokladu. Vsimnéte si, ze formule 77 je splnitelné (stejnym
ohodnocenim jako T, nebot to musi obsahovat p kvuli faktu {p}, tedy neobsahuje —p) a
méa méné proménnych nez T'. Tedy podle indukéniho predpokladu existuje LI-odvozeni [J z
TP U {GP} zacinajici GP = G \ {—p}.

Hledané LI-zamitnuti TU{G} za¢inajici G zkonstruujeme (podobné jako v dukazu Véty o
uplnosti rezoluce) pridanim literdlu —p do vSech list, které uz nejsou v TU{G} (tedy vznikly
odebranim —p), a do vSech vrcholi nad nimi. Tim ziskdme TU{G} |-rr —p, na zavér pridame
bocni klauzuli {p} a odvodime . O

Priklad 4.4.8. Mé&jme (splnitelnou, hornovskou) teorii 7', kterou zapiSeme v mnozinové repre-
zentaci jako formuli T' = {{p, —r, =s},{—q,r}, {q, s}, {s}}. Predstavte si, ze chceme dokazat,
ze v teorii T plati p A qﬁ V rezoluéni metodé uvazime cil G = {-p, ¢} a ukdZeme, ze
TU{G} |1 O

Dle navodu z diikazu najdeme ve formuli T" fakt, a provedeme pomoci ného jednotkovou
propagaci v T i v cili G. Postup opakujeme, dokud neni formule prazdna:

« T'={{p,-r,=s},{~q,r},{q,~s},{s}}, G ={-p,~q}
T* = {{p,~rt.{~q,r}.{a}}, G°* = {-p,~q}

1% = {{p,—r},{r}}, G** = {-p}

T = {{p}}, G*" = {-p}

o TSIP = () GSIP =

Nyni zpétnym postupem sestrojime rezolu¢ni zamitnuti:

N qurp’ GsaP }‘L[ -

o T G |y O

8Tj. v Prologu bychom polozili ‘dotaz’ (‘query’): ?-p,q.
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{-p} O

{r}
o T30, G% | O:

O

=} ——— {=r}
/
{p.~r} {r}

/

o T5,G5 p; O
{=p,~q} —— {~q,~r} —— {~q} O
{p,—r} {=aq,7} {a}
« T,G |1 O
{-p,~¢} ———— {~q, -, =8} —— {=q,~s} ——— {=s} O

{p7 -, _'S} {_'qu} {Q7 _‘5} {5}

4.4.4 Program v Prologu

Ackoliv skutecna sila Prologu vychézi z tzv. unifikace a z rezoluce v predikatové logice, uka-
zeme si jak Prolog vyuziva rezoluéni metodu na prikladé vygrokového programu. Adaptace na
predikaty bude pozdéji primocara.

Program v Prologu je Hornova formule obsahujici pouze programové klauzule, tj. fakta
nebo pravidla. Dotaz je konjunkce faktii, negace dotazu je cil.

Priklad 4.4.9. Jako priklad programu v Prologu vyuzijeme teorii (formuli) 7" a dotaz p A ¢
z Prikladu Naprtiklad klauzuli {p, —r, =s}, ktera je ekvivalentni r A s — p, zapiSeme v
Prologu jako: p:-r,s.

p:-r,s
r:-q.
q:-s
s.

A programu polozime dotaz:

?-p,q.

Dausledek 4.4.10. Méjme program P a dotaz Q = pi/A-+-Apn, a oznacme G = {—p1,...,pp}
(tj. G ~ —=Q). Nasledujici podminky jsou ekvivalentni:
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. PEQ,
o PU{G} je nesplnitelnd,
o PU{G} |11 O, a existuje LI-zamitnuti zacinajici cilem G.

Diikaz. Ekvivalence prvnich dvou podminek je diikaz sporem, ekvivalence druhé a tieti je Véta
o uplnosti LI-rezoluce pro Hornovy formule. (VSimnéte si, ze Program je vzdy splnitelny.) [
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Predikatova logika
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Kapitola 5

Syntaxe a sémantika predikatové
logiky

Kurzy logiky vesmés zacinaji vyrokovou logikou, kterd je pro svou jednoduchost vhodnéjsi k
prvinimu seznameni. Plna sila logiky v informatice se ale projevi teprve s pouzitim logiky pre-
dikatové. Zacnéme neformélnim ivodem, ve kterém ilustrujeme zdkladni aspekty predikatové
logiky. K formalnimu vykladu se vratime v nasledujicich sekcich.

5.1 Uvod

Pripomenime, ze ve vyrokové logice jsme popisovali svét pomoci vijroki slozenych z prvovy-
roki—odpovédi na zjistovaci (ano/ne) otdzky o svété. V predikatové logice (prvniho fédu)r'_-]
jsou zakladnim stavebnim kamenem promeénné reprezentujici individua—mnedélitelné objekty
z néjaké mnoziny: napr. prirozend cisla, vrcholy grafu, nebo stavy mikroprocesoru.

Tato individua mohou mit urcité vlastnosti a vzajemné vztahy, kterym rikame predikdty,
napt. ‘Leaf(z)’ nebo ‘Edge(z,y) mluvime-li o grafu, nebo ‘c < y’ v prirozenych c¢islech.
Kromé toho mohou individua vstupovat do funkeci, napt. ‘lowest__common_ ancestor(x,y)’
v zakofenéném stromu, ‘succ(z)’ nebo ‘z + y’ v pfirozenych ¢islech, a byt konstantami se
specidlnim vyznamem, napf. ‘root’ v zakorenéném stromu, ‘0’ v prirozenych ¢islech.

Atomické formule popisuji predikat (véetné predikatu rovnosti =) o proménnych nebo o

vvvvvv

jeme z atomickych formuli pomoci logickych spojek, a dvou kvantifikdtori:
o Vz “pro vSechna individua (reprezentovand proménnou z),” a
o Jz “existuje individuum (reprezentované proménnou x)”.

Uvedme priklad: tvrzeni “Kazdy, kdo md dité, je rodic.” bychom mohli formalizovat nasledujici
formuli:

(Vz)((3y)child_of(y,z) — is_ parent(z))

1V logice druhého ¥4du méame také proménné reprezentujici mnoziny individui nebo i mnoziny n-tic, tj.
relace na mnoziné individui.
2Podobné jako vytvaiime aritmetické vyrazy.
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kde child_of(y,x) je binarni predikdt vyjadiujici, ze individuum reprezentované proménnou
y je ditétem individua reprezentovaného proménnou x, a is_parent(z) je undrni predikat (tj.
‘vlastnost’) vyjadiujici, Ze individuum reprezentované x je rodic.

Jak je to s platnosti této formule? To zdlezi na konkrétnim modelu svéta/systému, ktery
nas zajima. Model je (neprdzdnd) mnozina objekti spolu s unarni relaci (tj. podmnoZinou)
interpretujici undrni relacni symbol is_ parent a binarni relaci interpretujici bindrni relacni
symbol child_of. Tyto relace mohou byt obecné jakékoliv a snadno sestrojime model, kde
formule neplatiﬁ Pokud ale modelujeme napriklad vsechny lidi na svété, a relace maji svij
prirozeny vyznam, potom formule bude platitﬁ

Podivejme se na jesté jeden priklad, tentokrat i s funkénimi symboly a s konstantnim
symbolem: “Je-li 21 < y; a x9 < ya, potom (y; - y2) — (21 - x2) je nezdporné.” Vysledna formule
by mohla vypadat takto:

o= (21 <y1) A(w2 <y2) = ((y1 - y2) + (—(z1 - 22)) > 0)

Vidime dva bindrni relaéni symboly (<, >), binarni funkéni symbol +, unarni funkéni symbol
—, a konstantni symbol 0.

Piikladem modelu, ve kterém formule plati, je mnozina prirozenych ¢isel N s bindrnimi re-
lacemi <N, >N bindrnimi funkcemi +%, -N, unarni funkei —V, a konstantou 0N = 0. Vezmeme-li
ale podobné mnozinu celych ¢isel, formule uz platit nebude.

Pozndmka 5.1.1. Mohli bychom chépat symbol — jako bindrni operaci, obvykle se ale zavadi
jako unarni. Pro konstantni symbol 0 pouzivame (jak je zvykem) stejny symbol, jako pro
prirozené ¢islo 0. Ale pozor, v nasem modelu muize byt tento konstantni symbol interpretovan
jako jiné ¢islo, nebo nas model viibec nemusi sestavat z ¢isel!

Ve formuli nejsou zaddné kvantifikatory (takovym formulim fikdme otevrené), proménné
x1,%2,Y1, Y2 jsou volné proménné této formule (nejsou vdzané zadnym kvantifikdtorem), pi-
seme p(x1,x2,y1,y2). Sémantiku této formule chapeme stejné, jako formule

(V1) (Vo) (Vy1) (Yy2) (21, T2, Y1, Y2)

Vyraz (y1 - y2) + (— (21 - x2)) je prikladem termu, vyrazy (x1 < y1), (z2 < y2) a ((y1-y2) +
(—(x1 - z2)) > 0) jsou atomické (pod)formule. V éem spociva rozdil? Mame-li konkrétni mo-
del, a konkrétni ohodnoceni proménngch individui (prvky) tohoto modelu, potom atomickym
formulim lze priradit pravdivostni hodnotu. Lze je tedy kombinovat s logickymi spojkami do
slozitéjsich ‘logickych vyrazi’, tj. formuli. Na druhou stranu ‘vysledkem’ termu (p¥i daném
ohodnoceni) je néjaké konkrétni individuum z modelu.

Upozornime jesté na to, ze v zapisu formule ¢ jsme pouzili infixovy zapis pro funkcéni
symboly +, - a pro relace <, >, a podobné konvence o uzavorkovani jako ve vyrokové logice.
Jinak bychom formuli ¢ zapsali takto:

(£ (@1, y0)A < (22,92)) = < (+(-(y1, ¥2), —(-(21,22))), 0))

Cviceni 5.1. Najdéte vhodnou definici pojmu stromu formule (zobectwjici strom vijroku z
vyrokové logiky) a nakreslete strom formule (V1) (Vz2)(Yy1)(Vy2)p(z1, 22, y1,y2).

$Vezméme napifklad jednoprvkovou mnozinu A = {a}, a relace child_of* = {(a,a)}, parent® = @, tedy
jediny objekt je svym vlastnim ditétem, ale neni rodi¢em.

4Py formalizaci musime byt velmi opatrni, abychom nepiidali dodate¢né predpoklady, které v modelovaném
systému nemusi platit. Zde se napriklad schovava predpoklad, ze mé-li nékdo dité, musi byt jeho rodi¢em.

65



Nyni zacneme tim, ze formalizujeme tento koncept “modelu”, tzv. strukturu. Zbytek ka-
pitoly sleduje osnovu vykladu o vyrokové logice: predstavime syntaxi, nasledné sémantiku, a
nakonec pokrocilejsi vlastnosti formuli, teorii, a struktur. Na zavér si ukazeme jednu jednodu-
chou, ale velmi uzite¢nou aplikaci predikatové logiky, takzvanou definovatelnost podmnozin a
relaci, kterd je zakladem relacnich databdzi (napt. SQL), a jesté jednou se podivime na vztah
vyrokové a predikatové logiky.

5.2 Struktury

Nejprve specifikujeme, jakého typu bude dand struktura, tj. jaké bude mit relace, funkce
(jakych arit) a konstanty, a jaké symboly pro né budeme pouzivat. Této formélni specifikaci
se nékdy tika typ, my budeme tikat signatumﬁ Pripomenme, ze konstanty mizeme chapat
jako funkce arity 0 (tj. funkce bez vstupi).

Definice 5.2.1 (Signatura). Signatura je dvojice (R, F), kde R, F jsou disjunktni mnoziny
symbolu (relacni a funkéni, ty zahrnuji konstantni) spolu s danymi aritami (tj. danymi funkei
ar: R UF — N) a neobsahujici symbol ‘=" (ten je rezervovany pro rovnost).

Casto ale budeme signaturu zapisovat jen vyétem symboli, bude-li jejich arita a to, zda
jsou rela¢ni nebo funkéni, zfejmé z kontextu. Uvedme nékolik priklada signatur:

E) signatura grafi: E je binarni rela¢ni symbol (struktury jsou usporadané grafy),

) signatura cdstecnych uspordddnd: stejné jako signatura grafd, jen jiny symbolﬁ

+,—,0,-,1) signatura téles: - je bindrni funkéni, 1 konstantni symbol

<
(<
(4, —,0) signatura grup: + je bindrni funkéni, — unarni funkéni, 0 konstantni symbol
(
(+,—,0 <) signatura usporddangch téles: < je binarni rela¢ni symbol,

(=

AV, L, T) signatura Booleovych algeber: A,V jsou bindrni funkéni symboly, L, T
jsou konstantni symboly,

(S,+,-,0, <) signatura aritmetiky: S je undrni funk¢ni symbol (‘successor’).

Kromé béznych symboli relaci, funkei a konstant (znamych napt. z aritmetiky) typicky po-
uzivame pro relacni symboly P, @, R, ..., pro funkéni symboly f,g,h,..., a pro konstantni
symboly ¢, d, a,b, . ..

Strukturu dané signatury ziskame tak, ze na néjaké neprazdné doméné zvolime realizace
(také fikdme interpretace) vsech relacnich a funkénich symbolu (a konstant), tj. konkrétni
relace resp. funkce prislusnych arit. (V pripadé konstantniho symbolu je jeho realizaci zvoleny
prvek z domény. )|Z|

5Signaturu si mizete predstavovat analogicky definici tdy v OOP, struktury potom odpovidaji objektim
této t¥idy (v ‘programovacim jazyce’ teorie mnozin).

5Ne kazd4 struktura v této signatufe je Gsteéné uspofddéni, k tomu jesté potfebujeme, aby spliiovala
prislusné aziomy.

“Na tom, jaké konkrétni symboly v signatufe pouZijeme, nezilezi, mtizeme je interpretovat libovolné. Na-
priklad to, Ze mdme symbol 4+ neznamend, Ze by jeho interpretace musela mit cokoliv spole¢ného se séitanim
(tedy kromé toho, zZe to bude také bindrni funkce).
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Priklad 5.2.2. Formalni definice struktury je uvedena nize, nejprve si ukazeme nékolik pri-
kladu:

o Struktura v prazdné signatufe ( ) je libovolnad neprazdnd mnoiinaﬁ (Nemusi byt ko-
necna, dokonce ani spocetnal)
o Struktura v signatuie grafi je G = (V, E), kde V # 0 a E C V2, ¥ikdme ji orientovany
graf.
— Je-li F ireflexivni a symetrickd, jde o jednoduchy graf (tj. neorientovany, bez smy-
cek).
— Je-li F reflexivni, tranzitivni, a antisymetrickd, jde o éastecné usporaddni.
— Je-li E reflexivni, tranzitivni, a symetricka, mluvime o ekvivalenci.
e Struktury v signature ¢astecnych usporadani jsou tytéz, jako v signature grafi, signa-

tury se lis{ jen pouzitym symbolem. (Tedy ne kazda struktura v signatufe ¢astecnych
usporadani je ¢aste¢né usporadanil)

e Struktury v signatufe grup jsou napriklad nasledujici grupy:

— Ly, = (Zp,+,—,0), aditivni grupa celych cisel modulo n (operace jsou modulo n)ﬂ
— 8, = (Sym,,, 0, 1,id) je symetrickd grupa (grupa vsech permutaci) na n prvcich.

- Q" = (Q\ {0},-,7 1, 1) je multiplikativni grupa (nenulovych) raciondlnich cisel.
Vsimnéte si, ze interpretaci symbolu 0 je cislo 1.

Vsechny tyto struktury splnuji axiomy teorie grup, snadno ale najdeme jiné struktury,
které tyto axiomy nesplnuji, a nejsou tedy grupami. Napriklad zménime-li ve strukture
Z,, interpretaci symbolu + na funkci - (modulo n).

o Struktury Q = (Q,+,—,0,-,1,<) a Z = (Z,+,—,0,-,1, <), se standardnimi operacemi
a usporadanim, jsou v signatufe uspofadanych téles (ale jen prvni z nich je usporadanym
télesem).

e P(X) = (P(X),,N,U,0, X), tzv. potencni algebra nad mnozinou X, je to struktura v
signatufe Booleovych algeber. (Booleova algebra je to pokud X # ().)

e N=(N,S +,-,0,<), kde S(x) = = + 1, a ostatni symboly jsou interpretoviny stan-
dardné, je standardni model aritmetiky.

Definice 5.2.3 (Struktura). Struktura v signature (R,F) je trojice A = (A, R4, FA), kde
o A je nepréazdnd mnozina, fikdme ji doména (také univerzum),

e RA={RA|Re R} kde RA C A>(R) je interpretace relaéniho symbolu R,

8Jak uvidime v definici nize, formalné vzato je to trojice (A, #,0), ale tento rozdil budeme zanedbavat.

9Zde Zyn znamend strukturu, zatimco Z, = {0,1,...,n — 1} jen jeji doménu. Casto se ale toto nerozlisuje
a symbol Z,, se pouziva jak pro celou strukturu, tak jen jeji doménu. Podobné +, —, 0 jsou jak symboly, tak i
jejich interpretace. To je bézné pouzivané znaceni, je klicové byt si vzdy védomi toho, v jakém vyznamu dany
symbol na daném misté pouzivame.
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o FA={fA|f e F}kde fA: A — A je interpretace funkéniho symbolu f (specidlné
pro konstantni symbol ¢ € F mame ¢ € A).

Cviceni 5.2. Uvazme signaturu n konstant (ci,ca,...,cn). Jak vypadaji struktury v této
signatute? Popiste napf. vSechny nejvyse pétiprvkové struktury v signatute t¥i konstant. (In-
terpretace konstant nemusi byt ruzné!) A jak je tomu v pfipadé signatury spocetné mnoha
konstant (c1,co,...) = {(¢; | i € N)?

5.3 Syntaxe

V této sekci predstavime syntaxi predikatové logiky (prvniho fadu). Srovnejte co ma syntaxe
spole¢ného, a jak se lisi, od syntaxe vyrokové logiky.

5.3.1 Jazyk

Pri specifikaci jazyka nejprve stanovime, jakého typu jsou struktury, které chceme popisovat,
tj. ur¢ime signaturu. Déle pridame informaci, zda je jazyk s rovnosti nebo ne, tj. zda ve

" vyjadiujici rovnost (identitu) prvkid v doméné

formulich miZeme také pouzivat symbol ‘=
strukturH Do jazyka patii nasledujici:

e spocetné mnoho promeénnych xg,x1,x2,... (ale piSeme také x,y, z,...; mnozinu vSech
proménnych oznacime Var),

o relacni, funkcni a konstantni symboly ze signatury, a symbol = jde-li o jazyk s rovnosti,
o univerzdlni a existencni kvantifikdtory (Vx), (3x) pro kazdou proménnou x € VarE
o symboly pro logické spojky —, A, V, —, <> a zévorky (, ).

Podobné jako symbol [J zastupujici libovolnou bindrni logickou spojku budeme nékdy psét
(Qz) pro kvantifikator (Vz) nebo (3x).

Symbolim ze signatury, a =, fikdme mimologické, ostatni jsou logické. Jazyk musi obsa-
hovat alespon jeden rela¢ni symbol (bud rovnost, nebo v signatuf‘e)H

Jazyk tedy specifikujeme pomoci signatury a informace ‘s rovnosti’ (popf. ‘bez rovnosti’).
Napriklad:

o Jazyk L = () s rovnosti je jazyk ¢isté rovnosti,

o jazyk L = (cg,c1,¢2,...) s rovnosti je jazyk spocetné mnoha konstant,
o jazyk usporddani je (<) s rovnosti,

o jazyk teorie grafi je (F) s rovnosti,

o jazyky teorie grup, teorie téles, teorie usporadanych téles, Booleovijch algeber, aritmetiky
jsou jazyky s rovnosti odpovidajici signaturam z Priikladu

10Ve vétsiné aplikaci budeme pouzivat jazyky s rovnosti. V nékterych specidlnich oblastech se ale hodi
rovnost nemit. Napiiklad pokud se zabyvame velmi rychlymi vypocetnimi modely: zjistit, které proménné se
sobé rovnaji, vyzaduje najit tranzitivni uzévér rovnosti danych formuli, coz je relativné vypocetné narocny
problém.

HKvantifikdtor chdpeme jako jediny symbol, tedy (V) neobsahuje proménnou x. Nékdy se také pouzivaji
symboly Vg, 3.

12 Jinak bychom v jazyce nemohli vybudovat zadn4 ‘tvrzeni’ (formule), viz nize.
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S x A
0 z Y
(a) (S(0) + z) -y v jazyce aritmetiky (b) —(z Ay)V L v jazyce Booleovych algeber

Obréazek 5.1: Strom termu

5.3.2 Termy

Termy jsou syntaktické ‘vyrazy’ slozené z promeénnych, konstantnich symboli a funkcénich
symbolu.

Definice 5.3.1 (Termy). Termy jazyka L jsou kone¢né napisy definované induktivné:

e kazda proménnd a kazdy konstantni symbol z L je term,

o je-li f funkénisymbol z L arity n a jsou-li ¢1, ..., ¢, termy, potom népis f(t1,ta,...,tn)
je také term.

Mnozinu vSech termal jazyka L oznac¢ime Termy .

Pri zapisu termu obsahujicich bindrni funkéni symbol miZeme pouzivat infizovy zapis,
napf. (t1+t2) znamend +(t1,t2). Zavorky nékdy vynechavame, je-li struktura termu (‘priorita
operatori’) zfejma.

Podterm je podretézec termu, ktery je sam termem (je to tedy bud cely term, nebo se
vyskytl jako néjaké ¢; pri konstrukei termu).

Pokud term neobsahuje proménnou, fikdme mu konstantni (ground), naptiklad ((S(0) +
S(0)) - S(S(0))) je konstantni term v jazyce aritmetiky@

Strom termu t, oznaéme Tree(t), je definovan podobné jako strom vyroku, v listech jsou

proménné nebo konstantni symboly, ve vnitinich vrcholech jsou funkéni symboly, jejichz arita
je rovna poctu synu.
Priklad 5.3.2. Nakresleme stromy termi (a) (S(0)+x)-y v jazyce aritmetiky, (b) —(zAy)VLv
jazyce Booleovych algeber. Zde A, V nejsou logické spojky z jazyka, ale mimologické symboly
ze signatury Booleovych algeber (byt pouzivime stejné symboly)! Termy v tomto jazyce
mizeme chépat jako vyrokové formule (s konstantami pro spor a tautologii), viz Sekce
Na obrézku [5.1] jsou nakresleny stromy téchto termd.

Neni tézké uhadnout, jaka bude sémantika termt. Mame-li konkrétni strukturu, odpovida
term funkci na jeji doméné: vstupem je ohodnoceni proménnych prvky domény, konstantni a
funkéni symboly jsou nahrazeny jejich interpretacemi, a vystupem je hodnota (prvek domény)
v koteni. Formélngji ale az v Sekci

BPozor, termy jsou Cisté syntaktické, mizeme pouzivat jen symboly z jazyka, nikoliv prvky struktury, tedy
napt. (14 1) -2 neni term v jazyce aritmetiky! (Mohli bychom ale definovat nové konstantni symboly 1,2 jako
zkratky za S(0) a S(S(0)) a rozsirit tak nas jazyk, viz Sekce [5.7.1})
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5.3.3 Formule

Termtim nelze v zadném smyslu priradit pravdivostni hodnotu, k tomu potfebujeme predikdt
(rela¢ni symbol nebo rovnost), ktery mluvi o ‘vztahu’ termu: v konkrétni struktufe pii kon-
krétnim ohodnoceni proménnych prvky z domény je tento vztah bud splnén, nebo nesplnén.

Nejjednodussimi formulemi jsou atomické formule. Z nich potom vybudujeme pomoci
logickych spojek a kvantifikdtora vsechny formule.

Definice 5.3.3 (Atomické formule). Atomickd formule jazyka L je napis R(t1,...,t), kde
R je n-arni rela¢ni symbol z L (véetné = jde-li o jazyk s rovnosti) a t; € Termy.

U binarnich rela¢nich symbolt ¢asto pouziviame infixovy zapis, napf. atomickou formuli
< (x,y) zapiseme jako x <y, a (je-li jazyk s rovnosti) misto = (¢1,t2) budeme psat t; = to.

Priklad 5.3.4. Uvedme nékolik prikladt atomickych formuli:
o R(f(f(x)),c, f(d)) kde R je ternarni rela¢ni, f unarni funkéni, ¢, d konstantni symboly,
o (z-x)+ (y-y) <(x+vy)-(z+y) v jazyce usporadanych téles,
o x-y < (S(0)+x)-y v jazyce aritmetiky,
e —(xAy)V L =_1vjazyce Booleovych algeber
Definice 5.3.5 (Formule). Formule jazyka L jsou kone¢né napisy definované induktivné:

o kazda atomickd formule jazyka L je formule,

je-li ¢ formule, potom (—¢) je také formule,

jsou-li ¢, v formule, potom (¢ A ), (p V), (¢ = ), a (p <> 1) jsou také formule,

je-li ¢ formule a = proménnd, potom ((Vz)y) a ((3x)p) jsou také formule.

Podformule je podretézec, ktery je sdm o sobé formuli. Strom formule, oznac¢ime Tree(yp),
je definovén takto: strom atomické formule ¢ = R(t1,...,t,) mé v kofeni rela¢ni symbol R,
a k nému jsou pripojeny stromy Tree(t;). Neni-li ¢ atomickd, strom zkonstruujeme obdobné
jako strom vyrokuE Pri zapisu formuli pouzivame obdobné konvence jako ve vyrokové logice,
pricemz kvantifikdtory maji stejnou prioritu jako — (vySsi nez ostatni logické spojky). Misto
((Vx)p) tedy muzeme psat (VZL’)QDE
Priklad 5.3.6. Prikladem formule v jazyce aritmetiky je (Vx)(x-y < (S(0)+x)-y). Jeji strom
je zndzornén na Obrazku [5.2]

Volné a vazané proménné

Vyznam formulelﬂ muze, nebo nemusi zaviset na proménnych, které se v ni vyskytuji: srovnejte
x < 0a (dzr)(x <0) (a co teprve x < 0V (Fz)(x < 0)). Nyni tento koncept upfesnime a
zavedeme potiebnou terminologii.

MKvantifikdtory maji, podobné jako negace, jediného syna.
15Nékdy se také nepisi zavorky v kvantifikitorech, tj. jen Vayp, my je ale pro prehlednost psét budeme.
19Pesnéji, jeji pravdivostni hodnota, kterou formalné definujeme nize v Sekci 5.4.3l
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Obréazek 5.2: Strom formule (Vz)(x -y < (S(0) + ) - y)

Vijskytem proménné z ve formuli ¢ myslime list Tree(¢) oznaceny x. |Z| Vyskyt je vdzany,
je-li soucésti néjaké podformule (podstromu) zac¢inajici (Qx). Neni-li vyskyt vizany, je volny.
Proménna je volnd ve ¢, pokud ma ve ¢ volny vyskyt, a vdzand ve @, pokud ma ve ¢ vazany
vyskyt. Zapis ¢(z1,...,2,) znamena, ze xi, ..., T, jsou vSechny volné proménné ve formuli
®.

Priklad 5.3.7. Proménna muze byt volna i vazand, napt. ve formuli ¢ = (Vx)(Jy)(z < y)Vz <
z je prvni vyskyt x vdzany a druhy vyskyt volny. (Nakreslete si strom formule!) Proménnd y
je vazana (jeji jediny vyskyt je vdzany) a z je volnd. Muzeme tedy psat ¢(z, z).

Pozndmka 5.3.8. Jak uvidime nize, vyznam (pravdivostni hodnota) formule zavisi pouze na
ohodnoceni volnych proménnych. Proménné v kvantifikatorech, spolu s prisluSnymi vazanymi
vyskyty, mizeme prejmenovat (musime ale byt opatrni, viz nize).

Oteviené a uzaviené formule

Casto budeme mluvit o nésledujicich dvou dilezitych druzich formuli:

Definice 5.3.9 (Oteviena a uzaviend formule). Formule je otevrend, neobsahuje-li zadny
kvantifikdtor, a uzavrend (neboli sentence), pokud nemé zadnou volnou proménnou

Priklad 5.3.10. Uvedme nékolik ptikladii:
o formule x +y < 0 je oteviena,
o formule (Vz)(Yy)(x + y < 0) je uzaviend (tedy je to sentence),
o formule (Vz)(z + y < 0) neni ani oteviend, ani uzaviena,

o formule (0+1=1)A(1+1=0) je oteviend i uzaviena.

"Proménna z se tedy nevyskytuje v symbolu pro kvantifikitor (Qz).
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Kazda atomicka formule je oteviend, oteviené formule jsou jen kombinace atomickych
pomoci logickych spojek. Formule mtze byt oteviena i uzavrenad zaroven, v tom pripadé
jsou vSechny jeji termy konstantni. Formule je uzaviena, pravé kdyz nemd zddnou volnou
proménnou

Pozndmka 5.3.11. Jak uvidime pozdéji, pravdivostni hodnota formule zavisi jen na ohodnoceni
jejich volnych proménnych. Specidlné, sentence ma v dané struktufe pravdivostni hodnotu 0
nebo 1 (nezévisle na ohodnoceni proménnych). To je duvod, pro¢ hraji sentence v logice
dilezitou roli.

5.3.4 Instance a varianty

Jak jsme vidéli, jedna proménnd se miize ve formuli vyskytovat v riznych ‘rolich’. Jde o velmi
podobny princip jako v programovani, kde jeden identifikdtor muze v programu znamenat
ruzné proménné (bud lokédlni, nebo globélni). Pod pojmem instance si predstavte ‘dosazeni’
(termu) do (globélni) proménné (nebo lépe ‘nahrazeni’ proménné néjakym vyrazem, ktery
ji pocitd), a pod pojmem warianta ‘prejmenovani’ (lokdlni) proménné. Vezméme napiiklad
formuli ¢(x):

P(z) A (Vo) (Q(x) A (3z)R(x))

Prvni vyskyt proménné x je volny, druhy je vizany kvantifikitorem (Vx), a tieti je vazany
(3z). Pokud ‘dosadime’ za proménnou x term ¢ = 1+ 1, dostdvame instanci formule ¢, kterou
oznacime @(x/t):

P(1+1)A(Vz)(Q(x) A (3x)R(x))

Mizeme také prejmenovat kvantifikdtory ve formuli, tak ziskdme variantu formule ¢, napt.:

P(x) A (vy)(Qy) A (32)R(2))

Jak vime, kdy a jak toto mizeme provést, abychom zachovali vyznam, tj. aby instance byla
dusledkem @, a varianta byla s ¢ ekvivalentni? To nyni chceme zformalizovat.

Instance

Pokud do formule ¢ dosadime za volnou proménnou z term t, pozadujeme, aby vysledna
formule ‘fikala’ o t ‘totéz’, co ¢ o x.

Priklad 5.3.12. Napriklad formule ¢(z) = (Jy)(x +y = 1) iikd o z, Ze ‘existuje 1 — 2. Term
t = 1 lze dosadit, nebot p(z/t) = (Fy)(1 + y = 1) Fikd ‘existuje 1-1’. Ale term t = y dosadit
nelze, (Jy)(y +y = 1) 1ika ‘1 je délitelné 2°. Problém spociva v tom, Ze term ¢ = y obsahuje
proménnou y, jez bude nové vazana kvantifikatorem (Jy). Takové situaci se musime vyhnout.

Definice 5.3.13 (Substituovatelnost a instance). Term ¢ je substituovatelny za proménnou z
ve formuli ¢, pokud po simultannim nahrazeni vSech volnych vyskyti x ve ¢ za t nevznikne
ve ¢ zadny vazany vyskyt proménné z t. V tom pripadé rikdme vzniklé formuli instance ¢
vznikld substituci ¢ za x, a oznacujeme ji @(x/t).

Pozndmka 5.3.14. Vsimnéte si, ze term ¢t neni substituovatelny za x do ¢, pravé kdyz x mé
volny vyskyt v néjaké podformuli ¢ tvaru (Qy)1 a proménnd y se vyskytuje v ¢. Specidlné,
konstantni termy jsou vzdy substituovatelné.

8Neplati ale, ze formule je oteviens, pokud nemé #4dnou vizanou proménnou, viz formule (V)0 = 1.
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Varianty

Potiebujeme-li substituovat term ¢ do formule ¢, mizeme to udélat vzdy, pokud nejprve
prejmenujeme vSechny kvantifikované proménné na zcela nové (tj. takové, které se nevyskytuji
ani ve @ ani v t), a potom substituujeme t do takto vzniklé varianty formule .

Definice 5.3.15 (Varianta). Ma-li formule ¢ podformuli tvaru (Qx)y a je-li y proménna,
takova, ze

e y je substituovatelna za x do ¥ a
e gy nema volny vyskyt v v,

potom nahrazenim podformule (Qz) formuli (Qy)v(x/y) vznikne varianta formule ¢ v pod-
formuli (Qz)1. Varianta fikdme i vysledku postupné variace ve vice podformulich.

Vsimnéte si, ze pozadavek na proménnou y z definice varianty je vzdy splnén, pokud se y
nevyskytuje ve formuli ¢.

Priklad 5.3.16. Méjme formuli ¢ = (3z)(Vy)(x < y). Potom:
o (Jy)(Yy)(y < y) neni varianta ¢, nebot y neni substituovatelna za x do ¢ = (Vy)(z < y),
e (3z)(Vz)(x < x) neni varianta ¢, nebot x ma volny vyskyt v podformuli ¢ = (z < y),
o (Fu)(Yv)(u < v) je varianta .

Tim jsme uzavreli vyklad o syntaxi, nasleduje sémantika.

5.4 Sémantika

Nez se pustime do forméalnéjsiho vykladu, shrime struéné sémantiku, tak jak jsme ji uz
naznacili v predchozich sekcich:

modely jsou struktury dané signatury,

o formule plati ve strukture, pokud plati pri kazdém ohodnoceni volnych proménnych
prvky z domény,

e hodnoty termu se vyhodnocuji podle jejich stromi, kde symboly nahradime jejich in-
terpretacemi (funkcemi, a konstantami z domény),

e 7z hodnot termu ziskdme pravdivostni hodnoty atomickych formuli: je vysledna n-tice v
relaci (interpretujici dany relaéni symbol)?

o hodnoty slozenych formuli vyhodnocujeme také podle jejich stromu, pricemz (Vz) hraje
roli ‘konjunkce pres vSechny prvky’ a (Jy) hraje roli ‘disjunkce pres vSechny prvky’ z
domény struktury

Nyni formalnéji:
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5.4.1 Modely jazyka

Definice 5.4.1 (Model jazyka). Model jazyka L, nebo také L-struktura, je libovolna struktura
v signature jazyka L. Tridu vSech modeli jazyka oznac¢ime My,.

Pozndmka 5.4.2. V definici nehraje roli, zda je jazyk s rovnosti nebo bez. A pro¢ nemiizeme
mluvit o mnoziné vsech modeli My, pro¢ musime fikat ¢rida? Protoze doménou struktury
muze byt libovolnd neprdzdnd mnozina, a ‘mnozina vSech mnozin’ neexistuje, je to klasicky
priklad tzv. vlastni t¥idy. Trida je ‘soubor’ vsech mnozin splnujicich danou vlastnost (popsa-
telnou v jazyce teorie mnozin).

Priklad 5.4.3. Mezi modely jazyka usporadani L = (<) patii néasledujici struktury: (N, <),
(Q, >), libovolny orientovany graf G = (V, E), (P(X), C). Ale také napi. (C, R®) kde (21, 22) €
RC préavé kdyz |21 = | 22| nebo ({0,1},0), coz nejsou Eastecna usporadand.

5.4.2 Hodnota termu

Méjme term t jazyka L = (R,F) (s rovnosti nebo bez), a L-strukturu A = (A, RA, FA).
Ohodnoceni proménngch v mnoziné A je libovolna funkce e : Var — A.

Definice 5.4.4 (Hodnota termu). Hodnota termu t ve strukture A pri ohodnoceni e, kterou
znacime t[e], je ddna induktivné:
o« 2[e] = e(x) pro proménnou z € Var,

+ c¢?le] = ¢ pro konstantni symbol ¢ € F, a

o jellit= f(t1,...,t,) slozeny term, kde f € F, potom:

t4e] = fAE el - - 1 1e])

Pozndmka 5.4.5. Vsimnéte si, ze hodnota termu zavisi pouze na ohodnoceni proménnych vy-
skytujicich se v ném. Specidlné, je-li t konstantni term, jeho hodnota na ohodnoceni nezavisi.
Obecné, kazdy term ¢ reprezentuje termovou funkci ftA: AF — A, kde k je pocet proménnych
v t, a konstantnim termtim odpovidaji konstantni funkce.

Priklad 5.4.6. Uvedme dva priklady:

o Hodnota termu —(zV L) Ay v Booleové algebte P ({0, 1,2}) pti ohodnoceni e ve kterém
e(z) ={0,1} a e(y) = {1,2} je {2}.

o Hodnota termu z + 1 ve strukture ' = (N, -, 3) jazyka L = (+,1) pii ohodnoceni e ve
kterém e(x) = 2 je (z + 1)V[e] = 6.

5.4.3 Pravdivostni hodnota formule

Nyni uz jsme pripraveni definovat pravdivostni hodnotu. Lokélné pro ni zavedeme znaceni PH.

Definice 5.4.7 (Pravdivostni hodnota). Mé&jme formuli ¢ v jazyce L, strukturu A € My,
a ohodnoceni proménnych e : Var — A. Pravdivostni hodnota ¢ v A pri ohodnoceni e,
PHA()[e], je definovana induktivné podle struktury formule:
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Pro atomickou formuli ¢ = R(ty,...,t,) mame

PHA(p)[e] = {1 pokud (t'[e], ..., ti[e]) € RA,

0 jinak.
Specialng, je-li ¢ tvaru t; = ty, potom PHA(p)[e] = 1 pravé kdyz (t]e], t4'[e]) € =4, kde =4

je identita na A, tj. pravé kdyz t1[e] = t5'[e] (obé strany rovnosti jsou stejny prvek a € A).
Pravdivostni hodnota negace je definovana takto:

PHA(=¢)[e] = f-(PHA(p)[e]) = 1 — PHA(p)[e]
Obdobné pro binarni logické spojky, jsou-li p,v a O € {A,V,—, <>}, potom:

PHA(p O ¢)[e] = fo(PHA(0)[e], PHA()[¢])

Zbyva definovat pravdivostni hodnotu pro kvantifikitory, tj. formule tvaru (Qz)¢. Budeme
potiebovat nasledujici znaceni: Zménime-li v ohodnoceni e : Var — A hodnotu pro proménnou
x na a, vysledné ohodnoceni zapiseme jako e(z/a). Plati tedy e(z/a)(x) = a. Pravdivostni
hodnotu pro (Qz)p definujeme takto:

PHA((V2)p)[e] = E%IQ(PHA( o)le(z/a)])

PHA((3z)¢)[e] = max(PHA(p)[e(z/a)])

acA

Tedy v ohodnoceni e nastavime hodnotu proménné x postupné na vsechny prvky a € A a
pozadujeme, aby PH byla rovna 1 vzdy (v pfipadé V) nebo alespon jednou (v piipadé EI)E

Pozndmka 5.4.8. Pravdivostni hodnota zavisi pouze na ohodnoceni volnych proménnych. Spe-
cidlné, je-li ¢ sentence, potom jeji pravdivostni hodnota nezavisi na ohodnoceni.

Priklad 5.4.9. Vezméme si uspoiddané téleso Q. Potom:
o PHY(z <1A—(z <0))[e] =1 pravé kdyz e(z) € (0,1],

» PHE((V2)(z -y = y))le] = 1 pravé kdyz e(y) =0,
o PHY((3z)(z < 0A -z =0))[e] = 1 pro kazdé ohodnoceni e (je to sentence), ale
« PHA((32)(z < 0A -~z = 0))][e] = 0 (pro kazdé e), jeli A = (N,+,—,0,-,1,<) se

standardnimi operacemi a usporadanim.
5.4.4 Platnost
Na zakladé pravdivostni hodnoty uz muzeme definovat klicovy pojem sémantiky, platnost.

Definice 5.4.10 (Platnost ve struktute). Mé&jme formuli ¢ a strukturu A (ve stejném jazyce).

o Je-li e ohodnoceni a PHA(p)[e] = 1, potom ikéme, ze ¢ plati v A pri ohodnocent e,
a piseme A = ple]. (V opa¢ném pripadé fikdme, ze ¢ neplati v A pri ohodnoceni e, a
piseme A F~ ¢le].)

9P¥ipomenme, 7e fa(z,y) = min(z,y) a fv(z,y) = max(z,y). Kvantifikitory tedy hraji roli konjunkce’ (V)
resp.disjunkce’ (3) pres vSechny prvky struktury.
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o Pokud ¢ plati v A pii kazdém ohodnoceni e : Var — A, potom Fikdme, Ze ¢ je pravdivd
(plati) v A, a piSeme A = ¢

o Pokud A = -y, tj. ¢ neplati v A pri zddném ohodnoceni (pro kazdé e mame A j~= ¢le]),
potom je ¢ IZivd v Am

Shriime nékolik jednoduchych vlastnosti, nejprve tykajicich se platnosti pti ohodnoceni.
Bud A struktura, ¢, formule, a ¢ ohodnoceni.

o A —ple] pravé kdyz A [£ ¢,
A= (o A)[e] prave kdyz A |= gle] a A = 1)le],
A= (¢ Vi)le] praveé kdyz A |= ¢le] nebo A = ¢le],

(

(
A= (p — )[e] prévé kdy? plati: jestlize A = p[e] potom A = [e],
( )
(
(

A = (p < 1)[e] pravé kdyz plati: A | ¢le] pravé kdyz A = [e],
o Al (Vx)yple] praveé kdyz A = ple(x/a)] pro vSechna a € A,

A l= (3z)ple] praveé kdyz A = ple(z/a)] pro néjaké a € A.

Je-li term t substituovatelny za proménnou x do formule ¢, potom

A o(z/t)[e] prave kdyz A |= ple(z/a)] pro a = t*[e].

Je-li ¢ varianta ¢, potom A = ple] prave kdyz A = ile].
Cvicent 5.3. Dokazte podrobné vsechny uvedené vlastnosti platnosti pti ohodnoceni.
A jak je tomu s pojmem pravdivosti (platnosti) ve strukture?

o Pokud A | ¢, potom A [£ —p. Je-li ¢ sentence, potom plati i opaéna implikace (tj.
plati ‘pravé kdyz’).

e« AE @AY pravékdyz Al g a A,

o Pokud A = ¢ nebo A = 1, potom A | ¢ V1. Je-li ¢ sentence, potom plati i opacné
implikace (tj. plati ‘pravé kdyz’).

o A ¢ pravé kdyz A = (V).

Generdlni uzdver formule (x1,...,2,) (tj. 1,..., 2, jsou vSechny volné proménné formule
©) je sentence (V1) - - - (Vay,)p. Z posledniho bodu plyne, Ze formule plati ve struktute, pravé
kdyz v ni plati jeji generalni uzavér.

Cuiceni 5.4. Dokazte podrobné vSechny uvedené vlastnosti platnosti ve struktufe.

Cwviceni 5.5. Najdéte priklad struktury A a formule ¢ takovych, ze A [~ ¢ a zaroven A [~ —p.
Cwviceni 5.6. Najdéte priklad struktury A a formuli ¢, 1) takovych, ze A = p V¢ ale A |~ ¢
ani A f= 1.

20Pogor, IZivd neni totéz, co nent pravdivd! To plati jen pro sentence.
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5.5 Vlastnosti teorii

Na zakladé pojmu platnosti vybudujeme sémantickou terminologii obdobné jako ve vyrokové
logice. Teorie jazyka L je libovolnd mnozina T' L-formuli, prvkim teorie fikdme aziomy. Model
teorie T' je L-struktura, ve které plati vSechny axiomy teorie T, tj. A |= ¢ pro vSechna ¢ € T
coz zna¢ime A = T. Trida modellﬂ teorie T je:

M(T) = {A e My | A T}

Stejné jako ve vyrokové logice budeme ¢asto vynechavat jazyk L, bude-li zrejmy z kontextu,
a budeme psat M (1, ..., pn) misto M ({¢1,...,¢n}) a M(T, ) misto M(T U{p}).

5.5.1 Platnost v teorii
Je-li T teorie v jazyce L a ¢ L-formule, potom fikame, ze ¢ je:

o pravdivd (plati) v T, zna¢ime T |= ¢, pokud A |= ¢ pro vsechna A € M(T) (neboli:
M(T') € M(¢)),

o [Zivd v T, pokud T |= =y, tj. pokud je 1ziva v kazdém modelu T' (neboli: M(T)NM(y) =
0),

e nezdvislda v T, pokud neni pravdiva v T ani 1ziva v T.

Maéme-li prazdnou teorii ' = ) (tj. M(T') = My), potom teorii T vynechdvame, piSeme = ¢,
a fikdme, Ze ¢ je pravdivd (v logice), (logicky) plati, je tautologie; podobné pro ostatni pojmy.
Teorie je spornd, jestlize v ni plati spor L, ktery v predikatové logice mizeme definovat
jako R(x1,...,zn) AN R(z1,...,2,), kde R je libovolny (tfeba prvni) relaéni symbol z jazyka
nebo rovnost (neméa-li jazyk rela¢ni symbol, musi byt s rovnosti). Teorie je spornd, pravé kdyz
v ni plati kazda formule, nebo, ekvivalentné, pravé kdyz nema zadny model. Jinak fikame, ze
je teorie bezespornd (neplati-li v ni spor, ekvivalentné ma-li alespon jeden model).
Sentencim pravdivym v T fikame disledky T'; mnoZina vsech dusledkid T v jazyce L je:

Csqp(T) = {¢ | ¢ je sentence a T' = ¢}

Kompletnost v predikatové logice

Jak je tomu s pojmem kompletnosti teorie?@

Definice 5.5.1 (Kompletni teorie). Teorie je kompletni, je-li bezesporna a kazda sentence je
v ni bud pravdiva, nebo 1ziva.

Nemitizeme ale Tici, Ze je teorie kompletni, pravé kdyz ma jediny model. Mame-li totiz
jeden model, dostavame z néj nekonec¢né mnoho jinych, ale izomorfnich modela, tj. liSicich
se jen pojmenovanim prvku univerza@ Uvazovat jediny model ‘az na izomorfismus’ by ale
nebylo dostatecné. Spravnym pojmem je tzv. elementdrni ekvivalence:

21 P¥ipometime, 7e nemizeme fikat ‘mnozina’.

2Zp¥ipomenime, ze vgjrokovd teorie je kompletni, je-li bezesporni a kazdy vyrok v ni bud plati, nebo plati
jeho negace. Ekvivalentné, ma praveé jeden model.

ZFormalné pojem izomorfismu definujeme pozd&ji v Easti o teorii modeli, v Sekci jde ale o zobecnéni
izomorfismu ktery znate z teorie grafi.
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Definice 5.5.2 (Elementarné ekvivalentni struktury). Struktury A, B (v témz jazyce) jsou
elementdrné ekvivalentni, pokud v nich plati tytéz sentence. Znac¢ime A = B.

Priklad 5.5.3. Prikladem struktur, které jsou elementarné ekvivalentni, ale ne izomorfni, jsou
usporddané mnoziny A = (Q,<) a B = (R, <). Izomorfni nejsou proto, ze Q je spocetna
zatimco R nespocetnd mnozina, neexistuje tedy dokonce zadné bijekce mezi jejich univerzy.
Neni tézké ukazat, ze pro kazdou sentenci ¢ plati A = ¢ < B | ¢: indukei podle struktury
formule ¢, jediny netrividlni pfipad je existenc¢ni kvantifikator, a klicovou vlastnosti je hustota
obou usporadani, tj. nasledujici vlastnost:

(x<yN-z=y)— F)(z<zAz<yA-x=zA-Yy=2)
Pozorovani 5.5.4. Teorie je kompletni, pravée kdyz md prdavé jeden model az na elementdrni
ekvivalenci.
Platnost pomoci nesplnitelnosti

Otézku pravdivosti (platnosti) v dané teorii lze pfevést na problém existence modelu:

Tvrzeni 5.5.5 (O nesplnitelnosti a pravdivosti). Je-li T teorie a ¢ sentence (ve stejném
jazyce), potom plati: T U {—p} nemd model, privé kdyz T |= .

Diikaz. Plati nasledujici ekvivalence: T'U{—¢} nemda model, pravé kdyz —¢ neplati v zddném
modelu 7', pravé kdyz (nebot je to sentence) ¢ plati v kazdém modelu 7' O

Predpoklad, ze ¢ je sentence, je nutny: uvazte teorii 7' = {P(c)} a formuli ¢ = P(z) (coz
neni sentence). Potom {P(c), 7P (z)} nemda model, ale P(c) = P(z). (Zde P je unarni relacni,
a ¢ konstantni symbol.)

5.5.2 Priklady teorii

Uvedme nékolik ptikladi dulezitych teorii.

Teorie grafa

Teorie grafi je teorie v jazyce L = (E) s rovnosti, splnujici axiomy ireflezivity a symetrie:
Tgraph = {_|E(ZL‘, $)7 E(I’, y) — E(y7 .iU)}

Modely Tgraph jsou struktury G = (G, E9), kde EY je symetricks ireflexivni relace, jde tedy o
tzv. jednoduché grafy, kde hranu {z, y} reprezentuje dvojice usporadanych hran (z,y), (y, z).
o Formule -z =y — E(x,y) plati v grafu, pravé kdyz jde o dplng graf. Je tedy nezavisla

V Tgraph-
« Formule (3y1)(Jy2)(—y1 = y2 A E(z,y1) A E(w,y2) A (V2)(E(x,2) > 2 = y1 V 2 = 12))

vyjadiuje, ze kazdy vrchol ma stupen pravé 2. Plati tedy pravé v grafech, které jsou
disjunktni sjednoceni kruznic, a je nezavisla v teorii Tgraph.
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Teorie usporadani
Teorie usporaddni je teorie v jazyce usporadani L = (<) s rovnosti, jejiz axiomy jsou:
T={x<ux,

r<YyYNy<z—z=y,
r<yANy<z—oz<z}

Témto axiomtum fikdme reflerivita, antisymetrie, tranzitivita. Modely T jsou L-struktury
(S, <5), ve kterych plati axiomy T, tzv. (¢dstecné) usporddané mnoZiny. Napi: A = (N, <),
B=(P(X),C) pro X ={0,1,2}.

o Formule z < y VvV y < z (linearita) plati v A, ale neplati v B, nebot neplati napi. pii
ohodnoceni kde e(z) = {0}, e(y) = {1} (piSeme B [~ ple]). Je tedy nezéavisla v T.

o Sentence (3z)(Vy)(y < z) (oznacme ji ¢) je pravdivd v B a lziva v A, piSeme B = 1,
A | ). Je tedy také nezavisla v T

o Formule (t < yAy<zAz<z)—(r=yAy=2) (oznaéme ji x) je pravdivd v T,
piseme T' |= x. Totéz plati pro jeji generdlni uzaver (Vx)(Vy)(Vz)x.

Algebraické teorie
o Teorie grup je teorie v jazyce L = (+,—,0) s rovnosti, jejiz axiomy jsou:

Ti={x+y+z2)=(x+y)+z,
O+zxz=z, +0==x,
z+(—z)=0, (—z)+z =0}

Témto vlastnostem rikdme asociativita +, neutralita 0 vici 4+, a —x je inverzni prvek k
x (vici + a 0).

o Teorie komutativnich grup mé navic axiom = + y = y + x (komutativita +), je tedy:

T2:T1U{:v+y=y+x}

o Teorie okruhi je v jazyce L = (+,—,0,+,1) s rovnosti, mé& navic axiomy:

TgZTQU{l-[E:x'l,

T (y-z)=(z-y) 2
z-(y+z2)=x-y+ax-z,
(x4y) - z=z-2+y-z}

Témto vlastnostem fikdme neutralita 1 vici -, asociativita -, a (levd i pravd) distributivita
- vUcT +.
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o Teorie komutativnich okruhi ma navic axiom komutativity -, mame tedy:

T4:T3U{x-y:y~a:}

o Teorie teles je ve stejném jazyce, ale mé navic axiomy existence inverzniho prvku k - a
netriviality:
Ts=TyU{-z=0— Fy)(z-y=1),-0=1}

o Teorie usporddaniych téles je v jazyce (+,—,0,-,1, <) s rovnosti, sestava z axiomu teorie
téles, teorie usporadani spolu s axiomem linearity, a z nasledujicich axiomt kompatibility
usporadini: t <y—(r+2<y+2)a(0<zA0<y)—=0<x-y. (Modely jsou tedy
télesa s linedrnim (totdlnim) usporadanim, které je kompatibilni s télesovymi operacemi
v tomto smyslu.)

5.6 Podstruktura, expanze, redukt

V této sekci se podivame na zpusoby, jak mizeme vytvaret nové struktury z existujicich.

Podstruktura

Pojem podstruktury zobecnuje podgrupy, podprostory vektorového prostoru, a indukované
podgrafy grafu: vybereme néjakou podmnozinu B univerza struktury A, a vytvorime na ni
strukturu B stejné signatury, kterd ‘zdédi’ relace, funkce, a konstanty. Abychom to mohli
provést, potrebujeme, aby byla mnozina B uzavrend na vsechny funkce a obsahovala vsechny
konstanty@

Definice 5.6.1 (Podstruktura). M&me strukturu A = (A, RA, FA) v signatuie (R,F).
Struktura B = (B, RE, FB) je (indukovand) podstruktura A, znacime B C A, jestlize

« 0 #BCA,
e RB = RAN Ba®) pro kazdy relaéni symbol R € R,

o fB=fAN(B*O x B) pro kazdy funkéni symbol f € F (tj. funkce f5 je restrikce f4
na mnozinu B, a jeji vystupy jsou vsechny také z B),

e specidlng, pro kazdy konstantni symbol ¢ € F mame ¢® = ¢ € B.

Mnozina C' C A je uzavrend na funkei f: A™ — A, pokud f(x1,...,z,) € C pro vSechna
xz; € C. Plati:

Pozorovani 5.6.2. Mnozina O # C C A je univerzem podstruktury struktury A, prdvé kdyz
je C uzavrend na vsechny funkce struktury A (véetné konstant).

V tom pripadé fikdme této podstrukture restrikce A na mnozinu C, a zna¢ime ji A [ C.
Priklad 5.6.3. Z = (Z,+,-,0) je podstrukturou Q = (Q,+,-,0), mizeme psit Z = Q [ Z.

Struktura N = (N, +,-,0) je podstrukturou obou téchto struktur, N=Q [ N=Z [ N.

248tejné jako ne kazdd mnozina vektorti je podprostor, k tomu musi obsahovat nulovy vektor, ke kazdému
vektoru obsahovat vSechny jeho skalarni nasobky, a pro kazdou dvojici vektortu obsahovat jejich soucet. Jinymi
slovy, jen (neprdzdné) mnoziny uzaviené na linedrni kombinace vektoru dévaji vzniknout podprostoram.
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Platnost v podstrukture

Jak je tomu s platnosti formuli v podstrukture? Uvedme nékolik jednoduchych pozorovani o
otevrengjch formulich.

Pozorovani 5.6.4. Je-li B C A, potom pro kazZdou otevienou formuli ¢ a ohodnoceni pro-
meéennych e: Var — B plati: B = ¢le] prdvé kdyz A = ¢le].

Dikaz. Pro atomické formule je ziejmé, déle snadno dokdzeme indukci podle struktury for-
mule. O

Daisledek 5.6.5. Oteviena formule plati ve strukture A, prave kdyz plati v kazZdé podstrukture
BCA.

Rikame, Ze teorie T je otevrend, jsou-li vSechny jeji axiomy oteviené formule.

Disledek 5.6.6. Modely otevrené teorie jsou uzavrené na podstruktury, tj. kaZdd podstruktura
modelu otevrené teorie je také model této teorie.

Priklad 5.6.7. Teorie grafu je oteviena. Kazdd podstruktura grafu (modelu teorie grafii) je
také graf, rikdme mu (indukovany) podgmf@ Podobné napr. pro podgrupy nebo Booleovy
podalgebry.

Priklad 5.6.8. Teorie téles neni oteviend. Jak si ukdzeme pozdéji, neni dokonce ani otevrené
azriomatizovatelnd, tj. neexistuje ji ekvivalentni oteviend teorie—kvantifikdtoru v axiomu o
existenci inverzniho prvku se nelze nijak zbavit. Podstruktura télesa redlnych cisel Q na
mnoziné vsech celych ¢isel Q [ Z neni téleso. (Je to tzv. okruh, ale nenulové prvky kromé
1, —1 nemaji multiplikativni inverz, napf¥. rovnice 2 -z = 1 nemd v Z feseni).

Generovana podstruktura

Co délat, mame-li podmnozinu univerza, kterd neni uzavrend na funkce struktury? V tom
pripadé uvazime wuzdvér této mnoziny na funkce@

Definice 5.6.9 (Generovana podstruktura). Méjme strukturu A = (A, RA, FA) a neprazd-
nou podmnozinu X C A. Ozna¢me jako B nejmensi podmnozinu A, kterda obsahuje mnozinu
X a je uzaviend na vSechny funkce struktury A (tj. také obsahuje vSechny konstanty). Potom
o podstrukture A | B fikame, ze je generovand mnozinou X, a znac¢ime ji A(X).

Priklad 5.6.10. Uvazme struktury Q = (Q,+,-,0), Z = (Z,+,-,0), a N = (N, +,-,0). Potom
Q{1}) =N, Q({—-1}) =Z, a Q({2}) je podstruktura N na mnoziné vsech sudych cisel.

Priklad 5.6.11. Pokud A neméd zadné funkce (ani konstanty), napf. je-li to graf ¢i uspordadéni,
potom neni ¢im generovat, a A(X) = A | X.

25Samotny pojem podgraf v teorii grafii ¢asto znamend jen E® C E4N (B x B), nikoliv E® = EAN (B x B).
My ale budeme pouzivat slovo podgraf ve striktnéjsim smyslu, jako indukovany podgraf.
26Viz pojem linedrniho obalu mnoziny vektort.
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Expanze a redukt

Prozatim jsme konstruovali nové struktury zmeénou univerza. Muzeme ale také nechat uni-
verzum stejné, a pridat resp. odebrat relace, funkce, a konstanty. Vysledku takové operace
rikame expanze resp. redukt. Vsimnéte si, ze jde o strukturu v jiné signatufe.

Definice 5.6.12 (Expanze a redukt). Mé&jme jazyky L C L, L-strukturu A, a L'-strukturu A’
na stejné doméné A = A’. JestliZe je interpretace kazdého symbolu z L [rela¢niho, funkéniho,
konstantniho] stejnd [relace, funkce, konstanta] v A i v A" potom Fikdme, ze struktura A’ je
expanzi struktury A do jazyka L’ (také fikdme, Ze je L'-expanzi) a Ze struktura A je reduktem
struktury A’ na jazyk L (také iikame, ze je L-reduktem).

Priklad 5.6.13. Méjme grupu celych ¢isel (Z,+, —, 0). Potom struktura (Z,+) je jejim reduk-
tem, zatimco struktura (Z,+, —,0,-,1) (okruh celych ¢isel) je jeji expanzi.

Priklad 5.6.14. Mé&jme graf G = (G, EY). Potom struktura (G, EY, c¢9)cq v jazyce (E, ¢,)veq,
kde ¢J = v pro viechny vrcholy v € G, je expanzi G o jména proki (z mnoZiny G).

5.6.1 Véta o konstantach

Véta o konstantdch tika (neformélné), ze splnit formuli s jednou volnou proménnou je to-
téz, co splnit sentenci, ve které je tato volnd proménnd nahrazena (substituovdna) novgm
konstantnim symbolem (ktery neni nijak svizany zadnymi axiomy). Klicem je fakt, ze tento
novy symbol mize byt v modelech interpretovan jako libovolny (tj. kazdy) prvek. Tento trik
pozdéji vyuzijeme v tablo metodé.

Véta 5.6.15 (O konstantach). Méjme formuli ¢ v jazyce L s volngmi proménnymi 1, . . . , Ty
Oznacéme L' rozsireni jazyka o nové konstantni symboly c1,...,cn a bud T’ stejnd teorie jako
T ale v jazyce L'. Potom plati:

T = ¢ prave kdyz T' = @(z1/c1, ..., Tn/Cn)

Dikaz. Tvrzeni sta¢i dokdzat pro jednu volnou proménnou z a jednu konstantu ¢, indukci se
snadno rozsiti na n konstant.

Predpokladejme nejprve, ze ¢ plati v kazdém modelu teorie T'. Chceme ukézat, ze ¢(x/c)
plati v kazdém modelu A’ teorie T'. Vezméme tedy takovy model A’ a libovolné ohodnocent
e: Var — A’ a ukazme, ze A’ = o(x/c)e].

Ozna¢me jako A redukt A’ na jazyk L (‘zapomeneme’ konstantu ¢ ). VSimnéte si, ze A je
model teorie T' (axiomy T jsou tytéz jako T”, neobsahuji symbol ¢) tedy v ném plati ¢. Protoze
dle predpokladu plati A = p[e/] pro libovolné ohodnoceni ¢, plati i pro ohodnoceni e(z/c*)
ve kterém ohodnotime proménnou z interpretaci konstantniho symbolu ¢ ve struktuie A’,
méme tedy A = ple(z/c?)]. To ale znamend, ze A’ = ¢(z/c)[e], coz jsme chtéli dokézat.

Naopak, predpokladejme, Ze p(z/c) plati v kazdém modelu teorie 77 a ukazme, Ze ¢ plati
v kazdém modelu A teorie T'. Zvolme tedy takovy model A a néjaké ohodnoceni e: Var — A
a ukazme, ze A = ple].

Oznac¢me jako A’ expanzi A do jazyka L', kde konstantni symbol ¢ interpretujeme jako
prvek ¢ = e(z). Protoze dle predpokladu plati A’ = ¢(x/c)[€/] pro vSechna ohodnoceni ¢/,
plati i A’ = p(x/c)[e], coz ale znamend, ze A’ = gle]. (Nebot e = e(z/c?) a A | p(x/c)]e]
plati pravé kdyz A’ = gle(z/c?)], coz je A" = ple].) Formule ¢ ale neobsahuje ¢ (zde
pouzivame, ze ¢ je novy), mame tedy i A = ple]. O

)
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5.7 Extenze teorii

Pojem extenze teorie definujeme stejné jako ve vyrokové logice:

Definice 5.7.1 (Extenze teorie). Mé&jme teorii T' v jazyce L.
o Fatenze teorie T je libovolnd teorie 7" v jazyce L' O L splnujici Csqy (1) C Csqp/ (T7),
e je to jednoduchd extenze, pokud L' = L,

e je to konzervativni extenze, pokud Csqy (T) = Csqp(T") = Csqp (T") N Fmy, kde Fmy,
zna¢i mnozinu vsech formuli v jazyce L.

o Teorie T (v jazyce L) je ekvivalentni teorii T, pokud je T" extenzi T' a T extenzi T".

Podobné jako ve vyrokové logice, pro teorie ve stejném jazyce plati nasledujici sémanticky
popis téchto pojmii:

Pozorovani 5.7.2. M¢&jme teorie T, T" v jazyce L. Potom:
o T’ je extenze T, pravé kdyz My (T') C ML (T).
o T je ekvivalentni s T, prdvé kdyz Mp(T") = M (T).

Jak je tomu v pripadé, kdy teorie T” je nad vét$im jazykem nez T'? Pripomenime situaci ve
vyrokové logice, popsanou v Pozorovani Zformulujeme a dokazeme analogické tvrzeni:
Zatimco ve vyrokové logice jsme pridavali hodnoty pro nové prvovyroky, resp. je zapominali,
v predikatové logice budeme expandovat resp. redukovat struktury, tj. pridavat nebo zapomi-
nat interpretace relacnich, funkénich, a konstantnich symbolu. Princip obou tvrzeni (i jejich
dukaz) je ale stejny.

Tvrzeni 5.7.3. Méjme jazyky L C L', teorii T v jazyce L, a teorii T' v jazyce L.
(i) T je extenzi teorie T, prdvé kdyz redukt kazdého modelu T' na jazyk L je modelem T.

(ii) Pokud je T' extenzi teorie T, a kaZdy model T lze expandovat do jazyka L' na néjaky
model teorie T', potom je T' konzervativni extenzi teorie T .

Poznamka 5.7.4. V ¢asti (ii) plati i opacna implikace, dikaz ale neni tak jednoduchy, jako
ve vyrokové logice, a proto ho neuvedeme. (Problémem je jak ziskat z modelu T' ktery nelze
expandovat na model 77 L-sentenci, kterd plati v T ale ne v 7".)

Diikaz. Nejprve dokazme (i): Mé&me model A’ teorie T' a oznacme jako A jeho redukt na
jazyk L. Protoze T’ je extenzi teorie T, plati v T, a tedy i v A’, kazdy axiom ¢ € T. Potom
ale i A = ¢ (¢ obsahuje jen symboly z jazyka L), tedy A je modelem T

Na druhou stranu, méjme L-sentenci ¢ takovou, ze T = . Chceme ukdzat, ze T = .
Pro libovolny model A" € M/ (T") vime, ze jeho L-redukt A je modelem T, tedy A = ¢. Z
toho plyne i A’ = ¢ (opét proto, ze ¢ je v jazyce L).

Nyni (ii): Vezméme libovolnou L-sentenci ¢, kterd plati v teorii 77, a ukazme, ze plati i v
T. Kazdy model A teorie T lze expandovat na né&jaky model A’ teorie T’. Vime, ze A" |= ¢,
takze i A = ¢. Tim jsme dokézali, ze T |= ¢, tj. jde o konzervativni extenzi.

O
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5.7.1 Extenze o definice

Nyni si ukdzeme specidlni druh konzervativni extenze, tzv. extenzi o definice novych (relac-
nich, funkénich, konstantnich) symboli.

Definice relacniho symbolu

Nejjednodussim pripadem je definovani nového rela¢niho symbolu R(z1,. .., x,). Jako definice
muze slouzit libovolnd formule s n volnymi proménnymi ¥ (x1, ..., x,).

Priklad 5.7.5. Uvedme nejprve nékolik prikladi:

e Jakoukoliv teorii v jazyce s rovnosti muzeme rozsitit o binarni relaéni symbol #, ktery
definujeme formuli —x1 = x9. To znamenad, ze pozadujeme, aby platilo: x1 # zo<> -1 =
To.

e Teorii usporddani mizeme rozsitit o symbol < pro ostré usporadani, ktery definujeme
formuli 1 < x9 A =x1 = 9. To znamena, Ze pozadujeme, aby platilo 1 < x9 > 1 <
To N\ X1 = 9.

o V aritmetice muzeme zavést symbol <, pomoci z1 < x9 <> (Jy)(z1 +y = z2).
Nyni uvedeme definici:

Definice 5.7.6 (Definice rela¢niho symbolu). Mé&jme teorii T" a formuli ¢(z1, ..., zy,) v jazyce
L. Oznacme jako L’ rozsiten{ jazyka L o novy n-arni relacni symbol R. Extenze teorie T o
definici R formuli 1) je L'-teorie:

T,:TU{R(xl,-Ha:En) < 1/’(5751’---71“71)}

Vsimnéte si, ze kazdy model T lze jednoznacné expandovat na model T”. Z Tvrzeni m
potom ihned plyne nésledujici:

Dausledek 5.7.7. T' je konzervativni extenze T.

Ukéazeme si jesté, ze novy symbol lze ve formulich nahradit jeho definici, a ziskat tak
(T"-ekvivalentni) formuli v ptivodnim jazyce:

Tvrzeni 5.7.8. Pro kaZdou L'-formuli ¢ existuje L-formule ¢ takovd, Ze T' = ¢’ + .

Dikaz. Je tfeba nahradit atomické podformule s novym symbolem R, tj. tvaru R(t1,...,ty).
Takovou podformuli nahradime formuli ¢/ (z1 /t1,. .., 2, /t,), kde ¢ je varianta 1) zarucujici
substituovatelnost vSech termi, tj. napriklad prejmenujeme vsechny vdzané proménné ) na
zcela nové (nevyskytujici se ve formuli ¢'). O

Definice funkéniho symbolu

Novy funkéni symbol definujeme obdobnym zptisobem, musime si ale byt jisti, Ze definice
déva jednoznacnou moznost, jak novy symbol interpretovat jako funkci.

Priklad 5.7.9. Opét zacneme priklady:
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e V teorii grup mizeme zavést bindrni funkéni symbol —; pomoci 4+ a unarniho — takto:
T —pT2 =Y < 1+ (—T2) =Y
Je ziejmé, ze pro kazda x,y existuje jednoznacné z splnujici definici.

o Uvazme teorii linedrnich uspordddni, tj. teorii usporadani spolu s axiomem linearity
x < yVy < z. Definujme bindarni funkéni symbol min takto:

min(zy,z2) =y ¢ y< 1 Ay<zaAV2)(z<z1A2<29—>2<Y)

Existence a jednoznacnost plati diky linearité. Pokud bychom ale méli pouze teorii uspo-
fadani, takova formule by nebyla dobrou definici: v nékterych modelech by min(zy, x2)
pro nékteré prvky neexistovalo, selhala by tedy pozadovana ezistence.

Definice 5.7.10 (Definice funkéniho symbolu). Méjme teorii 7' a formuli ¢(x1,..., 2y, y) v
jazyce L. Oznac¢me jako L' rozsiteni jazyka L o novy n-arni funkéni symbol f. Necht v teorii
T plati:

o axiom ezistence (Jy)v(x1,...,Tn,Y),
o aziom jednoznacnosti Y(z1,...,Tn,y) NV(T1,...,Tn,2) >y = 2.

Potom extenze teorie T o definici f formuli 1) je L'-teorie:

T/:TU{f(.Tl,...,.Tn):y « w(xlv"'axnay)}

Formule v tedy definuje v kazdém modelu (n + 1)-arni relaci, a po této relaci pozadu-
jeme, aby byla funkci, tj. aby pro kazdou n-tici prvkia existovala jednoznac¢né moznost, jak ji
rozsitit do (n + 1)-tice, kterd je prvkem této relace. VSimnéte si, ze je-li definujici formule
tvaru t(x1,...,x,) =y, kde z1,...,x, jsou proménné L-termu ¢, potom axiomy existence a
jednoznacnosti vzdy plati.

Opét plati, ze kazdy model T lze jednoznacné expandovat na model 7', tedy:

Dusledek 5.7.11. T’ je konzervativni extenze T .
A plati také stejné tvrzeni o rozvadéni definic:
Tvrzeni 5.7.12. Pro kazdou L'-formuli ¢’ existuje L-formule ¢ takovd, Ze T' = ¢’ <> .

Diikaz. Staci dokdzat pro formuli ¢ s jedinym vyskytem symbolu f; je-li vyskytu vice, apli-
kujeme postup induktivné, v pfipadé vnofenych vyskytiu v jednom termu f(...f(...)...)
postupujeme od vnitinich k vnéjsim.

Ozna¢me ¢* formuli vzniklou z ¢’ nahrazenim termu f(¢y,...,t,) novou proménnou z.
Formuli ¢ zkonstruujeme takto:

(B2) (" AV (z1/t1, .. 0 /tn, y/2))

kde 1)’ je varianta 1) zarucujici substituovatelnost vsech termi.
Mé&jme model A teorie T” a ohodnoceni e. Ozna¢me a = (f(t1,...,t,))*[e]. Diky existenci
a jednoznacnosti plati:

A @1/t on/tay/2)le] pravé kdyz e(z) = a

Mame tedy A | ¢[e], prave kdyz A |= ¢*[e(z/a)], pravé kdyz A = ¢[e]. To plati pro libovolné
ohodnoceni e, tedy A |= ¢’ <+ ¢ pro kazdy model T’ tedy T | ¢’ <> . O

85



Definice konstantniho symbolu

Konstantni symbol je specidlnim piipadem funkéniho symbolu arity 0. Plati tedy stejna tvr-
zeni. Axiomy existence a jednoznac¢nosti jsou: (Jy)¥(y) a ¥(y) A ¥(z) =y = 2. A extenze o
definici konstantniho symbolu ¢ formuli ¥ (y) je teorie T/ =T U {c = y +> ¥ (y)}.

Priklad 5.7.13. Ukazeme si dva priklady:

o Libovolnou teorii v jazyce aritmetiky muzeme rozsirit o definici konstantniho symbolu
1 formuli ¥ (y) tvaru y = S(0), pfiddme tedy axiom 1 =y «+ y = S(0).

o UvaZme teorii téles a novy symbol %, definovany formuli y - (1 4+ 1) = 1, tj. pridanim
axiomu:
1
g=y ey A+l=1

Zde nejde o korektni extenzi o definici, nebot neplati axiom existence. Ve dvouprvkovém
télese Zg (a v kazdém télese charakteristiky 2) nemd rovnice y-(1+1) = 1 FeSeni, nebot
1+1=0.

Pokud ale vezmeme teorii téles charakteristiky rtizné od 2, tj. pridame-li k teorii téles

axiom —(1+ 1 = 0), potom uz pujde o korektni extenzi o definici. Naptiklad v télese Zs

. Z
mame% P =2,

Extenze o definice

Maéme-li L-teorii T a L'-teorii T, potom fekneme, ze T” je extenzi T o definice, pokud vznikla z
T postupnou extenzi o definice relacnich a funkénich (pfip. konstantnich) symboli. Vlastnosti,
které jsme dokézali o extenzich o jeden symbol (at uz rela¢ni nebo funkéni), se snadno rozsiii
indukci na vice symbolu:

Dusledek 5.7.14. Je-li T extenze teorie T o definice, potom plati:
o Kazdy model teorie T lze jednoznacné expandovat na model T .
o T’ je konzervativni extenze T .
o Pro kazdou L'-formuli ¢’ existuje L-formule ¢ takovd, Ze T' = ¢’ < .

Na zaveér jesté jeden priklad, na kterém si ukdzeme i rozvadéni definic:

Priklad 5.7.15. V teorii T = {(Jy)(r +y = 0),(r+y =0 A(x+ 2 = 0) > y = z} jazyka
L = (4,0, <) s rovnosti lze zavést < a undrni funkéni symbol — pfiddnim axiomi:

—r=y < z+y=0
<y < x<yA-(xr=y)

Formule —x < y (v jazyce L' = (+,—,0,<, <) s rovnosti) je v této extenzi o definice ekviva-
lentn{ nasledujici formuli:

(F)((z<yA-(z=y)Az+2=0)
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5.8 Definovatelnost ve strukture

Formuli s jednou volnou proménnou x miizeme chapat jako vlastnost prvkia. V dané strukture
takova formule definuje mnozinu prvku, které tuto vlastnost splnuji, tj. takovych, ze formule
plati pfi ohodnoceni e, ve kterém e(z) = a. Mame-li formuli se dvéma volnymi promén-
nymi, definuje binarni relaci, atp. Nyni tento koncept formalizujeme. Pfipomenme, ze zapis

o(z1,...,Ty) Znamena, ze iy, ..., T, jsou pravé vsechny volné proménné formule ¢.
Definice 5.8.1 (Definovatelné mnoziny). Mé&jme formuli ¢(x1,...,x,) a strukturu A v témz
jazyce. Mnozina definovand formuli p(x1, ..., z,) ve struktute A, znaéime p(x1, ..., z,), je:

@A(xh R .’L'n) = {(ala s 7an) €A” ‘ A ): (p[6($1/a1, R ,:):n/an)]}
Zkrécené totéz zapiseme také jako o (z) = {a € A" | A |= ple(z/a)]}.
Priklad 5.8.2. Uvedme nékolik prikladii:

o Formule —(3y)E(x,y) definuje mnozinu vsech izolovangch vrchola v daném grafu.

o Uvazme téleso redlnych ¢isel R. Formule (Jy)(y-y = x) A -z = 0 definuje mnozinu vSech
kladnych redlnych c¢isel.

o Formule 2 < y A ~2 = y definuje v dané uspofddané mnoziné (S, <%) relaci ostrého
uspordddni <5.
Casto se také hodi mluvit o vlastnostech prvki relativné k jinym prvkim dané struktury.
To nelze vyjadrit cisté syntakticky, ale mizeme za nékteré z volnych proménnych dosadit
prvky struktury jako parametry. Zépisem o(z,y) myslime, ze formule ¢ mé volné proménné
TlyeeoyTnyYls- -, Yk (pro néjaka n, k).

Definice 5.8.3 (Definovand mnozina s parametry). Méjme formuli (7,y), kde || = n a
|yl = k, strukturu A v témz jazyce, a k-tici prvki b € AF. Mnozina definovand formuli

©(Z, 1) s parametry b ve strukture A, znac¢ime o (z, %), je:
p0(@,9) = {ae A" | Al= ple(z/a,5/b)]}

Pro strukturu A a podmnozinu B C A ozna¢ime Df" (A, B) mnozinu vSech mnozin definova-
telnych ve struktufe A s parametry pochazejicimi z B.

Priklad 5.8.4. Pro ¢(x,y) = E(x,y) je ¢9"(z,y) mnozina viech sousedii vrcholu v.

Pozorovani 5.8.5. Mnozina DI"(A, B) je uzavrend na doplnék, pranik, sjednocent, a obsa-
huje O a A™. Jde tedy o podalgebru potencni algebry P(A™).

Definovatelnost nachazi ptrirozenou aplikaci v rela¢nich databazich, napt. ve znamém dotazo-
vacim jazyce SQL. Relacni databdze sestava z jedné nebo vice tabulek, nékdy se jim tika relace,
radky jedné tabulky jsou zdznamy (records), nebo také tice (tuples). Jde tedy v principu o
strukturu v ¢isté relacnim jazyce. Predstavme si databazi obsahujici dvé tabulky, Program a
Movies, zndzornéné na Obrazku

SQL dotaz ve své nejjednodussi formé (pomineme-li napt. agregacni funkce) je v podstaté
formule, a vysledkem dotazu je mnozina definovana touto formuli (s parametry). Napriklad,
kdy a kde mtzeme vidét film s Tomem Hanksem?
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cinema title time title director actor

Atlas Forrest Gump 20:00 Forrest Gump R. Zemeckis T. Hanks
Lucerna Forrest Gump 21:00 Philadelphia J. Demme T. Hanks
Lucerna Philadelphia 18:30 Batman Returns T. Burton M. Keaton

Obrazek 5.3: Tabulky Program a Movies

select Program.cinema, Program.time from Program, Movies where
Program.title = Movies.title and Movies.actor = ‘T. Hanks’

Vysledkem bude mnozina @Database’ T. Hanks (Zcinemas Ttimes Yactor) definovand ve struktufe

Database = (D, Program, Movies), kde D = {‘Atlas’, ‘Lucerna’, ..., ‘M. Keaton’}, s parame-
trem ‘T. Hanks’ nasledujici formuli ¢(Zcinemas Ttimes Yactor)

(Elztitle) (Elzdirector) (Program(xcinemay Ztitles wtime) A MOVies(ztitle; Zdirector yactor))

5.9 Vztah vyrokové a predikatové logiky

Nyni si ukazeme, jak lze vyrokovou logiku ‘simulovat’ v logice predikatové, a to v teorii
Booleovych algeber. Nejprve predstavime axiomy této teorie:

Definice 5.9.1 (Booleovy algebry). Teorie Booleovych algeber je teorie jazyka L = (—, A, V, L, T)
s rovnosti sestavajici z nasledujicich axiomﬁF_?]

e asoctativita N\ a V: e absorpce:

zA(YNz)=(xAy) Az
zV(yVz)=(xVy) Vz zV(xAy)

—~~

<

SN—
|

o komutativita N a V:
o komplementace:

TANYy=yANzx
—z)=1
ztVy=yvVvox
—z)=T
o distributivita N\ vaci V a vV viaci A:
o netrivialita:
xA(yVz)=(xAy)V(zAz)
xV(yANz)=(xVy A(zVz) —(L=T)

Nejmensim modelem je 2-prvkovd Booleova algebra ({0,1}, f-, fa, fv,0,1). Konecné Bo-
oleovy algebry jsou (az na izomorfismus) prave ({0,1}", f*, f2, f7,(0,...,0),(1,...,1)), kde
f™ znamend, ze funkci f aplikujeme po slozkach

2TVsimnéte si duality: zdménou A s V a L s T ziskdme tytéz axiomy.
%8 Tyto Booleovy algebry jsou izomorfni potencénim algebrdm P({1,...,n}), izomorfismus je dany bijekci mezi
podmnozinami a jejich charakteristickymi vektory.
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Vyroky tedy muzeme chapat jako Booleovské termy (a konstanty L, T predstavuji pravdu
a lez), pravdivostni hodnota vyroku (pfi daném ohodnoceni prvovyrokii) je potom déna hod-
notou odpovidajictho termu v 2-prvkové Booleové algebte. Kromé toho, algebra vyroku daného
vyrokového jazyka nebo teorie je Booleovou algebrou (to plati i pro nekonecné jazyky).

Na druhou stranu, mame-li otevrenou formuli ¢ (bez rovnosti), muzeme reprezentovat
atomické vyroky pomoci prvovyroku, a ziskat tak vyrok, ktery plati, pravé kdyz plati .
Vice o tomto sméru se dozvime v Kapitole (7] (o rezoluci v predikatové logice), kde se nejprve
zbavime kvantifikdtora pomoci tzv. Skolemizace.

Vyrokovou logiku bychom také mohli zavést jako fragment logiky predikatové, pokud
bychom povolili nuldrni relace (a nularni relaéni symboly v jazyce): A° = {{}, tedy na libo-
volné mnoziné jsou pravé dvé nuldrni relace R4 € A% R4 =0 =0a R = {0} = {0} = 1.
To ale délat nebudeme.
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Kapitola 6

Tablo metoda v predikatové logice

V této kapitole ukazeme, jak lze zobecnit metodu analytického tabla z vyrokové na predika-
tovou logikuE] Metoda funguje velmi podobné, musime si ale poradit s kvantifikdtory.

6.1 Neformalni ivod

V této sekci tablo metodu v predikatové logice neformalné predstavime. K formélnim definicim
se vratime pozdéji. Zacneme dvéma priklady, na kterych ilustrujeme, jak tablo metoda v
predikatové logice funguje, a jak se vyporadava s kvantifikatory.

Priklad 6.1.1. Na Obrazku jsou znézornéna dvé tabla. Jsou to tablo dukazy (v logice,
tj. z prazdné teorie) sentenci (Ix)-P(x) — —(Vx)P(z) (vpravo) a =(Vz)P(x) — (Jz)—-P(x)
(vlevo) jazyka L = (P) (bez rovnosti), kde P je undrni relac¢ni symbol. Symbol ¢g je pomocny
konstanini symbol, ktery do jazyka pri konstrukci tabla priddvame.

Polozky

Formule v polozkach musi byt vzdy sentence, nebotf potiebujeme, aby mély v daném modelu
pravdivostni hodnotu (nezavisle na ohodnoceni proménnych). To ale neni zdsadni omezeni,
chceme-li dokézat, ze formule ¢ plati v teorii 7', miizeme nejprve nahradit formuli ¢ a vSechny
axiomy T jejich generdlnimi uzdvéry (tj. univerzalné kvantifikujeme vsechny volné proménné).
Ziskdme tak uzavrenou teorii T' a sentenci ¢’ a plati: 7" |= ¢’ praveé kdyz T = .

Kvantifikatory

Redukce polozek funguje stejné, pouzijeme tatdz atomickd tabla pro logické spojky (viz Ta-
bulka kde misto vyroku jsou ¢, sentence). Musime ale pfidat 4 nova atomickd tabla
pro T/F a univerzalni/existen¢ni kvantifikator. Tyto polozky délime na dva typy:

o typ “svédek”: polozky tvaru T(3x)p(z) a F(Va)p(z)
o typ “wSichni”: polozky tvaru T(Vz)p(z) a F(3z)p(z)

Priklady vidime v tablech na Obrazku (‘svédci’ jsou Cervené, ‘vSichni’ modfe).

!Na tomto misté je dobré pfipomenout si tablo metodu ve vyrokové logice, viz Kapitola
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F(3z)-P(z) —» —(Vz)P(x) F=(Vz)P(z) — (3x)—~P(z)

T(32)-P(z) T—(Vx)P(z)
F—(Vz)P(z) F(3z)-P(x)
T(Va)P(x) F (V) P(x)
T-P(co) FP(co)

FP(co) F(3z)-P(z)
T(Va)P(x) F-P(co)
TP(co) TP(co)
& 02y

Obrazek 6.1: Priklady tabel. Polozky typu ‘svédek’ jsou znazornény cervené, polozky typu
‘vSichni’ modre.

Kvantifikdtor nemtzeme pouze odstranit, nebot vysledna formule ¢(z) by nebyla sentenci.
Misto toho soucasné s odstranénim kvantifikatoru substituujeme za x néjaky konstantni term,
v nové polozce tedy bude sentence p(x/t). Jaky konstantni term ¢ substituujeme zélez{ na
tom, zda jde o polozku typu “svédek” nebo “vsichni”.

Pomocné konstantni symboly

Jazyk L teorie T, ve které dokazujeme, rozsifime o spocetné mnoho novych (pomocnich)
konstantnich symboli C = {cg,c1,co,...} (ale budeme psét i ¢,d,...), vysledny rozsifeny
jazyk oznacCime Lo. Konstantni termy v jazyce Lo tedy existuji, i pokud puvodni jazyk L
nemé zadné konstanty. A vzdy pri konstrukci tabla mame k dispozici néjaky movy, dosud
nepouzity (ani v teorii, ani v konstruovaném tablu) pomocny konstantni symbol ¢ € C.

Svédci

P1i redukci polozky typu “svédek” substituujeme za proménnou jeden z téchto novych, po-
mocnych symbolil, a to takovy, ktery dosud nebyl na dané vétvi pouzit. V pripadé polozky
T(3z)p(x) tedy mame Te(x/c). Tento konstantni symbol ¢ bude hrat roli (néjakého) prvku,
ktery danou formuli spliuje (resp. vyvraci, jde-li o polozku tvaru F(Vz)p(z)). Srovnejte s
Vétou o konstantdch (Véta|5.6.15)). Je dulezité, Ze symbol ¢ dosud nebyl na vétvi ani v teorii
nijak pouzit. Typicky ale poté pouzijeme polozky typu “vSichni”, abychom se dozvédéli, co
musi o tomto svédku platit.

Na Obrazku vidime ptiklad: polozka T(3z)—P(x) v levém tablu je redukovand, jeji
redukei vznikla polozka T—P(cy); co € C je pomocny symbol, na vétvi se dosud nevyskytoval
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(a je prvni takovy). Podobné pro polozku F(Vx)P(z) a FP(cy) v pravém tablu.

Vsichni

P1i redukei polozky typu “vsSichni” substituujeme za proménnou x libovolny konstantni term
t rozsiteného jazyka L¢. Z polozky tvaru T(Vz)p(x) tedy ziskdme polozku Ty(z/t).

Aby byla bezesporné vétev dokoncend, budou na ni ale muset byt polozky Ty(z/t) pro
vSechny konstantni Lo-termy ¢. (Musime ‘pouzit’ vSe, co polozka T(Vz)p(x) ‘F1ka’.) A stejné
pro polozku tvary F(3x)p(z).

Ve vyrokové logice jsme pouzivali konvenci, ze pii pripojovani atomickych tabel vynecha-
vame jejich kofeny (jinak bychom opakovali na vétvi tutéz polozku dvakrat). V predikatové
logice pouzijeme stejnou konvenci, ale s vgjimkou poloZek typu ‘vsichni’. U téch zapiseme i
koren pripojovaného atomického tabla. Pro¢ to délame? Abychom si pripomnéli, Ze s touto
polozkou jesté nejsme hotovi, ze musime pripojit atomicka tabla s jinymi konstantnimi termy.

Na Obrazku v levém tablu neni polozka T(Vx)P(x) redukovand. Jeji proni vjskyt
(4. vrchol shora) jsme zredukovali, substituujeme term t = ¢p, méame tedy @(x/t) = P(cp).
Pripojili jsme atomické tablo v sestavajici z téze polozky v kofeni T(Vz)P(x), kterou do
tabla zapiseme, a z polozky TP(cy) pod ni. Zatimco proni viskyt polozky T(Vz)P(z) je timto
redukovany, druhy vyskyt (7. vrchol shora) redukovany neni. Podobné pro polozku F(3z)—P(x)
v pravém tablu.

Tento ponékud technicky piistup k definici redukovanosti (vyskyti) polozek typu ‘vSichni’
se nam bude hodit v definici systematického tabla.

Jazyk

Nadéle budeme predpokladat, ze jazyk L je spoéetny’ﬂ 7 toho plyne, ze kazda L-teorie T' méa
jen spocetné mnoho axiomi, a také ze konstantnich termi v jazyce L¢ je jen spocetné mnoho.
Toto omezeni potrebujeme, nebot kazdé, i nekonecné tablo ma jen spocetné mnoho polozek,
a musime byt schopni pouzit vsechny axiomy dané teorie, a substituovat vSechny konstantni
termy jazyka Lc.

Nejprve také budeme predpokladat, ze jde o jazyk bez rovnosti, coz je jednodussi. Pro-
blémem je, ze tablo je ¢isté syntakticky objekt, ale rovnost mé specidlni sémanticky vyznam,
totiz musi byt v kazdém modelu interpretovana relaci identity. Jak adaptovat metodu pro
jazyky s rovnosti si ukdzeme pozdéji.

6.2 Formalni definice

V této sekci definujeme vsechny pojmy potrebné pro tablo metodu pro jazyky bez rovnosti.
K jazykim s rovnost{ se vratime v Sekci [6.3]

Bud L spocetnyj jazyk bez rovnosti. Oznac¢me jako Lo rozsiteni jazyka L o spoCetné mnoho
novych pomocngch konstantnich symbolu C' = {¢; | i € N}. Zvolme néjaké ocislovani kon-
stantnich termi jazyka L¢, ozna¢me tyto termy {¢; | i € N}.

Méjme néjakou L-teorii T a L-sentenci .

27 hlediska vypodetni logiky to neni velké omezeni.
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6.2.1 Atomicka tabla

Polozka je napis Ty nebo Fy, kde ¢ je néjakd Lco-sentence. Polozky tvaru T(3x)p(z) a
F(Vz)p(z) jsou typu ‘svédek’, polozky tvaru T(Vz)p(z) a F(Ix)p(x) jsou typu ‘wsichni’
Atomickd tabla jsou polozkami oznac¢kované stromy znézornéné v Tabulkich a6.2

| - A ] =
Ty A Ty <Y
| / N\
T=p T TV T =1 Te Fo
| / \ / N\ I
True | F% Ty T T¢ | Fo Ty | Ty Fy
Fo Vv Fo—1 Fo< ¢
| | / N\
F-gp Fony Fo T Te Fo
| / \ | | I
False | T¥ | Fe Fo Fy Fy Fyp Ty

Tabulka 6.1: Atomicka tabla pro logické spojky; ¢ a ¥ jsou libovolné Lo-sentence.

v | 3
T(Vz)e(x) | T(3z)e(z)
| |
True Top(z/ti) To(z/ci)
F(vo)e(z) | FEr)e()
| |
False Fo(z/ci) Fo(x/t;)

Tabulka 6.2: Atomicka tabla pro kvantifikatory; ¢ je Lo-sentence, x proménnd, t; libovolny
konstantni Lo-term, ¢; € C' je novy pomocny konstantni symbol (ktery se dosud nevyskytuje
na dané vétvi konstruovaného tabla).

6.2.2 Tablo dukaz

Definice v této ¢asti jsou témér identické odpovidajicim definicim z vyrokové logiky. Hlavni
technicky problém je jak definovat redukovanost polozek typu ‘vsichni’ na vétvi tabla: chceme
aby za proménnou byly substituovany wvsechny konstantni Lo-termy t;.

Definice 6.2.1 (Tablo). Konecné tablo z teorie T je usporadany, polozkami oznackovany
strom zkonstruovany aplikaci kone¢né mnoha néasledujicich pravidel:

e jednoprvkovy strom oznackovany libovolnou polozkou je tablo z teorie T,
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e pro libovolnou polozkou P na libovolné vétvi V, muzeme na konec vétve V pripojit
atomické tablo pro polozku P, pricemz je-li P typu ‘svédek’, mizeme pouzit jen pomocny
konstantni symbol ¢; € C, ktery se na vétvi V dosud nevyskytuje (pro polozky typu
‘vsichni” muzeme pouzit libovolny konstantni Lo-term ¢;),

¢ na konec libovolné vétve muzeme pripojit polozku Ta pro libovolny axiom teorie o € T.

Tablo z teorie T' je bud konec¢né, nebo i nekonecné: v tom piipadé vzniklo ve spocetné mnoha
krocich. Mazeme ho formélné vyjadrit jako sjednoceni 7 = |J;~o 7, kde 7; jsou konecna tabla
z T, 19 je jednoprvkové tablo, a 7;41 vzniklo z 7; v jednom krakuﬂ

Tablo pro polozku P je tablo, které mé polozku P v kofeni.

Pripomenme konvenci, ze pokud P neni typu ‘vSichni’, potom kofen atomického tabla
nebudeme zapisovat (nebot vrchol s polozkou P uz v tablu je).
Cuicent 6.1. Ukazte v jednotlivych krocich jak byla tabla z Obrazku zkonstruovéna.
Definice 6.2.2 (Tablo dikaz). Tablo dikaz sentence ¢ z teorie T je sporné tablo z teorie
T s polozkou Fy v koreni. Pokud existuje, je ¢ (tablo) dokazatelnd z T, piSeme T | o.

(Definujme také tablo zamitnuti jako sporné tablo s T v kofeni. Pokud existuje, je ¢ (tablo)
zamitnutelnd z T, tj. plati T |- —¢p.)

o Tablo je sporné, pokud je kazda jeho vétev sporna.

o Vétev je spornd, pokud obsahuje polozky T a Fi pro néjakou sentenci v, jinak je
bezespornd.

o Tablo je dokoncené, pokud je kazdé jeho vétev dokoncena.
e Vétev je dokoncend, pokud

— je spornd, nebo
— je kazda polozka na této vétvi redukovand a zaroven vétev obsahuje polozku Ta
pro kazdy axiom o € T'.
o Polozka P je redukovand na vétvi V prochézejici touto polozkou, pokud
— je tvaru T4 resp. F pro atomickou sentenci ¢ (tj. R(t1,...,t,), kde t; jsou kon-
stantni Lo-termy), nebo

— neni typu ‘vSichni’ a vyskytuje se na V' jako kofen atomického tablaﬁ (tj., typicky,
pri konstrukei tabla jiz doslo k jejimu rozvoji na V'), nebo

— je typu ‘vSichni’ a vSechny jeji vyskyty na V jsou na vétvi V' redukované.
e Vyskyt polozky P typu ‘vSichni’ na vétvi V je i-tg, pokud ma na V pravé i — 1 predki
oznacenych touto polozkou, a i-ty vyskyt je redukovang na V', pokud
— polozka P mé (i + 1)-ni vyskyt na V, a zdroven

— na V se vyskytuje polozka Tp(z/t;) (je-li P = T(Vz)p(z)) resp. Fo(z/t;) (je-li
P =F(3x)p(x)), kde t; je i-ty konstantni Lc—termﬂ

3Sjednoceni proto, ze v jednotlivych krocich piiddvame do tabla nové vrcholy, 7; je tedy podstromem i ;.
4Byt podle konvence tento kofen nezapisujeme.
5Tj. (typicky) uz jsme za z substituovali term ;.
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Vsimnéte si, ze je-li polozka typu ‘vSichni’ na néjaké vétvi redukovanda, musi mit na této
vétvi nekonec¢né mnoho vyskyti, a museli jsme v nich pouzit pri substituci vSechny moznosti,
tj. vSechny konstantni Lo-termy.

Priklad 6.2.3. Jako priklad sestrojme tablo dukazy v logice (z prazdné teorie) nésledujicich
sentenci:

(a) (Vz)(P(x) = Q(z)) = ((Vx)P(z) — (Vz)Q(x)), kde P, @ jsou undrni rela¢ni symboly.
(b) (Vx)(p(z)Ap(x)) < ((Va)p(z)A(V)p(x)), kde p(z), 1 (x) jsou libovolné formule s jedinou

volnou proménnou .

Vysledn4 tabla jsou na Obrazcich[6.2]a[6.3] Dvojice spornych poloZek jsou zndzornény cervené.
Rozmyslete si, jak byla tabla po krocich zkonstruovana.

F(Vz)(P(z) = Q(z)) = ((V2) P(z) — (V2)Q())

Obrazek 6.2: Tablo dikaz z Prikladu (a).

6.2.3 Systematické tablo a konec¢nost dikazu

V Sekci jsme ukazali, Ze neprodluzujeme-li sporné vétve (coz nemusime délat), potom
sporné tablo, specialné tablo dikaz, bude vzdy konecny. Stejny dikaz funguje i v logice
predikatové.

95



/ \
T(va)(p(x) Ap(x)) F(va)(p(x) Ay(x))
| |
F(vz)p(x) A (Va)i(x) T(Va)p(x) A (Vo) (z)
~ |
F(Vz)p(r) F(Vz)y(x) T(vVa)p(x)
| | |
Fo(co) Fy(co) T(Va)i(z)
|

VRN
Te(co) A (o) Te(co) AN(co)  Feoleo) Fy(co)
| | | |
T (co) T (co) T(Vz)p(x) T(Vr)y(x)
| | | |
T (co) T (co) Te(co) Te(co)
& & & &

Obrazek 6.3: Tablo dtikaz z Prikladu (b). Konstantu ¢y miuzeme pouzit jako novou ve
vSech trech pripadech. Staci, ze se zatim nevyskytuje na dané vétvi.
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Disledek 6.2.4 (Kone¢nost dukazi). Pokud T |- ¢, potom existuje i kone¢ny tablo dikaz
pzT.

Diikaz. Stejny jako ve ve vyrokové logice, viz dikaz Dusledku [3.4.5] O

Ve stejné sekci jsme si ukédzali konstrukci systematického tabla. Tu lze také snadno adap-
tovat na predikatovou logiku. Musime zajistit, abychom nékdy zredukovali kazdou polozku,
pouzili kazdy axiom, a nové v predikdtové logice také substituovali kazdy Lo term t; za
proménnou v polozkéach typu ‘vSichni’.

Definice 6.2.5 (Systematické tablo predikatové). Méjme polozku R a teorii T' = {«ag, a1, vz, . . .
Systematické tablo z teorie T' pro polozku R je tablo 7 = |J;>q 7, kde 7 je jednoprvkové tablo
s polozkou R, a pro kazdé i > O: -

Bud P polozka v nejlevéjsim vrcholu v na co nejmensi drovni tabla 7;, kterd neni reduko-
vand na néjaké bezesporné vétvi prochazejici P (resp. jde-li o polozku typu ‘vsichni’, jeji vyskyt
v tomto vrcholu neni redukovany). Potom 7/ je tablo vzniklé z 7; pfipojenim atomického tabla
pro P na kazdou bezespornou vétev prochézejici v, kde

e je-li P typu ‘vSichni’ a méa-li ve vrcholu v k-ty vyskyt, potom za proménnou substituu-
jeme k-ty Lo-term tg,

e je-li P typu ‘svédek’, potom na dané vétvi V za proménnou substituujeme ¢; € C s
nejmensim moznym ¢ (takovym, ze na V se ¢; dosud nevyskytuje).

Jinak, pokud takova polozka P a vrchol v neexistuji, tj. vSechny polozky jsou redukované,
definujeme 7/ = 7;.

Tablo 7,41 je potom tablo vzniklé z 7/ pfipojenim Ta; na kazdou bezespornou vétev 7/,
pokud i < |T'|. Jinak (je-li T" kone¢nd a uz jsme pouzili vSechny axiomy) tento krok preskocime
a definujeme 7,41 = 7/.

Stejné jako ve vyrokové logice plati, ze systematické tablo je vzdy dokoncené, a poskytuje
kone¢ny dikaz:

Lemma 6.2.6. Systematické tablo je dokoncené.

Diikaz. Obdobny jako dikaz ve vyrokové logice (Lemma [3.4.2). Pro polozky typu ‘vSichni’
si vsimnéte, ze k-ty vyskyt redukujeme v momenté, kdy na néj pri konstrukci narazime:
pripojenim vrcholu s (k + 1)-nim vyskytem a substituci k-tého Lo-termu t. O

Dausledek 6.2.7 (Systemati¢nost dukazt). Pokud T - ¢, potom systematické tablo je (ko-
necnym) tablo dikazem ¢ z T.

Dikaz. Stejny jako dikaz ve vyrokové logice (Diusledek |3.4.6)). O

6.3 Jazyky s rovnosti

Nyni si ukazeme, jak aplikovat tablo metodu na jazyky s rovnosti. Co je to rovnost? V
matematice muze v ruzném kontextu znamenat rizné relace. Plati 1 +0 = 0 + 1?7 Mluvime-li
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o celych ¢islech, pak ano, ale mame-li na mysli aritmetické vyrazy (nebo napft. termy v jazyce
téles), potom si leva a prava strana nejsou rovny: jde o jiné vyrazy.

Predstavte si, ze mame teorii T’ v jazyce s rovnosti obsahujicim konstantni symboly ¢1, ¢,
unarni funkéni symbol f a unarni relacni symbol P. Méjme néjaké dokoncené tablo z této
teorie, a v ném bezespornou vétev, na kterém najdeme polozku Tec; = co. Budeme chtit
sestrojit kanonicky model A pro tuto vétev, podobné jako ve vyrokové logice. Polozka bude
znamenat, 7e v kanonickém modelu plati c¢ft =4 ¢35, tj. (cit, ¢5') € =*. To nam ale nestaci,
chceme také, aby platilo také napr.:

] C‘é‘l :A C‘i‘l’

o fAA) = FAEY,
. cfe PA, prévé kdyz 054 e PA.

Obecné tedy chceme, aby relace =4 byla tzv. kongruenczﬂ tj. ekvivalenci, kterd se chova
‘dobre’ vuci funkcim a relacim struktury A. Toho docilime tak, Ze k teorii T' pridame tzv.
aziomy rovnosti, které tyto vlastnosti vynuti, a tablo sestrojime z vysledné teorie 1.

V modelu A potom bude relace =4 kongruenci. To ndm ale nestaci, chceme, aby rovnost
byla identita, tj. aby (a,b) = platilo jediné kdyZ a a b jsou tymz prvkem univerza. Toho
docilime identifikaci vsech =4-ekvivalentnich prvki do jediného prvku. Této konstrukei se
rika faktorstruktura podle kongruence :AH Nyni tyto pojmy formalizujeme.

Definice 6.3.1 (Kongruence). Méjme ekvivalenci ~ na mnoziné A, funkci f: A" — A, a
relaci R C A™. Rikdme, Ze ~ je

o kongruenci pro funkci f, pokud pro vSechna a;,b; € A takova, ze a; ~ b; (1 < i < n)
plati f(ala---van) ~ f(bla""bn)v
o kongruenci pro relaci R, pokud pro vSechna a;,b; € A takovd, ze a; ~ b; (1 < i < n)

plati (ai,...,a,) € R pravé kdyz (by,...,b,) € R.

Kongruence struktury A je ekvivalence ~ na mnoziné A, kterd je kongruenci pro vSechny
funkce a relace A.

Definice 6.3.2 (Faktorstruktura). Mé&jme strukturu A a jeji kongruenci ~. Faktorstruktura
(podilovd struktura) A podle ~ je struktura A/. v témz jazyce, jejiz univerzum A/. je
mnozina vsech rozkladovych tiid A podle ~, a jejiz funkce a relace jsou definované pomoci
reprezentantd, tj:

o fA~([a1]~, ..., [an)~) = [fAal, ..., an)]~, pro kazdy (n-drnf) funkéni symbol f, a
o RA~([ay]~, .., [an]~) prave kdyz RA(aq, . . ., ay), pro kazdy (n-arni) relaéni symbol R.

Definice 6.3.3 (Axiomy rovnosti). Aziomy rovnosti pro jazyk L s rovnosti jsou nasledujic:

5Podobné napf. t; = to v Prologu neznamena, ze jde o tentyz term, ale Ze termy t1 a to jsou unifikovatelné,
viz néasledujici kapitola, Sekce

"Nézev pochazi z kongruence modulo n, kterd je kongruenci v tomto smyslu na mnoziné vsech celych &isel,
napft. splituje: a + b = ¢+ d (mod n) kdykoliv a = ¢ (mod n) a b=d (mod n).

8Stejné jako grupa Z, je faktorstrukturou grupy Z podle = (mod n); napt. prvek 2 € Z, predstavuje
mnozinu vsech celych ¢isel, jejichz zbytek po déleni n je roven 2.
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(i) = ==,

(ii) 1 = A Axp =yn— f(z1,...,2n) = f(y1, ..., yn) pro kazdy n-drni funkéni symbol
f jazyka L,

(iii) x1 = A Axp = yp— (R(21, ..., Tn) = R(Y1, - - ., Yn)) pro kazdy n-arni relaéni symbol
R jazyka L vcetné rovnosti.

Cviceni 6.2. Prvni z axiomii rovnosti znamen4, reflexivitu relace =*. Kam se podély symetrie
a tranzitivita? Ukazte, Ze plynou z axiomu (iii) pro symbol rovnosti =.

7 axiomti (i) a (i4i) tedy plyne, Ze relace = je ekvivalence na A, a axiomy (ii) a (iii)
vyjadiuji, ze =4 je kongruenci A. V tablo metodé v pifpadé jazyka s rovnosti implicitné
pridame vsechny axiomy rovnosti:

Definice 6.3.4 (Tablo dikaz s rovnosti). Je-li T teorie v jazyce L s rovnosti, potom oznacme
jako T™ rozsiteni teorie T o generdlni uzévéryﬂ axiomu rovnosti pro jazyk L. Tablo dikaz z
teorie T je tablo dikaz z T*, podobné pro tablo zamitnuti (a obecné jakékoliv tablo).

Plati nasledujici jednoduché pozorovani:

Pozorovani 6.3.5. Jestlize A |= T*, potom plati i A/_a = T*, a ve strukture A/_a je
symbol rovnosti interpretovdn jako identita. Na druhou stranu, v kaZdém modelu, ve kterém
je symbol rovnosti interpretovdn jako identita, plati axiomy rovnosti.

Toto pozorovani vyuzijeme pii konstrukci kanonického modelu, ktery budeme potfebovat
v dlikazu Véty o tplnosti. Nejprve ale dokdzeme Vétu o korektnosti.

6.4 Korektnost a uplnost

V této sekci dokazeme, ze tablo metoda je i v predikatové logice korektni a iplné. Dukazy obou
vét maji stejnou strukturu jako ve vyrokové logice, 1isi se jen v implementacnich detailech.

6.4.1 Véta o korektnosti

Model (struktura) A se shoduje s polozkou P, pokud P = Ty a A = ¢, nebo P = Fy a
A £ . Dale A se shoduje s vétvi V', pokud se shoduje s kazdou polozkou na této vétvi.
Ukézeme nejprve pomocné lemma analogické Lemmatu [3.5.1}

Lemma 6.4.1. Shoduje-li se model A teorie T s polozkou v koteni tabla z teorie T' (v jazyce
L), potom lze A expandovat do jazyka Lc tak, Ze se shoduje s nékterou vétvi v tablu.

Vsimnéte si, Ze stadi expandovat A o nové konstanty ¢ vyskytujici se na vétvi V. Ostatni
konstantni symboly lze interpretovat libovolné.

Diikaz. Méjme tablo 7 = (J;> 7 z teorie T' a model A € M[,(T') shodujici se s kofenem 7,
tedy s (jednoprvkovou) vétvi Vg v (jednoprvkovém) 7.

Indukei podle ¢ najdeme posloupnost vétvi V; a expanzi A; modelu A o konstanty ¢ € C
vyskytujici se na V; takovych, Ze V; je vétev v tablu 7; shodujici se s modelem A;, Vi1 je
prodlouzenim V;, a A;;1 je expanzi A; (mohou si byt i rovny). Pozadovana vétev tabla 7 je

9Nebot v tablo metodé potiebujeme sentence.
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potom V' = {J;>o Vi. Expanzi modelu A do jazyka L¢ ziskdme jako ‘limitu’ expanzi A;, tj.
vyskytuje-li se symbol ¢ € C na V, vyskytuje se na néjaké z vétvi V; a interpretujeme ho
stejné jako v A; (ostatni pomocné symboly interpretujeme libovolné).

e Pokud 7;41 vzniklo z 7; bez prodlouzeni vétve V;, definujeme V;11 =V, a A;11 = A;.

o Pokud 7,41 vzniklo z 7; pfipojenim polozky Ta (pro néjaky axiom « € T') na konec vétve
Vi, definujeme V;y; jako tuto prodlouzenou vétev a A;y; = A; (nepridali jsme zadny
novy pomocny konstantni symbol). Protoze A;;1 je modelem T, plati v ném axiom «,
tedy shoduje se i s novou polozkou Ta.

e Necht 7;41 vzniklo z 7; pripojenim atomického tabla pro néjakou polozku P na konec
vétve V;. Protoze se model A; shoduje s polozkou P (kterd lezi na vétvi V;), shoduje se
i s kofenem pripojeného atomického tabla.

— Pokud jsme pripojili atomické tablo pro logickou spojku, polozime A;11 = A;
(nepridali jsme novy pomocny symbol). Protoze A; 11 se shoduje s kofenem ato-
mického tabla, shoduje se i s nékterou z jeho vétvi (stejné jako ve vyrokové logice);
definujeme V;,1 jako prodlouzeni V; o tuto vétev.

— Je-li polozka P typu ‘svédek’: Pokud je P = T(3x)¢(x), potom A; = (Iz)p(z),
tedy existuje a € A takové, ze A; = p(x)[e(x/a)]. Vétev Vi1 definujeme jako
prodlouzeni V; o nové pridanou polozku Tp(x/c) a model A;41 jako expanzi A; o
konstantu ¢4 = a. Pifpad P = F(Vz)p(z) je obdobny.

— Je-li polozka P typu ‘vSichni’, vétev V; 1 definujeme jako prodlouzeni V; o atomické
tablo. Nové pridana polozka je To(x/t) nebo Fy(z/t) pro néjaky Lo-term t. Pied-
pokladejme, Ze jde o prvni z téchto dvou moznosti, pro druhou je dikaz analogicky.
Model A;4+1 definujeme jako libovolnou expanzi A; o nové konstanty vyskytujici
se v t. Protoze A; = (Vx)p(z), plati i A;11 E (Vz)p(x) a tedy i Aj+1 E p(x/t);
model A;;1 se tedy shoduje s vétvi V;.

O]

Ptipomenme stru¢né myslenku dikazu Véty o korektnosti: Pokud by existoval ditkkaz a
zaroven protipiiklad, protipriklad by se musel shodovat s nékterou vétvi dikazu, ty jsou ale
vSechny sporné. Dilkaz je tedy témér stejny jako ve vyrokové logice.

Véta 6.4.2 (O korektnosti). Je-li sentence ¢ tablo dokazatelnd z teorie T, potom je ¢ pravdivd
v T, tj.T}—(p = T):gp,

Dikaz. Predpokladejme pro spor, ze T' [~ ¢, tj. existuje A € M(T) takovy, ze A = ¢. Protoze
T | ¢, existuje sporné tablo z T's Fy v koreni. Model A se shoduje s Fy, tedy podle Lemmatu
lze expandovat do jazyka Lc¢ tak, Ze se expanze shoduje s néjakou vétvi V. VSechny
vétve jsou ale sporné. O

6.4.2 Véta o uplnosti

Stejné jako ve vyrokové logice ukdzeme, ze bezespornd vétev v dokonceném tablo dikazu
poskytuje protiptiklad: model teorie T', ktery se shoduje s polozkou F¢ v kofeni tabla, tj.
neplati v ném ¢. Takovych modeltt mize byt vice, definujeme proto opét jeden konkrétni,
kanonicky.
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Model musi mit néjakou doménu. Jak ji ziskat z tabla, coz je Cisté syntakticky objekt?
Vyuzijeme standardni (v matematice) trik: ze syntaktickych objektt udéldme sémantické.
Konkrétné, za doménu zvolime mnozinu vsech konstantnich terma jazyka LCH Ty chapeme
jako konecné fetézce. V nasledujicim vykladu budeme nékdy (neformélné) misto termu ¢ psét
“t”, abychom zduraznili, ze v daném misté chapeme ¢ jako Tetézec znaki, a ne napt. jako
termovou funkci, kterou je tfeba VyhodnotitE

Definice 6.4.3 (Kanonicky model). Méjme teorii T' v jazyce L = (F,R) a necht V je
bezespornd vétev néjakého dokonceného tabla z teorie T'. Potom kanonicky model pro V je
Le-struktura A = (A, FAU CA, RA) definovana nésledovné:

Je-li jazyk L bez rovnosti, potom:

e Doména A je mnozina vsech konstantnich Lo-termu.

e Pro kazdy n-arni relacni symbol R € R a “s17, ..., “s,” z A:
(“s17,...,%s,”) € R pravé kdyz na vétvi V je polozka TR(s1,. .., s,)
e Pro kazdy n-arni funkéni symbol f € F a “s17”, ..., “s,” z A:
A 13 ” 13 ” Y 2
FAs17 0 sn”) = “f (81,0, 8n)

A«

b

Specialné, pro konstantni symbol ¢ mame ¢ c

Funkci 4 tedy interpretujeme jako ‘vytvofeni’ nového termu ze symbolu f a vstupnich term
(Fetézct).

Necht je L jazyk s rovnosti. Pfipomenme, ze nase tablo je nyni z teorie T*, tj. z rozsireni T’
o axiomy rovnosti pro L. Nejprve vytvorime kanonicky model B pro V jako by byl L bez
rovnosti (jeho doména B je tedy mnozina vSech konstantnich Lo-termil). Dale definujeme
relaci =2 stejné jako pro ostatni rela¢ni symboly:

wo. B«

S1 s9” pravé kdyz na vétvi V' je polozka Ts; = sg

Kanonickyj model pro V potom definujeme jako faktorstrukturu A = B/_z.

Jak plyne z diskuze v Sekci relace =7 je opravdu kongruence struktury B, definice je
tedy korektni, a relace =4 je identita na A. Plati nasledujici jednoduché pozorovani:

Pozorovani 6.4.4. Pro kazdou formuli ¢ mdme B |= ¢ (kde symbol = je interpretovdn jako
bindrni relace =P ), prdvé kdyz A = B/_s |= ¢ (kde = je interpretovdn jako identita).

Vsimnéte si, ze v jazyce bez rovnosti je kanonicky model vzdy spocetné nekonec¢ny. V
jazyce s rovnosti miize ale byt konec¢ny, jak uvidime v néasledujicich piikladech.

Priklad 6.4.5. Nejprve si ukazme piiklad kanonického modelu v jazyce bez rovnosti. Méjme
teorii T = {(Vz)R(f(x))} v jazyce L = (R, f,d) bez rovnosti, kde R je unarni relacni, f
unarni funkéni, a d konstantni symbol. Najdéme protiptiklad ukazujici, ze T f= = R(d).

107, termti zbudovanych aplikaci funkénich symboli jazyka L na konstantni symboly jazyka L (mé-li néjaké)
a pomocné konstantni symboly z C.
Srovnejte aritmeticky vyraz “1+1” a 1+1=2.
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Systematické tablo z T' s polozkou F—R(d) v kofeni neni sporné, obsahuje jedinou vétev
V', kterd je bezespornd. (Sestrojte si tablo sami!) Kanonicky model pro V je Lgo-struktura
A= (A, RA fA dA e, cft, c4l, ... ), jejiz doména je

A= LS F@) ) Fla) “FF ), en™ F o) F ().}
a interpretace symbold jsou nasledujici:
o d4=4d”,
5

= “¢;” pro vsechna i € N,

o fAEA) =<F(d), FACSA)T) = “f (), .

o RA=A\C = {4d”,“f(d)", “F(F(d)7,- ... “Fleo)s “F(F(c0))7s o “fler)”, “f(f(er)), .

Redukt kanonického modelu A na ptivodni jazyk L je potom A = (A, RA, fA, dA).

Priklad 6.4.6. Nyni priklad v jazyce s rovnosti: Mé&jme teorii T = {(Vz)R(f(x)), (Vz)(z =
f(f(x)))} v jazyce L = (R, f,d) s rovnosti. Opét najdéme protipiiklad ukazujici, ze T' [~
—R(d).

Systematické tablo z teorie T (tj. z T rozsifené o axiomy rovnosti pro L) s polozkou
F=R(d) v koreni obsahuje bezespornou vétev V. (Sestrojte si tablo sami!) Nejprve sestrojime
kanonicky model B pro tuto vétev, jako by byl jazyk bez rovnosti:

B=(B,RE, fB,d5 c5 B 5, ...

kde B je mnozina vSech konstantnich Lo-termil. Relace =2 je definovand, jako by symbol
‘=" byl ‘obyc¢ejnym’ rela¢nim symbolem v L. Je to kongruence struktury B, a plati pro ni,
7e 51 =D sy prave kdyz sy = f(---(f(s2))---) nebo sy = f(---(f(s1))---) pro sudy pocet
aplikaci f. Jako reprezentanty jednotlivych tiid tedy mizeme vybrat termy s zddnym nebo
jednim vyskytem symbolu f:

B/op = {["d"]=s, [*f(d)")=s, [“co”]p, [*fco)"|=s, [fer "] =m, [*f (1) "] zp, -
Kanonicky model pro vétev V je potom Lco-struktura
A=B/_s = (A,RA fA d4 ' el et )

kde A = B/_g a interpretace symboli jsou nasledujici:

o A= [,

o ¢ = [“¢;”]_s pro viechna i € N,

o fAEAZ) = (@) )s, FAF(@))28) = [F(f(d)7]p = [“d"]_s, ...

o RA=A=B/_s.

Redukt kanonického modelu A na puvodni jazyk L je opét A" = (A, RA, fA, dA>.

Cuiceni 6.3. (a) Sestrojte dokoncené tablo s polozkou T(Vx)(Vy)(z = y) v korfeni. Sestrojte
kanonicky model pro (jedinou, bezespornou) vétev tohoto tabla.

102

Y



(b) Sestrojte dokoncené tablo s polozkou T(Vx)(Vy)(Vz)(x = yV o = zVy = z) v kofeni.
Sestrojte kanonické modely pro nékolik bezespornych vétvi a porovnejte je.

Nyni jsme pripraveni dokazat Vétu o tiplnosti. Pouzijeme opét nasledujici pomocné lemma,
jehoz znéni je zcela stejné, jako znéni Lemmatu a dukaz se lisi jen v technickych detailech.

Lemma 6.4.7. Kanonicky model pro (bezespornou dokoncenou) vétev V' se shoduje s V.

Diikaz. Nejprve uvazme jazyky bez rovnosti. Ukazeme indukci podle struktury sentenci v
polozkéch, ze kanonicky model A se shoduje se vSemi polozkami P na vétvi V.

Zaklad indukee, tj. pripad, kdy ¢ = R(s1,...,s,) je atomickd sentence, je jednoduchy:
Je-li na V polozka Ty, potom (s1,...,8,) € R4 plyne pifmo z definice kanonického modelu,
méame tedy A = ¢. Je-li na V polozka Fy, potom na V neni polozka Ty (V je bezespornd),
(51,...,8,) € R a AW

Nyni indukéni krok. Rozebereme jen nékolik piipadii, ostatni se dokézi obdobné.

Pro logické spojky je dikaz zcela stejny jako ve vyrokové logice, napiiklad je-li P = Fp A,
potom protoze je P na V redukovand, vyskytuje se na V' polozka F¢ nebo polozka Fi. Plati
tedy A £ ¢ nebo A} 1), z ¢ehoz plyne A = ¢ A a A se shoduje s P.

Mame-li polozku typu “vsichni”, napiiklad P = T(Vz)p(z) (pfipad P = F(3z)p(z) je
obdobny), potom jsou na V' i polozky Tp(x/t) pro kazdy konstantni Lc-term, tj. pro kazdy
prvek “t” € A. Dle indukéniho predpokladu je A = ¢(z/t) pro kazdé “t” € A, tedy A =
(V) ().

Mame-li polozku typu “svédek”, napriiklad P = T(3z)¢(x) (piipad P = F(Vz)p(z) je
obdobny), potom je na V' i polozka T'p(z/c) pro néjaké “c” € A. Dle indukéniho predpokladu
jo A = olz/c), tedy i A = (3z)p(z)

Je-li jazyk s rovnosti, mdme kanonicky model A = B/_g, dukaz vyse plati pro B, a zbytek
plyne z Pozorovani [6.4.4] O

Cviceni 6.4. Ovéite zbyvajici pripady v dikazu Lemmatu

Dtikaz Véty o uplnosti je také analogicky jeji verzi pro vyrokovou logiku:

Véta 6.4.8 (O tuplnosti). Je-li sentence ¢ pravdiva v teorii T, potom je tablo dokazatelnd z
T,4.TEe = Tk ¢

Diikaz. Ukazeme, ze libovolné dokoncené tablo z T s polozkou F¢ v kotfeni je nutné sporné.
Dtkaz provedeme sporem: kdyby takové tablo nebylo sporné, existovala by v ném bezesporna
(dokonéend) vétev V. Uvazme kanonicky model A pro tuto vétev, a ozna¢me jako A’ jeho
redukt na jazyk L. Protoze je V' dokoncend, obsahuje Ta pro vSechny axiomy o € T. Model
A se podle Lemmatu shoduje se vsemi polozkami na V| spliuje tedy vSechny axiomy
a mame i A" = T. Protoze se ale A shoduje i s polozkou Fy v koteni, plati i A" £ ¢, coz
znamend, ze A" € Mp(T) \ M1(p), tedy T = ¢, a to je spor. Tablo tedy muselo byt sporné,
tj. byt tablo dikazem ¢ z T O

6.5 Dusledky korektnosti a aplnosti

Stejné jako ve vyrokové logice, Véty o korektnosti a tplnosti dohromady rikaji, ze dokaza-
telnost je totéz, co platnost. To ndm umoznuje obdobné zformulovat syntaktické analogie
sémantickych pojmu a vlastnosti.
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Analogii dusledki jsou teorémy teorie T
Thmy(T) = {¢ | ¢ je L-sentence a T |- ¢}

Disledek 6.5.1 (Dokazatelnost = platnost). Pro libovolnou teorii T a sentence ¢, plati:
o T ¢ pravé kdyz T = ¢
o Thmp(T) = Csq(T)
Plati napriklad:
o Teorie je spornd, jestlize je v ni dokazatelny spor (tj. T' | L).

o Teorie je kompletni, jestlize pro kazdou sentenci ¢ je bud T ¢ nebo T' |- —¢ (ale ne
oboji, jinak by byla spornd).

o Véta o dedukci: Pro teorii T' a sentence ¢, ¢ plati T, ¢ | ¢, pravé kdyz T' |- ¢ — 9.

Na zavér této sekce si ukazeme nékolik aplikaci Vét o tplnosti a korektnosti.

6.5.1 Lowenheim-Skolemova véta

Véta 6.5.2 (Lowenheim-Skolemova). Je-li L spocetny jazyk bez rovnosti, potom kazdd beze-
spornd L-teorie md spocetné nekonecny model.

Diikaz. Vezméme néjaké dokoncené (napt. systematické) tablo z teorie T' s polozkou FL v
koreni. Protoze T je bezesporna, neni v ni dokazatelny spor, tedy tablo musi obsahovat
bezespornou vétev. Hledany spocetné nekoneény model je L-redukt kanonického modelu pro
tuto vétev. 0

K této vété se jesté vratime v Kapitole |8 kde si ukazeme silnéjsi verzi zahrnujici i jazyky
s rovnosti (v nich je kanonicky model spocetny, ale miuze byt i koneény).

6.5.2 Véta o kompaktnosti
Stejné jako ve vyrokové logice plati Véta o kompaktnosti, stejny je i jeji dikaz:

Véta 6.5.3 (O kompaktnosti). Teorie md model, privé kdyzZ kazdd jeji konecénd cdst md
model.

Dukaz. Model teorie je zfejmé modelem kazdé jeji ¢asti. Naopak, pokud T nema model, je
spornd, tedy T | L. Vezméme néjaky konecny tablo dikaz L z T. K jeho konstrukei staci
konecné mnoho axiomu T, ty tvoii koneénou podteorii 7" C T, kterd nemé model. ]

6.5.3 Nestandardni model prirozenych cisel

Na uplny zavér této sekce si ukazeme, ze existuje tzv. nestandardni model prirozenych ¢isel.
Klicem je Véta o kompaktnosti.

Necht N = (N, S, +,-,0, <) je standardni model pfirozenych ¢isel. Ozna¢me Th(N) mno-
zinu vSech sentenci pravdivych ve struktute N (tzv. teorii struktury N). Pro n € N definujme
n-ty numerdl jako term n = S(S(---(S(0)---)), kde S je aplikovano n-krat.
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Vezméme novy konstantni symbol ¢ a vyjadieme, Ze je ostie vétsi nez kazdy n-ty numeral:
T=Th(N)U{n <c|neN}

Vsimnéte si, ze kazda konecnd ¢ast teorie T ma model. Z véty o kompaktnosti tedy plyne,
7e i teorie T mé model. Rikdime mu nestandardni model (oznaéme ho A). Plati v ném tytéz
sentence, které plati ve standardnim modelu, ale zaroven obsahuje prvek ¢4, ktery je vétsi
nez kazdé n € N (¢imz zde myslime hodnotu termu n v nestandardnim modelu A).

Na zaveér kapitoly si ukdzeme, jak lze adaptovat Hilbertuv kalkulus, predstaveny v Sekci [3.8
pro pouziti v predikatové logice. To neni tézké, abychom se vyporadali s kvantifikdtory, staci
pridat dvé nova schémata logickych axiomi a jedno nové inferen¢ni pravidlo. Opét si ukazeme
korektnost tohoto dokazovaciho systému, a jen zminime, ze je také tplny.

Dtkazy budou sestavat z libovolnych formuli, nejen sentenci. Pripomenme, ze Hilbertovsky
kalkulus pouziva jen spojky — a —. Budeme mit obdobné logické axiomy, jako ve vyrokové
logice; v pripadé jazyka s rovnosti navic pridame axiomy rovnosti.

Definice 6.6.1 (Schémata axiomu v hilbertovském kalkulu v predikdtové logice). Pro libo-
volné formule @, 1, x, term ¢, a proménnou x jsou nasledujici formule logickymi axiomy:

1) o= (W —y)
(ii

) (e = (= x) = (b= 9) = (= X))
(iif)

)

)

(= =) = (b= )
(iv) (Vz)p — @(x/t), je-li t substituovatelny za x do ¢
(

(v

Je-li jazyk s rovnosti, potom jsou logickymi axiomy také aziomy rovnosti pro dany jazyk.

V) (e — ¥) = (p — (Vx)e), neni-li z volnd ve ¢

Vsimnéte si, ze vsechny logické axiomy jsou opravdu tautologie. Jako odvozovaci pravidla
nam poslouzi modus ponens a dale pravidlo generalizace:

Definice 6.6.2 (Modus ponens). Modus ponens tika, ze pokud jsme jiz dokazali ¢ a také
© — ¢, muzeme odvodit i formuli 1):
O, =1
(0

Definice 6.6.3 (Pravidlo generalizace). Pravidlo generalizace ¥iké, ze pokud jsme dokézali
@, 1ze odvodit i formuli (Vx)e (pro libovolnou proménnou z):

@
(Vz)p

Vsimnéte si, ze obé odvozovaci pravidla jsou korektni, tj. plati-li v néjaké teorii T = ¢ a
T E¢—1, mame i T =, a podobné plati-li T' |= ¢, plati i T = (V).

Stejné jako ve vyrokové logice, dukaz bude koneéna posloupnost formuli, ve které je kazda
nové napsand formule bud axiomem (logickym, v¢. axiomu rovnosti, nebo z teorie, ve které
dokazujeme), nebo lze odvodit z predchozich pomoci jednoho z odvozovacich pravidel:
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Definice 6.6.4 (Hilbertovsky dikaz). Hilbertovsky dikaz formule ¢ z teorie T' je konecnd
posloupnost formuli ¢y, ..., @, = ¢, ve které pro kazdé ¢ < n plati:

o ; je logicky axiom (vcetné axiomu rovnosti, je-li jazyk s rovnosti), nebo
o ; je axiom teorie (y; € T'), nebo

e ; lze odvodit z néjakych predchozich formuli ¢;, ¢ (kde j,k < i) pomoci modus
ponens, nebo

o ; lze odvodit z néjaké predchozi formule ¢; (kde j < i) pomoci pravidla generalizace.
Existuje-li hilbertovsky dukaz, je ¢ (hilbertovsky) dokazatelnd, piseme T' |-g ©.
I v predikatové logice je hilbertovsky kalkulus korektni a tiplny dokazovaci systém.

Véta 6.6.5 (O korektnosti hilbertovského kalkulu). Pro kazdou teorii T a formuli ¢ plati:

Thuy = TkEy

Dikaz. Indukei dle indexu i ukdzeme, ze kazdd formule ¢; z dukazu (tedy i ¢, = ¢) plati v
T.

Je-li p; logicky axiom (véetné axiomu rovnosti), T' |= ¢; plati protoze logické axiomy jsou
tautologie. Je-li ¢; € T, také jisté plati T |= ;. Zbytek plyne z korektnosti odvozovacich
pravidel. O

Pro dplnost jesté vyslovme tplnost, diikaz ale neuvedeme.

Véta 6.6.6 (O uplnosti hilbertovského kalkulu). Pro kazZdou teorii T a formuli ¢ plati:

TEe = Tltuy
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Kapitola 7

Rezoluce v predikatové logice

V této kapitole si ukdzeme, jak lze adaptovat rezoluéni metodu, kterou jsme predstavili v
Kapitole [4] na predikatovou logiku. Tato kapitola, posledni v ¢asti o predikatové logice, je
pomérné rozsahla, proto uvedme prehled jeji struktury:

o Zacneme neforméalnim tvodem (Sekee [7.1)).

V nasledujicich tfech sekcich predstavime nastroje, které ndm umozni vyporadat se se speci-
fiky predikatové logiky: s kvantifikdtory, proménnymi a termy.

oV Sekci[7.2)si ukdzeme, jak pomoci Skolemizace odstranit kvantifikdtory, abychom ziskali
oteviené formule, které uz lze prevést do CNF.

o V Sekci[7.3| vysvétlime, Ze rezolucni zamitnuti bychom mohli hledat ‘na Grovni vyrokové
logiky’ (tzv. grounding), pokud bychom nejprve za proménné substituovali ‘vhodné’
konstantni termy.

o V Sekci [7.4] ukdzeme, jak takové ‘vhodné’ substituce hledat pomoci unifikacniho algo-
ritmu.

Tim budeme mit vSechny potiebné nastroje k predstaveni vlastni rezolu¢ni metody. Zbytek
kapitoly ma podobnou strukturu jako Kapitola

e Rezoluéni pravidlo, rezoluéni diukaz a souvisejici pojmy jsou popsany v Sekci
o Sekce[7.6]je vénovana dikazu korektnosti a tplnosti.

o Na zavér, v Sekci popiseme Ll-rezoluci a jeji aplikaci v Prologu.

7.1 Uvod

Stejné jako ve vyrokové logice, i v predikatové logice je rezolu¢ni metoda zaloZena na dikazu
sporem. Chceme-li dokdzat, ze v teorii T plati sentence ¢ (tj. T = ¢), zacneme s teorii
T U {—¢}. Tuto teorii ‘pfevedeme’ do CNF, a vyslednou mnozinu klauzuli S zamitneme
rezoluci (tj. ukdzeme, ze S |-r 0) ¢imz ukdzeme, Ze je nesplnitelnd.

Co myslime konjunktivni normdlni formou? Roli literdlu hraje atomickd formul(ﬂ nebo jeji
negace. Klauzule (v mnozinové reprezentaci) je konetnd mnozina literali, a formaule je mnozina

YTy. R(t1,...,tn) resp. t; = t2, kde t; jsou L-termy a R je n-arni rela¢n{ symbol z L.
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klauzuliﬂ Jinak pouzivame stejnou terminologii, napi. mluvime o pozitivnich, negativnich,
opacnych literdlech, OJ znaci prazdnou klauzuli (kterd je nesplnitelnd), apod.

Nejprve si neformélné ukazeme specifika rezoluce v predikatové logice na nékolika velmi
jednoduchych prikladech.

Vsimnéme si nejprve, ze jsou-li teorie T' a sentence ¢ otevrené (neobsahuji-li kvantifika-
tory), muzeme snadno sestrojit CNF formuli S ekvivalentni teorii TU{—p} (tj. majici stejnou
mnozinu model). Nevadi ani univerzélni kvantifikdtory na zac¢dtku formule, ty muzeme od-
stranit beze zmény Vyznamuﬂ

Priklad 7.1.1. Necht T = {(Vx)P(x), (Vz)(P(z) = Q(x))} a ¢ = (32)Q(x). Je snadno vidét,
ze plati

T ~{P(z), P(x) = Q(x)} ~ {P(z), ~P(z) v Q(x)}
a také:

—p = =(3)Q(x) ~ (Va)=Q(x) ~ ~Q(z)

Teorii T'U {—¢} tedy muzeme pfevést na ekvivalentni CNF formuli

S ={P@)} {~P(x), Q2)}, {-Q(x)}}

kterou snadno zamitneme rezoluci ve dvou krocich. (Pfedstavte si misto P(x) vyrokovou
proménnou p a misto Q(x) vyrokovou proménnou gq.)

Obecné se nam to ale nepodati, problémy déla zejména existencni kvantifikator. Na rozdil
od vyrokové logiky neni kazda teorie ekvivalentni CNF formuli. Ukazeme si ale postup, kterym
lze vzdy najit ekvispinitelnou CNF formuli, tj. takovou, kterd je nesplnitelnd, prdve kdyz
T U{—¢} je nesplnitelnd, coz ndm k ditkazu sporem staci. Této konstrukei se ¥ika Skolemizace
a spociva v nahrazeni existencné kvantifikovanych proménnych nové pridanymi konstantnimi
resp. funkénimi symboly.

Napriiklad, formuli (3z)1(z) nahradime formuli ¥(z/c), kde ¢ je novy konstantni symbol,
ktery reprezentuje svédka, tj. prvek, diky kterému je existencni kvantifikdtor splnén. Protoze
takovych prvktt muze byt mnoho, ztracime ekvivalenci teorii, plati ale, Ze je-li splnitelna
puvodni formule, je splnitelna, i nova formule, a naopak.

Priklad 7.1.2. Mame-li T' = {(3z)P(z), P(z) > Q(x)} a ¢ = (Ix)Q(x), potom
—p ~ (Vo) =Q(z) ~ —Q(x)

a ekvivalenci mtizeme prevést do CNF jako obvykle, dostavame:

TU{=p} ~{(Fz)P(z), ~P(z) v Q(x), ~Q(z) V P(z), ~Q(x)}

Formuli (3z)P(x) nyni nahradime P(c), kde ¢ je novy konstantni symbol. Tim dostavame
CNF formuli:

S ={P()}, {=P(2), Qx)}, {=Q(x), P(z)}, {~Q(x)}}

Ta neni ekvivalentni teorii 7' U {—¢}, ale je s ni ekvisplnitelnd (v tomto piipadé jsou obé
nesplnitelné).

2Jako ve vyrokové logice pfipoustime i nekoneéné mnoziny klauzuli.
3Libovolnd formule je ekvivalentni svému generdlnimu uzdvéru, a ekvivalence plati obéma sméry.
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tvaru (Vz)(3y)y(z,y), zavisi zvoleny svédek pro y na zvolené hodnoté pro z, tedy ‘y je funkei
2’ V tomto piipadé musime y nahradit f(x), kde f je novy undrni funkéni symbol. Tim
dostavame formuli (V)i (x,y/f(x)) a univerzalni kvantifikdtor nyni mizeme odstranit a psat
jen ¥ (xz,y/f(x)), coz uz je oteviend formule, byt v jiném jazyce (rozsifeném o symbol f).
Skolemizaci formdlné popiSeme, a potiebné vlastnosti dokdzeme, v Sekci [7.2]

opét jen nékolik prikladi, formalni definici nechdme na pozdéji (Sekce .

Priklad 7.1.3. V predchozim prtikladu jsme dospéli k nasledujici CNF formuli S, ktera je
nesplnitelna, a chtéli bychom ji tedy rezoluci zamitnout:

S = {{P(c)},{—\P(x),Q(x)},{—\Q(az),P(az)},{—\Q(x)}}

Pokud bychom se na ni podivali ‘na tdrovni vyrokové logiky’ (‘ground level’) a nahradili kazdou
atomickou formuli novou vyrokovou proménnou, dostali bychom {{r}, {-p, ¢}, {—q,p}, {—q}},
coZ neni nesplnitelné. Potfebujeme vyuzit toho, ze P(c) a P(z) maji ‘podobnou strukturu’
(jsou unifikovatelné).

Protoze v S plati klauzule {—=P(x),Q(x)} (je to axiom), plati i po provedeni libovolné
substituce, tj. klauzule {—P(z/t), Q(z/t)} je dusledkem S pro libovolny term ¢. Mohli bychom
si predstavit, ze do S ‘pridavame’ vSechny takto ziskané klauzuleﬁ Vyslednd CNF formule by
po prevedeni na ‘Groven vyrokové logiky’ uz byla nesplnitelna.

Unifikacnd algoritmus ndm ale rovnou fekne, ze spravnd substituce je x /¢, a toto zahrneme
uz do rezolucniho pravidla, tedy rezolventou klauzuli {P(c)} a {=P(x),Q(x)} bude klauzule

{Q(c)}-

vvvvv

gice: dovolime si udélat rezoluci pres vice literdlii najednou, a to v pripadé, Ze jsou vsechny
dohromady unifikovatelné:

Priklad 7.1.4. Z klauzuli {R(z, f(x)), R(9(y),2)} a {-R(g(c),u),P(u)} (kde R je bindrni
relacni, f a g jsou unarni funkéni, a ¢ konstantni symbol) bude mozné odvodit rezolventu

{P(f(g(c))} za pouziti substituce (unifikace) {z/g(c),y/c,z/f(g(c)),u/f(g(c))}, kde z prvni
klauzule vybirame oba literaly najednou.

Pozndmka 7.1.5. To, Ze proménné maji ‘lokalni vyznam’ v jednotlivych klauzulich (tj. mizeme
za né substituovat v jedné klauzuli aniz by to ovlivnilo ostatni klauzule), plyne z nésledujici
jednoduché tautologie, kterd plati pro libovolné formule ¢, x (i pokud je v obou proménné x
volna):
= (Vo) (¥ AX) < (Vo) A (Vo)

Jak je vidét v predchozim prikladé, budeme také vyzadovat, aby klauzule v rezolu¢nim
pravidle mély disjunktni mnoziny proménnych; toho lze dosdhnout prejmenovanim promén-
nych, coz je specidlni piipad substituce.

7.2 Skolemizace

V této sekci ukdzeme postup, jak redukovat otdzku splnitelnosti dané teorie T' na otdzku
splnitelnosti otevrené teorie T”. Pfipomenime, %e T' a T" obecné nebudou ekvivalentni, budou

4Té&ch je nekoneéné mnoho, nekoneéné mnoho je uz jen variant jedné klauzule, tj. klauzuli vzniklych pouhym
prejmenovanim proménnych. To ndm ale nevadi, CNF formule mize byt dle definice nekonec¢ni.
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ale ekvisplnitelné:

Definice 7.2.1 (Ekvisplnitelnost). Méjme teorii T' v jazyce L a teorii 77 v ne nutné stejném
jazyce L'. Rikdme, ze T a T’ jsou ekvisplnitelné, pokud plati:

T ma model < T’ m4a model
Cela konstrukee sestava z néasledujicich kroki, které vysvétlime nize:

1. Prevod do prenezni normdlni formy (vytykani kvantifikatoru).

2. Nahrazeni formuli jejich generdlnimi uzévéry (abychom ziskali sentence).

3. Odstranéni existen¢nich kvantifikatort (nahrazeni sentenci Skolemovymi variantams).
4

. Odstranéni zbyvajicich univerzalnich kvantifikatoru (vysledkem jsou oteviené formule).

7.2.1 Prenexni normdlni forma

Nejprve ukdzeme postup, jakym muzeme z libovolné formule ‘vytknout’ kvantifikatory, tj.
prevést do tzv. prenexni normdlni formy, kterd zacind posloupnosti kvantifikdtora, a pokracuje
uz jen volnou formuli.

Definice 7.2.2 (PNF). Formule ¢ je v prenexni normdalni formé (PNF), je-li tvaru
(Qia1) ... (Quan)¢’

kde Q; je kvantifikdtor (V nebo 3) a formule ¢’ je oteviend. Formuli ¢’ potom fikdme otevrené
jadro p a (Q121) ... (Qnzy) je kvantifikdtorovy prefix.

Je-li ¢ formule v PNF a jsou-li vSechny kvantifikatory univerzalni, potom fikdme, ze ¢ je
univerzdlni formule.

Cilem této podsekce je ukazat nasledujici tvrzeni:

Tvrzeni 7.2.3 (Prevod do PNF). Ke kazdé formuli ¢ existuje ekvivalentni formule v prenexni
normdalni forme.

Algoritmus bude podobné jako prevod do CNF zaloZen na nahrazovani podformuli ekvi-
valentnimi podformulemi, s cilem posunout kvantifikatory blize ke koreni stromu formule.
Co myslime ekvivalenci formuli ¢ ~ ¢'? To, Ze maji stejny vyznam, tj. v kazdém modelu a
pri kazdém ohodnoceni proménnych maji touz pravdivostni hodnotu. Ekvivalentné, ze plati
E ¢ < ¢'. Budeme pottebovat nésledujici jednoduché pozorovani:

Pozorovani 7.2.4. Nahradime-li ve formuli @ néjakou podformuli 1 ekvivalentni formuli 1),
potom je i vijslednd formule @' ekvivalentni formuli ¢.

Prevod je zalozen na opakovaném pouziti nasledujicich syntaktickych pravidel:

Lemma 7.2.5. Oznac¢me jako Q kvantifikdtor opacny ke Q. Necht ¢ a 1 jsou formule, a
promeénnd x necht neni volnd ve formuli v. Potom plati:

~(Qz)e ~ (Qz)~y

(Qz)p Ap ~ (Qz)(p A1)
(Qr)p VY ~ (Qz)(p V)
(Qr)p =1 ~ (Qz)(p — )
Y= (Qr)p ~ (Qz)(Y — ¢)



Dikaz. Pravidla lze snadno ovéfit sémanticky, nebo dokdzat tablo metodou (v tom piipadé
nejde-li o sentence, musime je nahradit jejich generdlnimi uzavéry). O

V&imnéte si, ze v pravidle (Qz)p—1 ~ (Qx)(p—1)) pro vytykani z antecendentu implikace
musime zménit kvantifikdtor (z V na 3 a naopak) zatimco pii vytykani z konsekventu zustava
kvantifikdtor stejny. Pro¢ tomu tak je vidime nejlépe pokud prepiseme implikaci pomoci
disjunkce a negace:

(Qz)p = b ~ =(Qz)p Vb ~ (Qr)(—¢) Vb ~ (Qu)(—e V) ~ (Qz) (¢ — V)

Vsimnéte si také predpokladu, ze x neni volna v . Bez néj by pravidla nefungovala, viz napt:
(Fz)P(x) AQ(z) # (Bx)(P(x) AQ(x))

V takové situaci nahradime formuli variantou, ve které prejmenujeme vidzanou promeénnou x
na néjakou novou proménnou:

(F)P(x) AQ(z) ~ (Fy)P(y) AQ(z) ~ (Fy)(P(y) A Q(x))

Cviceni 7.1. Dokazte Pozorovani [7.2.4) a vSechna pravidla z Lemmatu [7.2.5]
Ukazme si postup na jednom prikladé:

Priklad 7.2.6. Pfevedme formuli ((Vz)P(z,2) A P(y,z)) — —(3z)P(z,y) do PNF. ZapiSeme
jen jednotlivé mezikroky. VSimnéte si, jaké pravidlo na jakou podformuli bylo pouzito (a také
prejmenovani proménné v prvnim kroku), a sledujte postup na stromu formule.

Nyni nam jiz nic nebrani dokézat Tvrzeni

Diikaz Tvrzeni[7.2.3. Indukci podle struktury formule ¢ s vyuzitim Lemmatu a Pozo-
rovani [[.2.4 O

Protoze je kazda formule ¢(z1,...,z,) ekvivalentni svému generdlnimu uzdvéru

(V1) ... Vop)e(x1, ... 2p)
muzeme Tvrzen{ [7.2.3] vyslovit také takto:
Disledek 7.2.7. Ke kaZdé formuli ¢ existuje ekvivalentni sentence v PNF.

Napriklad v Prikladé[7.2.6] je vysledna sentence (V) (Vy)(Vz)(3u) (Vo) (P(z, u) A P(y, z) —
—P(v,y)).
Pozndamka 7.2.8. Prenexni forma neni jednoznacnd, pravidla pro prevod mutzeme apliko-
vat v rizném poradi. Jak uvidime v nésledujici podsekci, je vyhodné vytykat prednostné
kvantifikatory [ze kterych se stanou| existenéni: Mame-li na vybér mezi (Vz)(Jy)e(z,y) a
(Fy)(Vx)p(x,y), volime druhou variantu, nebot v prvni je ‘y zavislé na x’.
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7.2.2 Skolemova varianta

Nyni jsme prevedli nase axiomy na ekvivalentni sentence v prenexnim tvaru. Pokud by néktera
sentence obsahovala pouze univerzalni kvantifikdtory, tj. byla tvaru

(Vx1) ... (Vzp)e(z1, ...y Tp)

kde ¢ je oteviend, mohli bychom ji prosté nahradit jejim otevienym jadrem ¢, které je ji v
tomto pripadé ekvivalentni. Jak si ale poradit s existenénimi kvantifikdtory, napt. (3x)e(z),
(Vx)(Jy)e(z,y), apod? Ty nejprve nahradime jejich Skolemovou variantou.

Definice 7.2.9 (Skolemova varianta). Méjme L-sentenci ¢ v PNF, a necht vSechny jeji va-
zané proménné jsou ruzné. Nechtf existenéni kvantifikitory z prefixu ¢ jsou (Jy1), ..., (Tyn)
(v tomto poradi), a necht pro kazdé i jsou (Vz1),..., (Vay,) pravé vsechny univerzalni kvan-
tifikatory predchazejici kvantifikdtor (Jy;) v prefixu ¢.

Oznac¢me L' rozsifeni L o nové n;-arni funkeéni symboly f1, ..., fn, kde symbol f; je arity
n;, pro kazdé i. Skolemova varianta sentence ¢ je L'-sentence pg vznikla z ¢ tak, ze pro kazdé
1=1,...,n

o odstranime z prefixu kvantifikator (Jy;), a
o substituujeme za proménnou y; term f;(x1,...,Zy,).
Tomuto procesu rikame také skolemizace.

Priklad 7.2.10. Skolemova varianta sentence

¢ = (Fy1) (Vo) (Va) (Fy2) (Vas) R(y1, 1, 22, y2, 23)
je sentence

ps = (Vo1) (Vo) (Vas) R(f1, 21, 22, f2(21, 22), 23)
kde f; je novy konstantni symbol a fo je novy binarni funkéni symbol.

Pozndmka 7.2.11. Nezapomente, ze pri skolemizaci musime vychazet ze sentence! Napriklad,
méme-li formuli (Jy)E(x,y), neni E(z,c) jeji Skolemova varianta. Musime napied provést
generdlni uzavér (Vx)(3y)E(z,y), a potom spravné skolemizovat jako (Vx)E(z, f(x)), coz je
ekvivalentni oteviené formuli E(z, f(x)) (kterd fikd néco mnohem slabsiho nez E(z,c)).

Je také dulezité, aby kazdy symbol pouzity pii skolemizaci byl opravdu novy, jeho jedinou
‘roli’ v celé teorii musi byt reprezentovat ‘existujici’ prvky v této formuli.

V nasledujicim lemmatu ukazeme klicovou vlastnost skolemovy varianty:

Lemma 7.2.12. M¢éjme L-sentenci p = (Va1) ... (Va,)(Jy)Y a necht ¢’ je sentence

(Va1) ... Ve )U(y/ f(z1, ... x0))

kde f je novy funkcéni symbol. Potom:
(i) L-redukt kaZdého modelu ' je modelem ¢, a

(ii) kazdy model ¢ lze expandovat na model ¢'.
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Diikaz. Nejprve dokazme ¢ast (i): Mé&jme model A’ |= ¢’ a necht A je jeho redukt na jazyk L.
Pro kazdé ohodnoceni proménnych e plati A = ¥[e(y/a)] pro a = (f(x1,...,2,))" [¢], tedy
AE=p.

Nyni &4st (ii): Protoze A = ¢, existuje funkce f4 : A™ — A takovi, Ze pro kazdé ohod-
noceni proménnych e plati A = ¢[e(y/a)], kde a = fA(e(x1),...,e(x,)). To znamena, Ze
expanze struktury A vznikld pfidanim funkce f4 je modelem ¢'. O

Pozndamka 7.2.13. Expanze modelu ve druhé ¢ésti tvrzeni nemusi byt (a typicky neni) jedno-
znacnd, na rozdil od extenze o definici nového funkéniho symbolu.

Aplikujeme-li predchozi lemma opakované (postupné pro vsechny existenéni kvantifiké-
tory), ziskame nésledujici disledek:

Dusledek 7.2.14. Sentence ¢ a jeji skolemova varianta pg jsou ekvisplnitelné.

7.2.3 Skolemova véta

V této podsekci shrneme cely postup popsany v predchozich podsekcich. Klicem je néasledujici
véta norského logika Thoralfa Skolema:

Véta 7.2.15 (Skolemova véta). Kazdd teorie md otevrenou konzervativni extenzi.

Diikaz. Méjme L-teorii T'. Kazdy axiom nahradime jeho generdlnim uzévérem (neni-li to uz
sentence) a prevedeme do PNF, tim ziskdme ekvivalentn{ teorii 7”. Nyn{ nahradime kazdy
axiom teorie 7" jeho Skolemovou variantou. Tim ziskdme teorii 7" v rozsifeném jazyce L'. Z
Lemmatu plyne, ze L-redukt kazdého modelu T” je modelem T’, tedy T" je extenzi
T', a ze kazdy model T” 1ze expandovat do jazyka L’ na model T”, tedy jde o konzervativni
extenzi. Teorie T" je axiomatizovand univerzalnimi sentencemi, odstranime-li kvantifikdtorové
prefixy (tj. vezmeme-li jadra axiomt), ziskdme otevienou teorii 7", kterd ekvivalentni s T”
a tedy je také konzervativni extenzi T'. O

Ze sémantické charakterizace konzervativni extenze snadno plyne nésledujici disledek:

Disledek 7.2.16. Ke kazdé teorii muzZeme pomoci skolemizace najit ekvisplnitelnou otevre-
nou teorii.

Otevfenou teorii uz muzeme snadno prevést do CNF (vyjadiit formuli S v mnozinové
reprezentaci) pomoci ekvivalentnich syntaktickych tprav, stejné jako ve vyrokové logice (viz

Sekce [1.3.2)).

7.3 Grounding

V této sekci si ukazeme, ze mame-li otevienou teorii, ktera je nesplnitelnd, muzeme jeji nespl-
nitelnost dolozit ‘na konkrétnich prvcich’. Co tim myslime? Existuje kone¢né mnoho zdklad-
nich (ground) instanci axiomu (instanci, kde za proménné substituujeme konstantni termy),
takovych, Ze jejich konjunkce (kterd neobsahuje zddnou proménnou) je nesplnitelna.

Definice 7.3.1 (Zékladni instance). Mé&me otevienou formuli ¢ ve volnych proménnych
r1,...,2,. Rekneme, Ze instance @(x1/ty,..., T /t,) je zdikladni (ground) instance, jsou-li
vSechny termy t1,...,t, konstantni (ground).
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Priklad 7.3.2. Teorie T' = {P(z,y) V R(x,y),~P(c,y), " R(z, f(x))} v jazyce L = (P, R, f,c)
nemda model. MizZeme to dolozit nasledujici konjunkci zdkladnich instanci axiomu, kde za
proménnou x substituujeme konstantu ¢ a za y konstantni term f(c):

(P(c, f(e)) V R(c, f(e)) N =P(c, f(e)) N —R(c, f(c))

Tato sentence je zjevné nesplnitelnd. Zakladni atomické sentence (P(c, f(c)) a R(c, f(c))
muzeme navic (diky tomu, ze neobsahuji proménné) chipat jako vyrokové proménné pi, po,
kde p; znamend ‘plati P(c, f(c))’ a p2 znamena ‘plati R(c, f(c))’ Dostavame potom nésledujici
vyrok, ktery lze snadno zamitnout rezoluci:

(p1V p2) A=p1 A—p2

Tomuto procesu prevedeni na zékladni instance (a tim do vyrokové logiky) fikdme ‘grounding’
Za chvili ho zformalizujeme a dokdzeme Herbrandovu vétuﬂ ktera tika, ze takova nesplnitelna
konjunkce zdkladnich instanci axiomu existuje pro kazdou nesplnitelnou teorii.

7.3.1 Prima redukce do vyrokové logiky

Uvédomme si nyni, ze diky Herbrandové vété grounding umoznuje nésledujici postup, byt
neefektivni, jak zamitat formule rezoluci ‘na trovni vyrokové logiky’: Ve vstupni formuli S
nahradime kazdou klauzuli mnozinou vsech jejich zékladnich instanci (pokud zadné nejsou,
tedy pokud jazyk neobsahuje konstantni symbol, jeden konstantni symbol do jazyka pridame).
Ve vysledné mnoziné klauzuli S’ chdpeme atomické sentence jako vyrokové proménné, a S’
zamitneme vyrokovou rezoluci (o které vime, ze je korektni a tGplnd).

Problémem tohoto ptistupu je, ze klauzuli v S’ (zdkladnich instanci klauzuli z S) mtuze byt
mnoho, i nekoneéné mnoho, napt. kdykoliv je v jazyce alespon jeden funkéni (nekonstantni)
symbol.

Priklad 7.3.3. Mame-li CNF formuli S = {{P(z,y), R(z,y)},{-P(c,y)},{-R(x, f(z))}} v
jazyce L = (f,c), nahradime ji nésledujici nekone¢nou formuli S’:

S'={{P(c,c), R(c,0)}, {P(c, f(c), R(c, f(e) }, {P(f(c),0), R(f(c), )} - .-
{(=P(c; )} A=Ple, [ A=Ple, F(F(e))} A=Ple, F(F(f(c) :
{=R(c, f(e)}A=Rf(e), F(F (D)} AR (f (), F(f(f(c)

Ta je nesplnitelna, nebot obsahuje nasledujici kone¢nou podmnozinu, kterd je nesplnitelna,
coz snadno ukazeme vyrokovou rezoluci:

{P(c, f(c), R(c, f(e)}, {=P(e, f(e)} {=R(e, f(e)}} Fr D

V Sekci [7.4] si ukdzeme efektivni postup jak hledat vhodné zdkladni instance klauzuli,
pomoci tzv. unifikace.

S
Ry
2]
~—

SFrancouzsky matematik Jacques Herbrand pracoval na konci 20. let 20. stoleti. Béhem své kratké kariéry
(zemfel tragicky ve véku 23 let) objevil nékolik dalsich dilezitych vysledkii, a mimo jiné formalizoval pojem
rekurzivni funkce.
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7.3.2 Herbrandova véta

V této podsekci vyslovime a dokdzeme Herbrandovu vétu. Budeme predpoklddat, ze jazyk
obsahuje néjaky konstantni symbol: pokud v jazyce zadny neni, jeden ptridame. Konstantni
symbol potrebujeme k tomu, aby existovaly konstantni termy, a my mohli vytvorit tzv. Her-
brandiv model. Jde o konstrukci sémantického objektu (modelu) ze syntaktickych objektu
(konstantnich termu) velmi podobnou kanonickému modelu (Definice H

Definice 7.3.4 (Herbrandtuv model). Méjme jazyk L = (R, F) s alespon jednim konstantnim
symbolem. L-struktura A = (A, R4, FA4) je Herbrandiv model, jestlize:

o A je mnozina vsech konstantnich L-termu (tzv. Herbrandovo univerzum), a

e pro kazdy n-arni funkéni symbol f € F a konstantni termy “t1”,...,“t,” € A plati:
fA(ut » “p ) — « (¢ £}
1 904y n)— f(l?""n)

(1)

e Specidlné, pro kazdy konstantni symbol ¢ € F je ¢ = “c
Na interpretace relacnich symbold neklademe zadné podminky.

Ptipomenme, Ze uvozovky okolo termu piSeme jen neformdlné, abychom jasnéji odlisili
termy jako syntaktické objekty (fetézce symboli) od jejich interpretaci (funkei).

Priklad 7.3.5. Méjme jazyk L = (P, f,c), kde P je unédrni rela¢ni, f je bindrni funkéni, a ¢
konstantni symbol. Herbrandovo univerzum pro tento jazyk je mnozina

A= {0 4 Fe,0)" “Fer F(e ) “F(fles) o).}
Struktura A = (A, PA, fA, ¢*) je Herbrandiv model, jestlize ¢* = “¢” a funkce f4 spliiuje:
o FACE <) = e,
o A flee)”) = “fle fle ),
o fACEf(ee)” “e”) = “f(f(ec) ), atd.

Relace P4 muze byt libovolnd podmnozina A.

Nyni jsme pripraveni vyslovit Herbrandovu vétu. Neformalné receno, je-li teorie splni-
telnd, tj. mé-li model, potom mé dokonce Herbrandiv model, a v opa¢ném pripadé najdeme
nesplnitelnou konjunkci zakladnich instanci axiomt, pouzitelnou pro rezoluéni zamitnuti ‘na
drovni vyrokové logiky’.

Véta 7.3.6 (Herbrandova véta). Méjme otevienou teorii T v jazyce L bez rovnosti a s alespor
jednim konstantnim symbolem. Potom bud md T Herbrandiv model, nebo existuje konecné
mnoho zdkladnich instanci aziomi T, jejichz konjunkce je nesplnitelnd.

5Rozdil je v tom, Ze nepfiddvame spodetné mnoho novych konstantnich symbol (vychézime jen z konstant-
nich symbolu, které uz v jazyce jsou), a také nijak nepredepisujeme, jak maji vypadat relace modelu.
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Diikaz. Oznac¢me jako Tyround mnozinu vsech zakladnich instanci axiomi teorie 7'. Zkonstruu-
jeme systematickéﬂ tablo z teorie Tyround s polozkou F_L v kofeni, ale z jazyka L, bez rozsifeni
o pomocné konstantni symboly na jazyk Lcﬂ

Pokud tablo obsahuje bezespornou vétev, potom je kanonicky model pro tuto vétev (opét
bez pridéni pomocnych konstantnich symboli) Herbrandovym modelem T'. V opa¢ném pii-
padé mame tablo dikaz sporu, tedy teorie Tground, @ tim paddem i T', je nesplnitelnd. Protoze
je tablo dukaz konec¢ny, pouzili jsme v ném jen konecné mnoho zakladnich instanci axiomu
Aground € Tground- Jejich konjunkce je tedy nesplnitelna. ]

Pozndmka 7.3.7. Mame-li jazyk s rovnosti, potom nejprve teorii 7' rozsitime o axiomy rovnosti

na teorii 7%, a méa-li T* Herbrandiv model A, faktorizujeme ho podle kongruence =%, stejné
jako v pripadé kanonického modelu.

Na zavér této sekce vyslovime dva dusledky Herbrandovy véty.
Dausledek 7.3.8. Méjme otevienou formuli p(x1,...,x,) v jazyce L s alesporni jednim kon-

stantnim symbolem. Potom existuji konstantni L-termy t;; (1 <i<m,1 < j <n) takové, Ze
sentence
(Fz1) ... Fzp)p(z1, ... 2p)

je pravdivd, prave kdyz je ndsledujici formule (vijrokovd) tautologie:
gO(:L‘l/tH, RN :L‘n/tln) VeV gO(fL‘l/tml, - ,:L'n/tmn)

Dikaz. Sentence (Fx1) ... (Fxn)p(x1, ..., x,) je pravdiva, praveé kdyz (Vaq) ... (Va,)—e je ne-
splnitelna, neboli kdyz — je nesplnitelna. Tvrzeni plyne z Herbrandovy véty aplikované na
teorii T = {—p}. O

Ddsledek 7.3.9. Méjme otevrenou teorii T v jazyce s alespot jednim konstantnim symbolem.
Teorie T' md model, pravé kdyZ md model teorie Tyrounq sestavajici ze vsech zdkladnich instanci
ariomil teorie T'.

Diikaz. V modelu teorie T plati vSechny axiomy, tedy i vSechny zdkladni instance axiomi.
Je tedy i modelem Tyroung. Pokud 17" nemé model, podle Herbrandovy véty je néjaka konecna
podmnozina teorie Tgyoung nesplnitelnd. ]

7.4 Unifikace

Misto substituci vsech zakladnich termii a prace s touto novou, obrovskou a typicky nekonec-
nou mnozinou klauzuli, je lepsi najit v konkrétnim rezolué¢nim kroku ‘vhodnou’ substituci a
pracovat jen s ni. V této sekci vysvétlime, co znamend ‘vhodnd’ (tzv. unifikace) a jak ji lze
hledat (pomoci unifikacniho algoritmu).

"Nebo libovolné dokonéené tablo, ale tak, abychom sporné vétve uz neprodluzovali.
8Protoze v Tyround Nejsou zadné kvantifikitory, pomocné symboly nikde v tablu nejsou pouzity.
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7.4.1 Substituce

Nejprve uvedme nékolik priklada ‘vhodnych’ substituci:

Priklad 7.4.1. o Z Kklauzuli {P(z),Q(x,a)} a {=P(y),~Q(b,y)} ziskdme pomoci substi-
tuce {z/b,y/a} klauzule {P(b),Q(b,a)} a {-P(a),~Q(b,a)}, a z nich potom rezoluci
klauzuli { P(b), ~P(a)}. Mohli bychom také pouzit substituci {x/y} a rezoluci pres P(y)
ziskat rezolventu {Q(y, a), =Q(b,y)}.

o Mame-li klauzule {P(x),Q(z,a),Q(b,y)} a {-P(v),~Q(u,v)}, vhodnou substituci je
{z/b,y/a,u/b,v/a}; dostavame {P(b), Q(b,a)} a {—~P(a),~Q(b,a)}, jejichz rezolventou
je {P(b),ﬂP(CL)}

o Podivejme se jesté na klauzule {P(z),Q(x,2)} a {=P(y), ~Q(f(y),y)}. Mohli bychom

pouzit substituci {z/f(a),y/a,z/a} a ziskat tak dvojici klauzuli {P(f(a)),Q(f(a),a)}
a {-P(a),~Q(f(a),a)}, rezoluci potom {P(f(a)),P(a)}.
Lepsi ale bude vyuzit substituce {x/f(z),y/z}, po které mame {P(f(2)),Q(f(2),2)}
a {-P(z),7Q(f(z),2)}, a rezolventu {P(f(z)), P(z)}. Tato substituce je obecnéjsi, a
vysledna rezolventa ‘fika vice’ nez {P(f(a)), ~P(a)} (ta je jejim dusledkem, ale naopak
to neplati).

Nyni zavedeme potiebnou terminologii tykajici se substituci. Substituce budeme aplikovat
na termy nebo na literdly (atomické formule nebo jejich negace), oznacme tyto dohromady
jako vgrazy.

Definice 7.4.2 (Substituce). Substituce je koneénd mnozina o = {z1/t1,...,x,/tn}, kde z;
jsou navzajem ruzné proménné a t; jsou termy, pricemz vyzadujeme, aby term ¢; nebyl roven
proménné z;. Substituce o je

e zdkladni, jsou-li vSechny termy ¢; konstantni,
e prejmenovdni promeénngch, jsou-li vSechny termy ¢; navzajem ruzné proménné.

Instance vyrazu (termu nebo literdlu) E pri substituci o = {x1/t1, ..., x,/ty} je viraz vznikly
z F simultannim nahrazenim vsech vyskytt proménnych x; termy ¢;, oznac¢me jej Eo. Je-1i S
mnozina vyrazi, potom znac¢ime So = {Fo | E € S}.

Protoze proménné nahrazujeme simultdnné pro vsSechny proménné zaroven, pripadny
vyskyt proménné z; v termu ¢; nepovede ke zietézeni substituci.

Priklad 7.4.3. Napriklad pro S = {P(z), R(y, z) } a substituci o = {x/f(y, 2),y/z, z/c} mame:
So ={P(f(y,2)), R(z,c)}

Substituce muzeme prirozené sklddat. Slozeni substituci o a 7, kde nejprve aplikujeme o a
potom 7, budeme zapisovat jako o7. Bude tedy platit E(o71) = (Eo)t, pro libovolny vyraz E.

Priklad 7.4.4. Zacnéme opét prikladem. Mame-li vyraz F = P(z,w,u), a substituce

o={z/f(y), w/v}
T={x/a,y/g(x),v/w,u/c}
potom je Fo = P(f(y),v,u) a (Fo)T = P(f(g9(x)),w,c). Musi tedy platit:

ot = {z/f(9(x)),y/9(x),v/w,u/c}

117



Nyni formalni definice:

Definice 7.4.5 (Skladdni substituci). Méjme substituce o = {z1/t1,...,x,/tn} a 7 =
{v1/s1,- -, Ym/3sm}. SloZeni substituci o a T je substituce

or ={z;/tit |z; € X,2; #t;im}U{y;/s; |y; € Y\ X}

kde X ={z1,...,zp}aY ={y1,...,Um}

Vsimnéte si, ze sklddani substituci neni komutativni, o7 je typicky zcela jind substituce
nez 7o.

Priklad 7.4.6. Jsou-li o a 7 jako v Pifkladu [7.4.4] potom:

TO = {x/aa y/g(f(y)),u/c,w/v} #oT

Nyni ukazeme, ze takto definované skladani substituci spliuje pozadovanou vlastnosti, a
také Ze je asociativni. Z asociativity plyne, ze nemusime (a také nebudeme) pséit zavorky ve
slozeni o719, 0109 - - - 0y, apod.

Tvrzeni 7.4.7. Méjme substituce o, T, 0, a libovolny viraz E. Potom plati:
(i) (Eo)T = E(oT)
(it) (oT)o = o(70)

Diikaz. Necht o = {z1/t1,...,xn/tn} a T ={y1/s1, .., Ym/Sm}. Staci dokdzat v pripadé, kdy
vyraz F je jedind proménnd, zbytek snadno plyne indukei. (Substituce nijak neméni ostatni
symboly.) Rozdélime na tii pripady:

o Je-li E = x; pro néjaké i, potom Fo =t; a (Eo)r = t;1 = E(0o7), kde druhd rovnost je
z definice oT.

o Je-li E =y; pro néjaké j, kde y; ¢ {z1,...,2,}, potom Eoc = E a (Eo)r = ET = s5; =
E(oT) opét z definice o7.

o Je-li F jind proménnd, potom (Fo)r = E = E(oT).

Tim jsme dokazali (i). Asociativitu (ii) snadno dokdzeme opakovanym uzitim (i). Nésledujici
plati pro kazdy vyraz F, tedy i pro kazdou proménnou:

E((o7)o) = (E(o7))e = ((Eo)r)e = (Eo)(To) = E(o(70))-

Z toho plyne, Ze (o07)p a o(7p) jsou touz substituciﬂ O

9Podrobndéji: pouzivame ziejmou vlastnost, Ze pro substituci = plati @ = {z1/v1,..., 2k vk}, pravé kdyz
Erm =wv; pro E =z a Exr = F je-li E proménnd ruzné od vsech z;.
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7.4.2 Unifikacéni algoritmus

Které substituce jsou tedy ‘vhodné’? Takové, po jejichz provedeni se dané vyrazy ‘stanou
stejnymi’, tj. unifikovangmi (viz Priklad .

Definice 7.4.8 (Unifikace). Méjme koneénou mnozinu vyrazia S = {E1, ..., E,}. Substituce
o je unifikace pro S, pokud Fhro = Feo = --- = Ey0, neboli So obsahuje jediny vyraz. Pokud
existuje, potom tikame také, ze S je unifikovatelnd.

Unifikace pro S je nejobecnéjsi, pokud pro kazdou unifikaci 7 pro S existuje substituce A

takova, ze 7 = o A. VSimnéte si, ze nejobecnéjsich unifikaci pro S muaze byt vice, ale lisi se jen
prejmenovanim proménnych.
Priklad 7.4.9. Uvazme mnozinu vyrazu S = {P(f(x),y), P(f(a), w)}. Nejobecnéjsi unifikaci
pro S je 0 = {z/a,y/w}. Jinou unifikaci je napt. 7 = {x/a,y/b,w/b}, neni ale nejobec-
néjsi, nelze z ni ziskat napt. unifikaci ¢ = {z/a,y/c, w/c}. Unifikaci 7 naopak lze ziskat z
nejobecnéjsi unifikace o, a to pomoci substituce A = {w/b}: 7 = oA

Nyni predstavime unifikacni algoritmus. Jeho vstupem je neprazdnd, konecnd mnozina
vyrazu S, a vystupem je bud nejobecnéjsi unifikace pro S, nebo informace, ze S neni unifi-
kovatelna. Algoritmus postupuje od zacatku vyrazu a postupné aplikuje substituce tak, aby
se vyrazy stavaly vice podobnymi. Potfebujeme nasledujici definici:

Necht p je prvni (nejlevéjsi) pozice, na které se néjaké dva vyrazy z S lisi. Potom neshoda
v S, ozna¢me D(S), je mnozina vSech podvyrazi zacinajicich na pozici p vyrazu z S.

Priklad 7.4.10. Pro S = {P(x,y), P(f(x),2), P(z, f(x))} jep =3 a D(S) = {z, f(x), z}.
Algoritmus (Unifika¢ni algoritmus).

o vstup: koneénd mnozina vyrazi S # (),

e vystup: nejobecnéjsi unifikace o pro S nebo informace, ze S neni unifikovatelna
0) nastav Sp:= 9, 00:=0, k:=0

1) pokud |Sk| =1, vrat o0 = opoy - - 0%

3) pokud ano, nastav o1 := {x/t}, Sk11 := Skokt1, k:=k+1, a jdi na (1)

4

(0)
(1)
(2) zjisti, zda v D(Sk) existuje proménnd x a term ¢ neobsahujici x
(3)
(4) pokud ne, odpovéz, ze S neni unifikovatelna

Pozndmka 7.4.11. Hledéni proménné z a termu ¢ v kroku (2) muze byt relativné vypocetné
naroc¢né.
Nez se pustime do dukazu korektnosti, ukazeme si béh algoritmu na piikladé

Priklad 7.4.12. Aplikujme unifikaéni algoritmus na nésledujici mnozinu:

S ={P(f(y,9(2)), h(b)), P(f(h(w),g(a)),t), P(f(h(b),9(2))y)}

(k=0) Mnozina Sy = S neni jednoprvkova, D(Sp) = {y,h(w),h(b)} obsahuje term h(w) a
proménnou y nevyskytujici se v h(w). Nastavime o3 = {y/h(w)} a S1 = Spo1, tj.
mame:

S1 = {P(f(h(w),9(2)), kb)), P(f(h(w),g(a)),t), P(f(h(b),g(2)), h(w))}
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(k = 1) D(Sl) = {w,b}, 09 = {w/b}, SQ = 5102, tj.

Sz = {P(f(h(b),9(2)), h(b)), P(f(h(b),g(a)),t)}
(k=2) D(S3) ={z,a}, 03 ={z/a}, S3 = Sa0s, tj.

Sz =A{P(f(h(b),g(a)), h(b)), P(f(h(b),g(a)),t)}
(k = 3) D(Sg) = {h(b),t}, o4 = {t/h(b)}, Sy = Ss04, tj.

Sa={P(f(n(b), g(a)), h(b))}

(k =4) Sy je jednoprvkova, nejobecnéjsi unifikace pro S je nasledujici:

0 = 01030304 = {y/h(w)}{w/b}{z/a}{t/h(bB)} = {y/h(b), w/b, =/a,t/h(b)}

Tvrzeni 7.4.13. Unifikacni algoritmus je korektni. Pro kaZdy vstup S skonci v konecné mnoha
krocich, a je-li S unifikovatelnd, odpovi nejobecnéjsi unifikaci o, jinak odpovi, Ze S neni uni-
fikovatelnd.

Je-li S unifikovatelnd, potom pro sestrojenou nejobecnéjsi unifikaci o navic plati, Ze je-li
T libovolnd unifikace, potom T = oT.

Dikaz. V kazdém kroku k eliminujeme néjakou proménnou, algoritmus tedy musi skoncit.
Pokud algoritmus skoné¢i netspéchem v kroku k, potom nelze unifikovat mnozinu Si. Lze
snadno nahlédnout, Ze v tom pripadé nelze unifikovat ani S.

Pokud algoritmus odpovi ¢ = ogoy - - 0k, zjevné jde o unifikaci. Zbyva dokéazat, ze je
nejobecnéjsi, k tomu staci dokdzat silnéjsi vlastnost (‘navic’) popsanou v tvrzeni.

Méjme libovolnou unifikaci 7 pro S. Ukazeme indukci, Ze pro kazdé 0 < i < k plati:

T = 0001 0;T

Proi=0je oo =0 a 7 = o¢7 tedy plati trividlné. Pfedpoklddejme, Ze to plati pro néjaké i, a
dokazme pro i + 1. Necht 0,41 = {z/t}. Staci dokdzat, ze pro libovolnou proménnou u plati:

UT4+1T = UT

7 toho uz okamzité plyne i 7 = ogoy -+ - 050,417
Je-li uw # z, potom uo;+1 = u, tedy i uo; 417 = ur. V pripadé v = x mame uo;y1 =

xojy1 = t. Protoze 7 unifikuje mnozinu S; = Sogo; ---0;, a proménna x i term ¢ jsou v
neshodé D(S;), musi 7 unifikovat x a ¢t. Jinymi slovy, ¢t7 = z7, neboli uo; 117 = ur, coz jsme
chtéli dokazat. ]

7.5 Rezoluéni metoda

Chceme-li dokézat, ze T' = ¢, umime diky Skolemizaci najit CNF formuli S, ktera je nesplni-
telnd, pravé kdyz je nesplnitelnd teorie T'U {—p}, neboli pravé kdyz T |= ¢. Staci tedy najit
rezolu¢ni zamitnuti S.

V této sekci popiseme vlastni rezolu¢ni metodu. Vétsina pojmt i tvrzeni bude velmi po-
dobna vyrokové logice. Jedinym podstatnym rozdilem bude rezolucéni pravidlo.
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7.5.1 Rezoluc¢ni pravidlo

Rezolventou dvojice klauzuli bude klauzule, kterou z nich lze odvodit aplikaci (nejobecnéjsi)
unifikace. Nejprve priklad:

Priklad 7.5.1. Mé&jme klauzule C; = {P(z), Q(z,v), Q(z, f(2))} a Co = {=~P(u), ~Q(f(u),u)}.
Vyberme z prvni oba pozitivni literdly zacinajici () a ze druhé negativni literdl zacinajici
—@Q. Mnozinu vyrazu S = {Q(x,y), Q(z, f(2)), Q(f(u),u)} lze unifikovat pomoci nejobecnéjsi
unifikace o = {z/f(f(2)),y/f(z),u/f(z)}. Po aplikaci této unifikace ziskdme klauzule Cio =

{P(f(£(2))), QU (f(2)), f(2))} a Cao = {=P(f(2)), ~Q(f(f(2)), f(2))}, # nichz odvodime
klauzuli C = {P(f(f(2))), 7P(f(2))}. Té budeme fikat rezolventa ptuvodnich klauzuli C; a

Cs.

Definice 7.5.2 (Rezolu¢ni pravidlo). Mé&jme klauzule C; a Cs s disjunktnimi mnozinami
proménnych a necht jsou tvaru

01201|_|{A1,...,An}, CQZCél_l{ﬁBl,...,ﬁBm}

kde n,m > 1 a mnozinu vyraza S = {A4y,..., A, B1,...,Bn} lze uniﬁkovatm Bud o nejo-
becnéjsi unifikace S E Rezolventa klauzuli Cy a Cy je néasledujici klauzule:

C =CloUCho

Pozndmka 7.5.3. Podminku o disjunktnich mnozinach proménnych miizeme vzdy splnit, po-
kud prejmenujeme proménné v jedné z klauzuli. Pro¢ je to potfeba? Napriklad, z klauzuli
{{P(2)},{-P(f(x))}} miuZeme ziskat prazdnou klauzuli OJ, pokud nahradime klauzuli { P(x)}
klauzuli {P(y)}. Mnozina vyrazu {P(z), P(f(x))} ale neni unifikovatelna, bez prejmenovani
proménnych by to tedy neslo.

7.5.2 Rezoluéni dukaz

akmile mame definované rezolu¢ni pravidlo, mizeme zavést rezolucni dukaz a souvisejici po-
Jakmil defi | dlo, t [ duik

jmy. Definice budou stejné jako ve vyrokové logice, s jednim rozdilem: dovolime si pfejmenovat
proménné v klauzulich, viz Pozndmka

Definice 7.5.4 (Rezolu¢ni dikaz). Rezolucni dikaz (odvozeni) klauzule C' z formule S je
konecnd posloupnost klauzuli Cy, C1,...,C, = C takovi, ze pro kazdé i je

o bud C; = Clo pro néjakou klauzuli C} € S a pfejmenovani proménnych o, nebo
» Cj je rezolventou néjakych C;,Cy kde j < i a k <.

Pokud rezoluéni dikaz existuje, fikame, ze C je rezoluci dokazatelnd z S, a piSeme S |- C.
(Rezolucni) zamitnuti formule S je rezoluéni dukaz [0 z S, v tom pripadé je S (rezoluct)
zamitnutelnd.

Pozndmka 7.5.5. Proc¢ potfebujeme v rezolu¢nim kroku odstranit vice literali z jedné klauzule
najednou? Uvazte formuli S = {{P(z), P(y)},{—P(x),~P(y)}}. Ta je rezoluci zamitnutelna,
ale neexistuje zamitnuti, které by v kazdém kroku eliminovalo jen jeden literal.

108ymbol LI oznaduje disjunktni sjednocent.
nPfipomeﬁme, ze unifikace znamené, ze A1oc = Aso = --- = Bio = --- = B,0.
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{=P(z,y),~P(y,2), P(z,2)} {P@E, f(a)} {-Pz,y),Ply =)
y/f(a'), ' [z _'P(f(J: ,P(J},Z)} } z/x',y/ f(z')

\/

z/z,a'jz {P(z,z)} {-P(a',2')}

N/

' /z [

(')}

Obrazek 7.1: Rezoluéni zamitnuti formule S z Prikladu [7.5.6l U kazdého rezolu¢niho kroku
je zapsana pouzita unifikace.

Nyni si ukdzeme priklad pouziti rezolu¢ni metody k dilkazu platnosti sentence.

Priklad 7.5.6. Necht T = {—=P(z,z), P(x,y) — P(y,x), P(z,y) A P(y,z) — P(x, z)} a necht
¢ je sentence (Jx)—P(x, f(x)). Checeme ukazat, ze T |= . Teorie T'U {—¢} je ekvisplnitelna
(v tomto pripadé dokonce ekvivalentni) s nasledujici CNF formuli:

S = {{ﬁP(az,x)},{ﬁP(x,y),P(y,x)},{ﬁP(x,y),ﬂP(y, z),P(w,z)},{P(m,f(a:))}}

Ukézeme, ze S |- 0. Rezoluénim dikazem je napiiklad nésledujici posloupnost:

{ﬁP(x,y),ﬂP(y,z),P(J:,z)},{P(x’,f(x'))},{ﬂP(f(x),z),P(fL’,z)},{ﬂP(:U,y),P(y,x)},
{P(2', (=)} AP(f(2"),2")}, { Pz, 2)}, {~P(2',2")}, 0

voevs

7.6 Korektnost a uplnost

V této sekci dokdzeme, ze rezoluéni metoda je i v predikatové logice korektni a ipln4.

7.6.1 Véta o korektnosti

Zaéneme dﬁkazem korektnosti rezoluéniho pravidla. Princip je stejny jako u analogického

vvvvvv

Tvrzeni 7.6.1 (Korektnost rezoluéniho kroku). Méjme klauzule C1, Co a necht C je jejich
rezolventou. Plati-li v néjaké strukture A klauzule Cy a Ca, potom v ni plati i C.

Diikaz. 7 definice rezoluéniho pravidla vime, ze klauzule a jejich rezolventu lze vyjadrit jako
C1=CiU{A,..., A}, Co = CyU{—-By,...,mBp}, a C = Clo UC40, kde o je nejobecnéjsi
unifikace mnoziny vyrazu S = {A;,..., A, B1,..., B}, neboli So = {A;0}.

Protoze klauzule C; a Cs jsou oteviené formule platné v A, plati v A i jejich instance po
substituci o tj. mdme A = Cio a A | Cyo. Vime také, ze C1o0 = Co U {Aj0} a podobné
Cyo = Cho U{-A0}.
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Nasim cilem je ukézat, ze A = Cle] pro libovolné ohodnoceni proménnych e. Pokud
A E Ajole], potom A £~ —Ajole] a musi byt A = Chole]. Tedy i A |= Cle]. V opaéném
piipadé A £~ Ajole], musi tedy platit A = Clole], a opét A = Cle]. O

Zméni i dikaz Véty o korektnosti jsou nyni stejné jako ve vyrokové logice:

Véta 7.6.2 (O korektnosti rezoluce). Pokud je CNF formule S rezoluci zamitnutelnd, potom
je nesplnitelnd.

Dikaz. Vime, ze S g O, vezméme tedy néjaky rezolucni dikaz [J z S. Kdyby existoval
model A | S, diky korektnosti rezoluéniho pravidla bychom mohli dokézat indukei podle
délky dukazu, ze i A |= O, coz ale neni mozné. O

7.6.2 Véta o uplnosti

Vétu o uplnosti rezoluce v predikatové logice, totiz Ze nesplnitelné formule lze zamitnout
rezoluci, dokazeme prevedenim na piipad vyrokové logiky. Ukazeme, zZe rezolu¢ni dikaz ‘na
trovni vyrokové logiky’ je mozné ‘zvednout’ (‘lift’) na troven predikatové logiky.

Klicem je nasledujici lemma, které zarucuje takové ‘zvednuti’ v jednom rezolu¢nim kroku.
Jeho dilkaz je ponékud technicky.

Lemma 7.6.3 (Lifting lemma). Méjme klauzule Cy a Co s disjunktnimi mnoZinami promén-
nych. Jsou-li Cf a C5 zdkladni instance klauzuli C1 a Cy a je-li C* je rezolventou CT a C3,
potom existuje rezolventa C' klauzuli C1 a Cy takovd, Ze C* je zdkladni instanci C'.

Diikaz. Necht Cf = C1m a CF = Cyma, kde 11 a 1 jsou zdkladni substituce, které nesdileji
zéddnou proménnou. Najdeme rezolventu C takovou, ze C* = C1i7s.

Necht C* je rezolventou C7 a C5 pres literal P(t1,...,t;). Vime, ze klauzule C; a Cy mi-
zeme vyjadrit jako C1 = CiU{Al, . ,An} aCy= CéLl{—!Bl, RN —|Bm}, kde {Al, ce ,An}Tl =
{P(t1, e ,tk)} a {—\Bl, ey —\Bm}Tg = {ﬂP(tl, e ,tk)}.

To znamend, ze (7172) unifikuje mnozinu vyraza S = {Aj,..., A4, B1,...,Bny}. Nyni
vezméme nejobecnéjsi unifikaci o pro S ziskanou pomoci Unifikaéniho algoritmu. Jako C
zvolme rezolventu C' = Cjo U Cho.

Zbyva ukazat, ze C* = Cry 1. Diky vlastnosti ‘navic’ z Tvrzeni [7.4.13] o korektnosti Uni-
fika¢niho algoritmu vime, ze (1172) = o (71 72), coZ vyuzivame ve tieti rovnosti z nasledujiciho
vypoétu. Ve ¢tvrté rovnosti vyuzivame faktu, ze Cimm = Cim, a Com = CY, coz plyne
z toho, Ze jde o zdkladni substituce nesdilejici Zddnou proménnou, a ze Cim a Chre jsou
zékladni instance:

Crime = (Clo U Cho)TiT2
= Clom 1o UChom 7o
= Cimm U CyTim)
= Cim UChmy
=(Ci\{A1,..., A }) U (Co\ {=By,...,"Bn})m
= (CT\{P(t1,...,ts) ) U(C5\ {=P(t1,...,tp)}) =C*

Indukei podle délky rezoluéniho dikazu snadno ziskame nésledujici disledek:
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Dusledek 7.6.4. Méjme CNF formuli S a oznacme jako S* mnoZinu vsech jejich zdkladnich
instanci. Pokud S* =g C* (‘na drovni vyrokové logiky’) pro néjakou zdikladni klauzuli C*,
potom existuje klauzule C a zdkladni substituce o takovd, ze C* = Co a S |-r C (‘na drovni
predikdtové logiky’).

Nyni uz je snadné dokéazat tplnost:

Véta 7.6.5 (O uplnosti rezoluce). Je-li CNF formule S nesplnitelnd, potom je zamitnutelnd
rezoluct.

Diikaz. Oznacme jako S* mnozinu vsech zdkladnich instanci klauzuli z S. Protoze je S ne-
splnitelnd, je diky Herbrandové vété (konkrétné Dusledek nesplnitelna i S*. Z véty o
uplnosti vgrokové rezoluce vime, ze S* |- O (‘na trovni vyrokové logiky’). Z Lifting lemmatu
(resp. z Dusledku dostavame klauzuli C' a zékladni substituci o takové, ze Co =0 a
S g C (‘na trovni predikatové logiky’). Ale protoze prazdna klauzule [J je instanci C', musi
byt C = 0. Tim jsme nasli rezolu¢ni zamitnuti S p O. ]

V této sekci pripomeneme pojmy linedrniho a linear-input dukazu, LI-rezoluci a jeji iplnost
pro Hornovské formule. Definice i znéni vét jsou stejné jako ve vyrokové logice (jedinym rozdi-
lem je, ze v dukazech muzeme pouzivat varianty klauzuli z S), dikaz lze provést prevedenim
na vyrokovou logiku opét pomoci Herbrandovy véty a Lifting lemmatu.

Definice 7.7.1 (Linedrni a LI dikaz). Linedrni dikaz (rezoluci) klauzule C' z formule S je

konec¢nd posloupnost
Co| |Ch Ch c
BO ) Bl PRI Bn s Un+1

kde C; fikame centrdlni klauzule, Cy je pocdatecni, Cn11 = C' je koncovd, B; jsou bocni klauzule,
a plati:

e () je varianta klauzule z S, pro ¢ < n je C;41 rezolventou C; a B;,

e By je varianta klauzule z S, pro i < n je B; varianta klauzule z S nebo B; = C; pro
néjaké j < i.
Linedarni zamitnuti S je linedrni dikaz U z S.
LI-dikaz je linearni dikaz, ve kterém je kazda boc¢ni klauzule B; variantou klauzule z

S. Pokud existuje LI-dikaz, rikdme, ze je C' Ll-dokazatelnd z S, a piseme S |- C. Pokud
S brr O, je S LI-zamitnutelnd.

V Poznamce jsme poznamenali, Ze ‘linedrni’ rezoluce (zalozend na linedrnich dika-
zech) je ﬁplnéE Stejné tvrzeni plati i v predikatové rezoluci:

Véta 7.7.2 (O tuplnosti linedrni rezoluce). Klauzule C' md linedrni dikaz z CNF formule S,
pravé kdyz ma rezoluéni dikaz z S (tj. S Fr C).

Dukaz. 7 linedrniho dikazu snadno vyrobime rezolucni strom. Opacnd implikace plyne z
Poznamky a z Lifting lemmatu (jehoz pouziti zachovava linearitu rezolu¢niho dikazu).
O

vvvs
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7.7.1 Uplnost LI-rezoluce pro Hornovy formule

Pripomenime terminologii tykajici se hornovskosti a programt: Hornova klauzule je klauzule
obsahujici nejvyse jeden pozitivni literdl. Hornova formule je (koneénd, nebo i nekone¢nd)
mnozina Hornovych klauzuli. Fakt je pozitivni jednotkova (Hornova) klauzule, pravidlo je
(Hornova) klauzule s pravé jednim pozitivnim a alespon jednim negativnim literdlem, a cil je
neprazdnad (Hornova) klauzule bez pozitivniho literdlu. Pravidlim a faktum fikdme progra-
mové klauzule.

Stejné jako ve vyrokové logice, LI-rezoluce je tplna pro Hornovské formule:

Véta 7.7.3 (O uplnosti Ll-rezoluce pro Hornovy formule). Je-li Hornova formule T splni-

telnd, a T U{G} je nesplnitelnd pro cil G, potom T U{G} 11 O, a to LI-zamitnutim, které

zacind cilem G.

Diikaz. Plyne z analogické véty ve vyrokové logice, z Herbrandovy véty, a z Lifting lemmatu.
O

7.7.2 Rezoluce v Prologu

Na zavér si ukdzeme aplikaci LI-rezoluce v programovacim jazyce Prolog. Program v Prologu
je Hornova formule obsahujici pouze programové klauzule, tj. pravidla a fakta.

Priklad 7.7.4. Jako priklad vezméme jednoduchy program popisujici rodinné vztah tfech osob,
popsany v Tabulce [7.7.4] Na levé strané vidime syntaxi Prologu, a vpravo je mnozinovy zapis
odpovidajicich klauzuli; prislusnou CNF formuli oznac¢ime P.

son(X,Y) :-father(Y,X) ,man(X). {son(X,Y),—~father(Y,X),-man(X)}
son(X,Y) :-mother(Y,X) ,man(X). {son(X,Y),-mother(Y,X),~-man(X)}
man(charlie). {man(charlie)}
father (bob,charlie) . {father(bob, charlie)}
mother (alice,charlie). {mother(alice, charlie)}
?-son(charlie,X) . {=son(charlie, X)}

Tabulka 7.1: Ukazkovy program v Prologu

Posledni tadek v tabulce neni soucasti programu, jde o existencni dotaz. Zajimé nas,
zda v programu plati: P = (3X)son(charlie, X)? Vsimnéte si, ze negaci dotazu ziskdme cil
G = {—son(charlie, X)}. Chceme tedy zamitnout CNF formuli P U {G}.

Stejné jako ve vyrokové logice (Dusledek [4.4.10]) plati nasledujici jednoduchy dusledek
uplnosti LI-rezoluce pro Hornovy formule.

Dasledek 7.7.5. Pro program P a cil G = {—A1,...,2 A} v proménnych X1,..., X, jsou
ndsledujict podminky ekvivalentni:

o« P ): (HXl) - (HXn)(Al VAR /\Ak)
o PU{G} md LI-zamitnuti zacinajici cilem G.

Dukaz. Neni tézké nahlédnout, ze program P je vzdy splnitelnd Hornova formule. Prvni pod-
minka je ekvivalentni nesplnitelnosti PU{G}. Ekvivalence potom plyne z tplnosti LI-rezoluce
pro Hornovy formule (Véta [7.7.3)). O
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Je-li odpovéd na dotaz kladnd, chceme znat i vystupni substituci o, tj. slozeni unifikaci z
jednotlivych rezoluc¢nich krokti, zizené na proménné v G. Plati:

PE (AN NAg)o

Priklad 7.7.6. Pokrac¢ujme v Pifkladu [7.7.4] Najdeme vSechny vystupni substituce pro nas
dotaz:

?-son(charlie,X).

X = bob ;
X = alice ;
No

Zalezi na tom, které ze dvou pravidel aplikujeme na cil. Ptislusnd zamitnuti jsou znézor-
néna nize. Vystupni substituci ziskdme slozenim substituci z jednotlivych krokt, a zizenim
na proménnou X. (Pro nedostatek mista jsme zkratili konstantni symboly na a, b, c.)

(a) Vystupni substituce o = {X/b}:

{=son(c, X)} {~father(X,c),~man(c)} - {~father(X,c)} - O
{son(X',Y"), ~father(Y’, X'),~man(X")} {man(c)} {father(b,c)}
{X7/e,Y'/ X} 0 {X/b}

(b) Vystupni substituce o = {X/a}:

{=son(c, X)} {—mother(X,c),-man(c)} - {ﬁmother(X&}f O
—
{son(X",Y"),=mother(Y’', X'), =man(X")} {man(c)} — {mother(a,c)}
{X'/e,Y'/X} 0 {X/a}
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Cast III

Pokrocilé partie
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Kapitola 8

Teorie modelu

V této kapitole se trochu vzdalime typickym aplikacim logiky v informaticeE] a nahlédneme
o uroven abstrakce vyse, do oblasti matematické logiky. Teorie modeli se snazi popsat vztah
mezi obecnymi vlastnostmi teorii (predikdtové logiky) a t¥id jejich modeli. Nevyhneme se
praci s nekonecnymi teoriemi a s nekone¢nymi strukturami. Jde jen o ukazku nékolika vy-
branych vysledku, které jsou pro nds dostupné. Ani se nepokusime obsdhnout vSechny hlavni
oblasti teorie modeli, ktera je velmi bohatd a hluboka. Do této kapitoly jsme také pridali
material tykajici se vlastnosti modelu, ktery se nehodil jinam.

8.1 Elementarni ekvivalence

Nejprve se podivame na nékolik vlastnosti souvisejicich s pojmem elementdrni ekvivalence.
Pripomenme, ze L-struktury A a B jsou elementdrné ekvivalentni (A = B), pokud v nich
plati tytéz L-sentence.

V teorii modeli nés casto zajima, jaké vlastnosti (sentence) plati v dané, konkrétni struk-
tute:

Definice 8.1.1 (Teorie struktury). Méjme L-strukturu A. Teorie struktury A, znac¢ime Th(.A)
je mnozina vsech L-sentenci platnych v A:

Th(A) = {¢ | ¢ je L-sentence a A = ¢}

Priklad 8.1.2. Jako dulezity priklad vezméme standardni model aritmetiky, strukturu N =
(N, S, +,-,0,<). Teorii Th(N) fikdme aritmetika prirozengch c¢isel. V nasledujici kapitole si
ukazeme, ze je (algoritmicky) nerozhodnutelndE]

Nékolik jednoduchych vlastnosti teorie struktury shrneme v nasledujicim pozorovani:
Pozorovani 8.1.3. Necht A je L-struktura a T je L-teorie. Potom:
(i) Teorie Th(A) je kompletni.

(ii) Je-li A € M(T), potom Th(A) je (kompletni) jednoduchd extenze teorie T'.

!'Napifklad pouziti rezoluce k feSeni otézky, zda v dané koneéné teorii T' plati dans sentence .
2Teorie T je (algoritmicky) rozhodnutelnd, pokud existuje algoritmus, ktery pro kazdou vstupni sentenci ¢
dobéhne a odpovi, zda T = ¢.
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(iii) Pokud A € M(T) a T je kompletni, potom je Th(A) ekvivalentni s T, v tom pripadé
Th(A) = Csq(T).
Pomoci pojmu teorie struktury muzeme také vyjadrit elementarni ekvivalenci, pro L-

struktury A, B plati:
A = B pravé kdy Th(A) = Th(B).

Priklad 8.1.4. Podivejme se standardni uspotradani realnych, racionalnich, a celych ¢isel, tj.
na struktury (R, <), (Q, <), (Z, <). Jak jsme jiz zminili v Piikladu neni tézké ukazat,
ze (R, <) = (Q, <) (pomoci hustoty téchto usporadani). Struktury (Q, <) a (Z, <) ale elemen-

tarné ekvivalentni nejsou: V (Z, <) ma kazdy prvek bezprostiedniho néslednika, coz v (Q, <)
neplati. Pro nésledujici sentenci ¢ tedy mame ¢ € Th((Z, <)) ale ¢ ¢ Th({Q, <)):

p=Vr) )z <yr-z=yA(V2)(z<z2z=aVy<2))

8.1.1 Kompletni jednoduché extenze
Mame-li teorii T, zajima nas, jak vypadaji jeji modely. Pfipomenme, ze:
o Teorie je kompletni, pravé kdyz ma jediny model az na elementarni ekvivalenciﬂ

e Modely teorie T, az na elementarni ekvivalenci, jednozna¢né odpovidaji kompletnim
jednoduchym extenzim T, az na ekvivalenci.

Kompletni jednoduché extenze L-teorie T jsou tedy (az na ekvivalenci) tvaru Th(A) pro
A € Mp(T), a (jak jsme uz zminili vyse) A = B pravé kdyz Th(A) = Th(B). Misto hledéni
vSech modelt tedy staci najit vsechny kompletni jednoduché extenze.

Pozndmka 8.1.5. Jednou z motivaci, pro¢ se zabyvat kompletnimi jednoduchymi extenzemi,
je Tvrzeni z nésledujici kapitoly, které tikd, ze pokud lze efektivné (algoritmicky) popsat
vSechny kompletni jednoduché extenzeﬂ efektivné dané teorie TE| potom je T' (algoritmicky)
rozhodnutelnd.

Schopnost (efektivné) popsat vsechny kompletni jednoduché extenze je pomérné vzécna,
a vyzaduje silné predpoklady. Presto to lze provést u mnoha dilezitych teorii. Uvedme jeden
priklad: teorii hustého linedrniho uspordaddni (dense linear order).

Priklad: DeLO*

Teorie hustého linedrniho usporaddni (DeLO%*) je extenze teorie usporaddni o nésledujici axi-
omy:

o axiom linearity (nékdy se mu ¥ikd také dichotomie):

r<yVy<w

e axiom hustoty

r<yA-z=y—=>(F)(z<zAz<yA-z=zA-z=y)

3Tedy vsechny jeji modely jsou elementdrné ekvivalentni.

4Predstavte si algoritmus, ktery pro dana vstupni 4, j odpovi j-ty axiom i-té kompletn{ jednoduché extenze
(v néjakém pevném ocislovani); takovy algoritmus ne vzdy existuje!

5T muze byt nekoneénd, ale musi existovat algoritmus, ktery postupné vygeneruje véechny axiomy T
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Neékdy se pridava i axiom netriviality (3z)(Jy)(— 2z = y) zakazujici jednoprvkovy model. Tato
teorie neni kompletni, umime ale popsat vSechny jeji kompletni jednoduché extenze:
Tvrzeni 8.1.6. Méjme sentence ¢ = (3x)(Vy)(z < y) a ¥ = (Fz)(Vy)(y < z) vyjadrujici
existenci minimdlniho resp. maximdlniho prvku. Ndsledujici ctyri teorie jsou prdvé vsechny
(aZ na ekvivalenci) kompletni jednoduché extenze teorie DeLO*:

o DeLO = DeLO* U {—¢, 1)}

e DeLO" = DeLO* U {—¢, v}

e DeLO™ = DeLO* U {¢, 1)}

o DeLO* = DeLO* U {p, v}
Staci ukazat, ze tyto Ctyri teorie jsou kompletni. Potom uz je ziejmé, Ze zadna dalsi
kompletni jednoduchd extenze DeLO* nemuze existovat. Jak vysvétlime v Sekci , jejich

kompletnost plyne z faktu, ze jsou w-kategorické, tj. maji jediny spocetny model az na izo-
morfismus. Viz Disledek

8.1.2 Disledky Lowenheim-Skolemovy véty

V Sekci jsme dokézali tzv. Lowenheim-Skolemovu vétu, konkrétné jeji variantu pro
jazyky bez rovnosti:

Véta (Lowenheim-Skolemova). Je-li L spocetny jazyk bez rovnosti, potom kazdd bezespornd
L-teorie md spocetné nekonecny model.

Tato véta ma nasledujici jednoduchy disledek:

Disledek 8.1.7. Je-li L spocetny jazyk bez rovnosti, potom ke kazdé L-strukture existuje
elementdrné ekvivalentni spocetné nekonecnd struktura.

Dikaz. Méjme L-strukturu A. Teorie Th(.A) je bezespornd (mé model A), tedy dle Lowenheim-
Skolemovy véty ma spocetné nekone¢ny model B = Th(A). To ale znamena, ze B=.A. O

V jazyce bez rovnosti tedy nemtzeme vyjadrit napiiklad ‘model mé praveé 42 prvkd’

V dikazu Loéwenheim-Skolemovy véty jsme sestrojeny model ziskali jako kanonicky model
pro bezespornou vétev tabla z T pro polozku F_L. Stejnym zpusobem se dokaze nasledujici
verze pro jazyky s rovnosti, sta¢i faktorizovat dle relace =4:

Véta (Lowenheim-Skolemova s rovnosti). Je-li L spocetny jazyk s rovnosti, potom kazdd be-
zespornd L-teorie md spocetny model (tj. konecny, nebo spocetné nekonecny).
I tato verze m4 snadny dusledek pro konkrétni struktury:

Ddsledek 8.1.8. Je-li L spocetny jazyk s rovnosti, potom ke kaZdé nekonecné L-strukture
existuje elementdrné ekvivalentni spocetné nekonecnd struktura.

Dikaz. Méjme nekonecnou L-strukturu A. Stejné jako v dukazu Dﬁsledku (ale za pouziti
Lowenheim-Skolemovy véty s rovnosti) najdeme spocetnou strukturu B = A. Protoze v A
plati pro kazdé n € N sentence vyjadiujici ‘existuje alespon n prvka’ (coz lze pomoci rovnosti
snadno zapsat), plati tato sentence i v B, B tedy nemuze byt konecnd a musi byt spocetné
nekonec¢na. O

Tento disledek pouzijeme, abychom ukéazali, Ze existuje spocetné téleso, které je alge-
braicky uzaviené:
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Spocetné algebraicky uzaviené téleso

Téleso A je algebraicky uzavrené, pokud kazdy polynom nenulového stupné v ném mé koren.
Téleso realnych ¢isel R neni algebraicky uzaviené, nebot z? + 1 nemé v R kofen, stejné tak
téleso Q (v ném nemé koten ani 22 — 2). Téleso komplexnich ¢isel C algebraicky uzaviené je,
je ale nespocetné.

Algebraickou uzavienost lze vyjadrit pomoci nésledujicich sentenci 1, pro kazdé n > 0:

(Vr_1) ... (Vo) FY) (W + 2po1 -y 4z y +20) =0
kde y* je zkratka za term y -y - --- -y (kde - je aplikovano (k — 1)-krat).
Disledek 8.1.9. Ezxistuje spocetné algebraicky uzavrené téleso.

Diikaz. Dle Dusledku existuje spocetné nekone¢nd struktura A elementarné ekvivalentni
télesu C. Protoze C je téleso a splnuje sentence 1, pro vSechna n > 0, je i A algebraicky
uzaviené téleso. O

8.2 Izomorfismus struktur

Podivejme se blize na pojem izomorfismu struktur, ktery zobecnuje izomorfismus grafl, vek-
torovych prostorii, apod. Neformalné receno, struktury jsou izomorfni, pokud se lisi jen po-
jmenovanim konkrétnich prvki.

Definice 8.2.1 (Izomorfismus struktur). Méjme struktury A, B jazyka L = (R, F). Izomor-
fismus A a B (nebo ‘A na B’) je bijekce h: A — B spliujici nasledujici vlastnosti:

o Pro kazdy (n-drni) funkéni symbol f € F a pro vSechna a; € A plati:
h(fA a1, ... an)) = fB(h(a1),. .. h(an))
(Specidlng, je-li ¢ € F konstantni symbol, plati h(c?) = B.)
o Pro kazdy (n-arni) rela¢ni symbol R € R a pro vSechna a; € A plati:
RA(ay,...,an) pravé kdyz RB(h(ay),...,h(ay))
Pokud existuje, fikame, ze A a B jsou izomorfni (nebo ‘A je izomorfni s B via h’) a piseme
A ~ B (nebo A ~} B). Automorfismus A je izomorfismus A na A.

Vsimnéte si, ze relace ‘byti izomorfni’ je ekvivalence. Ukazme si jeden piiklad:
Priklad 8.2.2. Je-li | X| = n, je potenéni algebra P(X) = (P(X),—,N,U,0, X) izomorfni s
Booleovou algebrou 2" = ({0,1}", —p, An, Vi, (0,...,0),(1,...,1)) (kde operace aplikujeme
po slozkach) via h(A) = x4, kde x4 je charakteristicky vektor podmnoziny A C X.

Nyni ukdzeme, ze izomorfismus je bijekce ‘zachovavajici sémantiku’:

Tvrzeni 8.2.3. Méjme struktury A, B jazyka L = (R, F). Bijekce h: A — B je izomorfismus
A a B, prave kdyz plati ndsledujici:

(i) pro kazdy L-term t a ohodnoceni proménnych e : Var — A:

h(t4[e]) = tP[e o h]
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(ii) pro kazZdou L-formuli ¢ a ohodnoceni proménngch e : Var — A:

A = ple] prdavé kdyz B = ¢[e o h]

Diikaz. Je-li h izomorfismus, vlastnosti snadno dokazeme indukcei podle struktury termu resp.
formule. Naopak, je-li h bijekce spliujici (i) a (ii), dosazenim ¢ = f(x1,...,x,) resp. ¢ =
R(z1,...,x,) dostavame vlastnosti z definice izomorfismu. O

Jako okamzity disledek dostavame fakt, Ze izomorfni struktury jsou elementarné ekviva-
lentni:

Dusledek 8.2.4. Pokud A ~ B, potom A= B.

Pozndmka 8.2.5. Obréacend implikace ale obecné neplati, napiiklad pro usporddané mnoziny
raciondlnich a redlnych ¢isel plati (Q, <) = (R, <) ale (Q, <) # (R, <) nebot Q je spocetna
mnozina zatimco R neni (neexistuje tedy mezi nimi zadnéa bijekce).

Pro kone¢né modely ale plati, Ze izomorfismus je totéz co elementarni ekvivalence, mame-li
jazyk s rovnosti, jak dokdzeme v néasledujicim tvrzeni:

Tvrzeni 8.2.6. Je-li L jazyk s rovnosti a A, B konecné L-struktury, potom plati:
A~ B privé kdyz A=DB
Diikaz. Jednu implikaci jsme dokdzali v Dusledku[8.2.4] Predpokladejme, ze A = B a ukazme,

Ze existuje izomorfismus A na B. Protoze je jazyk s rovnosti, mizeme vyjadrit sentenci, ze
‘existuje pravé n prvkia’. Z toho plyne, ze |A| = |B|.

Oznac¢me jako A’ expanzi A o jména prvki z A; jde o strukturu v jazyce L' = L U {c, |
a € A}. Ukdzeme, ze B lze expandovat na L’-strukturu B tak, ze A" = B’. Potom, jak lze
snadno ovéfit, je zobrazeni h(a) = ¢ izomorfismem A’ na B, a tedy i izomorfismem jejich
L-reduktt a A ~ B.

Staci ukazat, ze pro kazdé c{;‘/ = a € A existuje prvek b € B takovy, Ze pro expanze o
interpretaci konstantniho symbolu ¢, plati (A, a) = (B,b). Oznac¢me jako € mnozinu formuli
(x) takovych, ze (A, a) = ¢(x/cy), neboli A = ¢le(z/a)]. Protoze je A koneénd mnozina,
existuje kone¢né mnoho formuli ¢1(z),...,m(x) takovych, ze pro kazdou formuli ¢ € Q
existuje i takové, ze A = ¢ <> ;. Potom i B = ¢ <> ¢; (nebot A = B, stad¢i vzit generdlni
uzaver této formule, coz je sentence).

Protoze v A plati sentence (3x) Ai%; i (je splnéna diky prvku a € A) a B = A, mame
i B (3z) A2y @i. Jinymi slovy, existuje b € B takové, ze B = A“; ¢ile(x/b)]. Tedy pro
kazdou ¢ € Q plati B = ple(x/b)], tj. (B,b) = ¢(x/cq), coz jsme chtéli dokazat. O

Ddsledek 8.2.7. Pokud mad kompletni teorie v jazyce s rovnosti konecny model, potom jsou
vsechny jeji modely izomorfni.

8.2.1 Definovatelnost a automorfismy

Pripomenime si pojem definovatelné mnoziny, viz Sekce Ukézeme si uziteénou vlastnost
definovatelnych mnozin: jsou uzaviené (‘invariantni’) na automorfismy dané struktury.
Nikoho neptekvapi, ze pri automorfismu se musi izolovany vrchol daného grafu zobrazit na
izolovany vrchol, vrchol stupné 4 na vrchol stejného stupné, nebo tieba trojice vrchold, ktera
tvori trojihelnik, na trojihelnik. To ndm miuze pomoci napiiklad pti hledani automorfismu.
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Tvrzeni 8.2.8. Je-li D C A" definovatelnd ve strukture A, potom pro kazZdy automorfismus
h € Aut(A) plati h[D] = D (kde h[D] znaci {h(a) |a € D}).

Je-li D definovatelnd s parametry b, plati toté? pro automorfismy identické na b (fixujic
b), tj. takové, Ze h(b) = b (neboli h(b;) = b; pro viechna i).

Dikaz. Ukazeme jen verzi s parametry. Necht D = @A’E(T, 7). Potom pro kazdé @ € A™ plati
nasledujici ekvivalence:

acD & Ak ple(z/a,y/b))

& AE ¢gl(eoh)(T/a,7/b)
& A ple(@/h@), 7/h(b))]
& A ple(@/h(@),7/b)]

< h(a) € D.

e

O]

Priklad 8.2.9. Uvazme nésledujici graf G. Najdéme vSechny mnoziny definovatelné z G s pa-

rametrem 0, tj. mnozinu Df'(G, {0}).

Tento graf ma jediny netrividlni automorfismus zachovavajici vrchol 0: h(:i) = (5 — ¢) mod 5.
Jeho orbity jsou {0}, {1,4}, a {2,3}. Tyto mnoziny jsou definovatelné:

« {0} je definované formuli z = y, tj. (z = 3)91% = {0},
o {1,4} lze definovat pomoci formule E(z,y), a
o {2,3} formuli =E(z,y) A~z =y.

Mnozina Df'(G, {0}) je podalgebra potenéni algebry P(V(G)), musi tedy byt uzaviens na
doplnék, sjednoceni, prinik, a obsahovat (§ a V' (G). Podalgebra generovana {{0}, {1,4},{2,3}}
uz ale obsahuje vsechny podmnoziny zachovavajici automorfismus h. Dostavame:

Dfl(g, {0}) = {0,{0},{1,4},{2,3},{0,1,4},{0,2,3},{1,4,2,3},{0,1,2,3,4}}

Cuicent 8.1. Uvazme nasledujici graf. Najdéte vSechny automorfismy. Urcete, které podmno-
ziny jsou definovatelné, uvedte definujici formule. Které binarni relace jsou definovatelné?

O
GSQ‘@

133



8.3 w-kategorické teorie

Nyni se podivame na teorie, které maji jediny spoc¢etné nekoneény model (az na izomorfismus),
fikame jim w-kategorickélf]

Definice 8.3.1 (Izomorfni spektrum, x-kategoricita). Izomorfni spektrum teorie T' je po-
¢et I(k,T) modeli T kardinality s az na izomorfismus, pro kazdou kardinalitu k (véetné
transfinitnich). Teorie T je k-kategorickd, pokud I(k,T) = 1.

Nadale nas bude zajimat jen pripad k = w, totiz teorie s jedinym spocetné nekoneénym
modelem (az na izomorfismus). Jako piiklad uvedme teorii hustého linedrniho usporadani bez
koncii:

Tvrzeni 8.3.2. Teorie DeLO je w-kategorickd.

Diikaz. Vezméme dva spocetné nekoneéné modely A, B a oc¢islujme jejich prvky: A = {a; |
i € N}, B = {b; | i € N}. Indukei podle n lze diky hustoté nalézt posloupnost hg C hy C
he C ... prostych (parcidlnich) funkci z A do B, takovych, ze {ag,...,an—1} C dom h,,
{bo,...,bn_1} Crng hnﬂ a zachovavaji uspofddoimﬂ Potom A ~ B via h = ey Pn- O

Dusledek 8.3.3. Izomorfni spektrum teorie DeLO* je ndsledujici:

0 prokeN,

1w, DeLO7) = {4 Pro K = w

Spocetné modely az na izomorfismus jsou napriklad:

Q=(Q,<)~Q1(0,1), @Q1(0,1], Q1[0,1), QT[0,1]

Dukaz. Husté usporadani jisté nemtze byt konecné. Izomorfismus musi zobrazit nejmensi
prvek na nejmensi prvek, a nejvétsi na nejveétsi. O

Pojem w-kategoricity 1ze chapat jako zeslabeni pojmu kompletnosti. Plati nasledujici uzi-
tecné kritérium:
Véta 8.3.4 (w-kategorické kritérium kompletnosti). Méjme w-kategorickou teorii T ve spo-
cetném jazyce L. Je-li

e L bez rovnosti, nebo

e L s rovnosti a T nemd konecné modely,
potom je teorie T kompletni.

Diikaz. Pro jazyk bez rovnosti vime z Dusledku [8.1.7] Léwenheim-Skolemovy véty, ze kazdy
model je elementarné ekvivalentni néjakému spocetné nekoneé¢nému modelu. Ten je ale az na
izomorfismus jediny, takze vSechny modely jsou elementarné ekvivalentni, coz je sémanticka
definice kompletnosti.

Mame-li jazyk s rovnosti, pouzijeme podobné Dtsledek a dostaneme, zZe vsechny ne-
konecné modely jsou elementarné ekvivalentni. Mohly by existovat elementarné neekvivalentni
konecné modely, to jsme ale zakazali. O

5Symbol w se pouziva pro nejmensi nekoneéné ordindlnd &islo, jingmi slovy, pro mnozinu vech pfirozenych
Cisel.

"Zde dom znadi doménu a rng znali obor hodnot (‘range’) funkce.

8Ty. je-li ai,a; € dom h,, potom a; <* a; pravé kdyz h(a;) <® h(a;).
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Disledek 8.3.5. Teorie DeLO, DeLOT, DeLO~, a DeLOT jsou kompletni. Jsou to vsechny
(navzdjem neekvivalentni) kompletni jednoduché extenze teorie DeLO*.

Pozndmka 8.3.6. Analogické kritérium plati i pro kardinality « vétsi nez w.

8.4 Axiomatizovatelnost

Na zavér této kapitoly se podivame, za jakych okolnosti lze ‘popsat’ (aziomatizovat) t¥idu
modelu respektive teorii. Zajimat nds bude také kdy si vystacime s konec¢né mnoha axiomy,
a kdy to lze pomoci otevienych axiomu (kterych muze byt i nekone¢né mnoho). Srovnejte s

Tvrzenim z vyrokové logiky.

Definice 8.4.1 (Axiomatizovatelnost). Méjme tiidu struktur K C My v néjakém jazyce L.
Rikdme, 7e K je

o aziomatizovatelnd, pokud existuje L-teorie T takovd, ze M (T) = K,
o konecné axiomatizovatelnd, pokud je axiomatizovatelnd konec¢nou teorii, a
o otevrené axiomatizovatelnd, pokud je axiomatizovatelna otevienou teorii.

O L-teorii T’ fikdme, ze je konecné resp. otevrené axiomatizovatelnd, pokud to plati o t¥{dé
modelt K = M (T").

Priklad 8.4.2. Uvedme nékolik piikladi:
o grafy nebo ¢astecnd usporadani jsou konecné i oteviené axiomatizovatelné,
o télesa jsou konecné, ale ne oteviené axiomatizovatelna,
e nekonecné grupy jsou axiomatizovatelné, ale ne kone¢né axiomatizovatelné,
e konecné grafy nejsou axiomatizovatelné.

Pro¢ tomu tak je ukdzeme nize.

Zacnéme jednoduchym faktem:
Pozorovani 8.4.3. Je-li K aziomatizovatelnd, musi bijt uzavrend na elementdrni ekvivalenci.

7 véty o kompaktnosti snadno ziskame nasledujici tvrzeni, pomoci kterého lze ukéazat
neaxiomatizovatelnost napr. kone¢nych grafii, konec¢nych grup, konec¢nych téles.

Véta 8.4.4 (Neaxiomatizovatelnost koneénych modeli). Pokud md teorie libovolné velké ko-
necné modely, potom md i nekonecny model. V tom pripadé nent trida vsech jejich konecnich
modeli axiomatizovatelnd.

Dikaz. Je-li jazyk bez rovnosti, stac¢i vzit kanonicky model pro nékterou bezespornou vétev
v tablu z T pro polozku F_L (T je bezespornd, nebot mé model(y), tedy tablo neni sporné).

Méjme jazyk s rovnosti a oznac¢me jako T nasledujici extenzi teorie T do jazyka rozsire-
ného o spocetné mnoho novych konstantnich symbolu ¢;:

T/:TU{ﬁCi:CjH'#jGN}
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Kazda konefna ¢ést teorie 7" ma model: necht k je nejvétsi takové, ze symbol ¢ se vysky-
tuje v této konecné ¢asti T'. Potom staci vzit libovolny alespon (k + 1)-prvkovy model T a

interpretovat konstanty co, ..., c; jako navzajem ruzné prvky tohoto modelu.
Dle véty o kompaktnosti m& potom i 77 model. Ten je nutné nekoneény. Jeho redukt na
puvodni jazyk (zapomenuti konstant cg“) je nekone¢nym modelem 7. O

Poznamka 8.4.5. Trida vSech nekonecngjch modelt teorie ale je vzdy axiomatizovatelna, mame-
li jazyk s rovnosti: staci k teorii pridat pro kazdé n € N axiom vyjadiujici ‘existuje alespon n
prvki’.

8.4.1 Koneéna axiomatizovatelnost

UkéZeme nasledujici kritérium kone¢né axiomatizovatelnosti: jak tifda struktur K tak i K
musi byt axiomatizovatelné.

Véta 8.4.6 (O konec¢né axiomatizovatelnosti). Meéjme tridu struktur K C My, a uwvazme také
jeji doplnék K = My \K. Potom K je konecné aziomatizovatelnd, prdvé kdyz K i K jsou
axiomatizovatelné.

Diikaz. Je-li K konecné axiomatizovatelna, potom je axiomatizovatelnd i kone¢né mnoha sen-
tencemi @1, . .., ¢, (nahradime formule jejich generdlnimi uzavéry). Jako axiomatizaci K staci
vzit sentenci ¥ = =(o1 A @2 A -+ A @y). Ziejmé plati M(y) = K.

Naopak, necht T" a S jsou teorie takové, ze M(T) = K a M(S) = K. Uvazme teorii TU S.
Tato teorie je spornd, nebot:

M(TUS)=MT)NM(S)=KnNK =10
Podle véty o kompaktnostﬂ existuji konec¢né podteorie T C T a S’ C S takové, ze:
0 =M(T'US")=MT)NM(S)

Nyni si vSimnéme, ze plati

M(T) € M(T”) € M(S7) € M(S) = M(T)
tim jsme dokdzali, ze M (T) = M(T"), tj. teorie T" je hledanou kone¢nou axiomatizaci K. [

Jako aplikaci si dokazeme, ze télesa charakteristiky 0 nejsou konecné axiomatizovatelna.

Priklad: télesa charakteristiky 0

Necht T je teorie téles. Charakteristika télesa je nejmensi pocet jednicek, které je tieba secist,
abychom dostali nulu (v tom ptipadé musi byt charakteristika prvocislo—dokazte si!), nebo,
pokud nikdy nedostaneme scitanim jednicek nulu, fikime ze je charakteristika 0. Trochu
formalnéji:

Definice 8.4.7 (Charakteristika télesa). Rikdme, Ze téleso A = (A, +,—,0,-,1) je

o charakteristiky p, je-li p nejmensi prvocislo takové, ze A = pl = 0, kde pl oznacuje term
1+14---4+1s p jednickami, nebo

9Vidite, jak je uzite¢na!
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o charakteristiky 0, pokud neni charakteristiky p pro zadné prvocislo p.

Necht T je teorie téles. Potom tiida téles charakteristiky p je kone¢né axiomatizovana
teorii T'U {pl = 0}. T¥ida téles charakteristiky O je axiomatizovana nasledujici (nekone¢nou)
teorii:

T'=TU{-pl=0]pje prvocislo}

Konec¢né axiomatizace ale neexistuje.
Tvrzeni 8.4.8. Trida K téles charakteristiky 0 neni konecné axiomatizovatelnd.

Diikaz. Diky Vété sta¢i ukdzat, ze K (sestdvajici z téles nenulové charakteristiky a
struktur, které nejsou télesa) neni axiomatizovatelnd, coz dokdzeme sporem. Necht existuje
teorie S takova, ze M(S) = K. Potom teorie S’ = S UT’ mé4 model, nebot kazd4 jeji koneén4
¢ast ma model: staci vzit téleso prvociselné charakteristiky vétsi nez jakékoliv p z axiomu T
tvaru —pl = 0. Necht A je model S’. Potom je i A € M(S) = K. Zaroveti je ale A € M(T") =
K, coz je spor. O

8.4.2 Otevrena axiomatizovatelnost

Pro otevienou axiomatizovatelnost existuje jednoduché sémantické kritérium: tiida jejich mo-
delt musi byt uzaviena na podstruktury. Plati dokonce ekvivalence, dokazeme ale jen jednu
implikaci (dukaz druhé je obtiznéjsi).

Véta 8.4.9 (Oteviend axiomatizovatelnost). Pokud je teorie T' otevrené aziomatizovatelnd,
potom je kaZdd podstruktura modelu T také modelem T'.

Pozndmka 8.4.10. Plati i obracena implikace: Je-li kazda podstruktura modelu T také mode-
lem, potom je T' oteviené axiomatizovatelnd. Dukaz zde ale neuvedeme.

Diikaz. Necht T" je oteviend axiomatizace T. Méjme model A = T" a podstrukturu B C A.
Pro kazdou formuli ¢ € T” plati B = ¢ (nebot ¢ je oteviend), tedy i B = T". O

Priklad 8.4.11. Uvedme nékolik ptikladii:

e Teorie DeLO neni oteviené axiomatizovatelna, napiiklad zddna konecné podstruktura
modelu DeLLO nemiuze byt husta.

o Teorie téles neni oteviené axiomatizovatelna, podstruktura Z C Q télesa racionédlnich
C¢isel neni télesem, v Z neexistuje inverzni prvek vici nasobeni k ¢islu 2.

o Prodané n € N jsou nejvyse n-prvkové grupy oteviené axiomatizovatelné(podgrupy jsou
jisté také nejvyse n-prvkové). Jako otevienou axiomatizaci lze vzit nasledujici extenzi

(oteviené) teorie grup 7"
TU { \/ €T, = a:j}

1<i<j<n+1
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Kapitola 9

Nerozhodnutelnost a neuplnost

V této, zaveérecné kapitole se budeme zabyvat tim, jak lze s teoriemi pracovat algoritmicky.
Zlatym hiebem budou Gédelovy vety o neuplnosti z roku 1931, které ukazuji limity formalniho
pristupu, a které zastavily desetileti trvajici program formalizace matematiky. Neméame zde
dostatek prostoru k uvedeni formalnich definic a dplnych dikaz, proto se misty budeme
pohybovat na ponékud intuitivni irovni. Zamérime se na pochopeni smyslu tvrzeni a myslenek
dukaz.

Pojem algoritmu budeme chépat také jen intuitivné. Pokud bychom ho chtéli formalizovat,
potom nejbéznéjsi (ale zdaleka ne jedinou) volbou je koncept Turingova strojeﬂ

9.1 Rekurzivni axiomatizace a rozhodnutelnost

V dokazovacich systémech, kterymi jsme se zabyvali (tablo metoda, rezoluce, hilbertuv kal-
kulus) jsme povolili, aby teorie T, ve které dokazujeme, byla nekoneénd. Vibec jsme se ale
zatim nezabyvali tim, jak je zadana. Pokud chceme ovéfit, ze je dany objekt (tablo, rezolu¢ni
strom, posloupnost formuli) korektnim dikazem, potFebujeme néjaky algoritmicky pristup ke
vsem axiomum 7.

Jednou z moznosti by bylo pozadovat enumerdtor T, tj. algoritmus, ktery vypisuje na
vystup axiomy z 7', a kazdy axiom nékdy vypiéeE] Potom by bylo snadné potvrdit, Ze je dany
dikaz korektni. Pokud bychom ale dostali diikaz, ktery pouzil chybny axiom, ktery v T" neni,
nikdy bychom se to nedozvédéli: nekoneéné dlouho bychom ¢ekali, zda jej enumerator preci
jen nevypise. Pozadujeme proto silnéjsi vlastnost, kterd umoznuje rozpoznat i chybné dikazy:
rekurzivni aziomatizaciPl

Definice 9.1.1 (Rekurzivni axiomatizace). Teorie T' je rekurzivné aziomatizovand, pokud
existuje algoritmus, ktery pro kazdou vstupni formuli ¢ dobéhne a odpovi, zda ¢ € T.

Pozndmka 9.1.2. Ve skutecnosti by ndm stacil enumerator pro T', pokud by bylo garantovano,
ze vypisuje axiomy v lexikografickém usporadani. To uz je ekvivalentni rekurzivni axiomati-
zaci. (Rozmyslete si proc.)

'Viz pfednasky NTINO71 Automaty a gramatiky, NTIN090 Zéklady slozitosti a vy¢islitelnosti.

2Nutnym predpokladem je, aby T byla spocetni. K tomu staéi predpokladat, ze jazyk je spocetny.

3Slovo rekurzivni zde neznamend bézné znidmou rekurzi, ale odkazuje na formalizaci algoritmu pomoci
‘rekurzivnich funkci’ od Godela. Rekurzivni funkce zde znamena totéz, co vycislitelnd néjakym Turingovym
strojem, a teorii vy¢islitelnosti (computability theory) se nékdy také ik recursion theory.
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Zamérime se na otazku, zda mizeme v dané teorii T' ‘algoritmicky rozhodovat pravdu’ (t;j.
platnost vstupni formule). Pokud ano, fikdme, Ze je teorie rozhodnutelnd. To je ale pomérné
silna vlastnost, definujeme proto také cdstecnou rozhodnutelnost, kterd znamena, ze pokud
formule plati, algoritmus ndm to fekne, ale pokud neplati, nikdy se nemusime dockat odpovédi.

Definice 9.1.3 (Rozhodnutelnost). O teorii T' fikdme, Ze je

e rozhodnutelnd, pokud existuje algoritmus, ktery pro kazdou vstupni formuli ¢ dobéhne
a odpovi, zda T = ¢,

e cdstecné rozhodnutelnd, pokud existuje algoritmus, ktery pro kazdou vstupni formuli:

— pokud T' = ¢, dobéhne a odpovi “ano”,
— pokud T [~ ¢, bud nedobéhne, nebo dobéhne a odpovi “ne”.

Mizeme jako obvykle predpokladat, ze ¢ v definici je sentence. Ukazeme si jednoduché
tvrzeni:

Tvrzeni 9.1.4. Necht T je rekurzivné axiomatizovand. Potom:
(i) T je cistecné rozhodnutelnd,
(ii) je-li T navic kompletni, potom je rozhodnutelnd.

Diikaz. Algoritmem ukazujicim ¢astecnou rozhodnutelnost je konstrukce systematického tabla
z teorie T pro polozku F(pﬁ Pokud ¢ v T plati, konstrukce skon¢i v konec¢né mnoha krocich
a snadno ovérime, ze je tablo sporné, jinak ale skoncit nemusi.

Je-li T' kompletni, vime, ze plati pravé jedna z nasledujicich moznosti: bud T' |- ¢ nebo
T | —¢. Budeme tedy paralelné konstruovat tablo pro Fy a tablo pro Ty (diukaz a zamitnuti
¢ z T): jedna z konstrukei po koneéné mnoha krocich skonéi. O

9.1.1 Rekurzivné spocetna kompletace

Pozadavek kompletnosti je prilis silny, ukazeme, ze staci pokud jsme schopni efektivné popsat
vsechny kompletni jednoduché extenzeﬂ

Definice 9.1.5 (Rekurzivné spocetns kompletace). Rekneme, Ze teorie T mé rekurzivné spo-
cetnou kompletaci, pokud mé az na ekvivalenci jen spocetné mnoho kompletnich jednoduchych
extenzi a (néjakd) mnozina az na ekvivalenci vsech kompletnich jednoduchych extenzi teorie
T je rekurzivné spocetnd, tj. existuje algoritmus, ktery pro danou vstupni dvojici prirozenych
¢isel (i,7) vypiSe na vystup i-ty axiom j-té extenze (v néjakém pevné daném uspofédénﬂ),
nebo odpovi, ze takovy axiom uz neexistuje

Tvrzeni 9.1.6. Pokud je teorie T rekurzivné aziomatizovand a md rekurzivné spocetnou
kompletaci, potom je T rozhodnutelnd.

1Zde ndm stadi enumerator axiomt T', nebo postupné generujeme viechny sentence (napf. v lexikografickém
poradi) a pro kazdou testujeme, zda je axiomem.

5Tj. ‘viechny modely az na elementarn{ ekvivalenci’

8Zde potiebujeme, aby byl jazyk spocetny.

"Je-li extenzi méné nez j, nebo mé-li j-té extenze méné nez i axiomd.
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Diikaz. Pro danou sentenci ¢ bud T |- ¢, nebo existuje protiptiklad A [~ ¢, tedy kompletni
jednoducha extenze T; teorie T takova, ze T; [/~ ¢. Z kompletnosti ale plyne, ze T; |- —p. N&S
algoritmus bude paralelné konstruovat tablo dikaz ¢ z T a (postupné) tablo dikazy —¢ ze
vSech kompletnich jednoduchych extenzi 17,75, ... teorie TE| Vime, ze alespon jedno z para-
lelné konstruovanych tabel je sporné, a mizeme predpoklidat, ze koneéné (neprodluzujeme-li
sporné vétve tabla), tedy algoritmus ho po kone¢né mnoha krocich zkonstruuje. O

Cuicent 9.1. Ukazte, ze nésledujici teorie maji rekurzivné spocetnou kompletaci:
o Teorie ¢isté rovnosti (prazdnd teorie v jazyce L = () s rovnosti),

o Teorie unarniho predikétu (prazdné teorie v jazyce L = (U) s rovnosti, kde U je undrni
rela¢ni symbol),

o Teorie hustych linedrnich usporddéni DeLO* (kompletni jednoduché extenze jsou po-

psané v Diusledku [8.3.5)),

Jde o rekurzivné axiomatizované teorie (nebot jsou konecéné), jsou tedy rozhodnutelné.

Priklad 9.1.7. Na zavér uvedme bez diikazu nékolik dalsich priklad rozhodnutelnych teorii:
o Teorie Booleovych algeber (Alfred Tarski 1940),
o Teorie algebraicky uzavienych téles (Tarski 1949),
o Teorie komutativnich grup (Wanda Szmielew 1955).
Tyto teorie jsou také nekompletni, ale rekurzivné axiomatizované a maji rekurzivné spocetnou
kompletaci.
9.1.2 Rekurzivni axiomatizovatelnost

V predchozi kapitole, konkrétné v Sekci jsme se zabyvali otazkou, kdy lze popsat n&jakou
tFidu struktur [resp. teorii] pomoci axiomu [ur¢itého tvaru]. Nyni se zaméfme na otdzku, kdy
to lze udélat algoritmicky.

Definice 9.1.8 (Rekurzivni axiomatizovatelnost). Trida L-struktur K C My, je rekurzivoné
azriomatizovatelnd, pokud existuje rekurzivné axiomatizovand L-teorie T takova, ze K =
Mp,(T). Teorie T' je rekurzivné aziomatizovatelnd, pokud je rekurzivné axiomatizovatelnd
tiida jejich modeli, neboli pokud je T” ekvivalentni néjaké rekurzivné axiomatizované teorii.

Pozndmka 9.1.9. Podobné bychom mohli definovat rekurzivné spocetnou axiomatizovatelnost.

Ukazme si nasledujici jednoduché tvrzeni:

Tvrzeni 9.1.10. Je-li A konecénd struktura v konecném jazyce s rouvnosti, potom je teorie
Th(A) rekurzivné axziomatizovatelnd.

Pozndmka 9.1.11. Z toho plyne i Ze Th(.A) je rozhodnutelnd, coz ale neni prekvapivé: platnost
sentence ¢ v konecné struktuie A mizeme snadno ovérit.

8Nevadi, ze je jich nekoneéné mnoho, mizeme vyuzit tzv. dovetailing: Provedeme 1. krok konstrukce 1.
tabla, potom 2. krok 1. tabla a 1. krok 2. tabla, 3. krok 1. tabla, 2. krok 2. tabla, 1. krok 3. tabla, atd.
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Diikaz. Ocislujme prvky domény jako A = {ay,...,ay}. Teorii Th(.A) lze axiomatizovat jedi-

nou sentenci, kterd je tvaru “existuje pravé n prvka ai,...,a, spliujicich pravé ty zakladni

vztahy o funkénich hodnotach a relacich, které plati ve strukture A”ﬂ O
Uvedme nékolik standardnich priklada struktur, které lze ‘algoritmicky popsat’:

Priklad 9.1.12. Pro nésledujici struktury je Th(A) rekurzivné axiomatizovatelna, a tedy i

rozhodnutelné:

Z,<), jde o tzv.teorii diskrétnich linedrnich uspordaddni,
Q, <), jde o teorii DeLO,

N, S,0), teorie ndslednika s nulou,
N,

S,+,0), Presburgerova aritmetika,

+,—,-,0,1), teorie redlné uzavrenych télesm

{
{
{
{
(R,
(C,

—,+,0,1), teorie algebraicky uzavrengch téles charakteristiky 0.

Dusledek 9.1.13. Pro struktury uvedené v Prikladu plati, Ze Th(A) je rozhodnutelnd.

Pozndmka 9.1.14. Jak ale vyplyva z Prvni Gédelovy véty o netplnosti (viz nize), standardni
model aritmetiky, tj. struktura N = (N, S, +,-,0, <), nemd rekurzivné axiomatizovatelnou
teorii.

9.2 Aritmetika

Vlastnosti prirozenych c¢isel hraji dilezitou roli nejen v matematice, ale naptiklad také v
kryptografii. Pfipomenme, Ze jazyk aritmetiky je jazyk L = (S, +,-,0, <) s rovnosti. Jak jsme
zminili v Pozndmce tzv. standardni model aritmetiky N = (N, S, +,-,0, <) nem4 re-
kurzivné axiomatizovatelnou teorii. Proto pouzivame rekurzivné axiomatizované teorie, které
se snazi vlastnosti N popsat ¢astecné; témto teoriim tikdme aritmetiky.

9.2.1 Robinsonova a Peanova aritmetika

vvvvvv

Definice 9.2.1 (Robinsonova aritmetika). Robinsonova aritmetika je teorie Q) v jazyce arit-
metiky sestavajici z nasledujicich (koneéné mnoha) axiomi:

~S(z) =0 2-0=0

S(x)=5@y) —z=y - Sy)=z-y+a
r+0=2 -z =0— 3y)(z =Sy))
x4+ S(y) =S(x+vy) r<y+ () (z+z=1y)

9Napiiklad, pokud f*(as,az) = ai7, piiddme do konjunkce atomickou formuli f(Za,, Zay) = Tay,, (kde z4,
jsou proménné odpovidajici jednotlivym prvkim). A pokud (a3, as,a1) ¢ R, pfiddme “R(Zas, Tag, Ta; )-

OTento vyznamny vysledek A. Tarského (1949) také znamend, ze lze algoritmicky rozhodovat, které vlast-
nosti plati v Euklidovské geometrii.
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Robinsonova aritmetika je velmi slabé, nelze v ni dokazat naptiklad komutativitu ani
asociativitu s¢itani ¢i nasobeni, nebo tranzitivitu usporadani.

Na druhou stranu v ni lze dokazat vsechna existencni tvrzeni o numerdlech, ktera jsou
pravdiva v N. Tim myslime formule, které v prenexnim tvaru maji pouze existenéni kvantifi-
kétory, a do kterych jsme za volné proménné substituovali numerdly n = S(...S(0)...).

Priklad 9.2.2. Napiiklad, pro formuli ¢(z,y) tvaru (3z)(z + z = y) je Q | ¢(1,2), kde
1=5(0) a2=5(5(0)).
Plati tedy nésledujici tvrzeni, které ponechame bez dikazu.

Tvrzeni 9.2.3. Je-li (x1,...,xy) existencni formule a ay, ..., a, € N, potom plati:

QF ¢(zi/ar,...,xn/an) pravé kdyz N = ple(zi/a, ..., xn/an)]

Uzite¢nym rozsitenim Robinsonovy aritmetiky je tzv. Peanova aritmetika, ve které lze
dokazovat indukct:

Definice 9.2.4 (Peanova aritmetika). Peanova aritmetika PA je extenze Robinsonovy arit-
metiky @ o schéma indukce, tj. pro kazdou L-formuli ¢(x,7) priddme nasledujici axiom:

((0,7) A (Va)(p(z,7) = @(S(2), 7)) = (Vo) (z,7)

Peanova aritmetika je mnohem lepsi aproximaci teorie Th(N), 1ze v ni dokédzat vSechny
‘zdkladni’ vlastnosti platné v N (naptiklad komutativitu a asociativitu séitani). Stale ale
existuji sentence v jazyce aritmetiky, které plati v N, ale v Peanové aritmetice jsou nezévisléﬂ

Pozndamka 9.2.5. Pokud bychom se presunuli do logiky 2. 7ddu, potom bychom uz mohli
strukturu N axiomatizovat (az na izomorfismus), a to extenzi Peanovy aritmetiky o nasledujici
formuli 2. fadu, tzv. axiom indukce:

(VX)((X(0) A (V2) (X (2) = X(S5(2)))) = (Vo) X (2))

Pripomenme, ze X reprezentuje (libovolnou) unarni relaci, neboli podmnozinu univerza. Po-
uzitim axiomu indukce na mnozinu nasledniku 0 ziskdme, ze kazdy prvek (daného modelu)
je naslednikem nuly. Tak mizeme sestrojit izomorfismus s N.

9.3 Nerozhodnutelnost predikatové logiky

V této sekci si ukazeme, ze nelze (algoritmicky) rozhodovat logickou platnost formuli prvniho
radu. (Jinymi slovy, nerozhodnutelnost prazdné teorie nad jazykem danym na vstupu.)

Véta 9.3.1 (O nerozhodnutelnosti predikatové logiky). Neezistuje algoritmus, ktery by pro
danou vstupni formuli @ rozhodl, zda je logicky platna’E

Protoze zatim neznédme potrebny formalismus tykajici se algoritmu, napi. pojem Turingova
stroje, zvolime jako vychozi bod jiny nerozhodnutelny problém. Nejznaméjsim je tzv. Halting
problem, tj. otazka, zda se dany program zastavi na daném VstupuE My si ale usnadnime
praci tim, ze zvolime jiny nerozhodnutelny problém, tzv. Hilbertiv desdty pmblémE

1 Jak si ukdzeme v Godelové Prvni vété o netiplnosti.

1274, zda je formule ¢ tautologie, neboli zda = ¢. Zde mluvime o formulich 1. f4du, v libovolném jazyce.

13Jeho nerozhodnutelnost si dokézete v predmétech NTINO71 Automaty a gramatiky a poté znovu v
NTINO090 Zéklady slozitosti a vycislitelnosti.

MHilbert jej vyslovil v roce 1900, a publikoval v roce 1902 spolu s 22 dalsimi problémy, které vyznamné
ovlivnily matematiku 20., i 21. stoleti. Nékteré zustavaji nevytfeseny, napt. Riemannova hypotéza, viz Wikipe-
dia.
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9.3.1 Hilbertav desaty problém

Méjme polynom p(z1,...,x,) s celoéiselnymi koeficienty. Hilbertiv desaty problém se pta po
algoritmu, ktery rozhodne, zda méa takovy vstupni polynom celociselny koren, neboli zda ma
Diofantickd rovnice p(x1,...,z,) = 0 (celo¢iselné) Feseni:

“Naleznéte algoritmus, ktery po konecné mnoha krocich urci, zda dand Diofan-
tickd rovnice s libovolnym poctem proménnych a celo¢iselnymi koeficienty méa
celociselné reseni.”
Kdyby se Hilbert dozil vyfeseni svého desatého problému v roce 1970, byl by piekvapen,
ze zadny takovy algoritmus neexistuje.
Véta 9.3.2 (Matiyasevich, Davis, Putnam, Robinson). Problém existence celociselného reseni
dané Diofantické rovnice s celociselnymi koeficienty je (algoritmicky) nerozhodnutelny.
Dikaz zde pro nedostatek mista neuvedeme. K ditkazu nerozhodnutelnosti ve skutecnosti
pouzijeme nasledujici disledek, ktery mluvi o polynomech s prirozenymi koeficienty, a o feseni
v prirozenych cislech.
Daisledek 9.3.3. Neezistuje algoritmus, ktery by pro danou dvojici polynomi p(zx1,...,Tn),
q(x1,...,xy) s prirozenymi koeficienty rozhodl, zda maji prirozené resent, tj. zda plati:

N (3z1)...(3z,) p(x1, .. 20) = q(21, ..., 20)

Dukaz dusledku. Dukaz je snadny, vyuziva faktu, ze kazdé celé cislo lze vyjadrit jako rozdil
dvojice prirozenych ¢isel, a naopak, kazdé prirozené ¢islo lze vyjadrit jako soucet ¢ty ¢tverci
(celych éisel)m Kazdou Diofantickou rovnici lze tedy transformovat na rovnici z disledku, a
naopak. O

9.3.2 Dukaz nerozhodnutelnosti

Pripomenme, ze Robinsonova aritmetika () ma jen konecné mnoho axiomi, N je jejim mo-
delem, a lze v ni dokéazat vSechna existencni tvrzeni o numerdlech platnd v N. Nyni jsme
pripraveni dokazat Vétu o nerozhodnutelnosti predikatové logiky.

Diikaz véty o nerozhodnutelnosti predikdtové logiky. Uvazme formuli ¢ tvaru

(F21) ... (Fzn) P15 20) = q(T1,5 - T0)
kde p a ¢ jsou polynomy s prirozenymi koeficienty. Dle Tvrzeni plati:

N = ¢ praveé kdyz Q |- ¢

Oznacme jako 1) konjunkci (generalnich uzavért) vsech axiomi Q. Ziejmé Q |- ¢, prave
kdyz g |- ¢, coz plati pravé kdyz |- ¢g — ¢. Dle vét o korektnosti a o tplnosti je to ale
ekvivalentni |= 19 — ¢. Dostavame tedy nésledujici ekvivalenci:

N | ¢ prave kdyz g — ¢
To znamend, ze pokud existoval algoritmus rozhodujici logickou platnost, mohli bychom roz-
hodovat i existenci pfirozeného feseni rovnice p(z1,...,z,) = q(z1,...,x,), neboli Hilbertuv
desaty problém by byl rozhodnutelnyﬁ Coz by byl spor. O

15Ty, Lagrangeova véta o Ctyfech &tvercich.
16Ukazujeme, Ze existuje redukce ‘t&7kého’ problému (Hilbertova desatého) na nas problém, tedy i nas pro-
blém je ‘tézky’.
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9.4 Godelovy véty

Na zavér prednasky predstavime slavné Godelovy véty o netplnosti, jejichz pochopeni by
mélo byt samozrejmou soucasti vzdélani kazdého informatika. Pokusime se vysvétlit i princip
dikazl, ale vynechame veskeré technické detaily.

9.4.1 Prvni véta o neaplnosti

Nejprve vyslovime Godelovu Pruni vétu o netuplnosti, a vysvétlime smysl jejich predpokladi.

Véta 9.4.1 (Prvni véta o netplnosti). Pro kaZdou bezespornou rekurzivné axiomatizovanou
extenzi T Robinsonovy aritmetiky existuje sentence, kterd je pravdivd v N, ale nent dokazatelnd
vT.

Takové sentenci se 1ikéd Gédelova sentence. Velmi neformalné receno, Gédelova Prvni véta
o neuplnosti 1iké, ze vlastnosti aritmetiky prirozenych c¢isel nelze ‘rozumné’; efektivné popsat
(v logice 1. fadu), kazdy takovy popis je nutné ‘netplny’. Je dulezité si uvédomit, ze mluvime
o pravdivosti ve standardnim modelu aritmetiky, tj. ve strukture N, zatimco dokazatelnost
je v teorii T. (Z Véty o uplnosti samoziejmé plyne, ze kazda sentence pravdivd v T je v T i
dokazatelnd.)

Bezespornost je nutnym predpokladem, nebot ve sporné teorii je dokazatelnd kazda sen-
tence. Pripomenme, Ze rekurzivni axiomatizovanost miuzeme chapat jako ‘efektivni zadani’
axiomu (pomoci algoritmu), bez této vlastnosti by takova teorie nebyla uzitecnd. Pozadavek
aby teorie byla extenzi Robinsonovy aritmetiky chapejte jako pfedpoklad, Ze mé alespon ‘za-
kladni aritmetickou silu’, ze v ni 1ze ur¢itym zpasobem ‘mluvit’ o prirozenych ¢islech. Existuji
rizné varianty tohoto predpokladu, s jinymi teoriemi nez je Robinsonova aritmetika, a neni
naptiklad nutné, aby slo pfimo o extenzi, staci, kdyz je v teorii Robinsonova aritmetika v
jistém smyslu ‘definovatelnd’. Ale teorie, ve které ‘nelze zakédovat prirozend c¢isla’ (a zde je
dulezité, Ze muzeme mluvit nejen o séitdni, ale i o ndsobeni), je ‘ptilis slabd’.

Je dobré si uvédomit, ze specidlné plati i nasledujici tvrzeni ‘o nekompletnosti’:

Dusledek 9.4.2. Splnuje-li teorie T predpoklady Prvni véty o neiplnosti a je-li navic N
modelem teorie T, potom T neni kompletni.

Dukaz. Predpokladejme pro spor, ze T' je kompletni. Vezméme sentenci ¢, kterd je pravdiva v
N ale neni dokazatelnéd v T'. Diky kompletnosti vime, ze T' - =, potom ale Véta o korektnosti
iiké, ze T = ¢, tedy ¢ je 1ziva v N, coz je spor. O

Zajimavé je nejen samotné tvrzeni Prvni véty o netplnosti, ale také jeji dikaz: Gédel v ném
prisel se zcela novou, na svou dobu prevratnou diikkazovou technikou. Sentence sestrojena v
dikazu formalizuje tvrzeni “Nejsem dokazatelnd v T ”, diikaz je zalozen na nésledujicich dvou
principech, které nize ponékud neforméalné popiseme:

o aritmetizace syntaze, tedy zakoédovani sentenci a jejich dokazatelnosti do prirozenych
Cisel,

o self-reference, tedy schopnost sentence ‘mluvit sama o sobé’ (o svém kédu).
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Aritmetizace dokazatelnosti

Konecné syntaktické objekty, jako jsou termy, formule, konec¢na tabla, a tedy i tablo dikazy, lze
‘rozumné’ zakdédovat do prirozenych éiselm Konkrétni zptsob jak to lze provést, tzv. Gdodelovo
cislovand, jako technicky detail preskocime. Sta¢i ndm, Ze jsme schopni objekty ‘algoritmicky’
kédovat a dekédovat (piipadné ‘simulovat manipulaci s objekty’ na jejich kédech).

Oznac¢me kéd formule ¢ jako [¢]|, podobné pro jiné syntaktické objekty. Numeral odpovi-
dajici kédu ¢, tedy [¢]-ty numeral, budeme znacit . Pro danou teorii 7' definujme nasledujici
binarni relaci na mnoziné vSech prirozenych cisel:

(n,m) € Proofr pravé kdyz n = [¢]| am = [7], kde 7 je tablo diikaz sentence ¢ z T'

Mame-li efektivni pristup k axiomtm, umime také efektivné zkontrolovat zda 7 je opravdu
dikazem ¢ (kde 7 a ¢ ziskdme dekédovanim m a n), tedy plati:

Pozorovani 9.4.3. Je-li T rekurzivné axiomatizovand, je relace Proof C N2 rekurzivni.

Zde rekurzivni znamena, zZe existuje algoritmus, ktery vzdy zastavi, a spravné odpovi na
otazku, zda pro dané n,m € N plati (n,m) € Proofr.

Klicovou, ale velmi technickou ¢asti dikazu Prvni véty je nasledujici tvrzeni, které pone-
chame bez dikazu.

Tvrzeni 9.4.4. Je-li T navic extenzi Robinsonovy aritmetiky QQ, potom existuje formule
Prfr(x,y) v jazyce aritmetiky, kterd reprezentuje relaci Proofy, tj. pro kazdd n,m € N plati:

o Je-li (n,m) € Proofr, potom Q |- Prfr(n,m),

.« jinak Q k- ~Prfp(n,m).

Formule Prf(z,y) tedy vyjadiuje “y je dikaz x v T ”E Potom miizeme vyjadrit, ze “x
je dokazatelnd v T'”, a to formuli (Jy) Prf,(z,y). VSimnéte si, Ze plati nasledujici pozorovani,
nebot svédek poskytuje kod néjakého tablo dikazu, a N spliuje axiomy Q:

Pozorovani 9.4.5. T |- ¢ prave kdyZ N = (3y) Prfr(¢,y).
Budeme potrebovat i nasledujici dasledek, ktery vyslovime také bez dikazu:
Diisledek 9.4.6 (O predikdtu dokazatelnosti). Je-li T' |- ¢, potom T |~ (Jy) Prfr(e,y).
Umime tedy vyjadrit, ze dané sentence je, nebo neni, dokazatelnd. Jak ale miize sentence
fici ‘sama o sobé’, ze neni dokazatelna? K tomu pouzijeme princip self-reference.
Self-reference

Abychom ilustrovali princip self-reference, pro ndzornost si misto logické sentence predstavme
vétu v ¢estiné, a misto vlastnosti “byt dokazatelny” tvrzeni o poctu znaki. Podivejme se na
nasledujici vétu:

1"Ptedstavte si jakykoliv rozumny zptisob, jak dany objekt zapsat do souboru. Soubor v bindrnim kédu je
posloupnost 0 a 1. PripiSeme na zacatek jednicku, abychom nezac¢inali nulou, a médme bindrni zapis prirozeného
cisla.

8 Pfesnéji, tablo jehoz kédem je y je ditkazem sentence jejiz kédem je .
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Tato véta mad 22 znaku.

V prirozeném jazyce snadno vyjadiime self-referenci zdjmenem “Tato”, z kontextu vime, ze
myslime vétu samou. Ve forméalnich systémech ale typicky nemame self-referenci primo k
dispozici. Primou referenci obvykle mame k dispozici, sta¢i umét ‘mluvit’ o posloupnostech
symbolt, jako v nasledujicim prikladé:

Nasledujici véta ma 29 znakld. "Nasledujici véta ma& 29 znakd."
Zde se ale neni zadna self-reference. Pomuzeme si trikem, kterému budeme rikat ‘zdvojeni’:

Nasledujici véta zapsanad jednou a jeSté& jednou v uvozovkadch ma 149
znaka. "Nasledujici véta zapsand jednou a jesSté jednou v uvozovkach
ma 149 znakd."

Pomoci pfimé reference a zdvojeni tedy mizeme ziskat self-referenci.

Pozndmka 9.4.7. Stejny princip lze pouzit k sestrojeni programu v C, jehoz vystupem je jeho
vlastni kéd (34 je ASCII kéd uvozovek):

main(){char *c="main(){char *c=Yc¥ks¥hc; printf(c,34,c,34);}"; printf(c,34,c,34);}

9.4.2 Dtikaz a disledky

V této podsekci dokdzeme Prvni Godelovu vétu o netplnosti a fekneme si i néco o jejich di-
sledcich. Budeme potfebovat nasledujici vétu, ktera popisuje, jak technicky vyuzijeme princip
self-reference. Lze na ni nahlizet jako na formu ‘diagonaliza¢niho argumentu’m proto se to-
muto tvrzeni také nékdy rika diagondini lemma.

Véta 9.4.8 (Véta o pevném bodé). Je-li T extenzi Robinsonovy aritmetiky, potom pro kaZdou
formuli () (v jazyce teorie T') existuje sentence ¥ takovd, Ze plati:

T < o(i)

Sentence 1 je tedy self-referencni, ¥ikd o sobé: “splnuji vlastnost 90”@ Vysvétlime si jen
myslenku dikazu. Vsimnéte si, jak se v diikazu pouzije primé reference a zdvojeni.

Diikaz. Uvazme zdvojujici funkci, funkci d: N — N takovou, ze pro kazdou formuli x(z) plati:

d([x(@)]) = x(x(@))]

Funkce d tedy dostane na vstupu prirozené cislo n, které dekdduje jako formuli v jedné
proménné, dosadi do této formule numeral QE a vyslednou sentenci znovu zakoduje.

S vyuzitim predpokladu, ze T je extenzi @), lze dokazat, ze tato funkce je v T reprezento-
vatelnd. Pro jednoduchost predpokladejme, Ze je reprezentovatelnd termem@ a oznac¢me ho
také d. To znamend, Ze pro kazdou formuli x(z) plati:

T |- d(x(x)) = x(x(x))

¥Diagonalizaci se mysli argument p¥ipominajici Cantoriv diagondini argument, zndmy z dikazu nespocet-
nosti R. Podobny argument, pouzivajici self-referenci, potkdme tieba v Holicové paradozu, nebo v dikazu
nerozhodnutelnosti Halting problému.

20Ptesnéji, Fika to o numerslu odpovidajicimu jejimu kédu.

217de numerdl odpovidd ‘uvozovkdm’ z piedchoziho neformalnfho popisu self-reference, a d([x]) znamens
“x napsana jednou a jesté jednou v uvozovkéch.”

22Byt ve skutecnosti je reprezentovans (slozitou) formuli.
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Tedy Robinsonova aritmetika, a tim padem i nase teorie T, dokazuje o numerdlech, ze d
opravdu ‘zdvojuje’.
Hledan4 self-referen¢ni sentence v je sentenceﬁ

p(d(p(d(x))))
Chceme dokéazat, ze plati T' |- ¥ <> ¢(¢), neboli T' |- (d(p(d(x)))) < ¢(p(d(p(d(x))))).

K tomu staci ovérit, ze:
T = d(p(d(x))) = p(d(p(d())))

To ale vime z reprezentovatelnosti d, kde za formuli x(x) dosadime ¢(d(z)). O

Nez pristoupime k samotnému diikkazu Godelovy véty, ukazeme si jako rozcvicku jeden
dusledek Véty o pevném bodé: Definici pravdy v aritmetické teorii 7' myslime formuli 7(z)
takovou, ze pro kazdou sentenci v plati:

Ty

Pokud by definice pravdy existovala, znamenalo by to, Ze misto dokazovani sentence staci
spocist jeji kéd, substituovat prislusny numerél do 7, a vyhodnotit.

Véta 9.4.9 (Nedefinovatelnost pravdy). V Zddném bezesporném rozsireni Robinsonovy arit-
metiky neexistuje definice pravdy.

Dtkaz vyuziva Paradox lhare, vyjadiime vétu “Nejsem pravdiva v 17

Diikaz. Predpokladejme pro spor, ze existuje definice pravdy 7(z). Pouzijeme Vétu o pevném
bodé, kde za formuli ¢(z) vezmeme —7(z). Dostdvame existenci sentence 1 takové, ze:

T |- =7()

Protoze 7(x) je definice pravdy, plati ale i T' |- ¥ <> 7(¢), tedy i T' |- 7(3)) <+ =7(¢). To by
ale znamenalo, ze T je spornd. O

Dtkaz Godelovy véty pouziva tentyz trik, ale pro vétu “Nejsem dokazatelna v 1.

Dukaz Pruni vety o neuplnosti. Méjme bezespornou rekurzivné axiomatizovanou extenzi T
Robinsonovy aritmetiky. Chceme najit Gédelovu sentenci ¥, ktera je pravdiva v N, ale neni
dokazatelnd v T

Takovou sentenci ziskame z Véty o pevném bodé jako sentenci vyjadrujici “Nejsem doka-
zatelnd v T”. Necht ¢(x) je formule =(3y) Prfr(x,y) (“z neni dokazatelnd v 7). Podle Véty
o pevném bodé existuje sentence 1 splnujici:

T |- 41 < =(3y) Prfr(dr,y)

Sentence ¥ je tedy v T ekvivalentni sentenci, kterd vyjadiuje, ze ¥ neni dokazatelna v T
Lze ukazat, ze stejnd ekvivalence plati i v N (nebot tak jsme Prf, a 1p zkonstruovali):

N | ¢r pravé kdyz N = —(Jy)Prfp(Yr,y)

ZNasledujici véta zapsand jednou a jesté jednou v uvozovkach mé vlastnost . “Néasledujici véta zapsans
jednou a jesté jednou v uvozovkich méa vlastnost ¢.”
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7 Pozorovani [9.4.5| ziskavame, ze
N | ¢ pravé kdyz T - ¢

neboli Y7 je pravdivd v N, préavé kdyz neni dokazatelnd v T. Stac¢i tedy ukazat, ze Yp
neni dokazatelnd v T. Predpokladejme pro spor, ze T | . Ze self-reference vime, ze
plati T' = —(3y)Prfr(¢r,y). Z Disledku o predikdtu dokazatelnosti ale dostavame
T\~ (3y)Prfr(Yr,y), coz by znamenalo, Ze T' je sporna. O

Na zavér si ukazeme dva disledky a jedno zesileni. Nésledujici okamzity disledek uz jsme
zminili drive:

Disledek 9.4.10. Je-li T' rekurzivné axziomatizovand extenze Robinsonovy aritmetiky a je-li
navic N modelem teorie T', potom T neni kompletnsi.

Diikaz. Protoze ma T model, neni spornd. Splauje tedy pfedpoklady Prvni véty o neupl-
nosti, tedy v ni neni dokazatelnd Godelova sentence ¢r. Pokud by byla kompletni, musela
by dokazovat —)p. To by ale znamenalo, ze plati i N = —)p, pficemz vime, ze ¥ je v N
pravdiva. ]

7 toho plyne, ze nelze rekurzivné axiomatizovat standardni model prirozenych ¢éisel:
Dausledek 9.4.11. Teorie Th(N) nend rekurzivné axiomatizovatelnd.

Dikaz. Teorie Th(N) je extenzi Robinsonovy aritmetiky a plati v modelu N. Pokud by byla
rekurzivné axiomatizovatelnd, jeji (libovolnd) rekurzivni axiomatizace by podle predchoziho
dusledku nemohla byt kompletni. Ale Th(N) kompletni je. O

Jednim ze zesileni Godelovy Prvni véty je nédsledujici tvrzeni, které uvedeme bez dikazu.
Ukazuje, ze predpoklad N = T' v prvnim dusledku vyse je ve skuteénosti nadbytecny.

Véta 9.4.12 (Rosserav trik, 1936). V kaZdé bezesporné rekurzivné aziomatizované extenzi
Robinsonovy aritmetiky existuje nezdvisld sentence. Tedy takovd teorie neni kompletni.
9.4.3 Druha véta o neuplnosti

Druhéa Godelova véta o neuplnosti rika, neformélné receno, ze efektivné dand, dostateéné bo-
haté teorie nemuze sama dokézat svou bezespornost. Bezespornost (“konzistenci”) vyjadiime
nasledujici sentenci, kterou oznac¢ime jako Cony:

=(3y) Prfr(0 = 5(0),y)

Vsimnéte si, ze plati N = Cong, pravé kdyz T [~ 0 = S(0). Neboli sentence Conp opravdu
vyjadruje, ze “Teorie T je bezespornd’

Véta 9.4.13 (Druhd véta o netplnosti). Pro kaZdou bezespornou rekurzivné axiomatizovanou
extenzi T' Peanovy aritmetiky plati, Ze Conr neni dokazatelnd v T .

Vsimnéte si, ze sentence Conp je pritom pravdivd v N (nebot T' je opravdu bezespornd).
Zminme také, ze neni tfeba plna sila Peanovy aritmetiky, staci slabsi predpoklad. Nyni si
ukézeme hlavni myslenku dikazu Druhé véty:
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Dukaz Druhé véty o netuplnosti. Vezméme Godelovu sentenci ¥ vyjadiujici “nejsem dokaza-
telnd v T7. V dikazu Prvni véty o nedplnosti (konkrétné v prvni ¢asti) jsme ukézali, ze:

“Pokud je T" bezesporna, potom 7 neni dokazatelnd v T

Z toho jednak plyne, ze T |/~ 11, nebot T bezesporna je. Na druhou stranu to 1ze formulovat
jako “plati Conp — ¥r” a je-li T extenze Peanovy aritmetiky, lze dikaz tohoto tvrzeni
zformalizovat v ramci teorie T, tedy ukazat, ze:

T | Conp — ¢r
Kdyby platilo T' - Conp, dostali bychom i T' |- ¢, coz by byl spor. O
Na zavér si ukazeme tii disledky Druhé véty.
Dausledek 9.4.14. Ezistuje model PA, ve kterém plati sentence (Jy)Prfps(0 = S(0),y).

Dikaz. Sentence Conpy neni dokazatelnd, tedy ani pravdiva v PA. Plati ale v N (nebot PA je
bezespornd), coz znamend, ze je Conpy nezavisla v PA. V néjakém modelu tedy musi platit
jejl negace, kterd je ekvivalentni (Jy)Prf ps (0 = S(0),y).

O

Uvédomme si, ze musi jit o nestandardni model PA, svédkem musi byt nestandardni prvek
(tj. takovy, ktery neni hodnotou zadného numeralu).

Disledek 9.4.15. Existuje bezespornd rekurzivné axiomatizovand extenze T Peanovy arit-
metiky, kterd ‘dokazuje svou spornost’, tj. takovd, ze T |- —~Conrp.

Diikaz. Uvazme teorii T'= PA U {—Conpy}. Tato teorie je bezesporné, nebot PA [~ Conpg.
Také trividlné plati T - —Conpa (tj. T ‘dokazuje spornost’ teorie PA). Protoze je PA C T,
plati i T' |- = Conr. O

Zde si uvédomme, ze N nemiize byt modelem teorie 7T'.

Nakonec se podivejme na teorii ZFC, tj. Zermelovu—Fraenkelovu teorii mnozin s axiomem
vybéru, na které je zalozena formalizace matematiky. Tato teorie neni formalné vzato extenzi
PA, ale neni problém v ni Peanovu aritmetiku (v jistém smyslu) ‘interpretovat’ To znamen4,
Ze ani tato teorie neumi dokazat svou vlastni bezespornost.

Dusledek 9.4.16. Je-li teorie mnozin ZFC bezespornd, nemuze byt sentence Conyzpc v teorii
ZFC dokazatelnd.

Pokud by tedy nékdo v ramci teorie ZFC dokazal, ze je ZFC bezesporna, znamenalo by
to, ze je ZFC sporna. Coz bude takova pékné tecka za nasi prednaskou.
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