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Preface to the first edition

This book was conceived as a collection of notes to my two-semester lecture on
quantum mechanics for third-year students of physics at the Faculty of Mathematics
and Physics of the Charles University in Prague. It was created in 2011-12.

At first, I just wanted to write down the most important facts, formulas and
derivations in a compact form. The information flew in a succinct, “staccato” style,
organized in larger and smaller bits (the ■ and ▶ items), rarely interrupted by
wordy explanations. I enjoyed the thick, homogeneous mathematical form of the
notes. Calculations, calculations, calculations. . . I thought of a horrified historian or
sociologist who finds no oasis of words. This is how we, tough guys, speak!

However, I discovered that the dense form of the notes was hardly digestible even
for tough guys. I had to add some words. To create a “storyteller” who wraps the
bare formulas into some minimal amount of phrases. His voice, though still rather
laconic, may help to provide the proper motivation and clarify the relevant context.
I also formed a system of specific “environments” to facilitate the navigation. In
particular: Among crowds of calculations there appears a hierarchy of highlighted
formulas:�

important essential 1 essential 2 crucial

Assumptions or foundational concepts, irreducible to other statements/concepts,
appear in boxes:� Answer to ultimate question of life, universe & everything = 42

Here and there come some historical notes:� ◀ 2013: Condensed Course issued
Handmade schemes (drawn on a whiteboard) illustrate some basic notions.

In this way, the notes have turned into a more serious thing. They almost became
a textbook ! The one distinguished from many others by expanded mathematical
derivations (they are mostly given really step by step) and reduced verbal stuffing
(just necessary comments in between calculations). This makes the book particularly
well suited for conservation purposes—acquired knowledge needs to be stored in a
condensed, dense enough form, having a compact, nearly tabular structure.

However, as follows from what has been said, this book cannot be considered a
standard textbook. It may hardly be read with ease and fluency of some more epic
treatises. One rather needs to proceed cautiously as a detective, who has to precisely
fix all objects on the stage (all symbols, relations etc.) before making any small step
forward. This book can be used as a teaching tool, but preferably together with an

�Such formulas are highly recommended to memorize! Although all students of physics & mathematics seem to
share a deep contempt for any kind of memorization, I have to stress that all results cannot be rederived in reasonable
time limits. There is no escape from saving the key formulas to the memory and using them as quickly reachable
starting points for further calculations.

�However, these assumptions do not constitute a closed system of axioms in the strict mathematical sense.
�I believe that knowledge of history is an important part of understanding. The concepts do not levitate in vacuum

but grow from the roots formed by concrete circumstances of their creation. If overlooking these roots, one may
misunderstand the concepts.
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oral course or a more talkative textbook on quantum mechanics. Below I list some
of my favorite candidates for additional guiding texts [1–10].

I have to stress that the notes cover only some parts of non-relativistic quan-
tum mechanics. The selection of topics is partly fixed by the settled presentation
of the field, and partly results from my personal orientation. The strategy is to
introduce the complete general formalism along with its exemplary applications to
simple systems (this takes approx. one semester) and then (in the second semester)
to proceed to some more specialized problems. Relativistic quantum mechanics is
totally absent here; it is postponed as a prelude for the quantum field theory course.

Quantum mechanics is a complex subject. It obligates one to have the skills of a
mathematician as well as the thinking of a philosopher. Indeed, the mathematical
basis of quantum physics is rather abstract and it is not obvious how to connect it
with the observed “reality”. No physical theory but quantum mechanics needs such
a sophisticated PR department. We will touch the interpretation issues here, but
only very slightly. Those who want to cultivate their opinion (but not to disappear
from the intelligible world) are forwarded to the classic [11]. The life saving trick in
this terra incognita is to tune mind to the joy of thinking rather than to the demand
of final answers. The concluding part of the theory may still be missing.

Before we start I should not forget to thank all the brave testers—the first men,
mostly students, who have been subject to the influence of this book at its various
stages of preparation. They were clever enough to discover a lot of mistakes. Be
sure that the remaining mistakes are due to their generous decision to leave some
fish for the successors.

In Prague, January 2013

Comments on the second edition

Welcome to the new edition of the Condensed course.

While using the first edition for more than a decade of my teaching, I found many
items that needed to be fixed, many explanations that should be improved, and many
topics that would be worth adding. I have tried to make these important changes
in this new edition. In particular, I have made most of the explanations a bit more
wordy, I have added several new themes, I have drawn many new figures, I have
partly rearranged the content and created a detailed index, and I have corrected
numerous misprints.

I hope that the new edition will be much more user-friendly and also more com-
plete than the first one. Though the telegraphic style is deliberately preserved to
keep all explications condensed, the book is more viable for all readers, including
those with limited initial knowledge. Extensions and new topics make the book
more robust, providing necessary initial knowledge for most of the main presently
active directions of nonrelativistic quantum theory. I believe that the Condensed
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course in the present form offers a balanced concise introduction to the traditional
topics, related to the general formalism and natural quantum systems, as well as to
modern topics, focused on artificial quantum systems and quantum information.

And the last but not least: I pay off my big debt from the first edition by adding
the following “essential historical remark”:

◀ Essential historical remark �
1902: Jára Cimrman anticipates quantum uncertainty by studying his rat trap bait-
box mechanism & answering naughty teenager’s questions of E. Schrödinger

In Prague, August 2025
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Rough guide to notation (no notation is perfect!)

Hilbert spaces, vectors & wavefunctions, scalar products
α|ψ⟩+β|ψ′⟩ superposition≡ linear combination of state vectors (α, β∈C)
{|ϕi⟩}dHi=1, dH general set of basis vectors in Hilbert space H, dimension of H
|ψ⟩, ⟨ψ′|, ⟨ψ′|ψ⟩ ket & bra forms of state vectors, scalar product

||ψ||=
√
⟨ψ|ψ⟩=1/N norm of vector = 1/normalization coefficient

H, H, H Gelfand’s hierarchy of spaces (rigged Hilbert space)
ℓ2, L2(R3), Cd specific separable or finite Hilbert spaces
Span{|ψ1⟩...|ψn⟩} linear space spanned by the given vectors

H(N), H(N)
± N -particle Hilbert space, its exchange symmetric/antisym.subspaces

H1⊗H2,
n⊗

i=1
Hi, H1⊕H2,

n⊕
i=1

Hi direct product & sum of Hilbert spaces

|ψ⟩1|ψ′⟩2, |Φij⟩≡|ϕ1i⟩1|ϕ2j⟩2 general factorized state vector, factorized basis in H1 ⊗H2

ψ(x⃗) ≡ ⟨x⃗|ψ⟩, ψ̃(p⃗) ≡ ⟨p⃗|ψ⟩ wavefunction of spinless particle in coordinate & momentum repres.
ψ(x⃗,ms) ≡ ψ(x⃗) single-particle wavefunction in single/multicomponent forms
Ψ(ξ1 . . . ξN ) N -particle wavefunction with ξ1≡(x⃗i,mi)

|a⟩, |a(k)⟩ |ai⟩, |a(k)i ⟩ eigenvector of operator Â with eigenvalue a or ai (degeneracy index k)

|Ei⟩, |E(k)
i ⟩, |E⟩ eigenvectors of Hamiltonian (discrete or continuous energy)

|↑⟩, |↓⟩ up & down projection states of spin s=1
2

|lm⟩, |sms⟩, |jmj⟩ states with orbital, spin& total ang.momentum l, s& j, projection m•
Rnl(r) = unl(r)/r, Rkl(r) radial wavefunction (n≡princ.q.num., l≡orb.ang.mom., k≡|wave vec.|)
Cjm
j1m1j2m2

≡⟨j1j2jm|j1m1j2m2⟩ Clebsch-Gordan coefficient for the coupling of 2 angular momenta

|ψni⟩, |ψ(n)
i (λ)⟩ nth-order perturbation correction & approx. of ith energy eigenstate

|0⟩, |n1, n2, ...⟩ vacuum state, basis states of H(N)
± in occupation-number repres.

|ΨHF⟩, |ΨHB⟩, |ΨBCS⟩ Hartree-Fock/Bose & BCS approx. of many-body ground state

Operators: observables, transformations & evolution
Ô, Ô†, Ô−1 linear operator, its Hermitian conjugate & inverse

Oij = ⟨ϕi|Ô|ϕj⟩ matrix element of operator Ô

||Ô||, Def(Ô) norm & definition domain of operator

Â, Û , Î, ÎH general Hermitian & unitary operator, identity operator (in space H)

ÂS, ÂH(t), ÂD(t) Schrödinger, Heisenberg, Dirac representations of observable
ˆ̇A operator expressing time derivative of observable

Â1 ⊗ Â2 tensor product of operators acting in H1 ⊗H2

S(Â), D(Â), C(Â) full spectrum of observable Â, its discrete & continuous parts

P̂0, P̂
(N)
± projector to a general subspace H0 ⊂ H, projector to H(N)

±
P̂a, Π̂a, Π̂(a1,a2) projectors to discrete & continuous eigenvalue subspaces

∇⃗, ∆ gradient & Laplace operator (if not an interval or gap)
ˆ⃗x, ˆ⃗p, ˆ⃗π coordinate operator, canonical & mechanical momentum operator

Ĥ, K̂, V̂ , Ĥ ′ Hamiltonian, its kinetic & potential terms, Hamiltonian perturbation
ˆ⃗
L,

ˆ⃗
S,

ˆ⃗
J orbital, spin & total angular momentum operators

Ĵ0≡ Ĵz, Ĵ±≡ Ĵx ± iĴy spherical components of
ˆ⃗
J , shift operators for |jm⟩ eigenstates

ˆ⃗σ ≡ (σ̂x, σ̂y, σ̂z) the triplet of Pauli matrices
ˆ⃗
D, ˆ⃗µ operators of electric & magnetic dipole moments

b̂k, b̂
†
k; âk, â

†
k; ĉk, ĉ

†
k annih.& creation operator of boson, fermion or gen.particle in state |ϕk⟩

N̂ , N̂k total number of particles & number of particles in basis state |ϕk⟩
Ô(n) n-body operator

T̂a⃗, T̂∆o space translation or general eigenstate shift operator |o⟩→|o+∆o⟩
R̂n⃗ϕ≡R̂R, R(αβγ) rotation operator inH (axis,angle) & rot.matrix in 3D (Euler angles)

P̂, T̂ space inversion operator (parity) & time reversal operator

Ĝi, ĈG generator & Casimir operator of a group G
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Û(t), Û(t1,t0) evolution operator for times t0
t→ t1

Ĝ±(t, t0), G
+(x⃗t|x⃗0t0) retarded & advanced Green operators, propagator

Ĝ±(E), T̂±(E) energy image of Green operators, T -operator in scattering theory

⟨ΦE′n′ |Ŝ|ΦEn⟩,⟨ϕk⃗′ |Ŝ|ϕk⃗
⟩ S-matrix elements

T time ordering of operator product

[Âλ1×B̂λ1 ]λµ tensor coupling of spherical tensor operators Âλ1
µ1
, B̂λ1

µ2

[Â, B̂],{Â, B̂} commutator & anticommutator of operators
{A,B} Poisson bracket of classical observables

Tr Ô, Tr1Ô, Det Ô trace of operator/matrix, partial trace over H1 in H1⊗H2, determinant

Statistics, probabilities & densities
aψ(ψ

′), aψ(x) amplitude to identify |ψ⟩ with |ψ′⟩ or to measure value x of an observable
pψ(ψ

′), pψ(H0) probability to identify |ψ⟩ with |ψ′⟩ or with an arbitrary state from H0 ⊂ H
pψ(x) probability to measure values x of some observables in state |ψ⟩
a0(t), p0(t) survival amplitude & probability of t=0 initial state at time t
pc(a|b) conditional probability of a given b (depending on parameter c)

aji(t), pji(t),Rji(t),RX |ϕi⟩
t→ |ϕj⟩ transition amplitude, probability & rate, rate of event X

⟨A⟩ψ, ⟨a⟩c average value of observable A in |ψ⟩, average of a for a fixed parameter c
⟨⟨A2⟩⟩ψ ≡∆2

ψA variance of the distribution pψ(a) (squared uncertainty of observable A)

ρ(x⃗, t), j⃗(x⃗, t) single-particle probability density & flow at point x⃗, time t
ρ̂(t), ρ̂1(t)=Tr2ρ̂(t) general density operator, density operator of a subsystem (partial trace)
Wρ(x⃗, p⃗, t) Wigner quasiprobability distribution in phase space for a given ρ̂
ρ(x⃗, p⃗, t) classical probability distribution in phase space
ϱ(E), ϱf(E), ϱ(ξ) level density, density of final states, particle density at ξ≡(x⃗,ms)

Physical constants & parameters, various physical quantities
ℏ=h/2π reduced & unreduced Planck constant
c, e, ϵ0, α speed of light, elementary charge, vacuum permitivity, fine-structure const.
λC, λ̄C, λB, λ̄B, aB reduced & unreduced Compton&deBroglie wavelengths, Bohr radius

k⃗, ω wavevector, angular frequency
M,M, q particle mass, two-particle reduced mass, particle charge

E, Ei, Eni, E
(n)
i (λ) continuous&discrete energy, its nthorder perturb.correction&approximation

εk, nk energies & occupation numbers of single-particle states

V , A⃗, E⃗ , B⃗ scalar & vector electromagnetic potentials, el. intensity & mag. induction
dσ
dΩ , σ

el, σinel, σtot differential cross section, integral elastic, inelastic & total cross sections

f
k⃗
(k⃗ ′), f

nk⃗
(k⃗ ′), f

(n)

k⃗
(k⃗ ′) scattering amplitude, its nthorderBorn correction&approximation

Fl(k), Sl(k), δl(k), ηl(k) partial wave amplitude, S-matrix, phase shift & inelastic suppression factor
R, lmax range of potential, maximal orbital angular momentum
Sρ von Neumann entropy of density operator ρ̂
Z(β), Z(β, µ) (grand)canonical partition function (β≡ inverse temp.,µ≡ chem. pot.)

S[x⃗(t)], S(x⃗, t), L(x⃗, ˙⃗x) classical action (functional & function forms), Lagrangian

Special functions & miscellaneous mathematical symbols
jl, nl, h

±
l (kr) Bessel, Neumann & Hankel functions

Lj
i (ρ), Hn(ξ) associated or generalized Laguerre polynomials & Hermite polynomials

Plm(cosϑ),Ylm(ϑ,φ) associated Legendre polynomial, spherical harmonics (ϑ,φ≡sph.angles)

Dj
m′m(αβγ)≡Dj

m′m(R) Wigner matrix/function (Euler angles of rotation matrix)
δ(x), δϵ(x), Θ(x) Dirac δ-function, imperfect δ functions, step function
δij , εijk Kronecker & Levi-Civita symbols
(1, 2, 3)≡(x, y, z) indices of Cartesian components

n⃗,
{
(n⃗x,n⃗y ,n⃗z)
(n⃗r,n⃗ϑ,n⃗φ)

}
unit vector,

{
Cartesian
spherical

}
orthonormal coordinate vectors

{Xi}ni=1,{Xi}i∈D,{X(c)}c∈C discrete/continuous set of objects
Min, Max, Sup{Xi}i minimum, maximum, supremum of a set of numbers
iff, l.h.s., r.h.s “if and only if”, the left- / right-hand side (of an equation)
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Distant outline of quantum physics

Historical origins: Quantum mechanics was born in the 1900s in analyses of (i)
electromagnetic radiation emitted by matter in thermal equilibrium and (ii) specific
heats of solids at low absolute temperatures. A few years later, the discovery of
the structure of atom implied a more fundamental problem: (iii) the question of
stability of matter. A solution of all these problems was found in a modification of
the laws of classical (Newtonian) physics by assuming some particular rules of quan-
tization for certain physical quantities like energy. These principles (which invited
the word “quantum”) moreover explained an older mystery of discrete spectra of
light radiated by single elements. However, it turned out that a much more radical
modification of the physics paradigm was needed. The consistent theory of quan-
tum phenomena was build in the piece by piece manner during the 1920s and 1930s.
This development explains why quantum theory (in contrast to Einstein’s relativity)
carries traces of rather different approaches and ways of thinking. Discussions on
the interpretation of quantum theory continue up to the present days.
Probabilistic character: Quantum physics is ultimately indeterministic. It does
not generally predict precise outcomes of individual experiments but only proba-
bilities of various alternative results. It is the only theory in which randomness
represents a really fundamental concept (its use in the classical context is just a tool
to overcome a lack of information). Quantum physics may be considered as a simul-
taneous description of multiple alternatives of physical reality with no possibility to
predict which of the alternatives will be finally actualized for a particular observer.
Linearity: Underlying the dynamics of quantum probabilities, there is a rather sim-
ple linear theory which makes use of so-called quantum amplitudes. An amplitude
a= |a|eiφ of a certain physical event is a number inside the unit circle of the C plane
such that the probability of the event is p = |a|2. Though the observable output
(probability p) is contained only in |a|, the phase angle φ is irreducible. Manifesta-
tion of linearity is twofold: (i) If a given system can be prepared in two particular
initial states, denoted as |ψ1⟩ and |ψ2⟩ (generalization to more states is obvious),
quantum theory requires that it can also be prepared in a state α1|ψ1⟩+α2|ψ2⟩,
which corresponds to a linear combination (quantum superposition) of the above
two states with arbitrary complex coefficients α1 and α2. The meaning of quantum
superpositions is highly counterintuitive—e.g., they may represent states in which
a particle simultaneously takes several positions. (ii) If the quantum amplitudes of
a given measurement outcome for the two initial states are a1 and a2, the corre-
sponding amplitude for the above superposition is a = N (α1a1+α2a2), where the
normalization coefficient N ∈ R ensures that an integral of p= |a|2 over all possible
outcomes is equal to 1. Linearity of amplitudes implies nonlinearity of probabilities,
which is the key for explanation of various quantum interference effects.
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Complementarity: In quantum theory, all conceivable quantities that can be mea-
sured on a given system are sorted according to their mutual compatibility. Any
observable is compatible only with a subset of the remaining observables and incom-
patible with the others. Any set of compatible observables can be simultaneously
known with certainty, but this knowledge excludes a precise determination of any
incompatible observable. Joint probabilities of simultaneous measurement outcomes
can be consistently determined only for sets of compatible observables; for sets of
incompatible observables they depend on details of the measurement procedure.
Nonseparability: Evolution of a given quantum system S often includes interac-
tion with an external environment and/or other degrees of freedom E. Linearity of
quantum theory leads to creation of superpositions of the composite system S+E
that have a form

∑
i αi|ψi⟩S|ψ′

i⟩E. Here |ψi⟩S and |ψ′
i⟩E are mutually correlated states

of S and E, joint into a separable state |ψi⟩S|ψ′
i⟩E of the S+E system, and αi are

some coefficients. The whole superposition (unlike its individual terms) cannot in
general be factorized to a single product of S and E states. Hence in these so-called
entangled states the subsystems S and E are not separable. An ensemble of interact-
ing quantum subsystems can become a strongly holistic object in which correlations
between distant parts are stronger than allowed in classical physics.
Quantum measurement: The entanglement process takes place also during the
act of a general measurement. Unfactorizable superpositions resulting from this
process correlate various states of the measuring apparatus (different measurement
outputs) with the associated states of the measured system. Identifying the actual
reality with only a single output, we select only a part of the superposition. This is
often treated as an irreducible influence of quantum measurement (or of an observer,
who may be considered as the “selector” of reality) on the measured object.
Links to other branches of physics: Quantum physics is a continuation of clas-
sical physics to the world of small objects and/or tiny actions. It is treated in two
parts: the nonrelativistic and relativistic quantum theory. Since the combination
of relativistic and quantum laws implies new phenomena, the general formalism of
quantum theory is first applied to nonrelativistic mechanics, which is sufficient in
the description of a large class of objects. The same formalism is subsequently re-
called in the context of special relativity, leading to the quantum field theory, which
provides so far the deepest description of elementary particles of matter and their
mutual interactions. Unification of quantum theory with general relativity (the-
ory of gravity) is not available yet. Quantum theory is a basis for great majority
of contemporary “applied” physics, like molecular, atomic, nuclear and subnuclear
physics, condensed matter and solid-state physics, optics, astrophysics etc. Recently,
some particular applications of quantum laws gave rise to a special branch of physics
called “quantum information”.
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INTRODUCTION

Before sailing out, we encourage the crew to get ready for adventures. Quantum
mechanics deals with phenomena, which are rather unusual from the viewpoint of
our common macroscopic experience. Description of these phenomena makes us
sacrifice some principles which we used to consider self-evident.

■ Quantum level

Quantum theory describes objects on the atomic and subatomic scales, but also
larger objects if they are observed with an extremely high resolution.

▶ Planck constant
The domain of applicability of quantum mechanics is determined by constant

ℏ .
= 1.05 · 10−34 J·s .

= 0.66 eV·fs which defines a quantum unit of action

▶ Phenomena whose actions are on/below the scale of ℏ belong to the quantum
jurisdiction. However, even phenomena with larger absolute actions can get
to the quantum domain if the difference of actions between distinguishable
alternatives reaches the ℏ scale. Consider two trajectories q1(t) & q2(t) in the
configuration space of the system (q is a multidimensional vector of generalized
coordinates depending on time t) which, in the given experimental situation,
are on the limit of mutual distinguishability (so these and similar trajectories
can still be experimentally distinguished from each other, but the trajectories
which are closer than these cannot). The classical action of each trajectory
is S[q•(t)]. The difference ∆S = |S[q1(t)]−S[q2(t)]| determines whether the
situation can be described in the classical or quantum way:

Classical mechanics
Quantum mechanics


applies if the difference satisfies




∆S ≫ ℏ
∆S ≲ ℏ

In particular, if the minimum of the
action functional S expressed on the
level of resolution ∆S ∼ ℏ extends
across several distinguishable trajectories,
all these trajectories must be somehow
taken into account simultaneously.
Quantum description is then unavoidable.

◀ Historical remark
1900: Max Planck introduced ℏ along with the quanta of electromagnetic radiation
to explain the blackbody radiation law
1905: Albert Einstein confirmed elmag. quanta in the explanation of photoeffect
1913: Niels Bohr introduces a quantum model of atoms (“old quantum mechanics”)
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■ Double-slit experiment

According to Richard Feynman and many others, this is the most crucial quan-
tum experiment that allows one to realize how unusual the quantum world is.
There exist numerous variations and improvements of this experiment.

▶ Arrangement

Components: Emitter E which emits particles (in the one by one mode), the
plate with open slits A and B, the screen S where positions of arriving particles
are detected (dots) Both particle trajectories x⃗A(t) and x⃗B(t)

from the emitter (x⃗E) to the screen (x⃗S)
minimize the action functional S[x⃗(t)].

Suppose |SA − SB| ≲ ℏ

ℏ

▶ Regimes and results of measurements

(a) Interference setup: position of the particle is measured only at the screen
⇒ individual particle hits are randomly scattered within strips that form a
wave-like interference pattern
(b) Which-path setup: prior the screen measurement, the particle position
is measured—either explicitly (with the results observed), or implicitly (results
hidden)—immediately after the slits ⇒ individual particle hits at the screen
cumulate straight behind the slits, no interference behavior is observed
Delayed choice: The choice of setup (a)/(b) is made after the particle passed
the slits. The outcome is the same as if the decision was made before.
Quantum eraser: The unobserved which-path information from setup (b) is
erased before the particle hits the screen. The interference pattern appears.

▶ Some conceptual implications

Indeterminism: It is not possible to predict the positions of individual particle
hits, but only their overall distribution. Quantum physics invites randomness
and probabilistic description into the fundamental theory.
Particle-wave duality: Particles show either wave or corpuscular proper-
ties, in accord with the specific experimental arrangement. In particular, the
existence of the which-path information invariably leads to the corpuscular be-
havior, while its actual nonexistence implies a wave-like behavior.
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Contextuality etc.: The actual result of a physical observation depends on
a wider “context” of the process investigated. The observed “reality” emerges
only during the act of observation. And many more sentences like these.

◀ Historical remark
1805 (approx.): Thomas Young performed double-slit experiment with light
1927: C.Davisson & L.Germer demonstrate interference of electrons on crystals
1961: first double-slit experiment with massive particles (electrons)
1970’s: double-slit experiments with individual electrons
1990’s-present: progress in realizations of which-path setup & delayed-choice exp.

■ Wavefunction and superposition principle

To explain the outcome of the interference setup of the double-slit experi-
ment (interference pattern formed by individual dots), we will assume that
the undisturbed particle inside the interferometer represents a wave-like object
comprising a variety of potential particle localizations and that the position
measurement on the screen makes one of these potential localizations actual.

▶ Concept of wavefunction

Quantum physics deals not with one, but with several alternative versions
of reality—with many potential outcomes of any conceivable measurement
performed on a given system. Complete determination of the physical state
of the system must somehow include all these alternatives and to quantify
their probabilities. If variable x denotes possible outcomes of a complete set
of measurements (specifying all degrees of freedom of a given system), the
quantum state of the system is determined by a complex wavefunction ψ(x):

Wavefunction value ψ(x) ≡ amplitude

of probability (or density of amplitude
of probability if x is continuous) for
finding the particular alternative x.

Squared modulus |ψ(x)|2≡ probability
(or density of probability for x continuous) for finding the alternative x.

Although the detectable probabilities are given by |ψ(x)|2 ∈ R, their amplitudes
ψ(x) ∈ C play a substantial role in the quantum description of reality!

The wavefunction evolves in time t, so: ψ(x) → ψ(x, t)

▶Wavefunction of a single structureless particle: ψ(x⃗, t) ≡
√

ρ(x⃗, t) eiφ(x⃗,t)

where x⃗ ≡ alternative positions of the particle in the real 3D space
|ψ(x⃗, t)|2 = ρ(x⃗, t)≥ 0 is the probability density to detect the particle at posi-
tion x⃗. Normalization:

∫
ρ(x⃗, t) dx⃗ = 1 ∀t. Phase φ(x⃗, t) ∈ R has no “classical”

interpretation, but plays an important role in interference phenomena
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▶ Superposition of wavefunctions

The outcome of the interference setup depends on the fact that waves can be
summed up. Consider two normalizable wavefunctions ψA(x⃗, t) and ψB(x⃗, t):

∫
|ψA|2dx⃗ < ∞,

∫
|ψB|2dx⃗ < ∞ ⇒

∫
|αψA+βψB|2dx⃗ < ∞ ∀α, β ∈ C

⇒ any linear combination of normalizable wavefunctions is a normalizable wave-
function ⇒ these functions form a linear vector space L2(R3)

▶ Interference phenomenon

Probability density for a superposition of waves is not the sum of densities
for individual waves. Choose arbitrary α = |α|eiφα and β = |β|eiφβ such that∫
|αψA+βψB|2 dx⃗ = 1 with both ψA and ψB normalized (

∫
|ψ•|2 dx⃗ = 1)

⇒
∣∣αψA +βψB

∣∣2
︸ ︷︷ ︸

ραA+βB

= |αψA|2︸ ︷︷ ︸
|α|2ρA

+ |βψB|2︸ ︷︷ ︸
|β|2ρB

+2|αβψAψB| cos(φA+φα−φB−φβ)︸ ︷︷ ︸
interference terms

▶ Description of the interference setup in the double-slit experiment

Despite generally delocalized nature of wave-
functions we assume an approximate assign-
ment of times: at t ≈ t0 the particle passes
the double-slit plate and at t ≈ t1 it reaches
the detection screen. At the plate we have

ψ(x⃗, t0) ≈ αδA(x⃗−x⃗A) + βδB(x⃗−x⃗B)

with δ•(x⃗−x⃗•) denoting the wavefunction
localized at the respective slit (δ•=0 away
from it) and α, β some coefficients depending on the emitted state and experi-
mental details. If ψ•(x⃗,∆t) is the wavefunction developed in time ∆t = t1−t0
from δ•(x⃗−x⃗•), the wavefunction on the screen reads as:

ψ(x⃗, t1) ≈ αψA(x⃗,∆t) + βψB(x⃗,∆t) ⇒ ρ(x⃗) ≈ |αψA(x⃗,∆t) + βψB(x⃗,∆t)|2

Thus the probability distribution on the screen shows the interference pattern.

▶ Dirac delta function (mathematical intermezzo)

To deal with arbitrary wavefunctions, it is convenient to introduce a generalized
function (more precisely, a so-called distribution) describing a perfectly local-
ized particle. Consider first the 1D case. In a vague sense, the δ-function can
be seen as a “limit” of a series of ordinary functions whose support contracts
to a single point but the integral remains constant, equal to unity:

δ(x) = lim
ϵ→0

δϵ(x) Support [δ(x)] ≡ {x=0} and
+∞
∫

−∞
δ(x) dx = 1
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For instance, we can choose the following sequences:

(a) δϵ(x)≡
{

1
ϵ for x∈[− ϵ

2 ,+
ϵ
2 ]

0 otherwise

(b) δϵ(x) =
1
π

ϵ
ϵ2+x2 (Cauchy or Breit-Wigner form)

(c) δϵ(x) =
1√
2πϵ2

e−
x2

2ϵ2 (Gaussian form)

(d) δϵ(x) =
1
π

sin(xϵ−1)
x = 1

2π

+ϵ−1

∫
−ϵ−1

eiqxdq
(Fourier transform
of unity)

In 3D space: δϵ⃗(x⃗−x⃗′)︷ ︸︸ ︷
δϵ1(x1−x′1)δϵ2(x2−x′2)δϵ3(x3−x′3)

ϵ⃗→0−→
δ(x⃗−x⃗′)︷ ︸︸ ︷

δ(x1−x′1)δ(x2−x′2)δ(x3−x′3)

Defining property of δ-function
in terms of distribution theory:

∫
f(x⃗)δ(x⃗−x⃗ ′) dx⃗ = f(x⃗ ′)

▶ Delocalized wavefunctions

Any wavefunction can be expressed as: ψ(x⃗, t) =

∫
ψ(x⃗ ′, t)δ(x⃗−x⃗ ′) dx⃗ ′

General state given by a wavefunction ψ(x⃗, t) ≡ superposition of localized
states δ(x⃗−x⃗ ′) with coefficients equal to the respective values ψ(x⃗ ′, t)

However, note that δ(x⃗− x⃗ ′) /∈ L2(R3) (it is not even a function). This an-
ticipates problems with incorporating some physically plausible states (like the
localized states in coordinate or momentum space) into the mathematical for-
malism of quantum theory

◀ Historical remark
1800-10: Thomas Young formulates the superposition principle for waves
1924: Louis de Broglie introduces the concept of particle wavefunction
1926: Erwin Schrödinger formulates wave mechanics
1926: Max Born provides the probabilistic interpretation of wavefunction
1926-32: John von Neumann formulates QM through linear vector spaces
1927-30: Paul Dirac includes into the formulation the δ-function

■ Quantum measurement

To explain the which-path version of the double-slit experiment, we assume that
the measurement has a dramatic effect on a quantum system: “reduction” or
“collapse” of its wavefunction to the single alternative that was observed.

▶ Change of wavefunction in measurement

Example: position measurement detecting the particle (in time t0) within the
box (x′1 ± ϵ1

2 , x
′
2 ± ϵ2

2 , x
′
3 ± ϵ3

2 ) ⇒ the wavefunction changes as:

ψ(x⃗, t0) delocalized
reduction−−−−−→ ψ(x⃗, t0+dt) ∝ δϵ⃗(x⃗−x⃗′)ψ(x⃗, t0) localized
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In an ideal (ϵ → 0) measurement
that detects the particle at x⃗′:

ψ(x⃗, t)
reduction−−−−−→ δ(x⃗−x⃗′)

After the position measurement, the
wavefunction evolves from a localized one

▶ Description of the which-path setup in the double-slit experiment

At the double-slit plate:
ψ(x⃗, t0) ≈ αδA(x⃗− x⃗A) + βδB(x⃗− x⃗B)

After which-path measurement (δt ≪ ∆t):

ψ(x⃗, t0 + δt) ≈
{

δA(x⃗−x⃗A) probability ≈|α|2
δB(x⃗−x⃗B) probability ≈|β|2

At the screen:
ψ(x⃗, t0 +∆t) ≈

{
ψA(x⃗,∆t) probability ≈|α|2
ψB(x⃗,∆t) probability ≈|β|2

⇒ ρ(x⃗) ≈ |αψA(x⃗,∆t)|2 + |βψB(x⃗,∆t)|2 probability distribution on the screen

So the interference pattern is destroyed! This is a direct consequence of the
wavefunction collapse caused by the which-path measurement.
Note: Disappearance of the interference pattern can be also induced by the
presence of an additional quantum system (an “atom”) that interacts with the
particle inside the two-slit device so that it records the which-path information—
without any observer actually reading it! The composite particle–atom system
is described by an extended wavefunction with both particle & atom degrees of
freedom. The measurement-like effect then follows from a continuous, collapse-
free evolution of the extended wavefunction reflecting the particle–atom inter-
action. The collapse assumption is nevertheless useful if we want to describe
the measured system autonomously, irrespective of the “measuring agents”.

▶ Summing amplitudes versus summing probabilities: For a general
branching processes with disjunct alternative paths A & B (real or symbolic),
the probability to pass the branching while the path is not explicitly measured
depends on whether the paths can/cannot, in principle, be distinguished:

For indistinguishable paths we sum amplitudes: a ∝ aA + aB
⇒ interference effects occur in p = |a|2
For distinguishable paths we sum probabilities: p ∝ pA + pB
⇒ interference effects do not occur

▶ Quantum logic: An attempt was made to assign the strange properties
of the quantum world to a non-classical underlying logic. In the double-slit
experiment it can be introduced via the following “propositions”:
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A,B ≡ passage through slit A,B S ≡ detection at given place of screen
Different outcomes of interference & which-path setups indicate that:

(A ∨ B) ∧ S︸ ︷︷ ︸
interference setup

̸= (A ∧ S) ∨ (B ∧ S)︸ ︷︷ ︸
which−path setup

(where ∨ ≡ “or” and ∧ ≡ “and”)
⇒ violation of a common logic axiom

◀ Historical remark
1924-35: Bohr (Copenhagen) versus Einstein debate. Niels Bohr defends a “subjec-
tive” approach (with the observer playing a role in the “creation” of reality)
1927: the first explicit note of wavefunction collapse by Werner Heisenberg
1932: inclusion of collapse into the mathematical formulation of QM by John von
Neumann (discussions about its physical meaning continue up to now)
1936: Garrett Birkhoff and J. von Neumann formally introduce quantum logic

1a. SPACE OF QUANTUM STATES

Quantum theory has rather sophisticated formalism based on the mathematics ma-
tured at the beginning of the 20th century. Its interpretation in terms of “common
sense” becomes a nontrivial issue rising questions about the link of physical theory
to reality. The problem starts already on the deepest level—with the definition of
states of quantum systems, i.e., sets of attributes sufficient for a unique description
of the system’s evolution. While the mathematical representation of states in classi-
cal physics is rather intuitive and comprehensible (using the notion of phase space),
quantum physics resorts to much more abstract ideas.

Roughly the first half of this book attempts to give a complete overview of the
quantum formalism. The chapters that contain letter “a” in the numbering outline,
step by step, the basic elements of the mathematical description. The chapters with
letter “b” give some simple concrete examples (mostly in single-particle systems) of
the respective ideas. To keep immediate link between the Geist and Substanz, we
present the “a” and “b” chapters in an alternating, entangled way.

■ Hilbert space

To capture the quantum uncertainty, i.e., the possibility of different outcomes of
various measurements performed on systems in the same state, we will assume
that distinct states of the system are not always perfectly distinguishable. The
states may show some “overlaps”, which allow one to identify a given state with
another state—e.g., the state of a particle described by a delocalized wavefunc-
tion ψ(x⃗) with a state localized at a single place x⃗ ′. This means that the states
are not represented by isolated points à la points in the classical phase space.
Instead, they can be associated with vectors in linear vector spaces. If two
vectors are not perpendicular to each other, they have a common component
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whose size sets limits to their mutual
distinguishability.

▶ State of a physical system

The state represents a complete set
of parameters characterizing a physical
system in the sense of an autonomous
determinism: The knowledge of state at
a single time (t=0) suffices to determine

the state at any time in past or future (t >< 0). Let |ψ⟩ denote a mathematical
entity describing an arbitrary physical state of a given quantum system (short-
cut: |ψ⟩ ≡ “a state”). Let H be a system-specific space containing all such
entities (state space). We make our first fundamental assumption:

The space of states H of an arbitrary quantum system is a Hilbert space,
in which individual states are represented by rays of vectors.

The Hilbert space is defined by the following 3 requirements:

▶ Requirement 1: The space H supports the superposition principle

|ψ1⟩, |ψ2⟩ ∈ H
α, β ∈ C

}
⇒ |ψ⟩ = α|ψ1⟩+ β|ψ2⟩ ∈ H superposition of states

|ψ1⟩ and |ψ2⟩
⇒ H is a complex vector space
Why we need superpositions: To describe the single-particle interference in the
double-slit experiment (Intro.), we must add the waves from both slits.

▶ Requirement 2: The space H supports a scalar product ⟨ψ1|ψ2⟩ ∈ C
Properties: ⟨ψ1|ψ2⟩=⟨ψ2|ψ1⟩∗, ⟨ψ1|αψ2+βψ3⟩=α⟨ψ1|ψ2⟩+β⟨ψ1|ψ3⟩, ⟨ψ|ψ⟩≥0

Normalization of state vectors: Real number ||ψ||≡
√

⟨ψ|ψ⟩≥0 is a norm
of |ψ⟩. Scaling of state vectors, i.e. multiplication |ψ′⟩=a|ψ⟩ by any constant
a∈C, does not change their physical content (so both |ψ′⟩, |ψ⟩ describe the same
state). Hence any state vector can be scaled so that it becomes normalized:

⟨ψ|ψ⟩=1 . In QM we use normalized vectors, but this cannot be set as a

constraint in H because of the superposition principle (if linearly combining
two normalized states, the resulting superposition is generally not normalized).

Distance of 2 vectors: d2(ψ1, ψ2) ≡ ||ψ1−ψ2||2 = ⟨ψ1|ψ1⟩+⟨ψ2|ψ2⟩−2Re⟨ψ1|ψ2⟩

Schwarz inequality for normalized vectors: |⟨ψ1|ψ2⟩|2 ≤ ⟨ψ1|ψ1⟩︸ ︷︷ ︸
1

⟨ψ2|ψ2⟩︸ ︷︷ ︸
1

= 1

Why we need scalar product:
Results of quantum measurements are generally indeterministic (described in
the probabilistic way, see Intro.& Sec. 2a.). A single measurement does not
allow one to uniquely determine the state. The possibility to identify state |ψ2⟩
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with |ψ1⟩ or vice versa in an “optimal” single measurement is determined by
the overlap of the corresponding vectors. For ||ψ1||=||ψ2||=1 we have:

aψ2
(ψ1) ≡ ⟨ψ1|ψ2⟩︸ ︷︷ ︸

amplitude

pψ2
(ψ1) ≡ |⟨ψ1|ψ2⟩|2︸ ︷︷ ︸

probability

Number aψ2
(ψ1)∈C satisfying |aψ2

(ψ1)|∈ [0, 1]
represents amplitude for finding |ψ1⟩ in |ψ2⟩
The corresponding probability pψ2

(ψ1) ∈ [0, 1]
is obtained by squaring the amplitude’s modulusConsequence:

States |ψ1⟩,|ψ2⟩ are perfectly distinguishable iff orthogonal: ⟨ψ1|ψ2⟩ = 0

▶ Requirement 3: H is complete, i.e. ∀ converging sequence (in the Cauchy
sense with distance d) of vectors {|ψi⟩}i the limit limi→∞ |ψi⟩≡|ψ∞⟩∈H. This
shall avoid problems with missing limits (unfortunately, it does not apply to
the δ-function, see Intro., as the “convergence” to δ is not of the Cauchy type).

▶ Separable Hilbert spaces

H is separable if it has a countable (possibly finite) set of basis vectors

We can choose an orthonormal basis {|ϕi⟩}dHi=1 satisfying ⟨ϕi|ϕj⟩ = δij

The number of basis vectors dH is called dimension of H
⇒ Each state |ψ⟩ can be expressed as a unique

complex superposition of basis vectors: |ψ⟩ =
dH∑
i=1

⟨ϕi|ψ⟩︸ ︷︷ ︸
αi

|ϕi⟩
Normalization:

⟨ψ|ψ⟩ =
dH∑
i=1

dH∑
j=1

α∗
iαj

δij︷ ︸︸ ︷
⟨ϕi|ϕj⟩ =

dH∑
i=1

|αi|2 = 1

Applicability: Systems with finite numbers of particles, systems with finite
numbers of degrees of freedom (possibly selected subsets of degrees of freedom)

Isomorphism of separable Hilbert spaces

Any separable H with an infinite basis set is isomorphic with the space ℓ2

formed by infinite “columns” of complex numbers

(
α1
α2

...

)
satisfying

∞∑
i=1

|αi|2 < ∞

Mapping H → ℓ2: Expansion coefficients ⟨ϕi|ψ⟩ of a chosen vector |ψ⟩ ∈ H in a
given basis {|ϕi⟩}i are associated with the numbers αi defining the vector ∈ ℓ2

Superpositions a|ψ⟩+b|ψ′⟩ mapped onto:

(
aα1+bα′

1

aα2+bα′
2

...

)

Scalar product represented by: ⟨ψ|ψ′⟩ ≡
∑
i

α∗
iα

′
i = ( α∗

1,α
∗
2,... )

(
α′
1

α′
2

...

)

▶ Nonseparable Hilbert spaces

H is nonseparable if it has no countable basis. This applies in systems with
unbounded particle numbers, quantum fields, continuum...
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◀ Historical remark
1900-10: David Hilbert (with E. Schmidt) introduces the ∞-dimensional space of
square-integrable functions and elaborates the theory of such spaces
1927: John von Neumann (working under Hilbert) introduces abstract Hilbert spaces
into QM (1932: book Mathematische Grundlagen der Quantenmechanik)

■ Rigged Hilbert space

Although the standard Hilbert space is sufficient for consistent formulation of
QM, we will see soon that its suitable extension is very helpful.

▶ Hierarchy of spaces based on H ≡ ℓ2

H is a space of sequences {αi}∞i=1≡|ψ⟩ satisfying
∑
i

|αi|2im < ∞ for m=0,1,2....

These form a dense subset of ℓ2

H (conjugate space to H) is a space of sequences {α′
i}∞i=1≡|ψ′⟩ satisfying

⟨ψ|ψ′⟩ < ∞ for any |ψ⟩ ∈ H. This set contains ℓ2 as a subset.

⟨ψ|ψ′⟩≡
∑
i

α∗
iα

′
i < ∞ ⇒

∑
i

|α′
i|2 1

im < ∞ ⇒ |α′
i|2 may polynomially diverge

In general, the smaller is H, the larger is H

H and H are linear vector spaces,
but not Hilbert spaces:

H is not complete

H does not have scalar product

▶ Gelfand triple H ⊂ H ⊂ H

This “sandwich” of spaces is sometimes called the “rigged Hilbert space”, indi-
cating that only such an extended structure allows one to “safely sail the sea” of
quantum physics. It turns out that solutions of some basic quantum problems
is out of H but belongs to the larger space H, while the definition domain of
some quantum operators is not H but rather its subspace H (see Secs. 2a&2b).

■ Dirac notation

Physicists are proud to master a symbolic technique that makes some involved
mathematical reductions much easier to follow. Although the “bra-ket” formal-
ism is not always fully rigorous, it is extremely efficient especially when dealing
with the action of linear operators in Hilbert spaces.

▶ Kets and bras
For any vector |ψ⟩∈H, called ket, there exists a linear functional Fψ ≡ ⟨ψ|,
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called bra, such that the value assigned by Fψ to |ϕ⟩∈H
is Fψ(ϕ) ≡ ⟨ψ|ϕ⟩ (the words following from “bra-c-ket”)

The bras also satisfy the superposition principle:
α⟨ψ1|+β⟨ψ2| ≡ ⟨α∗ψ1+β∗ψ2|

and the spaces of kets & bras are isomorphic.

Matrix forms: ⟨ψ| ≡ ( α∗
1,α

∗
2,... )

(
α1
α2

...

)
≡ |ψ⟩

▶ Linear operators

Linear operators play a very important role in QM. They will be subject to
systematic study from Sec. 2a. Here we just introduce basic notions.

Linear operator Ô|ψ⟩ = |ψ′⟩ is a mappingH → H of the Hilbert space to itself

satisfying the linearity condition: Ô(α|ψ1⟩+β|ψ2⟩) = αÔ|ψ1⟩+βÔ|ψ2⟩

⇒ Ô is completely defined via its action on any basis: {|ϕi⟩}dHi=1
Ô−→ {|ϕ′

i⟩}
dH
i=1

⇒ Ô |ψ⟩︸︷︷︸∑
i⟨ϕi|ψ⟩|ϕi⟩

=
dH∑
i=1

⟨ϕi|ψ⟩ Ô|ϕi⟩︸ ︷︷ ︸
|ϕ′

i⟩

=
dH∑
i=1

|ϕ′
i⟩⟨ϕi|ψ⟩ ⇒

Ô ≡
dH∑
i=1

|ϕ′
i⟩⟨ϕi|

|ϕ′
i⟩⟨ϕi|
⇕

|ϕi⟩
Ô−→|ϕ′

i⟩

Any expression of the form |ϕ′⟩⟨ϕ| is a linear operator: |ψ⟩ Ô−→ ⟨ϕ|ψ⟩|ϕ′⟩.
Any linear operator Ô can be expressed as a sum over terms ∝ |ϕj⟩⟨ϕi| contain-
ing vectors of the same basis. This is achieved via the identity (unit) operator:

{|ϕi⟩}
Î−→{|ϕi⟩}dH∑

i=1

|ϕi⟩⟨ϕi| = Î ≡ unit operator ⇒ Ô︸︷︷︸
ÎÔÎ

=

dH∑
i=1

dH∑
j=1

⟨ϕj|Ôϕi⟩︸ ︷︷ ︸
⟨ϕj |Ô|ϕi⟩≡Oji

|ϕj⟩⟨ϕi|

Matrix form
general linear operator:

Ô≡
(

O11 O12 ...
O21 O22

... ...

)

▶ Projectors

Projection operators (projectors) are linear operators satisfying P̂ 2 = P̂

(i.e., repeated projection is redundant)
Let {|ϕi⟩}d0i=1 ≡ orthonormal basis of a subspace H0 ⊂ H. We have ⟨ϕi|ϕj⟩ = δij

P̂0 =

d0∑
i=1

|ϕi⟩⟨ϕi|
is a projector to H0:

P̂0|ψ⟩
{

= 0 for |ψ⟩⊥H0

∈ H0 otherwise

Completeness relation: the projector
to the whole H is the identity operator
(see above): P̂H=

dH∑
i=1

|ϕi⟩⟨ϕi|= Î
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Probability to identify |ψ⟩ with any state from the subspace H0:
In generalization of the above formula pψ(ψ0) = |⟨ψ0|ψ⟩|2 = ⟨ψ|ψ0⟩⟨ψ0|ψ⟩, the
overall probability to (incorrectly)
associate a given state |ψ⟩∈H with
an arbitrary state |ψ′⟩∈H0 is given by:

pψ(H0) ≡ ⟨ψ|P̂0|ψ⟩ =
d0∑
i=1

|⟨ϕi|ψ⟩|2

Matrix form of projector operators:
In an orthonormal basis {|ϕi⟩}dHi=1 ofH containing as a subset the basis {|ϕij⟩}

d0
j=1

of H0 (with ij ≡ indices of the H0 basis vectors in the H basis), the projector is
expressed as a diagonal matrix with d0 units and (dH−d0) zeros on the diagonal:

P̂0 =

(
X1 0 ...
0 X2

... ...

)
with Xi =

{
1 for i ∈ {i1, i2, . . . , id0}
0 for i /∈ {i1, i2, . . . , id0}

◀ Historical remark
1930: Paul Dirac writes the book The Principles of Quantum Mechanics, which
provides a more intuitive (compared to von Neumann) path to quantum theory,
using non-normalizable vectors and δ-function (bra-kets in 3rd edition 1947)
1950-60’s: I.M.Gelfand & N.Y.Vilenkin introduce rigged Hilbert spaces, putting
Dirac’s approach on more rigorous grounds. Systematic use in QM since 1966 (by
A.Böhm et al.) but up to now rather scarce

■ Summing Hilbert spaces

One can combine one or more Hilbert spaces in the style of summation. The
resulting space then contains the summed spaces as ordinary subspaces.

▶ Direct sum

Let {|ϕ1i⟩}d1i=1 be an orthonormal basis of H1 and {|ϕ2j⟩}d2j=1 one of H2

Direct sum space H=H1 ⊕H2 has the“summed”basis |Φki⟩≡
{

|ϕ1i⟩ for k=1
|ϕ2i⟩ for k=2

Hence H1 ⊕ H2 consists of all normalizable linear combinations of the basis
vectors |Φki⟩ formed by a unification of the basis vectors of H1 and H2.

Dimension: dH1⊕H2
= d1 + d2 Orthonormality of basis: ⟨Φki|Φk′i′⟩=δkk′δii′

▶ State decomposition

Any vector |Ψ⟩ =
∑

k,i αki|Φki⟩ ∈ H can be
written as |Ψ⟩ = |ψ1⟩+|ψ2⟩ with |ψk⟩ ∈ Hk

(k=1, 2)

|Ψ⟩ =
d1∑
i=1

α1i|ϕ1i⟩
︸ ︷︷ ︸
|ψ1⟩≡P̂1|Ψ⟩∈H1

+

d2∑
j=1

α2j|ϕ2j⟩

︸ ︷︷ ︸
|ψ2⟩≡P̂2|Ψ⟩∈H2Projectors to the subspaces Hk

P̂k =
dk∑
i=1

|Φki⟩⟨Φki| ⇒
{

orthogonality : P̂1P̂2 = P̂2P̂1 = 0

completeness : P̂1 + P̂2 = ÎH

Scalar product: ⟨Ψ|Ψ′⟩H = ⟨ψ1|ψ′
1⟩H1

+ ⟨ψ2|ψ′
2⟩H2

where

{
|ψk⟩= P̂k|Ψ⟩
|ψ′

k⟩= P̂k|Ψ′⟩
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▶ Finite-dimensional matrix representation:

|ψ1⟩ =
 α11

...
α1d1


, |ψ2⟩ =

 α21

...
α2d2


⇒ |Ψ⟩ =




α11

...
α1d1.........
α21

...
α2d2




▶ Multiple sums of Hilbert spaces: H =
n

k=1
Hk

▶ The use in QM: Hk ⊂ H can be associated with subspaces corresponding
to various values ak of an observable A (states |ψ⟩ ∈ Hk yield output ak with
certainty; see Sec. 2a). Subspaces in the direct sum can also collect vectors with
different symmetry properties (e.g., subspaces of even and odd wavefunctions).

■ Multiplying Hilbert spaces

Hilbert spaces can also be combined in the style of multiplication. This com-
monly happens in composite quantum systems that consist of two or more
subsystems (several particles or distinct subsets of degrees of freedom). The
multiplication is a rather interesting operation since it allows one to create so
called entangled quantum states which have no analogue in the classical world.

▶ Direct (tensor) product

Let {|ϕ1i⟩}d1i=1 be an orthonormal basis of H1 and {|ϕ2j⟩}d2j=1 one of H2

Tensor product space H=H1 ⊗H2 has the product basis |Φij⟩≡|ϕ1i⟩|ϕ2j⟩

This means that H1 ⊗ H2 consists of all normalizable linear combinations of
the basis vectors |Φij⟩ formed by direct products of H1 and H2 basis vectors.
Note that non-product bases of H1 ⊗H2 can also be constructed.

Dimension: dH1⊗H2
= d1 · d2 Orthonormality of basis: ⟨Φij|Φi′j′⟩=δii′δjj′

▶ Factorized states

For any pair of states


|ψ1⟩=


i αi|ϕ1i⟩∈H1

|ψ2⟩=


j βj|ϕ2j⟩∈H2


there exists the product state

|Ψ⊗⟩ ≡ |ψ1⟩ ⊗ |ψ2⟩  
≡|ψ1⟩1|ψ2⟩2

=

d1
i=1

d2
j=1

αiβj
γij

|Φij⟩
A factorized state allows one to
uniquely identify the associated state
vectors of individual subsystems

Scalar product for factorized states: ⟨Ψ⊗|Ψ′
⊗⟩H = ⟨ψ1|ψ′

1⟩H1
· ⟨ψ2|ψ′

2⟩H2

▶ Entangled states

The possibility to express coefficients γij of a general superposition


ij γij|Φij⟩
in the above factorized form (γij = αiβj) is rather scarce. Almost all states in
H1 ⊗H2 are unfactorizable, so called entangled states:

|Ψ⟩ =
d1
i=1

d2
j=1

γij
̸=αiβj

|Φij⟩ ̸= |ψ1⟩1|ψ2⟩2
An entangled state does not have
any associated state vectors
of individual subsystems
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▶ Multiple products of Hilbert spaces: H =
n⊗

k=1
Hk

More and less precise notations:

Hk ∋ |ψ⟩ ≡ |ψ⟩k and
n⊗

k=1
Hk ∋ |ψ1⟩1⊗|ψ2⟩2...⊗|ψn⟩n ≡ |ψ1⟩1|ψ2⟩2...|ψn⟩n

▶ The use in QM

Hilbert space H of a composite system is the ⊗ product of partial spaces Hk

The multiplied spaces Hk can be associated with the spaces corresponding to
different parts of the system (e.g. different particles) or to different dynamical
variables (e.g., spatial and spin degrees of freedom). Entangled state vectors
correspond to non-classical situations in which only the whole system and not
its individual parts are attributed by a pure quantum-mechanical state (the
subsystems are in so called mixed states, see Sec. 6a). Entanglement represents
a genuinely quantum correlation of the system’s parts.

◀ Historical remark
1935: A. Einstein, B. Podolsky & N.Rosen use an entangled state to claim that QM is
incomplete. E. Schrödinger analyzes such states and coins the term “entanglement”

1b. EXAMPLES OF QUANTUM HILBERT SPACES

In the following, we describe specific state spaces for particles with spin 0 and 1
2 ,

and the spaces assigned to collections of such particles. We meet another essentially
quantum phenomenon: indistinguishability of particles. And we introduce the space
of qubits— the playground of quantum information technologies.

■ Single structureless and spinless particle

Particles with no internal degrees of freedom are described by ordinary scalar
wavefunctions (cf. Intro.).

▶ Wavefunction ψ(x⃗) ≡ |ψ⟩ ∈ H ≡ L2(R3)
Hilbert space of square-
integrable functions

⟨ψ1|ψ2⟩ ≡
∫

ψ∗
1(x⃗)ψ2(x⃗) dx⃗ ≡

∫
ψ∗
1(y⃗)ψ2(y⃗)

∣∣∣Det∂(x1...x3)
∂(y1...y3)

∣∣∣ dy⃗ scalar product

Cartesian & curvilinear coordinates

Expansion of ψ(x⃗) in a discrete basis of orthonormal functions {ϕi(x⃗)}∞i=1

⇒ isomorphism of L2(R3) with ℓ2

Normalization: ⟨ψ|ψ⟩=
∫
|ψ(x⃗)|2dx⃗=1

Probabilistic interpretation:
|ψ(x⃗)|2 ≡ ρ(x⃗) is the probability density for
finding the particle at position x⃗. This follows
from the association of the state |x⃗ ′⟩ of the
particle at a single sharp position x⃗ ′ with the
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Dirac δ-function δ(x⃗−x⃗ ′) (see
Sec. 0). Hence the amplitude
& probability densities read:

aψ(x⃗
′)=⟨x⃗ ′|ψ⟩=∫ δ(x⃗−x⃗ ′)ψ(x⃗)dx⃗=ψ(x⃗ ′)

pψ(x⃗
′)= |aψ(x⃗ ′)|2= |ψ(x⃗ ′)|2≡ρ(x⃗ ′)

Probability expressions for other observables will be treated in Secs. 2a&2b.

▶ Rigged Hilbert space of wavefunctions

There is a problem that localized states |x⃗ ′⟩ ≡ δ(x⃗− x⃗ ′) as well as other im-

portant states (like plane waves eik⃗·x⃗, see Sec. 2b) are not in L2(R3) (they are
not quadratically integrable). The rescue comes with the introduction of a
convenient Gelfand triple H ⊂ H ⊂ H of spaces. In the 1D case, we define:

H ≡ dense subset of functions:
+∞
∫

−∞
|ψ(x)|2(1 + |x|)mdx < ∞ for m = 0, 1, 2, . . .

H ≡ functions satisfying
+∞
∫

−∞
ψ′∗ψ dx < ∞ ∀ψ′ ∈ H

ThenH includes also polynomially diverging functions, plane waves, δ-functions

An alternative mathematically consistent approach (see Sec. 2a) is to consider
only imperfectly localized states, like those within interval xi∈ [x′i− ϵi

2 , x
′
i+

ϵi
2 ]

around x⃗ ′ represented by wavefucntions δϵ⃗ (x⃗−x⃗ ′) ∈ L2(R3).

◀ Historical remark
1926: Erwin Schrödiger formulates QM in terms of wavefunction and Max Born
develops its probabilistic interpretation

■ Single structureless particle with spin 1
2

Electrons have spin 1
2 . The spin is a genuinely quantum feature of a particle,

which (even for point-like elementary particles) is understood as an intrinsic
unstoppable rotation. The general theory of angular momentum in QM will be
developed in Secs. 3b&4b, here we just introduce spinor wavefunctions as the
simplest two-component generalization of scalar wavefunctions.

▶ Spin = intrinsic angular momentum of a particle
The lowest nonzero spin is s= 1

2 , having only 2 possible projections (spin states)
s•=±sℏ in an arbitrarily chosen spatial direction • (conventionally • = z):

spin up sz=+ℏ
2 ⇒ | ↑⟩≡( 10 )≡|χ1⟩

spin down sz=−ℏ
2 ⇒ | ↓⟩≡( 01 )≡|χ2⟩

}
⇒

general state

|ψ⟩ = α1| ↑⟩+α2| ↓⟩≡( α1
α2 )

▶ Spin Hilbert space: H ≡ C2 with ⟨ψ|ψ′⟩ ≡ ( α∗
1,α

∗
2 )

(
α′
1

α′
2

)
= α∗

1α
′
1+α∗

2α
′
2

Normalization: |α1|2+|α2|2=1

Probability to find the spin up/down:
pψ(↑)= |aψ(↑)|2= |⟨↑ |ψ⟩|2= |α1|2
pψ(↓)= |aψ(↓)|2= |⟨↓ |ψ⟩|2= |α2|2

For probabilities of spin projections in an arbitrary direction see Sec. 2b.
Note: General spin s = 0, 12 , 1,

3
2 , 2, ... has (2s + 1) spin projections s• = −sℏ,

(−s+1)ℏ, ..., (+s−1)ℏ,+sℏ to any direction, so H≡C2s+1 (see Sec. 3b).
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▶ Both spatial and spin degrees of freedom
⇒ direct product of spatial and spin Hilbert spaces: H ≡ L2(R3)⊗ C2

Basis vectors: |Φij⟩ = |ϕi⟩|χj⟩, where {|ϕi⟩}∞i=1 is an arbitrary basis in L2(R3)

General state expansion: |ψ⟩=
∞∑
i=1

2∑
j=1

αij|ϕi⟩|χj⟩=
∞∑
i=1

[
αi1ϕi(x⃗)| ↑⟩+αi2ϕi(x⃗)| ↓⟩

]

=
∞∑
i=1

( αi1
αi2 )ϕi(x⃗) =

(∑
i

αi1ϕi(x⃗)
∑
i

αi2ϕi(x⃗)

)
=

(
ψ↑(x⃗)
ψ↓(x⃗)

)
≡ ψ(x⃗) ≡ ψ(x⃗, ms︸︷︷︸

± 1
2

) spinor

Spinor is a two-component wavefunction equivalent
to a wavefunction with a continuous variable x⃗ and
a discrete two-valued variable ms (the spin projection
to z-direction). Note that transformation properties
of spinors under spatial rotations are different from
ordinary vectors (they will be derived in Sec. 4b).

Simplified notation: (x⃗,ms) ≡ ξ with ∫ dξ ≡ Σms
∫ dx⃗

▶ Scalar product ⟨ψ|ψ′⟩ =
∑
ij

∑
i′j′

α∗
ijα

′
i′j′ ⟨ϕi|ϕi′⟩︸ ︷︷ ︸

δii′

⟨χj|χj′⟩︸ ︷︷ ︸
δjj′

=
∑
ij

α∗
ijα

′
ij

can be expressed as:

⟨ψ|ψ′⟩≡
∫
(ψ∗

↑(x⃗),ψ
∗
↓(x⃗))

(
ψ′
↑(x⃗)

ψ′
↓(x⃗)

)
dx⃗=

∑
ms

∫
ψ∗(x⃗,ms)ψ

′(x⃗,ms)dx⃗=
∫
ψ∗(ξ)ψ′(ξ)dξ

Normalization:
∫
|ψ↑(x⃗)|2dx⃗+

∫
|ψ↓(x⃗)|2dx⃗ = 1

Probability density for particle at given position and spin:

pψ(x⃗↑)=
∣∣aψ(x⃗↑)

∣∣2= ∣∣⟨x⃗↑|ψ⟩∣∣2= ∣∣∫(δ(x⃗′−x⃗),0)
(
ψ↑(x⃗

′)
ψ↓(x⃗

′)

)
dx⃗′

∣∣2= ∣∣ψ↑(x⃗)
∣∣2= ∣∣ψ(x⃗,+ 1

2)
∣∣2

pψ(x⃗↓)=
∣∣aψ(x⃗↓)

∣∣2= ∣∣⟨x⃗↑|ψ⟩∣∣2= ∣∣∫(0,δ(x⃗′−x⃗))
(
ψ↑(x⃗

′)
ψ↓(x⃗

′)

)
dx⃗′

∣∣2= ∣∣ψ↓(x⃗)
∣∣2= ∣∣ψ(x⃗,− 1

2)
∣∣2

▶ Coordinate-spin entanglement: Almost all spinor states are entangled.
A factorized state has a special structure ψ(x⃗)=ψ(x⃗)(α1| ↑⟩+α2| ↓⟩)=ψ(x⃗) ( α1

α2 )

▶ Application in a which-path version of the double-slit experiment
Consider a modification of the double-slit experiment (see Intro.) such that

both slits are equipped with spin polarizers:
{

A polarizes electron in direction ↑
B polarizes electron in direction ↓

⇒ paths through slits A & B are distinguishable
The electron’s state inside the interferometer is
ψ(x⃗)=αψA(x⃗)| ↑⟩+βψB(x⃗)| ↓⟩, where ψA, ψB are
spatial wavefunctions for particles propagating
from the respective slit and α, β some coefficients.
Probability density to detect the electron at place
x⃗ reads pψ(x⃗)=⟨ψ|P̂x⃗|ψ⟩, where P̂x⃗ = |x⃗ ↑⟩⟨x⃗ ↑ |+|x⃗ ↓⟩⟨x⃗ ↓ | is the projector to
the subspace of H (more precisely H) spanned by vectors |x⃗⟩| ↑⟩ and |x⃗⟩| ↓⟩:



25

pψ(x⃗) =(
α∗

ψ∗
A(x⃗)︷ ︸︸ ︷

⟨ψA|x⃗⟩
1︷ ︸︸ ︷

⟨↑ | ↑⟩+β∗

ψ∗
B(x⃗)︷ ︸︸ ︷

⟨ψB|x⃗⟩
0︷ ︸︸ ︷

⟨↓ | ↑⟩
)(
α

ψA(x⃗)︷ ︸︸ ︷
⟨x⃗|ψA⟩

1︷ ︸︸ ︷
⟨↑ | ↑⟩+β

ψB(x⃗)︷ ︸︸ ︷
⟨x⃗|ψB⟩

0︷ ︸︸ ︷
⟨↑ | ↓⟩

)
+(

α∗ ⟨ψA|x⃗⟩︸ ︷︷ ︸
ψ∗
A(x⃗)

⟨↑ | ↓⟩︸ ︷︷ ︸
0

+β∗ ⟨ψB|x⃗⟩︸ ︷︷ ︸
ψ∗
B(x⃗)

⟨↓ | ↓⟩︸ ︷︷ ︸
1

)(
α ⟨x⃗|ψA⟩︸ ︷︷ ︸

ψA(x⃗)

⟨↓ | ↑⟩︸ ︷︷ ︸
0

+β ⟨x⃗|ψB⟩︸ ︷︷ ︸
ψB(x⃗)

⟨↓ | ↓⟩︸ ︷︷ ︸
1

)

= |αψA(x⃗)|2+|βψB(x⃗)|2 ⇒ no interference appears (the same holds if paths
A&B are recorded by two perpendicular states of any spectator system)

◀ Historical remark
1922: O. Stern & W.Gerlach observe the first indication of spin
1924: Wolfgang Pauli introduces “two-valued quantum degree of freedom” and for-
mulates the exclusion principle (see below), in 1927 he introduces spinors
1925: R.Kronig and G.Uhlenbeck & S.Goudsmit provide an interpretation of spin
in terms of intrinsic rotation (refused at that time)

■ Two or more distinguishable structureless particles with spin 1
2

We are ready to construct state spaces for collections of particles. At first we
assume that the particles are of different types—distinguishable. We assume N
particles with spin 1

2 , but the same procedure can be applied regardless of spin.

▶ H1, H2, . . .HN= Hilbert spaces of individual particles: Hi = L2(R3)⊗ C2

H(N) ≡ H1 ⊗H2 ⊗ · · · ⊗ HN

Wavefunction of a general state |Ψ⟩ ∈ H(N)

Ψ(x⃗1,m1︸ ︷︷ ︸
ξ1

, x⃗2,m2︸ ︷︷ ︸
ξ2

, . . . x⃗N ,mN︸ ︷︷ ︸
ξN

)= ⟨ξ1...ξN |Ψ⟩︸ ︷︷ ︸
aΨ(ξ1...ξN)
N-particle
amplitude

Scalar product: ⟨Ψ|Ψ′⟩ ≡∑
m1

...
∑
mN

∫
...
∫
Ψ∗(x⃗1,m1...x⃗N ,mN)Ψ

′(x⃗1,m1...x⃗N ,mN)dx⃗1...dx⃗N

=
∫
...
∫
Ψ∗(ξ1...ξN)Ψ

′(ξ1...ξN)dξ1...dξN

▶ Multidimensional entanglement: Almost all states exhibit all kinds of
entanglement (coordinate-coordinate, spin-spin, and coordinate-spin) of differ-
ent particles and coordinate-spin entanglement of identical particles

▶ Probability expressions

Wavefunction Ψ(ξ1...ξN) lives in the multidimensional configuration space con-
taining generalized coordinates ξi≡(x⃗i,mi) of all particles. It contains complete
information on mutual correlations between particles and allows one to extract
any kind of probability distribution in the generalized coordinate space:

(a) Joint probability density to find particles # (1, 2...N) at (ξ1, ξ2...ξN)

pΨ(ξ1 . . . ξN) =
∣∣aΨ(ξ1 . . . ξN)

∣∣2 = ⟨Ψ|ξ1...ξN⟩⟨ξ1...ξN |Ψ⟩ = |Ψ(ξ1 . . . ξN)|2

Normalization:
∫
...
∫
pΨ(ξ1...ξN) dξ1...dξN = 1

(b) Integrated probability pΨ(X) of a property defined by (ξ1...ξN) ∈ X,
where X is a certain domain in the multidimensional configuration space:

pΨ(X) =
∫
...
∫
χX(ξ1...ξN)pΨ(ξ1...ξN) dξ1...dξN where χX=

{
1 for (ξ1...ξN )∈X
0 for (ξ1...ξN )/∈X
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Example: property X identified with the subset of the config. space in which
particle#1 is localized in a state between |ξ⟩ and |ξ+dξ⟩. Probability pΨ(X)=
pΨ(ξ1=ξ)dξ, where the density: pΨ(ξ1=ξ) = ∫ ...∫︸︷︷︸

N−1

pΨ(ξ, ξ2, ...ξN)dξ2...dξN

(c) Single-particle probability density to find any of the N particles at ξ

pΨ(ξ) =
1

N

N∑
i=1

∫
...

∫

︸ ︷︷ ︸
N−1

pΨ(ξ1...ξi−1 ξ︸︷︷︸
i

ξi+1...ξN) dξ1...dξi−1dξi+1...dξN

Normalization
∫
pΨ(ξ) dξ=1. This density is determined from the expression

NpΨ(ξ)dξ=
∑N

n=0 npΨ(n, ξ, dξ)≡ϱΨ(ξ)dξ, where pΨ(n, ξ, dξ) is the integrated
probability for finding any n ≤ N particles in states between |ξ⟩ and |ξ+dξ⟩.
So ϱΨ(ξ)=NpΨ(ξ) normalized as

∫
ϱΨ(ξ) dξ=N is an average particle con-

centration (not accounting for particle identity) at generalized coordinate ξ.

■ Two indistinguishable particles

In quantum physics, if some particles are really the same, we cannot define any
kind of their individuality. In particular, we cannot assign to these particles any
intrinsic names/numbers as there exists no property that would enable us to
recognize whether a given particle is “Fred” or “Bruno”. Consider two electrons
localized at distinct places A and B. We can name them “the electron at place
A” and “the electron at place B”; these are two distinguished single-particle
states. However, it is impossible to say whether the present electron at place
A is the same electron as the one observed at place A some time ago.

▶ The Hilbert space of two indistinguishable particles is constructed from the
Hilbert space H(2) ≡ H1⊗H2 ∋ |Ψ⟩≡Ψ(ξ1, ξ2) of two formally distinguishable
(though physically identical) particles #1&#2. We introduce in this space the

particle exchange operator: Ê1⇋2Ψ(ξ1, ξ2) = Ψ(ξ2, ξ1) Ê2
1⇋2=Î

Ê1⇋2 exchanges states of particles #1&#2 in the expansion of |Ψ⟩ in any
factorized basis: |Ψ⟩ =

∑
ij

αij|ϕi⟩1|ϕj⟩2 ⇒ Ê1⇋2|Ψ⟩ =
∑
ij

αij|ϕj⟩1|ϕi⟩2
▶ For indistinguishable particles we require that the exchange affects only the
overall phase of the state since it is physically irrelevant, so Ê1⇋2|Ψ⟩ = eiφ|Ψ⟩
with φ∈R, and that two subsequent exchanges yield the original state: e2iφ = 1

⇒
{

φ = 0
φ = π

Ψ(ξ1, ξ2) = +Ψ(ξ2, ξ1)
Ψ(ξ1, ξ2) = −Ψ(ξ2, ξ1)

symmetric for bosons
antisymmetric for fermions

The two possibilities of phase φ define two fundamental types of elementary par-
ticles in nature: bosons (with exchange-symmetric wave functions) and fermions
(with exchange-antisymmetric wave functions). It turns out (proof given only
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in the relativistic QM) that particles with spin 1
2 (or spins 3

2 ,
5
2 ...) are fermions,

while those with no spin (spin 0 or spins 1,2...) are bosons.

▶ Any two-body wavefunction can be uniquely decomposed into the symmetric
& antisymmetric parts that belong to distinct subspaces of H(2):

Ψ(ξ1, ξ2) =
1
2

[
Ψ(ξ1, ξ2)+Ψ(ξ2, ξ1)

]
︸ ︷︷ ︸

P̂+Ψ(ξ1,ξ2)

+ 1
2

[
Ψ(ξ1, ξ2)−Ψ(ξ2, ξ1)

]
︸ ︷︷ ︸

P̂−Ψ(ξ1,ξ2) P̂± = 1
2 [Î±Ê1⇋2]

P̂+ and P̂− are projectors to the symmetric and antisymmetric subspaces

P̂+ + P̂− = Î ⇒ H(2) = H(2)
+ ⊕H(2)

−

General form of decomposition for |Ψ⟩=
∑
ij

αij|ϕi⟩1|ϕj⟩2:
P̂±|Ψ⟩ =

∑
ij

αij
1
2

[
|ϕi⟩1|ϕj⟩2 ± |ϕj⟩1|ϕi⟩2

]

▶ Pauli principle: P̂−|ψ⟩1|ψ⟩2 = 0 (states |ψ⟩1|ψ⟩2 are ⊥ to subspace H(2)
− )

⇒ Two (or more) fermions cannot occur in the same single-particle state. Each
single-particle state can be occupied at most by one fermion. This has tremen-
dous consequences for the structure of matter! Without Pauli principle, the
world would be a boring place (probably with no bored creature present).

▶ Interference effects caused by indistinguishability

Two distinguishable particles in a factorized state: Ψ(ξ1, ξ2) = ψ1(ξ1)ψ2(ξ2)
Joint probability density: pΨ(ξ1, ξ2) = p1(ξ1)p2(ξ2) ⇒ no interferenceSingle-particle prob.density: pΨ(ξ) =

1
2 [p1(ξ) + p2(ξ)]

Here pi(ξi)≡pψi
(ξi)= |ψi(ξi)|2 is prob.density associated with particle #i=1, 2

Two indistinguishable particles: P̂±Ψ(ξ1, ξ2) ∝ [ψ1(ξ1)ψ2(ξ2)±ψ1(ξ2)ψ2(ξ1)]
Joint: pΨ(ξ1, ξ2) ∝ p1(ξ1)p2(ξ2)+p1(ξ2)p2(ξ1)±2Re[ψ1(ξ1)ψ

∗
2(ξ1)ψ

∗
1(ξ2)ψ2(ξ2)]

Single-particle: pΨ(ξ) ∝ p1(ξ)+p2(ξ)± 2Re [⟨ψ1|ψ2⟩ψ∗
1(ξ)ψ2(ξ)]

The state P̂±Ψ(ξ1, ξ2) is entangled and this
immediate consequence of particle indistin-
guishability creates interference effects in
both probability densities pΨ(ξ1, ξ2) & pΨ(ξ).
However, the interference is significant only
if the states ψ1(ξ) & ψ2(ξ) have a sufficient

overlap. No interference effects are observed
e.g. for very distant particles or for particles with opposite spins (⇒ entangle-
ment of electrons in different galaxies, for instance, is practically unmeasurable).

■ Many indistinguishable particles

It is straightforward (but more laborious) to generalize the above results toN>2
indistinguishable particles. In short, particle permutations are decomposed into
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pairwise exchanges and the states of identical bosons (fermions) are identified
with symmetric (antisymmetric) subspaces with respect to these exchanges. A
general theory of bosonic & fermionic systems will be elaborated in Sec. 14.

▶ N distinguishable particles: Ψ(ξ1, . . . ξN) ≡ |Ψ⟩ ∈ H(N) ≡ ⊗N
k=1Hk

Factorized basis: |ϕi1⟩1|ϕi2⟩2 . . . |ϕiN ⟩N ≡ |Φi1i2...iN ⟩ with ik = 1, 2, 3, . . .

▶ Particle exchanges and permutations

Exchange operators Permutation operators

Êk⇋l|Φi1...ik...il...iN ⟩ = |Φi1...il...ik...iN ⟩ Êπ|Φi1i2...iN ⟩ = |Φikπ1
ikπ2

...ikπ
N
⟩

Permutation (kπ1 , k
π
2 , ...k

π
N) is an arbitrary reordering of the original sequence

(1, 2, ...N). Index π = 1, ...N ! is the permutation identifier and number kπi ∈
{1, 2, ..., N} stands for the ith term of the πth reordered sequence. For exam-
ple (1, 2, 3) → (1, 2, 3), (3, 1, 2), (2, 3, 1), (1, 3, 2), (3, 2, 1), (2, 1, 3) for N=3. Any
permutation Êπ can be written as a product of exchanges Êk⇋l. The factoriza-
tion of a given Êπ is not unique, but all factorizations have either even or odd
number of exchanges. This defines even & odd permutations.

Permutation sign σπ =

{
+ for even permutation
− for odd permutation

▶ Hilbert space decomposition

H(N) = H(N)
+ ⊕ · · · ⊕ H(N)

−

The dots represent subspaces with mixed symmetries, while H(N)
+ and H(N)

− are
fully symmetric and antisymmetric subspaces satisfying:

Êπ|Ψ⟩ = +|Ψ⟩ ∀|Ψ⟩ ∈ H(N)
+ , Êπ|Ψ⟩ = σπ|Ψ⟩ ∀|Ψ⟩ ∈ H(N)

−

P̂
(N)
+ =

1

N !

N !∑
π=1

Êπ P̂
(N)
− =

1

N !

N !∑
π=1

σπÊπ projectors to H(N)
+ & H(N)

−

A sketch of proof: The fact that P̂±|Ψ⟩ ∈ H(N)
± follows from the closure rela-

tions of permutations: (i) for any two permutations π, π′ we have ÊπÊπ′ = Êπ′′,
where π′′ denotes another permutation satisfying σπ′′ = σπσπ′, (ii) if {Êπ′}N !

π′=1

represents a complete set of permutations, so does {ÊπÊπ′}N !
π′=1 for any fixed

Êπ. In this way we can show that ÊπP̂ (N)
+ |Ψ⟩ = P̂

(N)
+ |Ψ⟩ and ÊπP̂ (N)

− |Ψ⟩ =

σπP̂
(N)
− |Ψ⟩. Relations (i) and (ii) also imply that

∑
π

∑
π′ ÊπÊπ′ =N !

∑
π′′ Êπ′′

and
∑

π

∑
π′ σπÊπσπ′Êπ′=N !

∑
π′′ σπ′′Êπ′′, which prove that (P̂

(N)
± )2= P̂

(N)
± .

Hilbert space for N identical particles is

{
H(N)

+ for bosons

H(N)
− for fermions
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P̂
(N)
+ + P̂

(N)
− ̸= Î for N > 2: the rest of the space contains mixed symmetry

subspaces (corresponding e.g. to mixtures of several types of identical particles)

▶ Expression of a basis in the fermionic space:

P̂
(N)
−


|ϕ1⟩1|ϕ2⟩2 . . . |ϕN⟩N



  
|Φ12...N ⟩

=
1

N !
Det




|ϕ1⟩1 |ϕ1⟩2 ... |ϕ1⟩N
|ϕ2⟩1 |ϕ2⟩2 ... |ϕ2⟩N
... ...

...
|ϕN ⟩1 |ϕN ⟩2 ... |ϕN ⟩N


 Slater

determinant

Normalization: The above projected state is not normalized. For the normal-
ization coefficient we calculate ⟨P̂ (N)

− Φ12...N |P̂ (N)
− Φ12...N⟩=⟨Φ12...N |(P̂ (N)

− )2Φ12...N⟩
=⟨Φ12...N |P̂ (N)

− Φ12...N⟩=1/N ! (the 2nd eq. follows from the hermiticity of pro-
jectors, see Sec. 2a, the last from the fact that any nontrivial permutation of
|ϕ1⟩1...|ϕN⟩N , where all |ϕ1⟩s are mutually different, yields zero overlap with the

original state) ⇒ the normalized state reads
√
N ! P̂

(N)
− |Φ12...N⟩ = 1√

N !
Det (...)

Notes: (a) Analogous expression for bosons can be formally written with “Det”
replaced by a symbol denoting the exchange-symmetric sum of permutations.
(b) Slater-determinant or analogous symmetrized states originate from factor-
ized states in the space of distinguishable particles. They carry just a minimal
unavoidable entanglement caused by indistinguishability of particles. These
states form a basis in H(N)

− or H(N)
+ , so a general N -body fermionic or bosonic

state can be expressed as a superposition of these basis states.

◀ Historical remark
1924: S.N.Bose derives Planck blackbody law from indistinguishability of photons
1924: Wolfgang Pauli formulates the exclusion principle to explain periodic table
1926: Werner Heisenberg and Paul Dirac relate Pauli principle to antisymmetric
wavefunctions and Bose-Einstein statistics to symmetric wavefunctions. Dirac and
Enrico Fermi derive statistical law for “fermions”
1927: D.Hartree & V. Fock derive approximation for atomic N -electron wavefunc-
tions, in 1929 J. Slater facilitates the description by using the determinant
1939-50: M. Fierz, W.Pauli, J. Schwinger provide proofs (within the relativistic
quantum theory) of the general theorem relating the “type of statistics” to spin

■ Systems with unbounded number of particles

We come to many-particle systems in which the particle number is not fixed.
One can think of an exchange of particles with a bath. More fundamentally, if
the special relativity is applied to processes involving elementary particles, the
number of particles (the sum of their rest masses) is not conserved. Particles
can be repeatedly created and annihilated, conserving only the total energy
⇔ mass of the system. It turns out that considering no upper bound on the
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particle number we leave the safe harbor of separable Hilbert spaces and face the
limitless ocean of continuum. This is a transition to the field theory. Work with
the Fock space within the nonrelativistic QM will be practiced in Secs. 14&15.

▶ Fock space
Sum of spaces for all particle numbers N = 0, 1, 2, 3, . . .

H ≡ H(0)
vacuum
state |0⟩

⊕ H(1)
1 particle

⊕ H(2)
•

2 particles

· · · ⊕ H(N)
•

N particles

⊕ · · · · · ·

This applies for distinguishable/indistinguishable
particles of the same type:

H(N)
• ≡





H(N)
+ indistinguishable bosons

H(N)
− indistinguishable fermions

H(N) distinguishable particles

▶ Separability versus non-separability

In nonrelativistic QM it is assumed that the actual number
of particles N is unlimited but finite. The set of basis vectors
subject to this constraint is countable and such Fock space is separable.
However, the closure of the Fock space including H(∞)

• is non-separable. Rea-
soning: basis states |Φi1i2...⟩ ≡ |ϕi1⟩1|ϕi2⟩2..... for N=∞ are specified by an in-
finite number of integer indices i1, i2, .... identifying basis states of individual
particles. This set is uncountable in analogy to real numbers (infinite sequences
of digits; see Cantor’s “diagonal slash” argument).

◀ Historical remark
1932: Vladimir Fock introduced the space for indefinite particle number
1958: Paul Dirac relates the Fock space to field quantization & continuum problems

■ Artificial systems (qubits...)

Since recently, various artificial quantum systems are assembled in the labo-
ratory to be harnessed in potential applications of quantum information tech-
nologies (Sec. 9). Such systems (formed by ensembles of trapped atoms, nuclear
spins, superconducting circuits etc.) are designed so that they allow for con-
trolled manipulations and show minimal sensitivity to external perturbations.
The specific physical content of individual states is not essential (this being just
an “engineering” issue) and the only focus is set to the mathematical properties
of complex superpositions of arbitrary basis states in the finite Hilbert space.

▶ Qubit: any system with the 2-dimensional Hilbert space H = C2 can be
considered as a quantum analog of classical bit. The basis of H (formed by two
selected states of the underlying system) is denoted as {|0⟩, |1⟩}.
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General normalized
states of the qubit
are mapped to the |ψ⟩=α0|0⟩+ α1|1⟩ =

irrel. global phase︷︸︸︷
eiφ0

(
cos ϑ

2 |0⟩+ ei(
φ︷ ︸︸ ︷

φ1−φ0 ) sin ϑ
2 |1⟩

)

unit sphere (points with spherical angles ϑ, φ), where classical logical states
correspond to the north (|0⟩) and south (|1⟩) poles.
▶ Qudit: a generalization to any higher dimension d (e.g., qutrit for d = 3
etc.). Hilbert space H = Cd ≡ Span{|0⟩, |1⟩, . . . , |d−1⟩}. A general normalized
state |ψ⟩ =

∑d−1
k=0 αk|k⟩ is determined (up to the global phase) by 2(d−1) real

parameters (e.g., by d−1 hyperspherical angles and d−1 relative phase angles).

▶ System of N qubits (Hilbert space of a quantum computer)

H =
N⊗
i=1

Hi ≡ Span
{
|l1⟩1|l2⟩2 . . . |lN⟩N︸ ︷︷ ︸

|x⟩

}(1,1,...,1)

(l1,l2,...,lN )=(0,0,...,0)
≡ Span

{
|x⟩

}2N−1

x=0

d = 2N

Factorized basis vectors built from states |li⟩i ≡ |0⟩i or |1⟩i can be enumerated
by x = 0, ..., 2N−1 so that l1l2...lN is the binary representation of x.

|Ψ⟩ =
2N−1∑
x=0

αx|x⟩
General state of the system describes a quantum register
that can carry integers x ∈ {0, 1, ..., 2N−1} as well as all
their superpositions with any coefficients αx ∈ C.

|Ψ0⟩= 1√
2N

2N−1∑
x=0

|x⟩=
N∏
i=1

1√
2
(|0⟩i+|1⟩i)

Although the initial state |Ψ0⟩ of various
computational procedures is factorized,
the spaceH supports all kinds of bi- & multi-partite entanglement. Splitting the
whole register to 2 subregisters A and B with n and N−n qubits, respectively,
HA =

⊗n
i=1Hi = Span{|x⟩A}2

n−1
x=0 , HB =

⊗N
i=n+1Hi = Span{|x′⟩B}2

N−n−1
x′=0 , so

H = HA ⊗HB, we can express
a general state ∈ H in the form |Ψ⟩ =

2n−1∑
x=0

2N−n−1∑
x′=0

αxx′|x⟩A|x′⟩B αxx′ ∈ C,
It is almost always entangled!

The space H can be decomposed to subspaces with various exchange sym-
metries of individual qubit states. Consider concrete splitting s to 2 sub-
registers with n andN−n qubits (e.g., s = {1, 3, 4}{2, 5} for N = 5) and de-

fine the subspace H(N,n)
s such that Êi⇋j|Ψ⟩ = ±|Ψ⟩ for any |Ψ⟩ ∈ H(N,n)

s , with{
+ for i,j in the same subregister,
− for i,j in different subregisters. Let r(N, n) is the number such (nonequivalent) sub-

spaces. It can be shown that H =
⊕N

n=⌈N/2⌉
⊕r(N,n)

s=1 H(N,n)
s

◀ Historical remark
1980’s: P. Benioff, R. Feynman, D. Deutsch and others pioneer the idea of using
controllable quantum systems for simulation and computation purposses
1995-present: construction of increasingly complex controllable quantum devices
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2a. REPRESENTATION OF QUANTUM OBSERVABLES

The Hilbert space and its scalar product allowed us to calculate probabilities for
mistaking a given state vector |ψ⟩ with another state vector |ψ′⟩. However, we do
not know how to assign the vectors |ψ⟩, |ψ′⟩... to actual states of the system. This
unavoidably requires definition of real observable quantities (shortly observables)
that determine the system’s actual properties. Hence our next task is to introduce
observables into the Hilbert space structure.

In classical mechanics, observables were just ordinary functions in the phase
space. In quantum mechanics, the thing is more complicated since many observables
yield discrete values and results of measurements are generally indeterministic. We
seek for an elegant mathematical tool capable to cope with these properties.

■ Operators associated with observables

Consider an arbitrary observable denoted as A. Associated with each state
|ψ⟩∈H there must be a probability distribution pψ(a) characterizing all possible
measurement outputs {a} of A on this state. A suitable path to obtain such a
distribution proceeds via the association of each quantity A with an operator
Â, which represents a specific mapping H → H (see Sec. 1a). We first present
a plausible (but not unique) motivation for launching out in this direction and
then briefly outline some rudiments of the operator theory.

▶ Moments of statistical distribution

The probability distribution pψ(a) of all possible measurement outcomes a
of observable A in state |ψ⟩ can be characterized by statistical moments:

⟨An⟩ψ ≡ ∫ an pψ(a) da
n=1: ⟨A⟩ψ average (expectation)value

n=2: ⟨(A−⟨A⟩ψ)2⟩ψ=⟨A2⟩ψ−⟨A⟩2ψ variance (dispersion)
.........
.........

The knowledge of all moments ⟨A1⟩ψ, ⟨A2⟩ψ, ⟨A3⟩ψ, ⟨A4⟩ψ, . . . . . .
under some conditions uniquely determines the whole distribution pψ(a).

▶ Calculation of moments via operators

Consider an operator Â|ψ⟩ ≡ |Âψ⟩ ≡ |ψ′⟩∈H. Integer powers of this operator
can be calculated in a straightforward way: Ân|ψ⟩≡ ÂÂ . . . Â︸ ︷︷ ︸

n times

|ψ⟩≡|Ânψ⟩∈H.
This motivates us to set the following postulate:

Any physical observable A is associated with a linear Hermitian operator
Â acting on the Hilbert space H of states. Statistical
moments of the distribution pψ(a) are calculated as:

⟨An⟩ψ = ⟨ψ|Ânψ⟩

Requirement 1: linearity
Because all QM is linear! Â

(
α|ψ1⟩+β|ψ2⟩

)
= αÂ|ψ1⟩+βÂ|ψ2⟩

Â ≡
(

A11 A12 ...
A21 A22

... ...

)
matrix representation of lin. operators with arbitrary
basis {|ϕi⟩} ⇒ matr. elements Aij=⟨ϕi|Âϕj⟩ (see Sec. 1a)
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Requirement 2: Hermiticity ⟨ψ1|Âψ2⟩ = ⟨Âψ1|ψ2⟩ = ⟨ψ2|Âψ1⟩∗

⟨ψ|Ânψ⟩ ∈ R Hermiticity is sufficient (though not necessary) condition for
the statistical moments being real numbers (as needed)

⇒ the matrices associated with Â satisfy: Aij = A∗
ji for i̸=j and Aii ∈ R

▶ Some mathematical definitions

Definition domain: Operator Â is defined for |ψ⟩ ∈ Def(Â) ⊆ H
For physics purposes it often suffices if Def(Â) ≡ a dense subset H ⊂ H

(cf. rigged Hilbert space, Sec. 1a)Operator norm: ||Â||2 ≡ Sup
{

⟨Âψ|Âψ⟩
⟨ψ|ψ⟩

}
|ψ⟩∈Def(Â)

||Â|| < ∞ for bounded operators, ||Â|| = ∞ for unbounded operators

Hermitian adjoint operator Â† is an operator satisfying the condition:

⟨ψ1|Âψ2⟩ = ⟨Â†ψ1|ψ2⟩ =⟨ψ2|Â†ψ1⟩∗
{

∀|ψ2⟩∈Def(Â)

∀|ψ1⟩∈Def(Â†)⊇Def(Â)

Â†=

( A∗
11 A∗

21 ...
A∗

12 A∗
22

... ...

)
≡ ÂT∗ matrix representation of Hermitian adjoint operator

(= transpose & complex conjugate matrix)

Adjoint of a product: (Â1Â2)
† = Â†

2Â
†
1 and similarly for multiple products

⟨ψ1|Â1Â2ψ2⟩=⟨Â†
1ψ1|Â2ψ2⟩=⟨Â†

2Â
†
1ψ1|ψ2⟩

Symmetric, selfadjoint vs. Hermitian operators

All these operators satisfy the following condition:
but for different domains of vectors |ψ⟩

Â|ψ⟩ = Â†|ψ⟩

Symmetric operator: |ψ⟩ ∈ Def(Â)⊆Def(Â†)⊆H
Selfadjoint operator: |ψ⟩ ∈ Def(Â)=Def(Â†)⊆H
Hermitian operator: |ψ⟩ ∈ Def(Â)=Def(Â†)=H
These definitions are equivalent in finite-dimensional spaces
but not in ∞-dim. spaces. Nevertheless, most textbooks including this one
make use of the term “Hermitian operator” regardless of the definition domain.

▶ Function of operator
Physical observables are often defined as functions of other observables.
We first define a function of operator for functions of
the form f(x)=

∑
k

fk x
k, i.e. expressible as Taylor series:

A more general definition will be given below

f(Â) ≡
∑
k

fk Â
k

fk ∈ R ⇒ f(Â) Hermitian
▶ Tensor products of operators
We will need to use operators in product spaces. Here are some constructions:

Let

{
Â1 on H1

Â2 on H2

}
be operators defined by basis actions

{
Â1|ϕ1i⟩≡|ϕ′

1i⟩
Â2|ϕ2j⟩≡|ϕ′

2j⟩

}
. Then:
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(a) Operator Â = Â1 ⊗ Â2 on H=H1 ⊗H2

is defined by: Â|ψ⟩ = Â

i,j

γij

|Φij⟩  
|ϕ1i⟩|ϕ2j⟩


=


i,j

γij

|Φ′
ij⟩  

|ϕ′
1i⟩|ϕ′

2j⟩

(b) Possible extension of Â1, Â2

to H=H1 ⊗H2 is obtained from:
Â

(ext)
1 = Â1 ⊗ Î2≡ Â1

Â
(ext)
2 = Î1 ⊗ Â2≡ Â2

Î1≡unit op. inH1

Î2≡unit op. inH2

Similarly for multiple products

i
Hi

■ Eigenvalues and eigenvectors of Hermitian operators

The key characteristic of any operator in the Hilbert space is its spectrum
of eigenvalues and the set of the corresponding eigenvectors. Not only these
eigensolutions constitute a subject of an involved mathematical theory, they
also play the most essential role in the formulation of quantum mechanics.

▶ “Dispersion-free” states and possible measurement outcomes

Consider state |ψa⟩ in which observable A yields
a “sharp” value, i.e. a single possible output a
with probability pψ(a) = 1. Hence the average

⟨A⟩ψa
=a and variance ⟨⟨A2⟩⟩ψa

≡⟨A2⟩ψa
−⟨A⟩2ψa

= 0

⟨ψa|Â2ψa⟩  
⟨A2⟩ψa

−⟨ψa|Âψa⟩2  
⟨A⟩2ψa

=a2

= ⟨ψa| Â2−2aÂ+a2Î  
(Â−aÎ)2

|ψa⟩ = ⟨(Â−aÎ)ψa|(Â−aÎ)ψa⟩ = 0

⇒ (Â−aÎ)|ψa⟩=0 ⇒ Â|ψa⟩=a|ψa⟩ ⇒

|ψa⟩ ≡ eigenvector
a ≡ eigenvalue


of operator Â

For Â = Â† the eigenvalues a = ⟨a|Â|a⟩ ∈ R
These considerations lead to a plausible determination of the set S(Â) of possi-
ble measurement outcomes of observable A ↔ Â. We assume that each possible
outcome is associated with a state in which it is measured with certainty, hence
∀ a ∈ S(Â) there ∃ dispersion-free state |ψa⟩. This leads to the postulate:

S(Â) ≡ { possible measurement outcomes of A } ≡ { eigenvalues of Â }

Below we will use a “stammering” notation with |ψa⟩≡|a⟩, so: Â|a⟩ = a|a⟩
▶ Orthogonality of eigenvectors with different eigenvalues

(valid for Hermitian operators)Â|a⟩ = a|a⟩ ⇒ ⟨a′|Â|a⟩ = a⟨a′|a⟩
Â|a′⟩ = a′|a′⟩ ⇒ ⟨a|Â|a′⟩  

⟨a′|Â|a⟩∗

= a′
a′∗

⟨a|a′⟩  
⟨a′|a⟩∗





⇒ 0=(a−a′)  
̸=0

⟨a′|a⟩ ⇒ ⟨a′|a⟩=0

⇒ Different dispersion-free states (i.e., eigenstates with different eigenvalues)
are perfectly distinguishable

▶ Degeneracy
A single eigenvalue a of Â may have more than one linearly independent eigen-
vectors {|a; k⟩}nk=1. Due to linearity of Â, any superposition of {|a; k⟩}nk=1 is also
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an eigenvector with the same eigenvalue: Â (
∑n

k=1 αk|a; k⟩) = a
∑n

k=1 αk|a; k⟩.
Hence all eigenvectors with the same eigenvalue a form a degeneracy sub-
space Ha whose dimension dHa

≡da≤dH is the maximal number of linearly

independent eigenvectors, i.e. the maximal size nmax of the set {|a; k⟩}nk=1. One

can choose inHa an orthonormal basis {|a(k)⟩}dak=1 satisfying ⟨a(k′)|a(k)⟩ = δk′k

▶ Eigensolutions for finite dimension

Â|a⟩=a|a⟩ ⇔ (Â−aÎ)|a⟩=0 ⇒ Det(Â− aÎ)︸ ︷︷ ︸
PÂ(a)

= 0

For dH<∞ the middle relation represents
a finite set of linear equations with r.h.s.=0.
Its solution exists iff a is a root
of the characteristic polynomial

PÂ(a)=Det

(
A11−a A12 ...
A21 A22−a
... ...

)

of order dH. The eq. PÂ(a)=0 has
n ∈ {1, 2, ..., dH} solutions {ai}ni=1,
all ai ∈ R (from Hermiticity of Â).

The corresponding eigenvectors |ai⟩
satisfy (Â− aiÎ)|ai⟩=0, which for an expansion |ai⟩=

∑
m αmi|ϕm⟩ in arbitrary

basis {|ϕm⟩}dHm=1 yields a linear set of equations
for coefficients {αmi}. It can be solved due to
the the nullity of its determinant.

(
A11−ai A12 ...
A21 A22−ai
... ...

)(
α1i
α2i

...

)
=0

Theorem: For any Hermitian operator Â in H, there exists dH orthonormal
eigenvectors (irrespectively of the number 1≤n≤dH of eigenvalues).
Sketch of proof: For any matrix Â of dim. dH, the fundamental theorem of alge-
bra guarantees the existence of at least one eigenvalue a and the corresponding
eigenvector |a⟩. The eigenvector can be normalized to ⟨a|a⟩=1 since Â|a⟩=a|a⟩
⇒ Â(α|a⟩)= a(α|a⟩) ∀α∈C. Consider the orthogonal complement H⊥ of |a⟩,
which is a (dH−1) dimensional subspace of H such that ⟨a|ψ⟩=0 ∀ |ψ⟩∈H⊥.
From Hermiticity of Â we get: ⟨a|Âψ⟩ = a⟨a|ψ⟩, so H⊥ is invariant under the
action of Â. Hence the same procedure can be repeated for H⊥, finding a new
normalized eigenvector |a′⟩∈H⊥. The theorem is then proven by induction.

⇒ If the number of eigenvalues n < dH, some of them must be degenerate.
Dimensions of the degeneracy subspaces satisfy:

∑n
i=1 dai = dH

▶ Completeness for finite dimension

Given any Hermitian operator Â in H of dimension dH<∞, one can introduce
an orthonormal basis of H formed by eigenvectors of Â:
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Detailed notation:
(i runs over different
eigenvalues, k over dif-
ferent eigenvectors in
a single deg. subspace)




|ai⟩ ≡ |a(1)i ⟩ eigenvector for nondeg. eigenvalue ai
|a(k)i ⟩

dai

k=1
eigenvectors for degenerate eigenvalue ai
(selected orthonormal basis of Hai)




n

i=1

Simplified notation: {aj}dHj=1 ←→ {|aj⟩}dHj=1 ≡ { eigenvalues, some of them
maybe equal } ←→ { the corresponding eigenvectors, all orthonormal }
Orthonormality condition:

⟨a(k
′)

i′ |a(k)i ⟩=δi′iδk′k ⟨aj′|aj⟩=δj′j

The completeness relation reads:

n
i=1

projector P̂ai  
dai
k=1

|a(k)i ⟩⟨a(k)i | = ÎH =

dH
j=1

|aj⟩⟨aj|

▶ Diagonal representation (diagonalization)

Similarity transformation of any Hermitian matrix Â with matrix
Û build from eigenvector components: |aj⟩=

dH
m=1 αmj|ϕm⟩≡

α1j
α2j

...



Â  
A11 A12 ...
A∗

12 A22

... ...


=

Û  
α11
α21

...

α12
α22

...

...

...


Âdiag  

a1 0 ...

0 a2

... ...


Û †  


α∗
11 α∗

21 ...

α∗
12 α∗

22

... ...






⟨a1|
⟨a2|
...

|a1⟩ |a2⟩ ...

▶ Example: general 2× 2 Hermitian matrix Â=


A11 A12
A∗

12 A22


has 1 or 2 eigen-

values, but always 2 orthonorm. eigenvectors:
Characteristic polynomial: PÂ(a) = (A11−a)(A22−a)−|A12|2

= a2 − (A11+A22)a+ (A11A22−|A12|2)
Roots = eigenvalues: a± = A11+A22

2 ±
�

A11−A22

2

2
+ |A12|2

⇒ degeneracy a+=a− iff A11=A22 and A12=0

Eigenvector eq.:


A11−A22

2 ∓

(A11−A22

2 )
2
+|A12|2 A12

A∗
12

A22−A11
2 ∓


(A11−A22

2 )
2
+|A12|2


α1±
α2±


=0

Rows of this matrix are dependent, so the solution is determined by any of the
two eqs., e.g. the first one:


A11−A22

2 ∓
�

A11−A22

2

2
+|A12|2


α1±+A12α2± = 0

It can be checked that ⟨a−|a+⟩ = (α∗
1−,α

∗
2−) (

α1+
α2+ ) = 0

Counterexample: non-Hermitian matrix Â = ( 1 1
0 1 ) has only 1 eigenvector:

Characteristic polynomial: PÂ(a) = (1−a)2 ⇒ root: a=1
Eigenvector eq.: ( 0 1

0 0 ) (
α1
α2 ) = 0 ⇒ single normalized eigenvector ( α1

α2 )=( 10 )

▶Quantization: Already at this stage we can conclude that discrete character
of the observable values of some quantities A is a consequence of the assump-
tion that the observable values coincide with the eigenvalues a1, a2, ... of the
corresponding operator Â. However, the full picture cannot be drawn without
considering operators in infinite-dimensional spaces.
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▶ Eigensolutions for infinite dimension

For dH = ∞, the expression Det(Â−aÎ) has no sense. To find solutions of
the eigenvector equation (Â−aÎ)|a⟩ = 0 is much more difficult in this case. In
general, an ∞-dimensional operator Â may have both discrete & continuous
spectrum of eigenvalues. Moreover, eigenvalues from the continuous spectrum
have no eigenvectors ∈ H. Note that a rigorous analysis of these issues goes
beyond our present level of advancement. We will just indicate two alternative
mathematical treatments: one by von Neumann, who stays within the standard
Hilbert space as he allows only finite intervals of continuous eigenvalues, and
one initiated by Dirac, who steps out towards the rigged Hilbert space by taking
into account single eigenvalues of continuous quantities.

Example of ∞-dim. operator with discrete spectrum:

Â=




0 0 0 0 0 . . .

0
0

0 1
1 0

0 0
0 0

0
0

0 0
0 0

0 2
2 0

... ...


 ⇒




1

0
0

0
0

...


,




0

1√
2

± 1√
2

0
0

...



,




0

0
0

1√
2

± 1√
2

...




, ... ≡





orthonormal
eigenvectors
corresponding
to eigenvalues
0,±1,±2, ...

The spectrum S(Â) ≡ Z≡{...,−2,−1, 0,+1,+2, ...}
The corresponding eigenvectors |ai⟩ ∈ H ≡ ℓ2

Example of ∞-dim. operator with continuous spectrum:

Â =




0 1 0 0 0 . . .

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

... ... ...


 ⇒

eigenvector equation:


−a 1 0 0 0 . . .
1 −a 1 0 0
0 1 −a 1 0
0 0 1 −a 1
... ... ... ...




  
Â−aÎ

 α1
α2
α3
α4

...



  
|a⟩

= 0

For a finite dimension
dH ≡ d the above eigen-
vector equation leads to
the following set of equations:




α2=aα1
α1+α3=aα2
α2+α4=aα3
α3+α5=aα4

...
αd−2+αd=aαd−1

αd−1=aαd




⇒




single recursive eq.
αl−1+αl+1=aαl

valid for l=1, 2, ..., d
with boundary
conditions : α0=αd+1=0

Solution for d<∞: Starting from α1=1, the above set of equations yields: α2=
a, α3=(a2−1), α4=(a3−2a), ... However, the last pair of equations will not be
satisfied for all values of a. It can be shown that |⟨α|Â|α⟩| ≤ 2⟨α|α⟩ ∀|α⟩ ∈ ℓ2.
Hence the solution exists only for some discrete values ai ∈ [−2,+2] (see the
figure) and the corresponding eigenvectors |ai⟩ are trivially normalizable.

Solution for d=∞: In this case, the problem with the last pair of equations
does not take place, so the solution exists for all a ∈ (−∞,+∞). However, the
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+2

−2

0

𝑑𝑑 = 10 20 30 40 50 60 70 80 90 100 ∞………..
eigenvectors obtained in this
way are not normalizable, i.e.,
|a⟩ /∈ H ≡ ℓ2. It can be shown
that |a⟩ /∈ H ≡ ℓ2 for |a|>2,
so |a⟩ is out of even the upper
space in the Gelfand triple.
On the other hand, for |a|≤ 2
we find |a⟩ ∈ ℓ2.
Sketch of proof: We can solve
the above recursive equation
αl−1+αl+1=aαl by the ansatz
αl=rl, which leads to the condition
rl−1(1−ar+r2)= 0. This yields 2 possible solutions:
r= a

2 ±
√
(a2)

2−1≡r±. The boundary condition α0=0 implies αl=(rl+−rl−).
For |a|≤2 we have r±∈C. One can find ϑ∈ [0, 2π) such that a

2=cosϑ and
r±=cosϑ± i sinϑ=e±iϑ. Hence αl=sin(lϑ), which means that the components
are bounded and oscillate with l and the resulting vector |a⟩ ∈ ℓ2. In contrast,
for |a|>0 we have r±∈R with r+>1 and r−<1, so |αl| diverges exponentially
with l, which means that |a⟩ /∈ ℓ2.

Conclusion: Eigensolutions ∈ H are declared to be generalized eigenvectors of
an ∞-dimensional operator Â, while those /∈ H are not considered as eigenvec-
tors in any sense. Therefore, the above operator Â for d=∞ has a continuous
spectrum S(Â) ≡ [−2,+2].

▶ Spectrum of a general operator in infinite dimension

A general Hermitian operator Â can combine both discrete and continuous
spectra: S(Â)︸ ︷︷ ︸

spectrum

= D(Â)︸ ︷︷ ︸
discrete part

∪ C(Â)︸ ︷︷ ︸
continuous part

Eigenvalues ai ∈ D(Â) have eigenvectors |a(k)i ⟩∈H
where k∈{1, 2, . . . dai} is a discrete degeneracy index

Eigenvalues a ∈ C(Â) have eigenvectors |a(k)⟩∈H ⊃H
where k ∈ Da is a

{
discrete (k=1,...da)
continuous

}
degeneracy index

The discrete part of the spectrum fulfills the standard eigenvector relations:

Orthonormality: ⟨a(k
′)

i′ |a(k)i ⟩=δi′iδk′k Projectors: P̂ai=
dai∑
k=1

|a(k)i ⟩⟨a(k)i |

The continuous part of spectrum needs special treatment of eigenvector issues.
This requires rather involved mathematics, of which we present only a rough
outline.



39

▶ Dirac’s approach to the continuous spectrum

An explicit use is made of the extended space H in the Gelfand triple
H ⊃ H ⊃ H which contains all discrete & continuous eigenvectors. The formal
spectral decomposition of Â in H is analogous to that for a discrete spectrum,
which alows us to hide (ignore) most of the mathematical subtleties.

The scalar product is not defined in H, nevertheless we introduce the following
“orthonormality” conditions valid in the sense of distribution theory:

⟨a′(k′)|a(k)⟩=δ(a′−a)δk′k (k′,k discrete)

⟨a′(k′)|a(k)⟩=δ(a′−a)δ(k′−k) (k′,k continuous)
⟨a(k′)|a(k)i ⟩=0 normalization

to δ-function

These relations guarantee consistency of the expansion of a general |ψ⟩ ∈ H in

the “eigenbasis” of Â. We have: |ψ⟩=
∑
i,k

⟨a(k)i |ψ⟩︸︷︷︸
∗

|a(k)i ⟩+
∫ ∑

l

⟨a(l) |ψ⟩︸︷︷︸
∗

|a(l)⟩ da

(discrete k, l considered) and substitution of the same expression for ∗ yields:

|ψ⟩=
∑

i,k,i′,k′
⟨a(k)i |a(k

′)
i′ ⟩︸ ︷︷ ︸

δii′δkk′

⟨a(k
′)

i′ |ψ⟩|a(k)i ⟩+
∑
i,k,l

∫
⟨a(l)|a(k)i ⟩︸ ︷︷ ︸

0

da⟨a(k)i |ψ⟩|a(k)i ⟩+

+
∫ ∑

i,k

⟨a(k)i |a(l)⟩︸ ︷︷ ︸
0

⟨a(l)|ψ⟩|a(l)⟩ da+
� ∑

ll′
⟨a(l)|a′(l′)⟩︸ ︷︷ ︸
δ(a−a′)δll′

⟨a′(l′)|ψ⟩|a(l)⟩ da da′ =
{

previous
expression

Projectors to eigenspaces of continuous eigenvalues:

Π̂a ≡
∑
k∈Da

|a(k)⟩⟨a(k)| ≡ projector to the degeneracy
subspace of eigenvalue a, where

∑
k∈Da

≡

{ da∑
k=1

(discrete deg.index)
∫
Da

dk (continuous deg.index)

Completeness & orthogonality relations are jointly expressed as follows:

∑
i

ai∈D(Â)

dai∑
k=1

|a(k)i ⟩⟨a(k)i |
︸ ︷︷ ︸

P̂ai

+

∫

C(Â)

∑
k∈Da

|a(k)⟩⟨a(k)|

︸ ︷︷ ︸
Π̂a

da = ÎH

P̂aiP̂aj = δijP̂ai

Π̂aΠ̂a′ = δ(a−a′)Π̂a

P̂aiΠ̂a = 0

▶ Von Neumann’s approach to the continuous spectrum

It works in the standard Hilbert space H which excludes eigenvectors for
individual eigenvalues a∈C(Â), but includes subspaces H(a′,a′′)⊂H correspond-

ing to any interval (a′, a′′) of eigenvalues a∈S(Â) in the sense that probability
distributions pψ(a) vanish outside (a′, a′′) for any state |ψ⟩∈H(a′,a′′)

Let Π̂(a′,a′′) be projector to H(a′,a′′), where the interval (a′, a′′) may generally

overlap with both D(Â) and C(Â). This projector must naturally satisfy the
interval splitting condition: Π̂(a′,a′′′)=Π̂(a′,a′′)+Π̂(a′′,a′′′) for any a′ ≤ a′′ ≤ a′′′
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Define a “cummulative” projector to
a subspace with a≤a′: Π̂(−∞,a′) ≡ Π̂(a′)

Schematic illustration:

Due to the splitting condition, a projector
to an infinitesimal eigenvalue interval reads:

Π̂(a′,a′+da)=Π̂(a′+da)−Π̂(a′) ≡ d
daΠ̂(a)|a=a′da

Note: in the Dirac language these expressions
would read d

daΠ̂(a)|a=a′∼ Π̂a′ Π̂(a′,a′′)∼
a′′∫
a′
Π̂a da

Completeness relation in Von Neumann’s language is expressed as:
∫

S(Â)

dΠ̂(a) = ÎH
where use is made of Stieltjes method of integration:

∫
f(x) dσ̂(x)︸ ︷︷ ︸

operator
measure

≡ lim
n→∞

n∑
k=1

f(xk)[σ̂(xk+1)−σ̂(xk)]

▶ Spectral decomposition of operator

The above completeness relations lead to the expression of any Hermitian op-
erator Â and its Taylor-expanded functions f(Â) ≡

∑
n fnÂ

n in terms of the
eigenvalues and projectors to the corresponding eigenspaces:

For discrete spectrum: Â =
∑
i

aiP̂ai f(Â) =
∑
i

f(ai)P̂ai

Proof:

|ψ⟩=
∑
i

di∑
k=1

⟨a(k)i |ψ⟩|a(k)i ⟩ ⇒ Ân|ψ⟩=
∑
i

ani

di∑
k=1

|a(k)i ⟩⟨a(k)i |
︸ ︷︷ ︸

P̂ai

ψ⟩ ⇒ Ân=
∑
i

ani P̂ai

⇓
ΣnfnÂ

n=
∑
i

Σnfna
n
i︸ ︷︷ ︸

f(ai)

P̂aiFor general (combined) spectrum:

Â =
∑
D(Â)

aiP̂ai+
∫

C(Â)
a Π̂a da

f(Â) =
∑
D(Â)

f(ai)P̂ai+
∫

C(Â)
f(a) Π̂a da

≡
∫

S(Â)
a dΠ̂(a)

≡
∫

S(Â)
f(a) dΠ̂(a)

▶ This allows us to redefine the operator function f(Â) even for functions
which are not determined by the Taylor series, i.e. for f(Â) ̸=

∑
n fnÂ

n. Let
Def[f(a)] be the definition domain of function f(a). Then:

f(Â) =
∑

D(Â)∩Def[f(a)]

f(ai)P̂ai+

∫

C(Â)∩Def[f(a)]

f(a) Π̂a da ≡
∫

S(Â)∩Def[f(a)]

f(a) dΠ̂(a)

The definition domain Def[f(Â)] of the operator function defined in this way is
the subspace of H spanned by all eigenvectors whose eigenvalues a ∈ Def[f(a)]
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▶ Eigenvalue expression of operator norm: ||Â||2 = Sup

|a|2


a∈S(Â)

Bounded (unbounded) operator Â ⇔ bounded (unbounded) spectrum S(Â)

■ Probability distribution for measurement outcomes

The spectral decomposition of operator Â associated with observable A and the
initial postulate on the statistical moments ⟨An⟩ψ = ⟨ψ|Ânψ⟩ (for normalized
states) enables us to finally deduce the desired probability distribution pψ(a)
for possible outcomes a of measurement A on state |ψ⟩.
▶ Moments of the probability distribution for observable A in state |ψ⟩:

⟨An⟩ψ ≡






D(Â)

ani pψ(ai) +


C(Â)
an pψ(a) da

defining formula
of thenthmoment


D(Â)

ani ⟨ψ|P̂aiψ⟩+


C(Â)
an ⟨ψ|Π̂aψ⟩ da ≡ ⟨ψ|Ânψ⟩

expression from
the spectral
decomposition

By comparing both lines in this formula we see that the corresponding expres-
sions pψ(ai) ↔ ⟨ψ|P̂aiψ⟩ and pψ(a) ↔ ⟨ψ|Π̂aψ⟩ must be equal. Therefore we
arrive at the following crucial conclusion:

▶ Probabilities of measurement outcomes as vector overlaps

Given a state |ψ⟩ satisfying ⟨ψ|ψ⟩=1 and an observable expressed by operator
Â=


D(Â) aiP̂ai+


C(Â)a Π̂a da, the probabilities of measurement outcomes are:

Discrete case: pψ(ai) = ⟨ψ|P̂aiψ⟩ =
dai
k=1

|⟨a(k)i |ψ⟩|2

Continuous case: pψ(a) da = ⟨ψ|Π̂aψ⟩ da =

k∈Da

|⟨a(k)|ψ⟩|2 da =⟨ψ|dΠ̂(a)ψ⟩

Note that the resulting formula for the probability pψ(ai) or probability density
pψ(a) can be used as an alternative (equivalent) postulate of QM instead of
that for ⟨An⟩ψ (see above).
For a nondegenerate eigenvalue a with eigenvector |a⟩ we can say that:
⟨a|ψ⟩ ≡ amplitude
|⟨a|ψ⟩|2 ≡ probability


to measure a on |ψ⟩ ⇔ to associate |ψ⟩ with |a⟩

◀ Historical remark
1900-10: David Hilbert studies spectral properties of integral operators
1924: D.Hilbert and R.Courant publish the book Methoden der mathematischen
Physik containing methods that later became relevant in QM
1925: Werner Heisenberg (and M.Born & P. Jordan) formulate “matrix mechanics”,
introducing the concept of matrix operators to QM (although in a different sense)
1926: Erwin Schrödinger in his wave mechanics makes use of operators associated
with observables, he shows the equivalence with matrix mechanics
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1926-32: John von Neumann unifies Schrödinger’s and Heisenberg’s approaches us-
ing self-adjoint operators acting on a general Hilbert space, with M. Stone they work
out the theory of such operators
1927-30: Paul Dirac develops “symbolic” formalism transcending ordinary Hilbert
space, this is formalized in the 1950’s in terms of rigged Hilbert spaces

2b. EXAMPLES OF QUANTUM OBSERVABLES

The formalism developed in the previous section is now ready to bear fruit. We will
introduce the operators mostly associated with observables characterizing a single
particle. At the end we also mention some simple many-body systems.

■ Spin-12 operators

Spin operators are the clearest examples of quantum observables since they
work in the best of all possible Hilbert spaces—that with dimension 2. The
same operators (but no more with the physical meaning of spin) can be used
in the Hilbert space of a qubit (Sec. 1b).

▶ Operators of spin components along x, y, z axes in H ≡ C2

Ŝx =
ℏ
2 (

0 1
1 0 )︸︷︷︸
σ̂x

Ŝy =
ℏ
2

(
0 −i
+i 0

)
︸ ︷︷ ︸

σ̂y

Ŝz =
ℏ
2 (

1 0
0 −1 )︸ ︷︷ ︸
σ̂z

Pauli matrices

Together with the unit matrix Î = ( 1 0
0 1 ) the Pauli matrices σ̂x, σ̂y, σ̂z form a

complete set of Hermitian operators inH ≡ C2 (any Â is their lin. combination).

▶ Projection to general direction n⃗ = (sinϑ cosφ︸ ︷︷ ︸
nx

, sinϑ sinφ︸ ︷︷ ︸
ny

, cosϑ︸︷︷︸
nz

)

Observable with operator: |n⃗|2=1

Ŝn⃗ = n⃗ · ˆ⃗S = ℏ
2(n⃗ · ˆ⃗σ) = ℏ

2

(
nz nx−iny

nx+iny −nz

)
= ℏ

2

(
cosϑ e−iφ sinϑ

e+iφ sinϑ − cosϑ

)

▶ Eigenvalues of spin projection Ŝn⃗

Det
[
ℏ
2

(
nz−λ nx−iny

nx+iny −(nz+λ)

)]
= 0 ⇒ λ2 = 1 ⇒ sn⃗ =

{
+
ℏ
2

−ℏ
2

▶ Eigenvectors of spin projection Ŝn⃗

Eigenequation
(

nz nx−iny

nx+iny −nz

) ( α±
β±

)
= ±

( α±
β±

)
has ∞ solutions.

For nz ̸= ±1 (otherwise solutions known) we get α± = −nx−iny

nz∓1 β±,
which yields normalized eigenvectors

|↑n⃗⟩ =
(

e−iφ cos ϑ
2

sin ϑ
2

)
for sn⃗=+ℏ

2

|↓n⃗⟩ =
(

−e−iφ sin ϑ
2

cos ϑ
2

)
for sn⃗ = −ℏ

2
satisfying the orthogonality relation

⟨↓n⃗ |↑n⃗⟩ = ( α∗
− β∗

− )
( α+

β+

)
= 0
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Projectors to eigenspaces:

P̂±n⃗ =
� α±
β±


( α∗

± β∗
± ) =





cos2 ϑ

2
e−iφ

2 sinϑ

e+iφ

2 sinϑ sin2 ϑ
2


for sn⃗=+ℏ

2
sin2 ϑ

2 − e−iφ

2 sinϑ

− e+iφ

2 sinϑ cos2 ϑ
2


for sn⃗=−ℏ

2

α = π − π
2 −

�
π−ϑ
2


= ϑ

2

For an unnormalized eigenvector |↑n⃗⟩ = z|↑⟩+ |↓⟩, z = −nx−iny

nz−1 = e−iφ cot
ϑ

2
the point z ∈ C represents the stereographic projection of vector n⃗

2 , hence any
general superposition |ψ⟩ = α|↑⟩+ β|↓⟩ corresponds to a state | ↑n⃗⟩ of spin
pointing in the direction n⃗ obtained from z = α/β by the inverse projection.

■ Coordinate & momentum

The most important observables in classical mechanics (such that all the other
observables are made of them) are the coordinates and momenta. Unfortu-
nately, these are precisely the observables whose QM operators make troubles.

▶ Coordinate & momentum eigenfunctions

We use the Hilbert space H = L2(R3) and the rigged Hilbert space H ⊂ H ⊂ H
with H ≡ differentiable functions (C∞) satisfying | dn

dxnψ(x⃗)||x⃗|→∞ ≲ |x⃗|−m for
any n,m ≥ 0 (Schwartz space of “test functions” for tempered distributions).

Postulate: Eigenstates of position & momentum ≡ δ-function & plane wave

|x⃗′⟩ ≡ δ(x⃗− x⃗′) |p⃗⟩ ≡ 1
(2πℏ)3/2 ei

p⃗·x⃗
ℏ

⟨x⃗′1|x⃗′2⟩ = δ(x⃗′1−x⃗′2) ⟨p⃗1|p⃗2⟩ = δ(p⃗1−p⃗2)
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These functions ∈ H are not normalizable (so /∈ L2(R3)), but we require at
least the above “normalization” to the δ-function.

▶ Operators of coordinate components

Notation: x⃗ = (x, y, z) ≡ (x1, x2, x3)
Action of operator x̂i ≡multiplication by variable xi:

x̂iψ(x⃗)︸ ︷︷ ︸
[x̂iψ](x⃗)

≡ xiψ(x⃗)︸ ︷︷ ︸
ψ′(x⃗)

Def(x̂i) := H
Hermiticity:

∫
ψ1(x⃗)

∗[xiψ2(x⃗)]dx⃗ =
∫
[xiψ1(x⃗)]

∗ψ2(x⃗)dx⃗

Eigenstates δ(x⃗−x⃗′) ∈ H satisfy xiδ(x⃗−x⃗′) = x′iδ(x⃗−x⃗′) ⇒ continuous spectrum
x′i ∈ (−∞,+∞)

▶ Operators of momentum components

Notation: p⃗ = (px, py, pz) ≡ (p1, p2, p3)
Action of operator p̂i prop. to the derivative in xi:

p̂iψ(x⃗)︸ ︷︷ ︸
[p̂iψ](x⃗)

≡ −iℏ ∂
∂xi

ψ(x⃗)︸ ︷︷ ︸
ψ′(x⃗)

This means ˆ⃗p = −iℏ∇⃗ Def(p̂i) := H

Hermiticity:
∫
ψ1(x⃗)

∗[−iℏ∂ψ2

∂xi
(x⃗)]dx⃗ =

∫
[−iℏ∂ψ1

∂xi
(x⃗)]∗ψ2(x⃗)dx⃗+ [ψ1(x⃗)

∗ψ2(x⃗)]
+∞
−∞︸ ︷︷ ︸

0
Eigenstates eip⃗·x⃗/ℏ ∈ H satisfy −iℏ ∂

∂xi
eip⃗·x⃗/ℏ = pie

ip⃗·x⃗/ℏ ⇒ continuous spectrum
pi ∈ (−∞,+∞)

Since p⃗ = ℏk⃗ = 2πℏ
λ n⃗ with k⃗≡wavevector, n⃗≡ unit vector (flight direction),

we reproduce the old deBroglie relation for the wavelength: λB = 2πℏ
p ≡ h

p

◀ Historical remark
1924: Louis de Broglie associates plane waves with moving particles
1926: Erwin Schrödinger applies operators within the wave mechanics
1927: Wolfgang Pauli introduces spin matrices
1930: Paul Dirac introduces explicit momentum and position operators
1940’s-60’s: Rigorous mathematical treatment in terms of the distribution theory
(L. Schwartz et al.) and rigged Hilbert spaces (I. Gelfand et al.)

■ Hamiltonian of a structureless particle

The incorrigible enfants terribles—the coordinate and momentum operators—
give birth to a respected (although not always well-behaved) operator named
Hamiltonian. This is a crucial operator in quantum theory as it represents the
total energy of the system (here mostly a single nonrelativistic particle with no
internal structure) and generates its quantum evolution (see Sec. 5a).

▶ Operator of total energy Ĥ ≡ Hamiltonian of the system

Eigenequation Ĥ|E⟩ = E|E⟩ stationary Schrödinger equation

Solutions of this equation yield measurable energies of the system.
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▶ Hamiltonian of free particle (no external field) with mass M

Ĥ = 1
2M (ˆ⃗p · ˆ⃗p) = − ℏ2

2M

(
∇⃗ · ∇⃗

)
︸ ︷︷ ︸

∆

operator of kinetic energy

∆ = ∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 Laplace operator

Eigenequation
(
∆+ 2ME

ℏ2︸︷︷︸
±k2=±(k21+k22+k23)

)
ψ(x⃗) = 0 Solutions

for E ≥ 0 physical: ψ ∝ e±ik⃗·x⃗ ∈ H
for E<0 nonphysical: ψ ∝ e±k⃗·x⃗ /∈ H

Continuous spectrum E ∈ [0,+∞) infinitely degenerate (except E=0)

Eigenstates: |Ek⃗⟩ = eik⃗·x⃗ ≡ |p⃗ = ℏk⃗⟩ with eigenvalues E ≡ Ek⃗ =
(ℏk)2
2M

▶ Hamiltonian of massive particle in scalar potential field
Potential energy of the particle in an external field ≡ V (x⃗)

Ĥ =
1

2M
(ˆ⃗p · ˆ⃗p)

︸ ︷︷ ︸
T̂

kinetic

+ V (ˆ⃗x)︸ ︷︷ ︸
V̂

potential energy

≡ − ℏ2

2M
∆+ V (x⃗)

Stationary Schrödinger eq.[
− ℏ2

2M∆+V (x⃗)−E
]
ψ(x⃗)=0

▶ Bound and unbound states of particle in potential
Eigensolutions of the Schrödinger equation with potential may be of two types:
Bound states (correspond to motions of the particle in a bounded spatial
domain with lower potential energy) ⇒ discrete spectrum, normalizable wave-
function ψ(x⃗) ∈ H = L2(R3)
Unbound states (correspond to unbounded particle motions across the whole
space) ⇒ continuous spectrum, non-normalizable wavefunction ψ(x⃗) ∈ H
Consider potentials V (x⃗) of two types:

(a) Potential wells of a general shape
Such potentials support the existence of
bound states of the particle inside the well
Define values:

Vasymp = lim
r→∞

Min{V (

sph.coord.︷ ︸︸ ︷
r, ϑ, φ )}ϑ,φ

Vmin ≡ Min{V (x⃗)}x⃗
The spectrum of such Ĥ consists of two parts:
discrete part D(Ĥ) (bound states) : Ei ∈ (Vmin, Vasymp)

continuous part C(Ĥ) (unbound states) : E ∈ (Vasymp,+∞)

Reasoning: In the asymptotic domain r → ∞ for (ϑ, φ)=(ϑ0, φ0) corresponding
to the minimal V (x⃗) the Schrödinger equation

[
− ℏ2

2M∆+(Vasymp−E)
]
ψ ≈ 0 yields

asymptotic solutions ψ(r, ϑ0, φ0) ∼ e−
1
ℏ

√
2M(Vasymp−E)r, which are normalizable

for E < Vasymp and unnormalizable for E > Vasymp.
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(b) Periodic potentials of a general shape (solids, crystals):
The limit Vasymp does not exist. The whole spectrum is continuous and has
a band structure (alternating zones of allowed and forbidden values of E).
The eigenfunctions are not normalizable and all correspond to unbound states.
Note that proofs of these statements are not presented here (but see Sec. 4b).

▶ Nonanalytic potentials: conditions upon eigenfunctions

From the stationary Schrödinger equation it follows that:(
V, ∂V∂xi

, . . . ∂
nV
∂xn

i

)∣∣∣
x⃗=a⃗

continuous ⇔
(
ψ, ∂ψ

∂xi
, . . . ∂

nψ
∂xn

i
, ∂

n+1ψ
∂xn+1

i

, ∂
n+2ψ

∂xn+2
i

)∣∣∣
x⃗=a⃗

continuous

If V (x⃗)|x⃗=a⃗ is discontinuous (the potential has a finite jump at x⃗ = a⃗), then

both ψ, ∂ψ
∂xi

∣∣∣
x⃗=a⃗

must be continuous as

well as the logarithmic derivative:
βi(x⃗)|x⃗=a⃗ ≡

∂ψ
∂xi

(x⃗)

ψ(x⃗)

∣∣∣∣∣
x⃗=a⃗

= ∂
∂xi

lnψ(x⃗)

∣∣∣∣
x⃗=a⃗

Example: 1D potential well of a finite range x ∈ [x1, x2]

We assume an arbitrary potential satisfying

V (x)

{
= 0 for x < x1 & x > x2,
< 0 for x1 ≤ x ≤ x2,

such that at both edges x1 and x2
V (x) has discontinuities (finite jumps)

Eigenfunctions for bound (E < 0) and unbound (E ≥ 0) states read as

x < x1 x1 ≤ x ≤ x2 x2 < x
E < 0 A1e

+kx +�����A2e
−kx B1ψ1(x)E+B2ψ2(x)E

�����C1e
+kx + C2e

−kx

E ≥ 0 A1 cos(kx)+A2 sin(kx) B1ψ1(x)E+B2ψ2(x)E C1 cos(kx)+C2 sin(kx)

where {ψ1(x)E, ψ2(x)E} are 2 independent eigensolutions inside the well,

k =
√
2ME
ℏ , and {A1, A2, B1, B2, C1, C2} are coefficients to be determined.

E < 0: (2matching conditions atx1)+(2match.conds.atx2)+(1 norm.condition)

⇒ cannot be solved with 4 free parameters ∀E ⇒ discrete E spectrum

E ≥ 0: (2matching conditions atx1)+(2matching conditions atx2)

⇒ can be solved with 6 free parameters ∀E ⇒ continuous E spectrum

For infinite jump of V (x⃗)|x⃗=a⃗ only ψ(x⃗)|x⃗=a⃗ must be continuous

■ Hamiltonian with a separable potential

We look now at the special case of potential that has a trivial separated form
V (x⃗) = V1(x1) + V2(x2) + V3(x3) with each Vk(xk), k = 1, 2, 3, being an arbi-
trary 1D potential in coordinate xk. There are just a few (two?) practical
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examples of such trivially separable potentials, but the analysis will help us to
understand a rather important technique: separation of variables in differential
equations in more general cases.

▶ Form of solution

Let us solve 3 × 1D equation

Ĥk︷ ︸︸ ︷[
− ℏ2

2M
∂2

∂x2
k
+ Vk(xk)

]
ψik(xk) = Eikψik(xi)

The solution of the 3D problem can then be written as:

[Ĥ1+Ĥ2+Ĥ3]︸ ︷︷ ︸
Ĥ

ψi1(x1)ψi2(x2)ψi3(x3)︸ ︷︷ ︸
ψi1i2i3

(x⃗)

= (Ei1+Ei2+Ei3)︸ ︷︷ ︸
Ei1i2i3

ψi1(x1)ψi2(x2)ψi3(x3)︸ ︷︷ ︸
ψi1i2i3

(x⃗)

1D eigenfunctions
{
ψik(xk) ≡ |ψik⟩

}
ik=1,2,...

≡ basis in Hilbert space Hk{
ψi1(x1)ψi2(x2)ψi3(x3) ≡ |ψi1⟩|ψi2⟩|ψi3⟩

}
ik=1,2,...

≡ basis in H = H1 ⊗H2 ⊗H3

▶ Examples

(a) Particle in a box V (x⃗) =
{

0 for xk∈(ak,bk), k=1,2,3
∞ otherwise

}

So V (x⃗) = V(a1,b1)(x1) + V(a2,b2)(x2) + V(a3,b3)(x3),
where each V(ak,bk)(xk) is a 1D infinite square well
potential, for which the 1D problem has solutions(

1
2M p̂2k + V(ak,bk)

)
︸ ︷︷ ︸

Ĥk

|ψnk
⟩ =

(
πℏ√
2MLk

nk

)2

︸ ︷︷ ︸
Enk

|ψnk
⟩, nk=1, 2, 3, ...

with eigenvectors |ψnk
⟩ ≡ ψnk

(xk) ∝ sin
[
nkπ
Lk

(x−ak)
]
, where Lk = bk−ak

The solution of the whole 3D problem reads as:

[Ĥ1 + Ĥ2 + Ĥ3]︸ ︷︷ ︸
Ĥ

|ψn1
⟩|ψn2

⟩|ψn3
⟩︸ ︷︷ ︸

|ψn1n2n3
⟩

= (πℏ)2
2M

[
(n1

L1
)2 + (n2

L2
)2 + (n3

L3
)2
]

︸ ︷︷ ︸
En1n2n3

|ψn1
⟩|ψn2

⟩|ψn3
⟩︸ ︷︷ ︸

|ψn1n2n3
⟩

Equilateral case: Lk = L ⇒ En1n2n3
→ EN = (πℏ)2

2ML2 (n
2
1 + n2

2 + n2
3︸ ︷︷ ︸

N

)

Various choices of (n1, n2, n3) yield the following values
of N and the corresponding degeneracy dimensions dN :

N dN

3 1
6 3
9 3
11 3
14 6
...

...

Consequence: The ground-state energy Egs∝ 1
V 2/3 grows with volume V , which

implies “Schrödinger pressure” against any decrease of V (increase of par-
ticle containment). This is closely related to the uncertainty relations (see
Sec. 3a) and has crucial consequences (together with the Pauli principle) for
the collapse of dying stars to red giants, neutron stars or black holes (though
one would need relativistic equations for a qualitative analysis).

(b) Harmonic oscillator V (x⃗) = M
2 (ω

2
1x

2
1+ω2

2x
2
2+ω2

3x
2
3)
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The 1D problems have solutions
(

1
2M p̂2k +

Mω2
k

2 x̂2k

)
︸ ︷︷ ︸

Ĥk

|ψnk
⟩ = ℏωk

(
nk+

1
2

)
︸ ︷︷ ︸

Enk

|ψnk
⟩

with nk = 0, 1, 2, 3, . . . The eigenfunctions obtained
from the differential form of the Schrödinger equation[

d2

dξ2k
+(λ−ξ2k)

]
ψ(ξk)=0, with ξk=

√
Mωk

ℏ xk, λ=
2E
Mω ,

are |ψnk
⟩ ≡ ψnk

(xk) ∝ e−ξ2k/2Hnk
(ξk),

where Hn(ξ) ≡ dn

dηn

generating
function︷ ︸︸ ︷

eξ
2−(ξ−η)2 |η=0 are Hermite polynomials

The 3D case:
[Ĥ1+Ĥ2+Ĥ3]︸ ︷︷ ︸

Ĥ

|ψn1
⟩|ψn2

⟩|ψn3
⟩︸ ︷︷ ︸

|ψn1n2n3
⟩

=ℏ
[
ω1(n1+

1
2)+ω2(n2+

1
2)+ω3(n3+

1
2)
]

︸ ︷︷ ︸
En1n2n3

|ψn1
⟩|ψn2

⟩|ψn3
⟩︸ ︷︷ ︸

|ψn1n2n3
⟩

Isotropic case: ωk = ω ⇒ En1n2n3
→ EN=ℏω(n1+n2+n3︸ ︷︷ ︸

N

+3
2)

Various choices of (n1, n2, n3) yield N = 0, 1, 2, 3, 4, . . . and

the corresponding degeneracy dimensions dN = (N+1)(N+2)
2 :

N dN

0 1
1 3
2 6
3 10
...

...

Alternative method of solution:

Hamiltonian of each 1D oscillator can be expressed as Ĥk = ℏωk

(
b̂†kb̂k︸︷︷︸
n̂k

+1
2

)

where b̂†k=
x̂k√

2ℏ/Mωk

−i p̂k√
2ℏMωk

, b̂k=
x̂k√

2ℏ/Mωk

+i p̂k√
2ℏMωk

are ladder operators, whose algebraic properties (see Secs. 3b & 14) ensure
that the operator n̂k has eigenvalues nk = 0, 1, 2, . . .. The operators b̂†k and b̂k,
respectively, are interpreted as creation and annihilation operators of the (kth)
oscillator excitaton quantum (so called phonon) and the operator n̂k has the
meaning of the number of these quanta. This procedure has a crucial impor-
tance for quantization of physical fields, such as the electromagnetic field, in
the relativistic formulation of the quantum theory (Sec. 14).

■ Orbital angular momentum

Before we continue with other Hamiltonians and potentials in the 3D space,
it is useful to construct operators of angular momentum associated with the
orbital motions of any particle.

▶ Operators of orbital ang.momentum are analogous to classical expressions:

components L̂i = εijkx̂j p̂k ⇔ vector
ˆ⃗
L = ˆ⃗x× ˆ⃗p = −iℏ

[
x⃗× ∇⃗

]

Hermiticity: L̂†
i = εijkp̂

†
kx̂

†
j = εijkp̂kx̂j = εijkx̂j p̂k = L̂i (since j ̸= k)
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▶ Expression in spherical coordinates

Transformation of wavefunctions: ψ(x, y, z) → ψ(r, ϑ, φ)
Unit vectors in coordinate directions:(

n⃗r

n⃗ϑ

n⃗φ

)
=

(
sinϑ cosφ sinϑ sinφ cosϑ
cosϑ cosφ cosϑ sinφ − sinϑ
− sinφ cosφ 0

)(
n⃗x

n⃗y

n⃗z

)

(
n⃗x

n⃗y

n⃗z

)
=

(
sinϑ cosφ cosϑ cosφ − sinφ
sinϑ sinφ cosϑ sinφ cosφ

cosϑ − sinϑ 0

)(
n⃗r

n⃗ϑ

n⃗φ

)

Orthogonal matrix ⇒ [ inverse = transpose ]

Vector of orbital angular momentum expressed in spherical coordinates:
ˆ⃗
L = −iℏ

[
rn⃗r︸︷︷︸
x⃗

×
(
n⃗r

∂
∂r + n⃗ϑ

1
r

∂
∂ϑ + n⃗φ

1
r sinϑ

∂
∂φ

)
︸ ︷︷ ︸

∇⃗

]
n⃗r×n⃗r=0
n⃗r×n⃗ϑ=n⃗φ

n⃗r×n⃗φ=−n⃗ϑ

ˆ⃗
L = −iℏ

[
n⃗φ

∂
∂ϑ − n⃗ϑ

1
sinϑ

∂
∂φ

]
acts only on the angular part of ψ(r, ϑ, φ)

⇒ we consider factorized wavefunctions ψ(r, ϑ, φ) ≡ R(r) Ω(ϑ, φ)

▶ Angular-momentum component along the z-axis

n⃗z = cosϑ n⃗r − sinϑ n⃗ϑ ⇒ n⃗z ·
ˆ⃗
L ≡ L̂z = −iℏ ∂

∂φ

Eigenvalue equation allows for further factorization:
L̂z Ω(ϑ, φ)︸ ︷︷ ︸

f(ϑ)g(φ)

= lzΩ(ϑ, φ) −iℏ ∂
∂φg(φ) = lzg(φ) with condition g(φ+2π) = g(φ)

⇒ lz = mℏ with m = 0,±1,±2,±3, . . . and gm(φ) = eimφ

Additional condition l2z ≤ L2 ⇒ |m| ≤ mmax (see below and in Sec. 3b)

From the symmetry argument, the same form of eigenvalues must be valid for

any component of
ˆ⃗
L, but as we will see in Sec. 3b, the system cannot be in

a simultaneous eigenstate of all angular-momentum components.

▶ Squared orbital angular momentum

The size of the angular-momentum vector is determined by the square:

L̂2 =
ˆ⃗
L · ˆ⃗L = −ℏ2

[
n⃗φ

∂
∂ϑ − n⃗ϑ

1
sinϑ

∂
∂φ

]
·
[
n⃗φ

∂
∂ϑ − n⃗ϑ

1
sinϑ

∂
∂φ

]
=

= −ℏ2
[
n⃗φ

∂
∂ϑ · n⃗φ

∂
∂ϑ︸ ︷︷ ︸

∂2

∂ϑ2

− n⃗φ
∂
∂ϑ · n⃗ϑ

1
sinϑ

∂
∂φ︸ ︷︷ ︸

0

− n⃗ϑ
1

sinϑ
∂
∂φ · n⃗φ

∂
∂ϑ︸ ︷︷ ︸

− cotϑ
∂
∂ϑ

+ n⃗ϑ
1

sinϑ
∂
∂φ · n⃗ϑ

1
sinϑ

∂
∂φ︸ ︷︷ ︸

1
sin2 ϑ

∂2

∂φ2

]

= −ℏ2
[

∂2

∂ϑ2 + cotϑ ∂
∂ϑ︸ ︷︷ ︸

1
sinϑ

∂
∂ϑ sinϑ

∂
∂ϑ

+ 1
sin2 ϑ

∂2

∂φ2

]
⇒ L̂2 = −ℏ2

[
1

sinϑ
∂
∂ϑ sinϑ

∂
∂ϑ + 1

sin2 ϑ
∂2

∂φ2

]
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▶ Eigenequation L̂2Ωλm(ϑ, φ) = λ2Ωλm(ϑ, φ)

solved with a factorized function Ωλm(ϑ, φ) ≡ fλm(ϑ) e
imφ

[
1

sinϑ
∂
∂ϑ sinϑ

∂
∂ϑ−

m2

sin2 ϑ
+ λ2

ℏ2

]
fλm(ϑ)=0

subst.−−−−→
ξ=cosϑ

[
∂
∂ξ (1−ξ2) ∂

∂ξ−
m2

1−ξ2+
λ2

ℏ2

]
fλm(ξ)=0

The solution known in the form (for derivation see elsewhere):

fλm(ξ) ≡ Plm(ξ) ∝ (1− ξ2)
m
2

dl+m

dξl+m (ξ
2 − 1)l associated Legendre polynomial

Eigenvalues λ2 = l(l + 1)ℏ2 with
{

l = 0, 1, 2 . . .
m = −l, (−l+1) . . . 0 . . . (+l−1),+l

Eigenfunctions

Ωλm(ϑ, φ) = Nlm︸︷︷︸
normalization

Plm(cosϑ) e
imφ ≡ Ylm(ϑ, φ) spherical harmonics

Relation between l and m quantum numbers
is represented by the following diagram:

Note: The existence of simultaneous
eigenstates of L̂2 and L̂z is not
accidental. It follows from the fact
that both operators commute, see
Sec. 3b, where also the selection
rules for m and l are derived.

■ Hamiltonian with isotropic (spherically symmetric) potential

Equipped with the angular momentum operators, we can return to the Hamil-
tonian of a single structureless nonrelativistic particle moving in a spherically
symmetric potential field V (x⃗) = V (r) This is a rather important situation in
general since nature likes rotational invariance. Besides the general discussion
we will briefly report three well known examples, including the famous solution
of the hydrogen atom, which was at the very beginning of quantum theory.

▶ Hamiltonian in spherical coordinates

Ĥ = − ℏ2
2M∆+ V (r) = 1

2M

[−ℏ2
r2

∂
∂rr

2 ∂
∂r︸ ︷︷ ︸

p̂2r

+ −ℏ2
r2 sinϑ

∂
∂ϑ sinϑ

∂
∂ϑ + −ℏ2

r2 sin2 ϑ
∂2

∂φ2︸ ︷︷ ︸
r−2L̂2

]
+ V (r)

This can be decomposed into three parts:

Ĥ =
1

2M
p̂2r︸ ︷︷ ︸

radial
kin.energy

+
1

2Mr2
L̂2

︸ ︷︷ ︸
orbital

kin.energy

+ V (r)︸︷︷︸
potential
energy

with p̂r ≡ −iℏ
(

∂
∂r +

1
r

)

radial momentum
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The radial momentum operator has spherical waves as its eigenfunctions (see
below) and in this sense it differs from any Cartesian component of momentum
(with planar waves as eigenfunctions). The decomposition of the kitetic energy
into the radial and angular (orbital) components has a clear physical meaning.

▶ Separation of variables

The isotropic form of the Hamiltonian
enables one to separate radial and angular
variables through the wavefunction ansatz:

ψnlm(r, ϑ, φ) ≡ Rnl(r)︸ ︷︷ ︸
unl(r)

r

Ylm(ϑ, φ)

L̂2Ylm(ϑ, φ) = ℏ2l(l + 1)Ylm(ϑ, φ)

The equation for Rnl reads:
[
− ℏ2

2M
1
r2

d
drr

2 d
dr +

ℏ2l(l+1)
2Mr2 + V (r)

]
Rnl(r) = EnlRnl(r)

[
− ℏ2

2M

d2

dr2
+

ℏ2l(l+1)

2Mr2
+ V (r)

︸ ︷︷ ︸
V

(l)
eff (r)

]
unl(r) = Enlunl(r) radial Schrödinger eq.

The centrifugal term (the first term in the effective potential V
(l)
eff ) describes

rotational kinetic energy of the particle with orbital q. number l at distance r.

▶ Unbound-state asymptotics (eigenfunctions of radial momentum)

For V (r)
r→∞−−−→ 0 we write down an E > 0 asymptotic radial solution for l = 0:

spherical wave (for r ≫ 0):

−iℏ
(

∂
∂r +

1
r

)
eiprr/ℏ

r = pr
eiprr/ℏ

r

Rpr(r) ∝
ei

prr
ℏ

r
≡ plane wave of u(r)

▶ Bound state near the origin

From the normalization we know that u(r)r2
r→0−−→ 0 and we further assume

that V (r)u(r)r2
r→0−−→ 0 (the potential is not too crazy for r → 0). Then the

approximate r → 0 equation d2u
dr2 −

l(l+1)
r2 u ≈ 0 can be solved with u(r) ∝ rk

k(k−1) = l(l+1) ⇒ k =
{

l+1
−l (nonphysical) ⇒ unl(r)|r∼0 ≈ rl+1 r→0−−→ 0

Why the k = −l solution is nonphysical? Because for l > 0 it is not normaliz-
able, while for l = 0 the action of ∆ on R(r) ∝ r−1 would yield a singularity
∝ δ(r), which is not supposed to be involved in V (r).

▶ Example: (a) finite spherical square well V (r) =
{ −V0<0 for r<R

0 for r≥R

Radial equation:
[
d2

dr2 −
l(l+1)
r2 + 2M(E−V )

ℏ2
]
unl(r) = 0 with V =

{ −V0
0

Discrete spectrum En ∈ (−V0, 0), continuous spectrum E ∈ (0,+∞)

κ =

√
2M(E+V0)

ℏ k =
√
2ME
ℏ

{
> 0 for E ≥ 0
= iκ for E < 0

r → ρ ≡
{

κr for r < R
kr for r ≥ R
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The eigenfunctions in a general case can expressed through Bessel & Neu-
mann functions, or alternatively through Hankel functions:

Rnl(ρ) =
unl(ρ)

ρ =





Bessel jl(ρ) ∝ρ→0 ρ
l

Neumann nl(ρ) ∝ρ→0 ρ
−(l+1)

Hankel
functions

h+
l (ρ) = jl(ρ) + inl(ρ) ∝r→∞

ei(ρ−lπ/2)

iρ

h−
l (ρ) = jl(ρ)− inl(ρ) ∝r→∞

e−i(ρ−lπ/2)

iρ

Normalizable bound states (E < 0):
the r = 0 and r → ∞ conditions
restrict the solution to the form

Rnl(r) =


Ajl(κr) for r < R
B Reh+

l (iκr) for r ≥ R

Constants A,B and energy levels Enl are obtained
from numerical solution of a pair of equations


d
dρjl(κR)

jl(κR) =
d
dρReh

(1)
l (iκR)

Reh+
l (iκR)

κ2 + κ2 = 2MV0

ℏ2



▶ Example: (b) isotropic harmonic oscillator (revisited) V (r) = Mω2

2 r2

From the previous treatment we know: EN = ℏω(N+ 3
2), where N = n1+n2+n3

The solution in spherical coordinates: Rnl(ξ) ∝ ξlLl+1/2
n (ξ2) with ξ =


Mω
ℏ r

La
i (ρ) ≡ ρ−aeρ di

dρi (ρ
i+ae−ρ) generalized Laguerre polynomial

Relation between quantum numbers from both solutions: N+1  
1,2,3...

= 2nr + l + 1

with nr = 0, 1, 2, . . . radial quantum number
= number of nodes of Rnl(r)

▶ Example: (c) attractive Coulomb field V (r) = −K

r
This also describes electron in the hydrogen atom: K = e2

4πϵ0

Discrete spectrum En < 0, continuous spectrum E ≥ 0

Determination of the discrete spectrum: Using ρ=


8M |E|
ℏ2 r, λ=


MK2

2ℏ2|E| we look

for solutions of the radial equation

d2

dρ2−
l(l+1)
ρ2 + λ

ρ


u(ρ)=0 with the required

boundary conditions in the form u(ρ)=ρl+1e−ρ/2p(ρ), where p(ρ)=
∞

k=0 ckρ
k

with some coefficients ck. The resulting condition ck+1 =
k+l+1−λ

(k+l+2)(k+l+1)−l(l+1)ck

(⇒ ck ∼ 1
k! for large k ⇒ exponential growth of p(ρ) for large ρ) yields a

normalizable solution iff ck=0 for k ≥ kmax. The value kmax≡nr, which is the
degree of the polynomial p(ρ), i.e., the
number of nodes of u(ρ), is given by

nr+l+1−λ = 0. So nr+l+1= α
ℏ


M
2|E|

⇒ En = −MK2

2ℏ2
1

n2

n = nr + l + 1
= 1, 2, 3, ...

with the principal quantum number n deri-
ved from the radial and orbital quantum
numbers nr=0, 1, 2, ... and l=0, 1, 2, ...
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Degeneracy dimension of level n is given by
{

l=0,1,...(n−1)
m=−l,···+l

}
⇒ dn =

n−1∑
l=0

(2l+1) = n2

Rnl(ρ) ∝ ρle−ρ/2L2l+1
n−l−1(ρ) with Lj

i (ρ) ≡ dj

dρj e
ρ di

dρi (ρ
ie−ρ)

associated Laguerre polynomial

λ̄C = ℏ
Mc

.
= 386 fm

α = e2

4πϵ0ℏc
.
= 1

137

Hydrogen atom:
Defining theComptonwavelength λ̄C for electron and
introducing the dimensionlessfine-structure constant
α = V (λ̄C)/Mc2, we express the hydrogen energies as

En = −1
2Mc2α2 1

n2 (the ground state has E1
.
=−13.6 eV). The above dimension-

less length reads ρ = 2
naB

r, where aB = λ̄C

α

.
= 0.053 nm is the Bohr radius.

▶ Graphical expression of oscillator and hydrogen selection rules for quantum
numbers

◀ Historical remark
1913-24: Development of atomic physics in terms of “old quantum mechanics”
1926: Erwin Schrödinger presents 4 papers introducing the wavefunction and ex-
plaining the energy quantization in terms of an eigenvalue problem, with solutions
for Coulomb and harmonic potentials obtained via the orbital angular momentum
1928-30: Application to molecules and solids; L. Pauling explains chemical bond,
P.M.Morse describes vibrations of diatomic molecules (Morse potential), F. Bloch
and L.Brillouin analyze eigenstates in periodic potentials
1929: First numerical algorithm for solving the eigenvalue problem
1932-49: Early development of quantum theory of atomic nuclei: two-nucleon po-
tential (H.Yukawa), shell model (D. Ivanenko, M.Goeppert-Mayer, J.H.D. Jensen)

■ Hamiltonian of a spin-12 particle in static electromagnetic field

We now look at the Hamiltonian of an structureless, electron-like particle mov-
ing in general (but static) electric and magnetic fields. The interaction now in-
cludes not only the electric charge of the particle, but also its magnetic dipole
moment. This is a very important case, in atomic physics and beyond. We
will also discuss the invariance of the Schrödinger equation under the gauge
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transformation—the concept that in a generalized form plays an essential role
in the present theory of all particle interactions.

▶We assume a charged particle with a nonzero magnetic dipole moment and all
other static electromagnetic moments equal zero. In analogy with the classical
expression, the quantum Hamiltonian reads as:

Ĥ = 1
2M

[
ˆ⃗p− qA⃗(ˆ⃗x)

]2
+ qV (ˆ⃗x)− ˆ⃗µ · B⃗(ˆ⃗x)

q ≡ particle charge
ˆ⃗µ ≡ particle magnetic dipole moment
V (x⃗) ≡ scalar potential

A⃗(x⃗) ≡ vector potential
B⃗(x⃗) = ∇⃗×A⃗(x⃗) ≡ magnetic induction,

E⃗(x⃗) = −∇⃗V (x⃗)− ∂
∂tA⃗(x⃗)︸ ︷︷ ︸

0

≡ electric intensity of a stationary elmg. field

▶ Magnetic dipole moment operator ˆ⃗µ is proportional to the operator
of the particle spin. We suppose particles with spin 1

2 , specifically electrons,
protons and neutrons:

ˆ⃗µ = g µ
(

1
ℏ
ˆ⃗
S
)
= g qℏ

2M

(
1
2
ˆ⃗σ
) g ≡ gyromagnetic ratio

{
g=2 electron

g=5.5856 proton
g=−3.8263 neutron

µ= eℏ
2M ={ Bohr

nuclear } magneton for M=
{

Me
Mp

}

The ratio g = µ⃗/µ

S⃗/ℏ
is dimensionless, its value for a structureless spin-12 parti-

cle being predicted by the relativistic Dirac theory to g = 2. The proton and
neutron values of g reflect the internal quark structure. Small quantum-field
corrections exist also for structureless particles like electrons or muons.

▶ Evaluation of the kinetic term (mind that ˆ⃗p and A⃗(ˆ⃗x)≡ ˆ⃗
A do not commute):[

ˆ⃗p−q
ˆ⃗
A
]2

= ˆ⃗p 2

︸︷︷︸
−ℏ2∆

−q
[
ˆ⃗p· ˆ⃗A+

ˆ⃗
A· ˆ⃗p

]
︸ ︷︷ ︸
+iℏq[∇⃗·A⃗+A⃗·∇⃗]

+q2
ˆ⃗
A2 = −ℏ2∆+iℏq

[
(∇⃗·A⃗ )+2A⃗·∇⃗

]
+q2A⃗2

▶ Pauli equation (the stationary version)

Eigenequation Ĥψ = Eψ with spinor ψ(x⃗) =
(

ψ↑(x⃗)
ψ↓(x⃗)

)
yields

− ℏ2
2M∆ψ + iℏq

2M (∇⃗ · A⃗)︸ ︷︷ ︸
=0 inLorentz calibration

ψ + iℏq
M (A⃗ · ∇⃗ψ) + qVψ

+ q2

2M A⃗2ψ − g qℏ
2M

1
2

(
Bz Bx−iBy

Bx+iBy −Bz

)

︷ ︸︸ ︷
(ˆ⃗σ · B⃗)ψ = Eψ

▶ Special case: homogeneous magnetic field

B⃗(x⃗) ≡ (0, 0, B) can be obtained from A⃗(x⃗) = B
2 (−y,+x, 0) satisfying ∇⃗ · A⃗ = 0.

The second term of the above equation, iℏq
M (A⃗ · ∇⃗ψ) = qB

2M iℏ
[
−y ∂

∂x + x ∂
∂y

]
︸ ︷︷ ︸

−L̂z

ψ,

corresponds to the energy E=−B⃗ · µ⃗orb of the orbital

magnetic dipole with moment ˆ⃗µorb=
qℏ
2M

1
ℏ
ˆ⃗
L in mag. field B⃗.
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The Pauli equation reads as:[
− ℏ2

2M∆︸ ︷︷ ︸
translational

kinitic
energy

+ qV︸ ︷︷ ︸
electrostat.
energy

− qB
2M

(
L̂z + gŜz

)
︸ ︷︷ ︸
mag.moment interaction
⇒Zeeman splitting

+ q2B2

8M︸︷︷︸
1
2Mω2

L

(x2+y2)

︸ ︷︷ ︸
kinetic energy of precession ≈ 0

]
ψ = Eψ

The last expression (arising from the ∝ A⃗2 term) represents the kinetic energy
of the precesional motion of the magnetic dipole in the field B⃗ with the Larmor
frequency ωL ≡ qB

2M . For electron in hydrogen ωL ≲ ωorbital for B ≲ 105T. So
this term can be neglected unless the field is extremely large.

▶ Invariance under gauge transformations

The effect of classical electromagnetic field is invariant under the gauge transfor-

mations generated by f(x⃗, t): A⃗ → A⃗′ = A⃗− ∇⃗f V → V ′ = V + ∂
∂tf︸︷︷︸

=0 in stac. caseThese transformations do not change E⃗ and B⃗, but
they do change the Pauli equation! Does quantum physics depend on A⃗ instead
of the “physical fields” E⃗ and B⃗ ? The complete answer is not quite straightfor-
ward, but for the time being it is enough to show that the gauge transformation
of A⃗ in the Pauli equation is always compensated by a local phase transforma-
tion of the wavefunction. This means that the gauge transformation does not
alter energies and spatial probability
densities corresponding to individual
eigenstates of the Hamiltonian.

ψ(x⃗) → ψ′(x⃗) ≡ ψ(x⃗)e−i
q
ℏf(x⃗)

Direct verification: (−iℏ∇⃗−qA⃗′)2ψ′ = (−iℏ∇⃗−qA⃗′)·(−iℏ∇⃗−qA⃗′)e−i
q
ℏfψ =

(−iℏ∇⃗−qA⃗′)·e−i
q
ℏf(−iℏ∇⃗−qA⃗)ψ = e−i

q
ℏf(−iℏ∇⃗−qA⃗)2ψ

Therefore: Ĥψ = Eψ ⇒ Ĥ ′ψ′ = Eψ′ ⇒ |ψ(x⃗,ms)|2 = |ψ′(x⃗,ms)|2
However, as discussed in Sec. 8, not all mystery is gone.

◀ Historical remark
1927: Wolfgang Pauli writes down the spinor equation for particle in mag.field
1928: Hermann Weyl shows that gauge transformations in QM are related to local
phase changes of the wavefunction

■ Hamiltonians of simple coupled systems

At last, we give a few elementary examples of many-body Hamiltonians. Please
note that the list of diverse important Hamiltonians is practically endless.

▶ Many-electron atom
Atom with Z electrons (coordinates x⃗(i) and Laplacians ∆(i), i = 1, ..., Z) and
a point-like nucleus with charge Ze. Nonrelativistic Hamiltonian describing
only electric effects (neglecting effects of the magnetic moments):
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Ĥ = − ℏ2

2M

Z∑
i=1

∆(i) − Ze2

4πϵ0

Z∑
i=1

1

|x⃗(i)|
+

e2

4πϵ0

1

2

Z∑
i,j=1
i ̸=j

1

|x⃗(i) − x⃗(j)|

The solution of Ĥ|Ψ⟩ = E|Ψ⟩ is an atisymmetrized many-body wavefunction

∝ P̂
(Z)
− Ψ(x⃗(1),m(1), . . . , x⃗(Z),m(Z)) ∈ H(Z)

− , with m(i) denoting electron spin
projections (arbitrary for the present spin-independent Ĥ). However, because
of an exponential increase of the dimension of a suitably truncated Hilbert
space, the numerical solution is practically impossible even for medium Z and
efficient approximation methods are needed.

▶ Interacting spin (qubit) systems: Ising model
Consider a system composed of N qubits (spin-12 particles with frozen spatial
degrees of freedom, i = 1, ..., N). The Hamiltonian can read as:

Ĥ =
ε

2

N∑
i=1

σ̂(i)
z − κ

2n

N∑
i=1

∑
j∈Si

σ̂(i)
x σ̂(j)

x =

{
ε
∑
i

Î⊗···⊗Î⊗σ̂
(i)
z ⊗Î⊗···⊗Î

− κ
2n

∑
⟨i,j⟩

Î⊗···⊗Î⊗σ̂
(i)
x ⊗Î⊗···⊗Î⊗σ̂

(j)
x ⊗Î⊗···⊗Î

where ε sets the single-qubit energies (=±ε
2)

and κ quantifies two-qubit interactions. It is
assumed that the ith qubit interacts with n
qubits contained in a set Si. We can think
of the qubits as arranged to a lattice with
Si coinciding with a certain neighborhood
of qubit i (for a finite lattice we may consider
periodic boundary conditions). This Hamil-
tonian may describe a lattice of interacting magnetic dipoles in an external
magnetic field or a system of interacting qubits. For some particular arrange-
ments, an analytic solution is known, but in majority of cases a numerical
diagonalization of Ĥ in the d = 2N Hilbert space is necessary. The model is
known for its phase transitions.

▶ Qubits interacting with an oscillator: Rabi and Dicke models
Consider a system composed of (1) 1D harmonic oscillator with the single-
quantum energy ℏω ≡ ε1, described by dimensionless coordinate & momentum
operators x̂= x̂√

2ℏ/Mω
& p̂= p̂√

2ℏMω
(it can be a quantized one-mode field), and

(2) set of N qubits (two-level atoms, 1
2-spins etc.). A possible Hamiltonian is:

Ĥ = ε1
(
p̂2 + x̂2

)
+

ε2
2

N∑
i=1

σ̂(i)
z − κ√

N
x̂

N∑
i=1

σ̂(i)
x =

{
ε1

p̂2+x̂2

2 ⊗ Î+ε2 Î ⊗ Ŝz

− κ√
N−1

x̂⊗ Ŝx

The model is solved numerically in a truncated d = ∞ Hilbert space. For
N → ∞ (this requires the 1√

N
scaling of the interaction term) the ground state
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shows a nonanalytic change from “normal” to “superradiant” phase at some
critical coupling κ. The N = 1 case is sometimes called the Rabi model.

◀ Historical remark
1925: E. Ising solves the 1D spin model with nearest-neighbor interactions
1944: L.Onsager solves of the 2D square-lattice spin model with ε=0
1954: R.Dicke presents his schematic model of coherent atom-field interaction
since 2010: experimental realizations of the Dicke model and its quantum effects

3a.COMPATIBLE AND INCOMPATIBLE OBSERVABLES

Operators, in contrast to ordinary numbers and functions used in classical physics,
have one revolutionary property: they may not be commuting. The product ÂB̂
does not have to be the same operator as B̂Â. This property turns out to be of
essential importance for physics. For instance, we will see that it is responsible for
the key feature of the quantum world: uncertainty.

We introduce the commutator of operators,

[Â, B̂] ≡ ÂB̂ − B̂Â =
{

0 if ÂB̂=B̂Â
iĈ ̸=0 if ÂB̂ ̸=B̂Â

and rise the relative classification of observables:
(1) compatible observables A,B with [Â, B̂] = 0,
(2) incompatible observables A,B with [Â, B̂] ̸= 0.

■ Compatible observables

We first explore the case when ÂB̂ = B̂Â. We show that such commuting
operators Â and B̂ can be diagonalized simultaneously, i.e., can be associated
with a common set of eigenvectors. A maximal set of commuting operators
selects a unique basis in the Hilbert space and in this way creates a particular
representation of all physical state vectors and observables–operators.

▶ [Â, B̂] = 0 ⇒ eigenspaces of B̂ are invariant under the action of Â and
vice versa: B̂|ψ⟩ = b|ψ⟩ ⇒ B̂ (Â|ψ⟩)︸ ︷︷ ︸

|ψ′⟩

= ÂB̂|ψ⟩ = b (Â|ψ⟩)︸ ︷︷ ︸
|ψ′⟩

⇒ Â|ψ⟩ is
eigenvector of B̂ with eigenvalue b

▶ Commuting operators have a complete set of common eigenvectors
Intuitively, this is obvious from the invariance of the eigenspaces Ha of Â under
the action of B̂. The subspace Ha can therefore be considered as the Hilbert
space where operator B̂ finds eigenvectors |b⟩.
A more rigorous proof: Let {|a(k)i ⟩}i,k and {|b(l)j ⟩}j,l be orthonormal eigenbases

of Â and B̂, respectively (with i, j enumerating the respective eigenvalues ai
and bj, and k, j the basis vectors in degeneracy subspaces)
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Unique expansion: |a(k)i ⟩=
∑
j

∑
l

α
(kl)
ij |b(l)j ⟩

︸ ︷︷ ︸
|ψ(k)

ij ⟩

=
∑
j

|ψ(k)
ij ⟩, where: B̂|ψ(k)

ij ⟩=bj|ψ(k)
ij ⟩

Eigenstate condition reads as:

(Â−aiÎ)|a(k)i ⟩ = 0 =
∑
j

|ψ̃(k)
ij ⟩︷ ︸︸ ︷

(Â−aiÎ)|ψ(k)
ij ⟩

{
where: B̂|ψ̃(k)

ij ⟩ = bj|ψ̃(k)
ij ⟩

(from invariance ofHbj
under Â)

|ψ̃(k)
ij ⟩ with different j orthogonal ⇒ the condition satisfied iff |ψ̃(k)

ij ⟩ = 0 ∀j
⇒ |ψ(k)

ij ⟩ is a simultaneous eigenvector of Â and B̂ (eigenvalues ai and bj)
The same procedure repeated ∀ |a(k)i ⟩ ⇒ the resulting set {|ψ(k)

ij ⟩}i,j,k of simulta-
neous eigenvectors is complete since it allows one to expand the basis {|a(k)i ⟩}i,k
⇒ There exists a simultaneous orthonormal
eigenbasis {|aibj(k)⟩}i,j,k of both Â and B̂,
where (k) enumerates the states with the same
combination of eigenvalues ai and bj. In this
sense, the observables A and B are compatible.

▶ [Â, B̂] = 0 ⇔ [P̂ai, P̂bj ] = 0 ∀ i, j

That means: Operators commute iff all their eigenspace projectors commute.

⇐ follows from spectral decompositions: Â =
∑
i

aiP̂ai and B̂ =
∑
j

bjP̂bj

⇒ follows from P̂ai =
∑

j′∈Sai
B

∑
k

|aibj′(k)⟩⟨aibj′(k)|, P̂bj =
∑

i′∈S
bj
A

∑
l

|ai′bj(l)⟩⟨ai′bj(l)|

{ Sai
B

S
bj
A

} ≡ the set of eigenvalues { bj′
ai′
} contained in the eigenspace of { ai

bj }

P̂aiP̂bj =
∑
i′,j′

∑
k,l

|aibj′(k)⟩ ⟨aibj′(k)|ai′bj(l)⟩︸ ︷︷ ︸
δii′δjj′δkl

⟨ai′bj(l)| =
∑
k

|aibj(k)⟩⟨aibj(k)| = P̂bj P̂ai

▶ Complete set of commuting operators (of compatible observables)

The above conclusions concerning 2 commuting operators can be generalized
to an arbitrary number n of mutually commuting operators:

n=3: operators Â, B̂, Ĉ satisfying [Â, B̂]=[Â, Ĉ]=[B̂, Ĉ]=0 ⇒ ∃ simultaneous

orthonormal eigenbasis {|aibjck(l)⟩}i,j,k,l such that
Â
B̂
Ĉ

}
|aibjck(l)⟩=

ai
bj
ck

}
|aibjck(l)⟩

...and analogously for n>3

A set of mutually commuting operators

n︷ ︸︸ ︷
Â, B̂, Ĉ . . . is complete if eigenvalues

ai, bj, ck...︸ ︷︷ ︸
n

uniquely determine a single eigenvector |aibjck...⟩ (no (l) needed)

Consider X̂ such that [X̂, Â] = [X̂, B̂] = [X̂, Ĉ] = · · · = 0. Then we know that
X̂|aibjck...⟩ = x|aibjck...⟩ and the eigenvalue x is determined by ai, bj, ck, ....

⇒ x = f(a, b, c, ...) ⇒ X̂ =
∑

ai,bj ,ck...

f(ai, bj, ck...)P̂ai,bj ,ck... ⇒ X̂ = f(Â, B̂, Ĉ, ...)
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⇒ alternative definition of the complete set: Any X̂ commuting with all op-
erators from a complete set is a function of these operators.
The number n of operators in a complete set is usually identified with the num-
ber f of quantum degrees of freedom. Examples: Spinless and structureless
particle in 3D has f = 3 ⇒ we need 3 commuting operators, e.g. {x̂1, x̂2, x̂3}, to
uniquely determine a basis in H. Structureless particle with spin 1

2 has f = 4,

the complete set being, e.g., {x̂1, x̂2, x̂3, Ŝz}. N = 2 structureless particles with
spin 1

2 have f = 8, and so on. Note: the number f is fixed only within a cer-
tain algebra of pre-selected operators (otherwise any basis in H can always be
considered as the eigenbasis of a single nondegenerate operator).

▶ Combining complete sets in a product spaces

Consider a composite system with Hilbert space H ≡ H1 ⊗H2

{Â1, B̂1, Ĉ1 . . . }︸ ︷︷ ︸
n1

≡ complete set in H1 {Â2, B̂2, Ĉ2 . . . }︸ ︷︷ ︸
n2

≡ complete set in H2

⇒
{{

(Â1 ⊗ Î), (B̂1 ⊗ Î), (Ĉ1 ⊗ Î) . . .
}
,
{
(Î ⊗ Â2), (Î ⊗ B̂2), (Î ⊗ Ĉ2) . . .

}}

︸ ︷︷ ︸
n1+n2 ≡ complete set in H ≡ H1 ⊗H2

(the same eigenvalues as the original sets)[X̂1 ⊗ Î , Î ⊗ Ŷ2]=0 ∀X̂1, Ŷ2

⇒ the total number of degrees of freedom: f = f1 + f2

■ Incompatible observables

We turn to the case ÂB̂ ̸= B̂Â. Such observables show mutual incompatibility:
they both cannot simultaneously take exact values in any state. An increasing
precision of the determination of observable Â reduces the precision for observ-
able B̂ and vice versa. This is the celebrated quantum uncertainty relation.

▶ [Â, B̂] = iĈ ̸= 0 with Ĉ = Ĉ† for Â= Â† and B̂= B̂†

(iĈ)† = (ÂB̂ − B̂Â)† = B̂†Â† − Â†B̂† = [B̂, Â] = −[Â, B̂] = −iĈ ⇒ Ĉ = Ĉ†

▶ Uncertainty relation

[⟨A2⟩ψ−⟨A⟩2ψ]︸ ︷︷ ︸
⟨⟨A2⟩⟩ψ

[⟨B2⟩ψ−⟨B⟩2ψ]︸ ︷︷ ︸
⟨⟨B2⟩⟩ψ

≥ 1
4 ⟨ψ|Ĉ|ψ⟩2︸ ︷︷ ︸

⟨C⟩2ψ

The right-hand side, which is

the lower bound of the product

of dispersions, depends on |ψ⟩.
Proof:
[⟨A2⟩ψ−⟨A⟩2ψ] = ⟨ψ|[Â−⟨A⟩ψÎ]2|ψ⟩ = ⟨φ|φ⟩ with |φ⟩ = [Â−⟨A⟩ψÎ]|ψ⟩
[⟨B2⟩ψ−⟨B⟩2ψ] = ⟨ψ|[B̂−⟨B⟩ψÎ]2|ψ⟩ = ⟨χ|χ⟩ with |χ⟩ = [B̂−⟨B⟩ψÎ]|ψ⟩

⟨⟨A2⟩⟩ψ⟨⟨B2⟩⟩ψ = ⟨φ|φ⟩⟨χ|χ⟩ ≥ |⟨φ|χ⟩|2 =
∣∣∣⟨ψ|[Â−⟨A⟩ψÎ][B̂−⟨B⟩ψÎ]|ψ⟩

∣∣∣
2

=
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∣∣∣⟨ψ|ÂB̂|ψ⟩−⟨A⟩ψ⟨B⟩ψ
∣∣∣
2

=

∣∣∣∣⟨ψ| ÂB̂+B̂Â
2 |ψ⟩+⟨ψ| ÂB̂−B̂Â

2︸ ︷︷ ︸
i
2 Ĉ

|ψ⟩−⟨A⟩ψ⟨B⟩ψ
∣∣∣∣
2

≥ 1
4⟨ψ|Ĉ|ψ⟩2 ≡

[
1
2⟨C⟩ψ

]2

This means that non-commuting operators Â, B̂
cannot be diagonalized simultaneously. The more
precisely we know one of the observables, the less
precisely we can know the other.

■ Analogy with Poisson brackets

Although incompatible observables (with non-commuting operators) are gen-
uinely quantum invention, there exists a surprising parallel of this behavior in
classical mechanics. It is based on algebraic properties of Poisson brackets. The
following paragraph may alter our perspective on quantum physics: Perhaps it
is not as alien as it seemed to be, perhaps it results from a specific generaliza-
tion of the mathematics involved already in the classical description. We will
partially return to these issues in Sec. 8.

▶ Some properties of commutators

For arbitrary operators Â, B̂, Ĉ, Â′, ... and complex constants a, b, c, a′, ... we
can easily prove the following relations:

(a) Basic [Â,B̂]=−[B̂,Â] [Â,aÎ]=0

(b) Sums [aÂ+a′Â′,B̂]=a[Â,B̂]+a′[Â′,B̂]

[Â,bB̂+b′B̂′]=b[Â,B̂]+b′[Â,B̂′]

(c) Products [ÂÂ′,B̂]=Â[Â′,B̂]+[Â,B̂]Â′

[Â,B̂B̂′]=B̂[Â,B̂′]+[Â,B̂]B̂′

(d) Jacobi identity [Â,[B̂,Ĉ]]+[B̂,[Ĉ,Â]]+[Ĉ,[Â,B̂]]=0

▶ Poisson bracket for classical observables A and B in f degrees of freedom:
We have A ≡ A(p1...pf , q1...qf) and B ≡ B(p1...pf , q1...qf) and define

{A,B} ≡
f∑

i=1

(
∂A
∂qi

∂B
∂pi

− ∂B
∂qi

∂A
∂pi

)
Note: alternative definition with pi↔qi would
yield the opposite sign of the Poisson bracket

Properties of Poisson brackets are analogous to those of commutators:

(a) Basic {A,B}=−{B,A}, {A,a}=0

(b) Sums {aA+a′A′,B}=a{A,B}+a′{A′,B}
{A,bB+b′B′}=b{A,B}+b′{A,B′}

(c) Products {AA′,B}=A{A′,B}+{A,B}A′

{A,BB′}=B{A,B′}+{A,B}B′

(d) Jacobi ident. {A,{B,C}}+{B,{C,A}}+{C,{A,B}}=0

▶ Geometrical meaning of Poisson bracket

{A,B}=
(
− ∂A

∂p1
, ...− ∂A

∂pf
,+ ∂A

∂q1
, ...+ ∂A

∂qf

)
︸ ︷︷ ︸
J2f∇⃗2fA vector⊥ to gradient

·
(

∂B
∂q1

, ... ∂B∂qf ,
∂B
∂p1

, ... ∂B∂pf

)
︸ ︷︷ ︸

∇⃗2fB gradient

ordinary scalar
product of two
2f -dim vectors
in the phase space

J2f ≡
(

0 −If
+If 0

)
is the symplectic matrix in dim. 2f (If ≡ unit matrix in dim. f)
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{A,A}=0 ⇔ (J2f∇⃗2fA)︸ ︷︷ ︸
one of the tangent
vectors toA=const

⊥ (∇⃗2fA)︸ ︷︷ ︸
normal vector
toA=const

{A,B}=0 ⇔ (J2f∇⃗2fA)︸ ︷︷ ︸
a tangent vector
toA=const

⊥ (∇⃗2fB)︸ ︷︷ ︸
normal vector
toB=const

{A,B} ̸=0 ⇔
︷ ︸︸ ︷
(J2f∇⃗2fA)∠

︷ ︸︸ ︷
(∇⃗2fB)

⇒ {A,B} = 0 ⇒ hypersurfaces A=const & B=const locally coincide
{A,B} ̸= 0 ⇒ hypersurfaces A=const & B=const locally deviate

The geometric view of Poisson brackets has consequences for classical statisti-
cal physics, when one deals with statistical ensembles of systems in different
classical states, i.e., delocalized probability distributions in the phase space
(q1...qf , p1...pf) ≡ (q,p) instead of single points in that space. In such a statis-
tical ensemble, any physical quantity A does not in general take a single value a,
but shows a certain statistical distribution of possible a’s. Assume a statistical
ensemble with the phase-space probability distribution ρ(q,p) spread to various
directions around a point (q0,p0) in the phase space. From the above geomet-
rical considerations it follows that, in this ensemble, the quantities A and B
cannot both take sharp values if {A,B} ̸=0 at the point (q0,p0). This can be
considered as a classical analog of quantum uncertainty, though no relations
for the lower bounds of the uncertainty exist in the classical case.

▶ Dirac quantization assumption

The importance of Poisson brackets for quantum theory is codified by this
essential postulate: Consider arbitrary observables A, B and C expressed by
classical phase-space functions A(q,p), B(q,p) and C(q,p) and by quantum
operators Â, B̂ and Ĉ, respectively. These entities must satisfy the following
relation between the Poisson brackets and the corresponding commutators:

{A,B} = C (classical) ⇒ [Â, B̂] = iℏĈ (quantum)

Note that the ⇐ implication does not in general hold as some quantum systems
(e.g., spin-12 particles) have no classical counterparts.

■ Equivalent representations of quantum mechanics

A fascinating feature of physical description is that it can be cast in infinitely
many equivalent ways. In other words, there exists a multitude of mathematical
representations yielding the same observable output. In classical mechanics,
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this feature is anchored in the concept of canonical transformations. In quantum
mechanics, the equivalent descriptions follow from the use of various Hilbert-
space bases, which may be generated by alternative complete sets of observables.

▶ Discrete representations

Any complete set of commuting operators {Â, B̂, . . . } with discrete spectra
generates a countable orthonormal basis {|i⟩}dHi=1 of H. dH∑

i=1

|i⟩⟨i| = ÎH

⟨i|j⟩ = δij

State vectors are then represented by CdH “columns”
and operators by dH × dH complex matrices
(both finite & infinite cases included):

|ψ⟩ =
∑
i

|i⟩⟨i|ψ⟩ =
∑
i

⟨i|ψ⟩︸︷︷︸
ψi

|i⟩ ⇒ |ψ⟩ ≡
(

ψ1

ψ2

...

)

|ψ′⟩= Â|ψ⟩∑
i

|i⟩
ψ′
i︷ ︸︸ ︷

⟨i|ψ′⟩ =
∑
i

∑
j

|i⟩

Aij︷ ︸︸ ︷
⟨i|Â|j⟩

ψj︷ ︸︸ ︷
⟨j|ψ⟩

ψ′
i =

∑
j

Aijψj

⇒

(
ψ′
1

ψ′
2

...

)
=

(
A11 A12 ...
A21 A22

... ...

)(
ψ1

ψ2

...

)

▶ Continuous representations

For a complete set {Â, B̂, . . . } with continuous spectra there exists a continuous
“orthonormal basis” {|x⟩}x∈D ∈ H (with D being some relevant domain of
generally a multidimensional variable x).

∫
x∈D

|x⟩⟨x|dx = ÎH

⟨x|x′⟩ = δ(x−x′)
State vectors are then represented by wavefunctions
and operators by kernels of integral transformations:

|ψ⟩=
∫
|x⟩⟨x|ψ⟩ dx=

∫
⟨x|ψ⟩︸ ︷︷ ︸
ψ(x)

|x⟩ dx ⇒ |ψ⟩ ≡ ψ(x)

|ψ′⟩= Â|ψ⟩∫
dx |x⟩

ψ′(x)︷ ︸︸ ︷
⟨x|ψ′⟩=

∫
dx

∫
dx′ |x⟩

A(x,x′)︷ ︸︸ ︷
⟨x|Â|x′⟩

ψ(x′)︷ ︸︸ ︷
⟨x′|ψ⟩
⇒ ψ′(x) =

∫
A(x, x′)ψ(x′) dx′

▶ Mixed representations

A complete set {Â, B̂, . . . } with mixed discrete and continuous spectra gener-
ates a combined dis.-cont. “orthonormal basis”
{|i, x⟩} i∈Di

x∈Dx

∈ H (with Di,Dx some domains).

∑
i∈Di

∫
Dx

|i, x⟩⟨i, x| dx = ÎH

⟨i, x|i′, x′⟩ = δii′δ(x− x′)State vectors are represented (finite/infinite)
“columns” of wavefunction components and operators
by kernes of matrix-integral transformations:

|ψ⟩ =
∑
i∈Di

∫
Dx

dx |i, x⟩ ⟨i, x|ψ⟩︸ ︷︷ ︸
ψi(x)

⇒ |ψ⟩ ≡

(
ψ1(x)
ψ2(x)
...

)

|ψ′⟩= Â|ψ⟩
∑
i

∫
dx |i, x⟩

ψ′
i(x)︷ ︸︸ ︷

⟨i, x|ψ′⟩=
∑
i

∑
j

∫
dx

∫
dx′ |i, x⟩

Aij(x,x
′)︷ ︸︸ ︷

⟨i, x|Â|j, x′⟩
ψj(x

′)︷ ︸︸ ︷
⟨j, x′|ψ⟩
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⇒

(
ψ′
1(x)

ψ′
2(x)
...

)
=

∫ (
A11(x,x

′) A12(x,x
′) ...

A21(x,x
′) A22(x,x

′)
... ...

)(
ψ1(x

′)
ψ2(x

′)
...

)
dx′

◀ Historical remark
1925-26: M.Born, W.Heisenberg, P. Jordan write commutation relations between
various observables (matrix mechanics) and introduce the concept of compatibility
1927: P. Jordan, P.Dirac attempt to introduce canonical transformations to QM
1927: John von Neumann formulates the concept of complete sets of observables
and associates “canonical transformations” with different choices of this set
1927: Werner Heisenberg writes down the ∆x∆p uncertainty relation
1928: E.H.Kennard and H.Weyl derive the uncertainty relation from the commu-
tator, generalization ∀ incompatible observables by H.P.Robertson in 1929
1930: P.Dirac relates commutators to Poisson brackets (⇒ canonical quantization)

3b. EXAMPLES OF OBSERVABLE SETS

We now apply the results of the previous section to the single-particle operators in-
troduced in Sec. 2.b. In particular, the algebra of coordinate and momentum opera-
tors and that of angular momentum operators will be investigated. Representations
of the single-particle Hilbert space will be built using these operators.

■ Coordinate & momentum

Coordinate and momentum operators satisfy the commonly known commuta-
tion relation—a twin of the canonical Poisson bracket of classical mechanics. It
leads to the familiar form of the uncertainty relation but also to the problems
of ˆ⃗x and ˆ⃗p in the ordinary Hilbert space (see Sec. 2.a). The ˆ⃗x & ˆ⃗p operators
allow one to assemble a plethora of composite operators, including the oscillator
ladder operators whose action depends on some specific commutation relations.

▶ Canonical commutation relations

From the known form of the coordinate & momentum operators we immediately
get the corresponding commutators:

x̂i ≡ xi · p̂i ≡ −iℏ ∂
∂xi

⇒ [x̂i, x̂j] = [p̂i, p̂j] = 0, [x̂i, p̂j] = iℏδij Î

consistent with Poisson brackets: {xi, xj}={pi, pj}=0, {xi, pj}=δij

These relations define general canonically conjugate quantities

Note: The same commutation relations can also be satisfied with:

x̂i ≡ xi · p̂i ≡ −iℏ ∂
∂xi

+ f(x⃗) where f(x⃗) is any differentiable function.
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▶ Heisenberg uncertainty relation

From the general form ⟨⟨A2⟩⟩ψ⟨⟨B2⟩⟩ψ ≥ 1
4⟨C⟩2ψ we

obtain: ⟨⟨x2i ⟩⟩ψ  
(∆xi)2

⟨⟨p2j⟩⟩ψ  
(∆pj)2

≥ 1
4⟨ψ| ℏδij Î  

Ĉ

|ψ⟩2= ℏ2
4 δij

Hence for any state |ψ⟩ we can write: ∆xi∆pi ≥ ℏ
2

▶ Some general consequences

(a) Operators x̂i and p̂i cannot be represented in H of a finite dimension d.

To show this, we introduce the trace of an operator:

Tr Â =

i

arbitrary basis

⟨ϕi|Â|ϕi⟩  
Aii

=

i

di
k=1

⟨a(k)i |Â|a(k)i ⟩ =

i

diai

The independence on the choice of basis:
i

⟨ϕ′
i|Â|ϕ′

i⟩ =

i,j,k

⟨ϕ′
i|ϕj⟩⟨ϕj|Â|ϕk⟩⟨ϕk|ϕ′

i⟩ =

j,k

δkj  
⟨ϕk|Î|ϕj⟩⟨ϕj|Â|ϕk⟩ =


j

⟨ϕj|Â|ϕj⟩

Another property:
Tr(ÂB̂) =


i

⟨ϕi|ÂB̂|ϕi⟩=

i,j

⟨ϕi|Â|ϕj⟩⟨ϕj|B̂|ϕi⟩=

j,i

⟨ϕj|B̂|ϕi⟩⟨ϕi|Â|ϕj⟩ = Tr(B̂Â)

For coordinate and momentum operators represented in a finite dimension d,
this relation yields a contradiction: Tr[x̂i, p̂i] = 0 ̸= Tr(iℏÎd) = iℏd
However, there exist various d=∞ discrete representations of x̂ and p̂, e.g., the
one obtained in the basis of 1D harmonic oscillator:

x̂ =


ℏ
2Mω




0
√
1 0 0 0 ...√

1 0
√
2 0 0

0
√
2 0

√
3 0

0 0
√
3 0

√
4

... ... ... ...


 p̂ =


Mℏω
2




0 −i
√
1 0 0 0 ...

i
√
1 0 −i

√
2 0 0

0 i
√
2 0 −i

√
3 0

0 0 i
√
3 0 −i

√
4

... ... ... ...




(b) Eigenvectors of x̂i and p̂i are out of H (more precisely: ∄ within H).

Assume coordinate eigenstate |xi⟩∈H satisfying ⟨xi|xi⟩=1. From the r.h.s. of
the commutation relation we get: ⟨xi|[x̂i, p̂i]|xi⟩ = iℏ. But we simultaneously
have ⟨xi|[x̂i, p̂i]|xi⟩=xi⟨xi|p̂i|xi⟩−xi⟨xi|p̂i|xi⟩ = 0, which is a contradiction.

▶ Oscillator and general ladder operators

We return to the 1D harmonic oscillator: Ĥ = 1
2M p̂2 + Mω2

2 x̂2. Using dimen-
sionless coordinate x̂ = 1√

2ℏ/Mω
x̂ and momentum p̂ = 1√

2ℏMω
p̂ with the commu-

tation relation [x̂, p̂] = i
2 Î we express the dimensionless Hamiltonian Ĥ = 1

ℏωĤ:

Ĥ = x̂2 + p̂2 = (x̂− ip̂)  
b̂†

(x̂+ ip̂)  
b̂

−i (x̂p̂− p̂x̂)  
[x̂,p̂]

= b̂†b̂+ 1
2
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The b̂ and b̂† operators satisfy the mutual commutation relation [b̂, b̂†] = Î

We also get: [Ĥ, b̂†] = +b̂†, [Ĥ, b̂] = −b̂.

Let |n⟩ be an eigenstate of Ĥ with eigenvalue En = n+ 1
2 , where n is

yet an unknown eigenvalue of b̂†b̂. So we have Ĥ|n⟩ = En|n⟩ and:

Ĥ b̂†|n⟩ = (b̂† Ĥ+ b̂†) |n⟩=
En+1︷ ︸︸ ︷

(En+1) b̂†|n⟩
Ĥ b̂ |n⟩ = (b̂ Ĥ− b̂ ) |n⟩= (En−1)︸ ︷︷ ︸

En−1

b̂ |n⟩

}
⇒

{
b̂†|n⟩ = c↑(n)|n+1⟩
b̂ |n⟩ = c↓(n)|n−1⟩

with c↑(n), c↓(n) ∈ R some
normalization constants

c↑(n)
2

1︷ ︸︸ ︷
⟨n+1|n+1⟩=⟨n|b̂b̂†|n⟩=⟨n|b̂†b̂+1|n⟩=n+1 ⇒ c↑(n)=

√
n+1

c↓(n)
2 ⟨n−1|n−1⟩︸ ︷︷ ︸

1

=⟨n|b̂†b̂|n⟩=n ⇒ c↓(n)=
√
n

Since we know that En ≥ 0, there must exist a value nmin such that b̂|nmin⟩=0
and from the above c↓ we get nmin = 0. So the 1D oscillator spectrum En = n+ 1

2

is given by values n = 0, 1, 2, 3, . . .

The harmonic oscillator ladder operators b̂† and b̂ represent a special case of
more general ladder (shift) operators:
If Â is a Hermitian operator and T̂∆ satisfies:

[
Â, T̂ †

∆

]
= +∆T̂ †

∆[
Â, T̂∆

]
= −∆T̂∆

∆ ∈ R
∆>0

without loss
of generalitythen:

Â|a⟩ = a|a⟩ ⇒
{

Â(T̂ †
∆|a⟩)=(a+∆)(T̂ †

∆|a⟩)
Â(T̂∆|a⟩)=(a−∆)(T̂∆|a⟩)

So the Hermitian conjugate operator T̂ †
∆ and T̂∆ shift eigenstates of Â by values

+∆ and −∆, respectively:
T̂ †
∆|a⟩=c↑(a)|a+∆⟩ with c↑(a)=

√
⟨a|T̂∆T̂

†
∆|a⟩

T̂∆|a⟩=c↓(a)|a−∆⟩ with c↓(a)=
√
⟨a|T̂ †

∆T̂∆|a⟩

▶ Canonical & mechanical momentum of particle in elmg. field

Classical HamiltonianH= 1
2M [p⃗−qA⃗(x⃗)]2+qV(x⃗) with p⃗ ≡ canonical momentum

Mechanical momentum π⃗ defined through velocity: ˙⃗x = ∂H
∂p⃗ = 1

M [p⃗− qA⃗(x⃗)]︸ ︷︷ ︸
π⃗In QM, the operators of canonical & mechanical momenta

can be expressed as: ˆ⃗p = −iℏ∇⃗ & ˆ⃗π = −iℏ∇⃗ − qA⃗(x⃗)

While the canonical momenta have canonical commutation relations, the com-
mutators of mechanical momenta depend on the magnetic field:

[π̂i, π̂j] = [p̂i, p̂j]︸ ︷︷ ︸
0

−q[p̂i, Âj]− q[Âi, p̂j] + q2 [Âi, Âj]︸ ︷︷ ︸
0

= iℏq
(
∂Aj

∂xi
− ∂Ai

∂xj

)
︸ ︷︷ ︸

εijkBk

[π̂i, π̂j] = iℏq εijkBk(x⃗) ⇒ incompatible velocity components for B⃗ ̸=0
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■ Coordinate & momentum representations

Although coordinate and momentum operators are not entirely free of troubles
(the corresponding eigenstates dwelling somewhere outside the ordinary Hilbert
space), the most familiar representations of quantum mechanics are based on
these operators. For the sake of simplicity, we restrict ourselves to the 1D case.

▶ Coordinate representation in 1D

The state vector |ψ⟩=

dx ⟨x|ψ⟩|x⟩ described by wavefunction ψ(x) ≡ ⟨x|ψ⟩

Scalar product: ⟨ψ|ψ′⟩ =

dx ⟨ψ|x⟩⟨x|ψ′⟩ =


dxψ(x)∗ ψ′(x)

Position operator: x̂ψ(x) = xψ(x)
Momentum operator: p̂ψ(x) = −iℏ d

dxψ(x)



expressions
used so far

Strictly, all these relations (as well as those below) should be restricted only to
|ψ⟩ ∈ H (a dense subset of H)

▶ Momentum representation in 1D

The state vector |ψ⟩=

dp ⟨p|ψ⟩|p⟩ described by wavefunction ψ̃(p) ≡ ⟨p|ψ⟩

One gets expressions analogous (complementary) to the x-representation:

Scalar product: ⟨ψ|ψ′⟩ =

dp ⟨ψ|p⟩⟨p|ψ′⟩ =


dp ψ̃(p)∗ ψ̃′(p)

Momentum operator: p̂ψ̃(p) = ⟨p|p̂|ψ⟩ = p⟨p|ψ⟩ ⇒ p̂ ψ̃(p) = p ψ̃(p)

Position operator: x̂ψ̃(p) = ⟨p|x̂|ψ⟩ =

⟨p|x̂|p′⟩  
X(p,p′)

⟨p′|ψ⟩  
ψ̃(p′)

dp′ =

=
�

1√
2πℏe

−i
px
ℏ  

⟨p|x⟩
xδ(x−x′)  
⟨x|x̂|x′⟩

1√
2πℏe

+i
p′x′
ℏ  

⟨x′|p′⟩ ψ̃(p′) dx dx′ dp′ = 1
2πℏ
�

iℏ d
dpe

i
(p′−p)x

ℏ  
xei

(p′−p)x
ℏ ψ̃(p′) dx dp′

= i
2π

d
dp

 
ei

(p′−p)x
ℏ dx

  
2πℏδ(p′−p)

ψ̃(p′) dp′ = iℏ d
dpψ̃(p) ⇒ x̂ψ̃(p) = +iℏ d

dpψ̃(p)

▶ Links between x & p - representations: Fourier transformation

Relations between eigenstates: coordinate rep. momentum rep.

|x′⟩ δ(x−x′) 1√
2πℏ e

−ix′p/ℏ

|p′⟩ 1√
2πℏ e

+ip′x/ℏ δ(p−p′)

Relations between general states:

⟨p|ψ⟩ =
+∞
−∞

⟨p|x⟩  
1√
2πℏe

−i
px
ℏ

⟨x|ψ⟩  
ψ(x)

dx = 1√
2πℏ

+∞

−∞

e−ipxℏ ψ(x) dx = ψ̃(p)

⟨x|ψ⟩ =
+∞
−∞

⟨x|p⟩  
1√
2πℏe

+i
px
ℏ

⟨p|ψ⟩  
ψ̃(p)

dp = 1√
2πℏ

+∞

−∞

e+ipxℏ ψ̃(p) dp = ψ(x)
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In the 3D case, the above expressions must be modified by the following sub-

stitutions: 1√
2πℏ → 1

(2πℏ)3/2
dx → dx⃗
dp → dp⃗ p x → p⃗ · x⃗

▶ Gaussian wavepackets

These represent a family of well behaved wavefunctions (∈ H) suitable for
the description of particles partially localized in both coordinate & momentum
spaces. They are defined as states whose probability density ρ(p) ≡ |ψ̃(p)|2 in
momentum space has the Gaussian form with average p0 and width σp. The
corresponding probability distribution ρ(x) ≡ |ψ(x)|2 in the coordinate space is
also a Gaussian whose width σx is connected to σp via the uncertainty relation.

ψ̃(p) = 1

(2πσ2
p)

1
4
e
− (p−p0)

2

4σ2p normalization:
+∞∫
−∞

|ψ̃(p)|2 dp = 1

Coordinate representation:

ψ(x) = 1√
2πℏ

+∞∫
−∞

e+ipxℏ ψ̃(p) dp = 1

(8π3ℏ2σ2
p)

1
4︸ ︷︷ ︸

C

+∞∫
−∞

e
+ipxℏ −p2−pp0+p20

4σ2p︸ ︷︷ ︸ dp = C
√

π
|a| e

c− b2

4a =

e
− 1

4σ2p
p2+(

p0
2σ2p

+ ix
ℏ )p−

p20
4σ2p ≡ eap

2+bp+c

1

(2πσ2
x)

1
4
e
− x2

4σ2x e+i
p0x
ℏ = ψ(x)

with σx satisfying σxσp =
ℏ
2

⇒ Heisenberg relation minimized

◀ Historical remark
1926: M.Born, W.Heisenberg, P. Jordan derive commutation relations for position
& momentum and for the components of angular momentum
1927-8: H.Weyl analyzes algebraic properties of position & momentum operators
1930: Paul Dirac introduces position & momentum representations and elaborates
a method of solving some eigenproblems with the aid of ladder operators
1931: M. Stone & J.von Neumann prove unitary equivalence of representations con-
serving the canonical commutation relation
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■ Angular momentum operators

Let us analyze commutation relations of angular-momentum operators. In fact,
it is these relations what allows us to recognize that a given set of operators
(like Pauli matrices) represents an angular momentum. In other words: what
commutes like angular momentum is angular momentum.

▶ Components of spin 1
2



[Ŝx,Ŝy]=
ℏ2
4 [σ̂x,σ̂y]=2i

ℏ2
4 σ̂z=iℏŜz

[Ŝy,Ŝz]=
ℏ2
4 [σ̂y,σ̂z]=2i

ℏ2
4 σ̂x=iℏŜx

[Ŝz,Ŝx]=
ℏ2
4 [σ̂z,σ̂x]=2i

ℏ2
4 σ̂y=iℏŜy




⇒ [Ŝi, Ŝj] = iℏεijkŜk or [σ̂i, σ̂j] = 2iεijkσ̂k

Uncertainty relation ⟨⟨S2
x⟩⟩ψ⟨⟨S2

y⟩⟩ψ ≥ ℏ2
4 ⟨Sz⟩2ψ

⇒ (∆Sx)ψ(∆Sy)ψ ≥ ℏ
2 |⟨Sz⟩ψ|

This is an example of state-dependent uncertainty

relation. For |ψ⟩ = α| ↑⟩+β| ↓⟩ (with |α|2+|β|2=1)

we get: (∆Sx)ψ(∆Sy)ψ ≥ ℏ2
2

1
2 − |β|2


For |β|2= 1

2 there is no lower bound of uncertainty
for the x & y components. This is because in that case the spin lies in the xy
plane (see Sec. 2b), so one of the components may be sharp (dispersion equal
to zero) while the dispersion of the other component must be finite.

▶ Components of orbital angular momentum
[L̂x,L̂y]=[ŷp̂z−ẑp̂y,ẑp̂x−x̂p̂z]=[ŷp̂z,ẑp̂x]+[ẑp̂y,x̂p̂z]=iℏ(x̂p̂y−ŷp̂x)=iℏL̂z

[L̂y,L̂z]=[ẑp̂x−x̂p̂z,x̂p̂y−ŷp̂x]=[ẑp̂x,x̂p̂y]+[x̂p̂z,ŷp̂x]=iℏ(ŷp̂z−ẑp̂y)=iℏL̂x

[L̂z,L̂x]=[x̂p̂y−ŷp̂x,ŷp̂z−ẑp̂y]=[x̂p̂y,ŷp̂z]+[ŷp̂x,ẑp̂y]=iℏ(ẑp̂x−x̂p̂z)=iℏL̂y


⇒ [L̂i, L̂j] = iℏεijkL̂k

Poisson brackets {Li, Lj} = εijkLk

▶ Components of total (orbital+spin) angular momentum

Hilbert space: H = Hspatial  
L2(R3)

⊗Hspin  
C2

Ĵi = L̂i + Ŝi = L̂i ⊗ Î + Î ⊗ Ŝi

[L̂i, Ŝj] = 0 = [L̂i⊗Î , Î⊗Ŝj] ⇒ [Ĵi, Ĵj] = [L̂i, L̂j]+[Ŝi, Ŝj] = iℏεijk

Ĵk  
(L̂k + Ŝk)

▶ Components and square of general angular momentum

We consider a general system with unspecified Hilbert space H. Operators
{Ĵi}3i=1 corresponding to components of the system’s angular momentum must

satisfy commutation relations [Ĵi, Ĵj] = iℏεijkĴk These components are in-

compatible, yielding e.g. this uncertainty relation: (∆Jx)ψ(∆Jy)ψ ≥ ℏ
2 |⟨Jz⟩ψ|
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However, we construct a compatible observable:

Ĵ2 =
3

i=1

Ĵ2
i ≡ ĴiĴi = δijĴiĴj squared angular momentum

(summation convention is used on the r.h.s.)

The ang.momentum square Ĵ2 (its size) commutes with all components Ĵi:

[Ĵi, ĴjĴj] = Ĵj [Ĵi, Ĵj]  
iℏεijkĴk

+ [Ĵi, Ĵj]  
iℏεijkĴk

Ĵj = iℏεijk(ĴjĴk + ĴkĴj) = 0 = [Ĵi, Ĵ
2]

⇒ Ĵ2 can be diagonalized simultaneously with any component Ĵi

The conventional pair of compatible ang.momentum observables: Ĵ2, Ĵ3≡ Ĵz

▶ Simultaneous eigenfunctions of Ĵ2 & Ĵz for a single particle

Orbital momentum:
L̂2R(r)Ylm(ϑ, φ) = l(l + 1)ℏ2R(r)Ylm(ϑ, φ)

L̂z R(r)Ylm(ϑ, φ) = mℏR(r)Ylm(ϑ, φ)
∀R(r)

l = 0, 1, 2, ..., m = −l, (−l+1), . . . , (+l−1),+l.

Spin 1
2 : Ŝ2 = ℏ2

4 [ σ̂
2
x
Î

+ σ̂2
y
Î

+ σ̂2
z
Î

] = 3
4 ℏ

2Î
1
2(

1
2 + 1) = s(s+ 1)

Ŝ2 ( αβ )=
1
2(

1
2+1)ℏ2 ( αβ ) ∀ ( αβ ) ∈ C2,

Ŝz (
α
0 ) = +1

2ℏ (
α
0 ), Ŝz

�
0
β


= −1

2ℏ
�
0
β


∀α, β ∈ C

So the spinors ψ(x⃗)=


R(r)Ylm(ϑ, φ)( 10 )
R(r)Ylm(ϑ, φ)( 01 )


are simultaneous eigenvectors of ope-

rators


L̂2, L̂z, Ŝ

2, Ŝz


with these eigenvalues:


ℏ2l(l+1), ℏm, ℏ1

2(
1
2+1),±1

2ℏ


General spin: These considerations can be extended to particles with arbi-
trary spins, both bosons & fermions (the theory will be gradually elaborated
below in this Sec. and in Sec. 4b). The spin size is determined by quantum num-

ber s = 1
2 , 1,

3
2 , 2,

5
2 , . . . and we set Ŝ2=s(s+1)ℏ2Î in the spin Hilbert space

Hspin=C2s+1 ≡ C2,C3,C4, . . . . The spin projection operator Ŝz has eigenvalues
ℏms, which take 2s+1 values given by ms = −s, (−s+1), . . . , (+s−1),+s; this
operator can be represented by a diagonal matrix.

Ŝ2

 α+s

...
α−s


= s(s+1)ℏ2

 α+s

...
α−s


∀

 α+s

...
α−s


∈ C2s+1, Ŝz




0
...

αms

...
0


 = msℏ




0
...

αms

...
0







1
0
0
...
0


,




0
1
0
...
0


, · · · ,




0
0
...
0
1


 ≡


simultaneous eigenvectors

of Ŝ2 and Ŝz

In Sec. 4b, we will describe how s is related to rotational transformations of
wavefunctions and give another representation of s=1 states.
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Note: Although spin represents a kind of “internal rotation” of a particle, it
cannot be interpreted as a classical-like rotational motion of a massive “corpus-
cle”. To explain in this way the spin size S ≈ sℏ would require a diameter of
the particle R ≳ ℏ

Mc , which is too large (for electron ≳ 102 larger than nuclei).

▶ Angular-momentum ladder operators

From the above commutation relations we derive ladder operators which help to
derive the most relevant properties of general angular momentum observables.

Let |jm, ...⟩ ≡ |jm⟩ stand for the angular
momentum eigenvectors (we skip the other
quantum numbers “...”)

Ĵ2|jm⟩ = ℏ2j(j+1)|jm⟩
Ĵ3|jm⟩ = ℏm|jm⟩

We introduce operators Ĵ± = Ĵ1 ± iĴ2 satisfying Ĵ†
− = Ĵ+

[Ĵ2, Ĵ±] = 0 ⇒ Ĵ± do not affect j

[Ĵ3, Ĵ±] = [Ĵ3, Ĵ1]︸ ︷︷ ︸
iℏε312Ĵ2

±i [Ĵ3, Ĵ2]︸ ︷︷ ︸
iℏε321Ĵ1

= iℏ(Ĵ2 ∓ iĴ1) = ±ℏ (Ĵ1 ± iĴ2)︸ ︷︷ ︸
Ĵ±

⇒ general

ladder-operator relations

{
[Â,T̂ †

∆]=+∆ T̂∆

[Â,T̂∆]=−∆ T̂∆

}
are satisfied: [Ĵ3, Ĵ±] = ±ℏĴ±

Hence we get: Ĵ±|jm⟩=
√
⟨jm|Ĵ∓Ĵ±|jm⟩|j(m±1)⟩

Ĵ∓Ĵ±=(Ĵ1∓iĴ2)(Ĵ1±iĴ2)= Ĵ2
1+Ĵ2

2±i

iℏĴ3︷ ︸︸ ︷
[Ĵ1, Ĵ2]= Ĵ2−Ĵ2

3∓ℏĴ3

Ĵ±|jm⟩ = ℏ
√
j(j+1)−m(m±1) |j(m±1)⟩

▶ Possible values of j and m quantum numbers

From the finite value of Ĵ2 in state |jm⟩ we expect that any projection of
ˆ⃗
J is

bounded, so there must be some limiting values mmin & mmax such that

Ĵ−|jmmax⟩ = 0

Ĵ+|jmmin⟩ = 0
with

mmax=+j
mmin=−j

as follows from the above relation

Ĵ±|j(m=±j)⟩=0

We can also use positive definiteness of operator Ĵ2
1+Ĵ2

2 = Ĵ2−Ĵ2
3 , that is

(Ĵ2
1 + Ĵ2

2 )|jm⟩ = ℏ2[j(j+1)−m2]|jm⟩ ⇒ −
√
j(j+1) ≤ m ≤ +

√
j(j+1),

and solve: Ĵ+Ĵ−︸ ︷︷ ︸
Ĵ2−Ĵ2

3+ℏĴ3

|jmmin⟩ = 0 = Ĵ−Ĵ+︸ ︷︷ ︸
Ĵ2−Ĵ2

3−ℏĴ3

|jmmax⟩

j(j+1)−m2
min+mmin = 0 = j(j+1)−m2

max−mmax

⇓
⇒ the above values

mmin andmmax

Therefore, the action of Ĵ± on |jm⟩ proceeds according to the scheme:

0
×
↽
Ĵ−

|j mmin︸︷︷︸
−j

⟩
Ĵ+
⇌
Ĵ−

|j (mmin+1)︸ ︷︷ ︸
−j+1

⟩
Ĵ+
⇌
Ĵ−

. . . . . .
Ĵ+
⇌
Ĵ−

|j (mmax−1)︸ ︷︷ ︸
+j−1

⟩
Ĵ+
⇌
Ĵ−

|j mmax︸ ︷︷ ︸
+j

⟩ Ĵ+
⇀
×
0
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This chain is closed iff j = 0, 12 , 1,
3
2 , 2,

5
2 , . . . ⇒ general angular momen-

tum can have only an integer or half-integer squared-size quantum number.
The half-integer values appear only in connection with the spin of fermionic
particles, including the size of the total angular momentum of a system that
contains such particles.

■ Addition of two angular momenta

Consider an angular momentum vector which is a sum of two partial angu-
lar momenta (like the total angular momentum obtained from spin and or-
bital momenta of a single particle). The system can be characterized by the
eigenvectors of both partial angular momenta, as well as by the eigenvectors
of the total angular momentum. In general, we consider a product Hilbert
space H = H(1) ⊗H(2) with spaces H(1) and H(2) associated, respectively, with
two different sets of angular momentum operators J⃗ (1) and J⃗ (2). Individual
components satisfy commutation relations [Ĵ

(m)
i , Ĵ

(n)
j ] = iℏεijkδmnĴ

(m)
k , where

m,n = 1, 2. Below we again consider only the angular-momentum quantum
numbers j and m and skip the remaining quantum numbers, which depend on
the system of interest and can be easily included in the description.

▶ Uncoupled angular-momentum basis

First, we consider a trivial complete set of commuting operators formed by
the square and z-component of both partial angular momenta. This yields
a factorized (unenangled) basis in the full space H:
{
Ĵ (1)2, Ĵ

(1)
3 , Ĵ (2)2, Ĵ

(2)
3

}
≡ complete set I ⇒

{
|j1m1⟩|j2m2⟩︸ ︷︷ ︸

|j1m1j2m2⟩

}
≡ basis I

▶ Coupled angular-momentum basis

Second, we construct a complete set of commuting operators which includes
summed (total) angular momentum operators. This set generates a coupled
(entangled) basis in H:

Total angular-momentum
ˆ⃗
J =

ˆ⃗
J (1)+

ˆ⃗
J (2)

Ĵi=Ĵ
(1)
i ⊗Î(2)+Î(1)⊗Ĵ

(2)
i

[Ĵi, Ĵj] =

iℏεijkĴ (1)
k︷ ︸︸ ︷

[Ĵ
(1)
i , Ĵ

(1)
j ] +

iℏεijkĴ (2)
k︷ ︸︸ ︷

[Ĵ
(2)
i , Ĵ

(2)
j ] = iℏεijk

Ĵk︷ ︸︸ ︷
(Ĵ

(1)
k +Ĵ

(2)
k )

standard commuta-
tion relations

⇒ [Ĵ2, Ĵ3] = 0 =

{
[Ĵ2,Ĵ (1)2]=[Ĵ3,Ĵ (1)2]
[Ĵ2,Ĵ (2)2]=[Ĵ3,Ĵ (2)2]

but
[Ĵ2,Ĵ

(1)
3 ]

[Ĵ2,Ĵ
(2)
3 ]

}
̸= 0

{
Ĵ (1)2, Ĵ (2)2, Ĵ2, Ĵ3

}
≡ complete set II ⇒

{
|j1j2jm⟩

}
≡ basis II
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▶ Possible values of total angular momentum

The allowed values of j obtained partly
from dimension considerations: basis I
has dimension d = (2j1+1)(2j2+1)
and the same d is required for basis II.
This helps to determine the bounds for
the size quantum number of the total
angular momentum j ∈ [jmin, jmax]:

(a) Ĵ3 = Ĵ
(1)
3 + Ĵ

(2)
3 ⇒ mmax= mmax1 +mmax2 = j1 + j2 ⇒ jmax = j1 + j2

(b) The determination of minimal j from the dimension criterion:

Number of states for j =
{

0,1,......
1
2 ,

3
2 ,......

jmax is d> = ⌊(jmax+1)2⌋ ≥ d, with the

surplus: d>−d=⌊(j1+j2+1)2⌋−(2j1+1)(2j2+1)=⌊(j1−j2)
2⌋ ≥ 0

Number of states for j=jmin, . . . , jmax is d=⌊(jmax +1)2⌋−⌊j2min⌋

⇒ jmin = |j1 − j2|▶ Transformation between bases I and II

|j1j2jm⟩ =
+j1∑

m1=−j1

+j2∑
m2=−j2

Cjm
j1m1j2m2

|j1m1⟩|j2m2⟩
Clebsch-Gordan (CG)

coefficients

Cjm
j1m1j2m2

≡ (j1m1j2m2|jm)
≡ ⟨j1m1j2m2|j1j2jm⟩

m ̸= m1+m2 or
j /∈ [|j1−j2|, j1+j2]

}
⇒ Cjm

j1m1j2m2
= 0

Note: The symbol Cjm
j1m1j2m2

(alternative notations used in the literature given
above) looks a bit too “indexy”, but it is easy to get used to it. Just remember
that the lower 4 indices specify the two partial angular momenta and the 2
upper indices denote the resulting total angular momentum.

▶ Some properties of Clebsch-Gordan coefficients

(a) Cjm
j1m1j2m2

∈ R (by convention)

(b) From reality we get: ⟨j1m1j2m2|j1j2jm⟩ = ⟨j1j2jm|j1m1j2m2⟩, hence:

|j1m1⟩|j2m2⟩ =
j1+j2∑

j=|j1−j2|

+j∑
m=−j

Cjm
j1m1j2m2

|j1j2jm⟩ inverse relation

(c) Multiply |j1j2jm⟩=
∑

m1,m2

Cjm
j1m1j2m2

|j1m1⟩|j2m2⟩
⟨j1j2j′m′|=

∑
m′

1,m
′
2

Cj′m′

j1m′
1j2m

′
2
⟨j1m′

1|⟨j2m′
2|

⇒
∑
m1,m2

Cjm
j1m1j2m2

Cj′m′

j1m1j2m2
= δjj′δmm′ orthogonality relation I
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(d) Multiply |j1m1⟩|j2m2⟩=
∑
j,m

Cjm
j1m1j2m2

|j1j2jm⟩
⟨j1m′

1|⟨j2m′
2|=

∑
j′,m′

Cj′m′

j1m′
1j2m

′
2
⟨j1j2j′m′|

⇒
∑
j,m

Cjm
j1m1j2m2

Cjm
j1m′

1j2m
′
2
= δm1m′

1
δm2m′

2
orthogonality relation II

The following relations we give here without the proofs:

(e) Cjm
j1m1j2m2

= (−)j−j1−j2︸ ︷︷ ︸
±

Cjm
j2m2j1m1

exchange of indices I

Special case: Cjm
j1m1j1m1

= 0 for (j−2j1)=odd

(f) Cjm
j1m1j2m2

= (−)j1−m1︸ ︷︷ ︸
±

√
2j+1
2j2+1C

j2(−m2)
j1m1j(−m) exchange of indices II

(g) Cjm
j1m1j2m2

= (−)j−j1−j2︸ ︷︷ ︸
±

C
j(−m)
j1(−m1)j2(−m2)

sign inversion

Special case: Cj0
j10j20

= 0 for (j−j1−j2)=odd
▶ 3j symbols

Definition:
(

j1 j2 j3
m1 m2 m3

)
≡ (−)j1−j2−m3√

2j3+1
C

j3(−m3)
j1m1j2m2

These coefficients represent just a more symmetric form of CG coefficients:(
j1 j2 j3
m1 m2 m3

)
= ε

(
jk jl jn
mk ml mn

)
with ε =

{
+1 for even permutation
(−)j1+j2+j3 for odd permutation(

j1 j2 j3
m1 m2 m3

)
= (−)j1+j2+j3

(
j1 j2 j3

−m1 −m2 −m3

)

▶ Construction of Clebsch-Gordan coefficients

The CG coefficients can be calculated with the aid of the angular momentum
ladder operators, which in the H(1)⊗H(2) space have the form Ĵ± = Ĵ

(1)
± +Ĵ

(2)
± ≡

Ĵ
(1)
± ⊗Î(2)+Î(1)⊗Ĵ

(2)
± . The calculation proceeds as follows:

Ĵ±|j1j2jm⟩ = [Ĵ
(1)
± ⊗ Î(2) + Î(1) ⊗ Ĵ

(2)
± ]

∑
m1,m2

Cjm
j1m1j2m2

|j1m1⟩|j2m2⟩

ℏ
√
j(j+1)−m(m±1)|j1j2j(m±1)⟩ =

ℏ
∑

m1,m2

√
j1(j1+1)−m1(m1±1)Cjm

j1m1j2m2
|j1(m1±1)⟩|j2m2⟩

+ ℏ
∑

m1,m2

√
j2(j2+1)−m2(m2±1)Cjm

j1m1j2m2
|j1m1⟩|j2(m2±1)⟩

Multiply by ⟨j1m′
1|⟨j2m′

2| ⇒√
j(j+1)−m(m±1)C

j(m±1)
j1m′

1j2m
′
2
=
∑

m1,m2

√
j1(j1+1)−m1(m1±1)Cjm

j1m1j2m2
δm′

1(m1±1)δm′
2m2

+
∑

m1,m2

√
j2(j2+1)−m2(m2±1)Cjm

j1m1j2m2
δm′

1m1
δm′

2(m2±1)

After m′
1

m′
2

}
→
{

m1
m2 substitution we obtain the following recursive relation

C
j(m±1)
j1m1j2m2

=
√

j1(j1+1)−m1(m1∓1)
j(j+1)−m(m±1) Cjm

j1(m1∓1)j2m2
+
√

j2(j2+1)−m2(m2∓1)
j(j+1)−m(m±1) Cjm

j1m1j2(m2∓1) ⇒

Cjm
j1m1j2m2

=
√

j1(j1+1)−m1(m1∓1)
j(j+1)−m(m∓1) C

j(m∓1)
j1(m1∓1)j2m2

+
√

j2(j2+1)−m2(m2∓1)
j(j+1)−m(m∓1) C

j(m∓1)
j1m1j2(m2∓1)
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This relation enables one to construct the CG coefficients using the fact that

|j1j2jmax (±jmax)  
m

⟩ = |j1 (±j1)  
m1

⟩|j2 (±j2)  
m2

⟩ ⇒ C
jmax(±jmax)
j1(±j1)j2(±j2)

= 1

▶ Example: coupling two spins 1
2

j1 = j2 =
1
2 ⇒ jmax = 1, jmin = 0

From |12
1
211⟩ = |12

1
2⟩1|

1
2
1
2⟩2

we calculate:

√
2| 12

1
210⟩  

Ĵ−|12
1
211⟩ =

| 12 (−
1
2 )⟩1  

(Ĵ
(1)
− |12

1
2⟩1) |

1
2
1
2⟩2 + |12

1
2⟩1

| 12 (−
1
2 )⟩2  

(Ĵ
(2)
− |12

1
2⟩2)

⇒ |12
1
210⟩ =

1√
2
|12(−

1
2)⟩1|

1
2
1
2⟩2 +

1√
2
|12

1
2⟩1|

1
2(−

1
2⟩)2

Then |12
1
21(−1)⟩ = |12(−

1
2)⟩1|

1
2(−

1
2)⟩2

and |12
1
200⟩ is obtained from orthogonality to |12

1
210⟩

⇒ |12
1
200⟩ =

1√
2
|12(−

1
2)⟩1|

1
2
1
2⟩2 −

1√
2
|12

1
2⟩1|

1
2(−

1
2⟩)2 (up to phase convention)

So we obtain the following CG coefficients:

C
1(+1)
1
2 (+

1
2 )

1
2 (+

1
2 )

=1= C
1(−1)
1
2 (−

1
2 )

1
2 (−

1
2 )

C10
1
2 (−

1
2 )

1
2 (+

1
2 )

= 1√
2
= C10

1
2 (+

1
2 )

1
2 (−

1
2 )

C00
1
2 (−

1
2 )

1
2 (+

1
2 )

= 1√
2
= −C00

1
2 (+

1
2 )

1
2 (−

1
2 )Using a simplified notation:

|12
1
211⟩ = |↑⟩1|↑⟩2

|12
1
210⟩ = 1√

2
|↓⟩1|↑⟩2 + 1√

2
|↑⟩1|↓⟩2

|12
1
21(−1)⟩ = |↓⟩1|↓⟩2


 triplet

|12
1
200⟩ = 1√

2
|↓⟩1|↑⟩2 − 1√

2
|↑⟩1|↓⟩2 singlet

We will remember that the triplet is formed by three states which are all sym-
metric under the exchange of spins, while the unique singlet state is anti-
symmetric under the exchange of spins. As particles with spin 1

2 are fermions,
whose overall wave function must be antisymmetric under the particle exchange,
the above spin-exchange relations impose opposite coordinate-exchange rela-
tions for the spatial wavefunction.

■ Addition of three and more angular momenta

Coupling of k > 2 angular momenta is not just an academic issue. Already
the system of two particles with spins and mutual orbital momentum leads to

the k = 3 problem
ˆ⃗
J =

ˆ⃗
S(1) +

ˆ⃗
S(2) +

ˆ⃗
L. The k > 2 coupling is trickier than the

k = 2 case as the summed angular momentum operators Ĵ2 and Ĵ3 must be
supplemented by (2k − 2) additional commuting operators to form a complete
set. While for k = 2, as seen above, the two additional operators are just
the Ĵ (1)2 and Ĵ (2)2 squares, for k > 2 one has to find more than k additional
operators—hence the squares of partial momenta do not suffice. It turns out
that the choice of these extra operators is not unique...
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▶ k = 3: total & paired angular momenta

The triple product of Hilbert spaces, in which the three partial ang.momenta
live, and the standard commutation relations for these partial momenta:

H = H(1)︸︷︷︸
J⃗ (1)

⊗H(2)︸︷︷︸
J⃗ (2)

⊗H(3)︸︷︷︸
J⃗ (3)with [Ĵ

(m)
i , Ĵ

(n)
j ] = iℏεijkδmnĴ

(m)
k

Total angular momentum:
ˆ⃗
J =

ˆ⃗
J (1)+

ˆ⃗
J (2)+

ˆ⃗
J (3)

Paired angular momenta:
ˆ⃗
J (nl) =

ˆ⃗
J (n)+

ˆ⃗
J (l) ⇒ ˆ⃗

J (12),
ˆ⃗
J (13),

ˆ⃗
J (23)

[Ĵ
(nl)
i , Ĵ

(n′l′)
j ] = iℏεijk(δnn′Ĵ

(n)
k + δll′Ĵ

(l)
k )

Compatibility:

[Ĵ2, Ĵ3]=0=

{
[Ĵ2,Ĵ (1)2]=[Ĵ3,Ĵ (1)2]=[Ĵ2,Ĵ (23)2]=[Ĵ3,Ĵ (23)2]
[Ĵ2,Ĵ (2)2]=[Ĵ3,Ĵ (2)2]=[Ĵ2,Ĵ (13)2]=[Ĵ3,Ĵ (13)2]
[Ĵ2,Ĵ (3)2]=[Ĵ3,Ĵ (3)2]=[Ĵ2,Ĵ (12)2]=[Ĵ3,Ĵ (12)2]

[Ĵ2,Ĵ
(1)
3 ]

[Ĵ2,Ĵ
(2)
3 ]

[Ĵ2,Ĵ
(3)
3 ]

}
̸=0 ̸=

{
[Ĵ2,Ĵ

(23)
3 ]

[Ĵ2,Ĵ
(13)
3 ]

[Ĵ2,Ĵ
(12)
3 ]

▶ k = 3: different coupling schemes

Several complete sets of commuting operators & associated bases:

Ĵ (1)2, Ĵ
(1)
3 , Ĵ (2)2, Ĵ

(2)
3 , Ĵ (3)2, Ĵ

(3)
3 ⇒ |j1m1⟩|j2m2⟩|j3m3⟩ . . . basis I

Ĵ (1)2, Ĵ (2)2, Ĵ (3)2, Ĵ (23)2, Ĵ2, Ĵ3 ⇒ |j1j2j3j23jm⟩ . . . basis II

Ĵ (1)2, Ĵ (2)2, Ĵ (3)2, Ĵ (13)2, Ĵ2, Ĵ3 ⇒ |j1j2j3j13jm⟩ . . . basis III

Ĵ (1)2, Ĵ (2)2, Ĵ (3)2, Ĵ (12)2, Ĵ2, Ĵ3 ⇒ |j1j2j3j12jm⟩ . . . basis IV

Generation of the coupled bases (II,III,IV) from the uncoupled one (I):

|j1j2j3j23jm⟩ =
∑

m1,m23

Cjm
j1m1j23m23

|j1m1⟩
∑

m2,m3

Cj23m23

j2m2j3m3
|j2m2⟩|j3m3⟩

=
∑

m1,m2,m3
m23

Cjm
j1m1j23m23

Cj23m23

j2m2j3m3
|j1m1⟩|j2m2⟩|j3m3⟩ . . . II

. . . similarly III & IV
Relation between coupled bases:

|j1j2j3j23jm⟩ = (−)j1+j2+j3+j
∑
j12

√
(2j23+1)(2j12+1)

{
j1 j2 j12
j3 j j23

}
︸ ︷︷ ︸
6j symbol

|j1j2j3j12jm⟩

▶ General k

The way how to obtain coupling
schemes for higher k is analogous
and can be captured graphically.
Here is an example of a specific
coupling of k = 7 angular momenta

with 14 commuting operators:
An important case is the k = 4
coupling of orbital & spin angular momenta
ˆ⃗
L(1),

ˆ⃗
L(2) &

ˆ⃗
S(1),

ˆ⃗
S(2) for 2 particles in a central field.

Two physically meaningful coupling schemes with the respective commut-
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ing operator sets are as follows:

(a) J-J coupling
{
L̂(1)2, L̂(2)2, Ŝ(1)2, Ŝ(2)2,

Ĵ (1)2︷ ︸︸ ︷
(
ˆ⃗
L(1)+

ˆ⃗
S(1))2,

Ĵ (2)2︷ ︸︸ ︷
(
ˆ⃗
L(2)+

ˆ⃗
S(2))2, Ĵ2, Ĵ3

}

(b) L-S coupling
{
L̂(1)2, L̂(2)2, Ŝ(1)2, Ŝ(2)2, (

ˆ⃗
L(1)+

ˆ⃗
L(2))2︸ ︷︷ ︸

L̂2

, (
ˆ⃗
S(1)+

ˆ⃗
S(2))2︸ ︷︷ ︸

Ŝ2

, Ĵ2, Ĵ3
}

◀ Historical remark
1866: A.Clebsch & P.Gordan introduce CG coefficients for spherical harmonics
1925: Discussions about the physical interpretation of electron spin
1925: H.N.Russel and F.A. Saunders outline the L-S coupling scheme
1930: P.Dirac presents the algebraic treatment of angular momentum operators
1940-42: E.Wigner & G.Racah analyze general coupling of >2 angular momenta

■ Complete sets of commuting operators for a structureless particle

Below we give several examples of the complete set of observables characterizing
a single spinless particle in 3D. This system has f =3 classical degrees of free-
dom, and also its quantum state is determined by eigenvalues of 3 commuting
operators. These operators can be chosen in different ways, forming possible
continuous, discrete and mixed representations of the problem. A nonzero spin
of the particle extends this set by additional commuting operators.

▶ Cartesian coordinates ˆ⃗x ≡ (x̂1, x̂2, x̂3)

Eigenbasis Φx⃗′(x⃗) = δ(x⃗−x⃗′) with ⟨Φx⃗′|Φx⃗′′⟩ = δ(x⃗′−x⃗′′)

General wavefunction: ψ(x⃗) =
∫
dx⃗′ψ(x⃗′) Φx⃗′(x⃗)

Note: the physical dimension of Φx⃗′(x⃗) is [length]−3 because it represents an
amplitude density in a joint space x⃗ × x⃗′ (while a normal wavefunction is an
amplitude density only in x⃗)

▶ Cartesian momenta ˆ⃗p ≡ (p̂1, p̂2, p̂3)

Eigenbasis Φp⃗(x⃗) =
1

(2πℏ)3/2 e
i p⃗·x⃗ℏ with ⟨Φp⃗|Φp⃗ ′⟩= 1

(2πℏ)3

∫
e−i (p⃗−p⃗ ′)·x⃗

ℏ dx⃗
︸ ︷︷ ︸
(2πℏ)3δ(p⃗−p⃗ ′)

=δ(p⃗−p⃗ ′)

General wavefunction: ψ(x⃗) =
∫
dp⃗ ψ̃(p⃗) Φp⃗(x⃗)

Note: the phasical dimension of Φp⃗(x⃗) is [length]−
3
2 [momentum]−

3
2 because it

represents an amplitude density in a joint space x⃗× p⃗

▶ Radial momentum and orbital angular momentum (p̂r, L̂
2, L̂z)

Eigenbasis Φprlm(x⃗)=
1

(πℏ)1/2
ei

prr
ℏ
r︸ ︷︷ ︸

Rpr (r)

Ylm(ϑ, φ) with ⟨Φprlm|Φp′rl
′m′⟩=δ(pr−p′r)δll′δmm′

General wavefunction: ψ(x⃗) =
∑
l,m

∫
dpr αprlmΦprlm(x⃗)

︷ ︸︸ ︷
1
πℏ

∞∫
0

e−i
(pr−p′r)r

ℏ
r2

[2π∫
0

π∫
0

Y ∗
lm(ϑ,φ)

Yl′m′(ϑ,φ) sinϑ dϑ dφ
]
r2dr
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▶ Isotropic Hamiltonian and orbital ang.momentum (Ĥrot, L̂
2, L̂z)

Instead of radial momentum of the last example we can use a Hamiltonian
Ĥrot corresponding to a spherically symmetric infinite potential well V (r) (an
isotropic harmonic oscillator, Coulomb potential, an infinite square well etc.)
with a discrete infinite spectrum of bound states enumerated by n = 1, 2, ...

Eigenbasis Φnlm(x⃗) = Rnl(r)︸ ︷︷ ︸
1
runl(r)

Ylm(ϑ, φ) with ⟨Φnlm|Φn′l′m′⟩ = δnn′δll′δmm′[
− ℏ2

2M
d2

dr2+
ℏ2l(l+1)
2Mr2 +V

]
unl=Enlunl

General wavefunction: ψ(x⃗) =
∑
n,l,m

αnlmΦnlm(x⃗)

▶ Harmonic oscillator Hamiltonian components (Ĥ1, Ĥ2, Ĥ3)

Eigenbasis Φn1n2n3
(x⃗)=ψn1

(x1)ψn2
(x2)ψn3

(x3) ⟨Φn1n2n3
|Φn′

1n
′
2n

′
3
⟩=δn1n′

1
δn2n′

2
δn3n′

3
,

where ψnk
(xk) for k=1,2,3 is the egenstate of Ĥk with energy Enk

=ℏωk(nk+
1
2).

Infinitely many other complete sets can be found. The complete set is enriched
if the particle has spin with arbitrary nonzero size quantum number s. This
yields the following types of complete sets:

▶ Sets containing spin projection (Â1, Â2, Â3, Ŝ
2, Ŝz)

Here (Â1, Â2, Â3) stands for any of the above complete sets of a spinless particle.
The squared spin operator is trivial, Ŝ2= ℏ2s(s+ 1)Î, so there is effectively
just one additional commuting operator, the spin projection Ŝz with quantum
numberms=−s, . . . ,+s. This means that the Hilbert space is expanded (2s+1)
times relative to the spinless case.

▶ Sets containing total angular momentum (Ârot, L̂
2, Ŝ2, Ĵ2, Ĵz)

Here Ârot is an operator invariant under rotations (isotropic Hamiltonian, radial

momentum etc.) and Ĵ2, Ĵz correspond to
ˆ⃗
J =

ˆ⃗
L+

ˆ⃗
S. The eigenvalues of Ĵ2 are

ℏ2j(j+1) with |l−s| ≤ j ≤ l+s (so j is integer or half-integer for s integer or
half-integer, respectively), and the eigenvalues of Ĵz are mj=−j, . . . ,+j.

4a. REPRESENTATION OF PHYSICAL
TRANSFORMATIONS

To represent physical observables is not the only role of operators in quantum
theory. A specific type of operators, namely the unitary ones, is used to express
various kinds of transformations that lead to equivalent descriptions of the same
physics. These transformations are applied when switching from one representa-
tion to another, or when expressing the action of symmetry operations, such as
translations or rotations, on the system.
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■ Unitary operators

At first, we explore basic mathematical properties of unitary operators. In a
separable Hilbert space, these operators can be introduced as transformations
between different orthonormal bases.

▶ Transformations between orthonormal bases

Basis I: {|i⟩}i ≡ {|1⟩, |2⟩, . . . } ⟨i|j⟩ = δij
Basis II: {|i′⟩}i ≡ {|1′⟩, |2′⟩, . . . } ⟨i′|j′⟩ = δij

|i′⟩ = Û |i⟩ where Û ≡
∑
i

|i′⟩⟨i| is an unitary operator: Û † =
∑
i

|i⟩⟨i′| = Û−1

▶ 3 equivalent definitions of unitary operators

(1) Û transforms an orthonormal basis
to another orthonormal basis: {|i⟩}i

Û
−→
←−
Û−1

{|i′⟩}i

(2) Û is invertible such that: Û−1 = Û †

(3) Û conserves all scalar products: ⟨Ûψ1|Ûψ2⟩ = ⟨ψ1|ψ2⟩

▶ Eigenvalues & eigenvectors of unitary operators

Eigenvalues of Û lie on a unit circle in C and eigenvectors
corresponding to different eigenvalues are orthogonal:

Consider Û |u⟩ = u|u⟩ ⇔ ⟨u|Û † = ⟨u|u∗

⇒ ⟨u| Û †Û︸︷︷︸
Î

|u⟩ = uu∗ ⟨u|u⟩︸ ︷︷ ︸
1

⇒ uu∗=1 ⇒ u = eiϕ

⇒ ⟨u|
︷︸︸︷
Û †Û |u′⟩ = u′u∗⟨u|u′⟩ ⇒ u′u∗︸︷︷︸

ei(ϕ′−ϕ)

=1 or ⟨u|u′⟩=0

⇒ for ϕ′ ̸= ϕ(mod2π): ⟨u|u′⟩ = 0

▶ Spectral decomposition Û =
∑
i

eiϕi︸︷︷︸
ui

P̂ϕi︸︷︷︸∑
k

|u(k)
i ⟩⟨u(k)

i |

with P̂ϕi
P̂ϕj

= δijP̂ϕi

k ≡ degeneracy index

▶ Expression via exponential of a Hermitian operator

Û = eiĜ with Ĝ=Ĝ† and eX̂ ≡
∞∑
k=0

X̂k

k! exponential of an operator defined
through the Taylor series of ex

(a) exponential ⇒ unitary: Û † =
∞∑
k=0

(−iĜ)k

k! = e−iĜ = Û−1

(b) exponential ⇐ unitary: ∀ Û≡
∑
i

eiϕiP̂ϕi
define Ĝ≡

∑
i

ϕiP̂ϕi
=Ĝ† ⇒ Û=eiĜ
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▶ Example: Û = ( 0 1
1 0 )

Eigenvalues u1 = 1 = ei0 and u2 = −1 = eiπ

Eigenvectors |+ 1⟩ ≡ 1√
2
( 11 ) and | − 1⟩ ≡ 1√

2

(
+1
−1

)
(orthonormal)

Ĝ = 0|+1⟩⟨+1|+π|−1⟩⟨−1| = π
2

(
+1 −1
−1 +1

)
with

(
+1 −1
−1 +1

)k
=2k−1

(
+1 −1
−1 +1

)
for k≥1

eiĜ = Î +
∞∑
k=1

(iπ)k

k!

︸ ︷︷ ︸
eiπ−1=−2

[
1
2

(
+1 −1
−1 +1

)]k
︸ ︷︷ ︸

1
2

(
+1 −1
−1 +1

)
= ( 1 0

0 1 )−
(
+1 −1
−1 +1

)
= ( 0 1

1 0 ) = Û

▶ Commutation relation for exponentials

eX̂eŶ = eŶ eX̂ = eX̂+Ŷ for [X̂, Ŷ ] = 0, eX̂eŶ ̸= eŶ eX̂ ̸= eX̂+Ŷ for [X̂, Ŷ ] ̸= 0

Baker-Campbell-Hausdorff (BCH) formula (one of its forms):

eX̂Âe−X̂= Â︸︷︷︸
[X̂,Â

]
0

+ 1
1! [X̂, Â]︸ ︷︷ ︸

[X̂,Â
]
1

+ 1
2! [X̂, [X̂, Â]]︸ ︷︷ ︸

[X̂,Â
]
2

+ 1
3! [X̂, [X̂, [X̂, Â]]]︸ ︷︷ ︸

[X̂,Â
]
3

...+ 1
k! [X̂, Â

]
k
+. . .

This means that eX̂eŶ =
(
eŶ +

∞∑
k=1

1
k! [X̂, eŶ

]
k

)
eX̂ , or in another form:

eX̂eŶ = eẐ with Ẑ=X̂+Ŷ + 1
2 [X̂, Ŷ ]+ 1

12([X̂, Ŷ
]
2
+[Ŷ , X̂

]
2
)− 1

24 [Ŷ , [X̂Ŷ
]
2
]+...

Special case: [X̂, [X̂, Ŷ ]] = [Ŷ , [X̂, Ŷ ]] = · · · = 0 ⇒ eX̂eŶ = eX̂+Ŷ e
1
2 [X̂,Ŷ ]

■ Unitary transformations as “quantum canonical transformations”

Unitary operators materialize transitions between alternative QM represen-
tations, defined by distinct bases in the system’s Hilbert space (see Sec. 3a).
They also express transformations between state vectors of the same system as
seen from various reference frames, differing, e.g., by translations, rotations, or
Galilean boosts. Physical descriptions in all these representations or reference
frames must be fully equivalent. In this sense, the unitary transformations are
analogues of classical canonical transformations.

▶ Diagonalization of an operator

The transformation from a general basis {|i⟩}i to an eigenbasis {|a(k)j ⟩}j,k of

any Hermitian operator Â is of course a unitary transformation. We assume
for a moment a nondegenerate spectrum {ai}i of Â. The degenerate case would
be expressed analogously but in a clumsier notation.(

U11 U12 ...
U21 U22

... ...

)

︸ ︷︷ ︸
Û

(
A11 A12 ...
A21 A22

... ...

)

︸ ︷︷ ︸
Â

( U∗
11 U∗

21 ...
U∗
12 U∗

22

... ...

)

︸ ︷︷ ︸
Û †

=

(
a1 0 ...
0 a2
... ...

)

︸ ︷︷ ︸
Âdiag

⇒ Âdiag = ÛÂ Û †

eigenvectors |ai⟩ ≡
( U∗

i1
U∗
i2

...

)
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▶ Link between equivalent representations

Postulate: Various representations of quantum state vectors & operators
are equivalent iff they are connected by a unitary transformation

We assume a general transformation of bases {|i⟩}i
Û−→ {|i′⟩}i. This implies:

Transformation of vectors: |ψ′⟩ = Û |ψ⟩

|ψ⟩=
∑
i

αi|i⟩ → |ψ′⟩=
∑
i

αi|i′⟩

Transformation of operators: Â′ = ÛÂ Û † = ÛÂ Û−1

Â =
∑
i

aiP̂ai → Â′ =
∑
i

aiÛ P̂aiÛ
† =

∑
i

aiÛ |ai⟩⟨ai|Û †

Interpretation of the operator relation through
the identity Â′|ψ′⟩ = Û

(
Â |ψ⟩︸︷︷︸
Û−1|ψ′⟩

)
, with Â′|ψ′⟩

defined via the “detour path” Û ÂÛ−1|ψ′⟩
(see the sketch where the target space of Û
is formally denoted as H′)

◀ Historical remark
1897-1906: Independent derivations of the Baker-Campbell-Hausdorff formula
1900-10: David Hilbert elaborates the theory of (unitary) operators in H
1927-32: Unitary operators and representation theory appear in the mathematical
formulation of QM (P.Dirac, J.von Neumann)

■ Symmetry in quantum mechanics

It is often repeated that symmetry represents the most powerful concept in
physics. The famous Weyl’s definition “A thing is symmetrical if there is some-
thing you can do to it so that after you have finished doing it it looks the same as
before” can be always applied (in fact, this is Feynman’s informal transcription
of Weyl’s original formulation). For us, the thing means either a given physical
system (its most essential attributes) or a general form of its quantum descrip-
tion. To do something to it then means to look at the system from another
reference frame or through a different representation.

▶ Active and passive transformations

Let us consider two frameworks S and S’, which correspond to alternative refer-
ence frames (coordinate systems) or alternative ways of description (represen-
tations). Transformations between these frames can be realized in the “active”
or “passive” way:
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Active transformation:

Operators Â unchanged
State vectors transformed |ψ⟩ → |ψ′⟩ = Û |ψ⟩
Example: an atom that has moved from the Earth to
Mars is watched from the same motionless reference frame

Passive transformation:

State vectors |ψ⟩ unchanged
Operators transformed Â → Â′ = Û ÂÛ †

Example: a motionless atom is watched from
a reference frame that has been moved from the Earth to Mars

▶ Symmetry in a wider sense (sensu lato)

The simultaneous active and passive transformation (“a moved atom observed
from a moved frame”) yields identity. More precisely, a simultaneous trans-
formation of state vectors |ψ⟩ → |ψ′⟩ = Û |ψ⟩ and operators Â → Â′ = ÛÂ Û †

preserves the structure and all predictions of quantum theory:

⟨ψ′
1|ψ′

2⟩ = ⟨Ûψ1|Ûψ2⟩ = ⟨ψ1| Û †Û︸︷︷︸
Î

|ψ2⟩ = ⟨ψ1|ψ2⟩ ...scalar products

⟨i′|Â′|j′⟩ = ⟨i|
Î︷︸︸︷

Û †Û Â

Î︷︸︸︷
Û †Û |j⟩ = ⟨i|Â|j⟩ ...matrix elements

Â|a⟩ = a|a⟩ ⇒ ÛÂ Û †︸ ︷︷ ︸
Â′

Û |a⟩︸︷︷︸
|a′⟩

= a Û |a⟩︸︷︷︸
|a′⟩

...eigenvalues
iĈ︷ ︸︸ ︷

[Â′, B̂′]= Â′B̂′−B̂′Â′= ÛÂÛ †ÛB̂Û †−ÛB̂Û †Û ÂÛ †=

iĈ ′︷ ︸︸ ︷
Û [Â, B̂]Û † ...commutators

⇒ QMS′ = QMS The QM description is the same for both S & S’. This only

means that quantum theory by its very nature includes the notion of symmetry.

▶ Symmetry in a narrower sense (sensu stricto)

This kind of symmetry concerns specific systems rather than the whole theory.
We say that a particular system is invariant under the S→ S’ transformation

iff its Hamiltonian does not change under that transformation: Ĥ ′ = Ĥ

This is because for any system the Hamiltonian represents the most important
physical operator (describing also the dynamics, see Sec. 5a).

Ĥ ′= ÛĤ Û †=Ĥ ⇒ ÛĤ=ĤÛ ⇒ [Ĥ, Û ] = 0 ⇔ [Ĥ, Ĝ] = 0 (with Û=eiĜ)

This has strong consequences:

(a) degeneracy of energy levels: Ĥ|ψ⟩ = E|ψ⟩ ⇒ Ĥ(Û |ψ⟩) = E(Û |ψ⟩)
⇒ if Û |ψ⟩ ̸= |ψ⟩, the level E is degenerate

(b) conservation laws (the existence of integrals of motions, see Sec. 5a)
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■ One flight over the group theory

Unitary transformations describing symmetries of physical systems do most
typically come in some specific sets, which are called groups. A clear example
can be the infinite group of rotations by different angles around various axes.
Group theory represents a superb case of “the unreasonable effectiveness of
mathematics in the natural sciences” (as pointed out by E.Wigner). Initiated
as a purely theoretical discipline, it grew into one of the most commonly applied
branches of mathematics today. Here we just summarize (from a bird’s eye
view) the very basic concepts that are of immediate importance for QM.

▶ Basic definitions
Group G is a set of elements {g} which is closed with respect to a binary opera-
tion ◦ (group multiplication) g1, g2 ∈ G ⇒ (g1 ◦ g2)  

≡g1g2

∈ G satisfying the following
properties:

(1) (g1g2)g3 = g1(g2g3) associativity
(2) ∃ e ∈ G : ge = eg = g ∀g ∈ G unit element
(3) ∀ g ∈ G ∃ g−1 : gg−1 = g−1g = e inverse elements
Note: Commutativity is not required! If it is also satisfied, so if g1g2 = g2g1
∀ g1, g2 ∈ G, the group is called Abelian.

▶ Unitary representation of group G

Mapping to unitary operators: g → Ûg , g1g2 → Ûg2 Ûg1 ≡ Û2 Û1

Group properties naturally satisfied: (Û2Û1)
† = Û−1

1 Û−1
2 = (Û2Û1)

−1 closure
(1) (Û3Û2)Û1 = Û3(Û2Û1) associativity
(2) e → Î = Î† = Î−1 unit element

(3) Û = eiÂ ⇒ Û−1 = e−iÂ inverse elements

Hilbert space H where operators Ûg act ≡ carrier space of G
Since QM works with H, it provides a direct physical “arena” for group theory.

Invariant subspace: a subspace HG⊂H is invariant under G if Ûg|ψ⟩∈HG
∀ Ûg∈G and ∀ |ψ⟩∈HG

Matrix representation: Ûg ≡




... 0 ...

0 ∈ H(1)
G 0

... 0
... 0

0 ∈ H(2)
G

...




block diagonal
structure of all

Ûg∈HG

Any invariant subspace H(i)
G and the corresponding submatrices of group oper-

ators Ûg can serve as a complete representation of G.
Irreducible representation (irrep) of group G: representation for which
there are no invariant subspaces HG ⊂ H.
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▶ Finite (discrete) groups

Groups with a finite (or at least discrete) number of elements (describe, e.g.,
spatial symmetries of crystals or reflection transformations): G ≡ {gi}i∈N
Example: cyclic group Z2 ≡ {P̂ , Î} with Î ≡ unit operator and P̂ ≡ gen-

eralized parity transformation satisfying P̂ = P̂−1= P̂ † (⇒ P̂ 2 = Î) that
can represent the spatial inversion, 2-particle exchange, particle-antiparticle or
particle-hole transformation etc.

▶ Continuous (Lie) groups

Groups with elements parametrized by a n-dimensional real vector s⃗ ⇒ the
group elements (e.g., spatial translations) form a continuum: G ≡ {g(s⃗ )}s⃗∈Rn

The group operations between various pairs of elements and the inversion of
various single elements define some Rn×Rn→ Rn and Rn→ Rn functions:

g(s⃗1)g(s⃗2)=g(s⃗3) ⇒ s⃗3 = f⃗(s⃗1, s⃗2)

g(s⃗ )−1 = g(s⃗ ′) ⇒ s⃗ ′ = h⃗(s⃗)

If both functions f⃗ & h⃗ are fully

differentiable, then G is a Lie group

Unitary representation of a given Lie group is a mapping to a continuous family

of unitary operators acting in a suitable Hilbert space: g(s⃗ ) → Û(s⃗ )

▶ One-parameter Lie group G ≡ {Û(s)}s∈R

Requirements:



Û(0)= Î choice of origin

!
= 1

Û(s+ds)= Û(s)Û(ds) local additivity ⇐ f(s, ds)=s+

∂f
∂s2

ds

Û(s) = Î +
�
dÛ
ds


0
s+ 1

2

�
d2Û
ds2


0
s2 + . . .

Û(s)Û(s)† = Î +

�
dÛ
ds


0
+
�
dÛ
ds

†
0



  
0

s+


. . .



  
0

s2 + . . .




⇒


dÛ
ds


0
= iĜ

with Ĝ = Ĝ†

⇒ condition

dÛ
ds


s
= lim

ds→0

Û(s+ds)−Û(s)
ds = Û(s)


dÛ
ds


0
= iÛ(s)Ĝ

Û(s) = eiĜs is the most general solution, where Ĝ ≡ generator of G

⇒ the group is Abelian: Û(s1)Û(s2) = Û(s1+s2) = Û(s2)Û(s1)

▶ Multiparameter Lie group G ≡ {Û(s⃗ )}s⃗∈Rn n ≥ 2

Û(s⃗) = ei
ˆ⃗
G·s⃗ = e

i
n

k=1

Ĝksk
with

ˆ⃗
G ≡


Ĝk=

1
i


∂U(s⃗ )
∂sk


s⃗=0

n

k=1
≡ set of generators

̸=
n

k=1

eiĜksk in the non-Abelian case: [Ĝk, Ĝl] ̸= 0

Û(s⃗1)Û(s⃗2) ̸= Û(s⃗1+s⃗2) ̸= Û(s⃗2)Û(s⃗1)
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Taylor expansion:

Û(s⃗ ) ≈

summation conv. Î+iĜisi− 1
2 ĜiĜi′sisi′− i

6 ĜiĜi′Ĝi′′sisi′si′′+...  
Î+

i

1!


i

Ĝisi−
1

2!


i,i′

ĜiĜi′sisi′−
i

3!


i,i′,i′′

ĜiĜi′Ĝi′′sisi′si′′+. . .

▶ Algebra of generators

Products of infinitesimal unitary transformations Û(δs⃗) form again some in-
finitesimal unitary transformations (closure property of G). This turns out
to imply that the generators must form a closed set (so called algebra) with
respect to commutation relations. We show this by the following product of
4 infinitesimal transformations:

Û(δ⃗ )−1Û (⃗ϵ )−1Û(δ⃗ )Û (⃗ϵ )   = Û(σ⃗ )   with σl ≈

mn

Smnlϵmδn

≈ ≈ for ϵ⃗, δ⃗ → 0

(Î − iĜiδi − 1
2ĜiĜi′δiδi′) Î + iĜlσl

×(Î − iĜjϵj − 1
2ĜjĜj′ϵjϵj′)

×(Î + iĜkδk − 1
2ĜkĜk′δkδk′)

×(Î + iĜlϵl − 1
2ĜlĜl′ϵlϵl′)  

≈ (up to 2nd order)

Î + (ĜmĜn − ĜnĜm)  
[Ĝm,Ĝn]

ϵmδn = Î + iSmnlĜlϵmδn

⇒ [Ĝm, Ĝn] = i

l

SmnlĜl
closure relation for algebra of generators
Smnl ≡ structure constants

So instead of studying the infinite set Û(s⃗) ∈ G, we can focus on the finite alge-
bra of generators {Ĝi}ni=1, whose structure constants characterize the group G.
However, in some cases, the generator algebra alone does not distinguish some
subtle differences between groups, see the O(n) and SO(n) examples below.

▶ Invariant (Casimir) operator

An operator ĈG ≡ Ĉ(
ˆ⃗
G ) associated with group G such that [ĈG, Ĝi] = 0 ∀i

Eigenspaces of ĈG within the space H are invariant under the action of all
generators {Ĝi} ⇒ these subspaces often carry irreducible representations of G
▶ Examples: orthogonal and unitary groups in finite dimensions

Unitary group U(d): group of unitary matrices Û of dimension d

It has n = d2

Hermitian
generators:

i = 1, 2, . . . , d2

Ĝi =




1 0 0 ... 0
0 0 0 ... 0
0 0 0 ... 0
...

...
0 0 0 ... 0


 , . . .

  
d diagonal

,




0 1 0 ... 0
1 0 0 ... 0
0 0 0 ... 0
...

...
0 0 0 ... 0


 , . . .

  
d(d−1)

2 offdiag. real

,




0 −i 0 ... 0
i 0 0 ... 0
0 0 0 ... 0
...

...
0 0 0 ... 0


 , . . .

  
d(d−1)

2 offdiag. imaginary



85

Casimir operator must be proportional to the unit
matrix Î. There are two independent ways how to
build such an operator from the generators, which
yields linear and quadratic invariants Ĉ(1) and Ĉ(2):
In fact, 3 independent quadratic invariants exist with i running

separately over the diagonal, offdiagonal real and offdiagonal imaginary generators.

Ĉ
(1)
U(d)=

d∑
i=1

Ĝi= Î

Ĉ
(2)
U(d)=

d2∑
i=1

Ĝ2
i =(2d−1)Î

Special unitary group SU(d): subgroup of U(d) including unitary matrices
Û of dimension d with Det Û=1 (property conserved in multiplications)

From Det eÂ = eTr Â it follows that SU(d) has n = d2−1 generators: d(d−1) of
them coincide with the offdiagonal generators of U(d) and the remaining d−1
ones with independent traceless linear combinations Ĝ′

i of the diagonal U(n)
generators, e.g. Ĝ′

i = Ĝi− 1
d Î for i=1, .., d−1. Only quadratic (& higher)

Casimir operators: Ĉ
(2)
SU(d)=

d2∑
i=d+1

Ĝ2
i =(2d−2)Î, Ĉ

(2)′

SU(d) =
d−1∑
i=1

Ĝ′
i
2+

d−1∑
i,j=1

Ĝ′
iĜ

′
j∝ Î

Special orthogonal group SO(d): subgroup of SU(d) including orthogonal
matrices Ô of dimension d with Det Ô=1 (conserved in multiplications)

Because of reality of Ô, the generators coincide with the n = 1
2d(d−1) imag-

inary offdiagonal generators of U(d), which automatically leads to the unit

determinant. Unique quadratic Casimir invariant: Ĉ
(2)
SO(d)=

d2∑

i=d(d+1)
2 +1

Ĝ2
i =(d−1)Î

Orthogonal group O(d): subgroup of U(d) including orthogonal matrices Ô
of dimension d with Det Ô = ±1. This group is richer than SO(d) (containing
it as a subgroup), but has the same set of generators. It arises from SO(d)
by adding a single orthogonal matrix (or a discrete set) whose action on any
Ô ∈ SO(d) yields matrices with determinant= −1. It can be, e.g., any of the

i = 1, . . . , d operators eiπĜi. The quadratic Casimir invariant: Ĉ
(2)
O(d)= Ĉ

(2)
SO(d)

◀ Historical remark
1830 (approx.): dawn of the group theory (the name given by É.Galois)
1873: Sophus Lie introduces continuous groups (later work of W.Killing, E.Cartan)
1928-32: M.H. Stone and J.von Neumann obtain QM-related results on Lie groups
1928: Hermann Weyl: Gruppentheorie und Quantenmechanik—book placing the
group theory to the foundations of QM
1927-37: Eugene Wigner elaborates group techniques in the classification of atomic
and later nuclear spectra; the 1931 book Group Theory and Its Application to the
Quantum Mechanics of Atomic Spectra
1929: Hans Bethe applies point groups in polyatomic molecules
1931: Hendrik Casimir introduces the invariant operator
1940’s-50’s: Giulio Racah refines group methods in the theory of complex spectra
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4b. EXAMPLES OF SYMMETRY TRANFORMATIONS

We will now describe basic spatial and spatio-temporal transformations of non-
relativistic quantum systems. We will see that quantum operators of elementary
physical observables can be naturally introduced as generators of the corresponding
Lie groups. This may tempt us to think about quantum Hilbert spaces and sets of
observables in terms of representations of the fundamental symmetries of nature,
seeking the origin of quantum uncertainty relations in the non-Abelian character
of the corresponding groups. We will also introduce a very powerful calculus of
spherical tensors that have specific transformation properties under spatial rotations.

■ Space translation

We start with the most trivial transformations, namely translations in the coor-
dinate space. These form an Abelian group generated by momentum operators.
We will also shortly visit crystals with their band energy spectra.

▶ Coordinate translation operator

We consider a translation of the coordinate system
by a fixed vector a⃗. From the analogy with classical
relation x⃗ ′ = x⃗− a⃗ we require that the unitary ope-
rator T̂a⃗ that describes the translation must satisfy

the following relation: T̂a⃗
ˆ⃗x T̂−1

a⃗ = ˆ⃗x− a⃗Î

⇒ commutation relations [x̂i, T̂a⃗] = aiT̂a⃗

coincide with the relations of general shift operators
{

[Â,T̂ †
∆]=+∆T̂ †

∆

[Â,T̂∆]=−∆T̂∆

⇒ T̂−1
a⃗ = T̂ †

a⃗ = T̂−a⃗

⇒ x̂i|x⃗⟩ = xi|x⃗⟩ ⇒ x̂i(T̂a⃗|x⃗⟩) = (xi+ai)(T̂a⃗|x⃗⟩) ⇒ T̂a⃗|x⃗⟩ = |x⃗+a⃗⟩

proportionality coefficient
√
⟨x⃗|T̂−1

a⃗ T̂a⃗|x⃗⟩ = 1

⇒ ⟨x⃗|T̂a⃗ ψ⟩ = ⟨T̂−1
a⃗ x⃗|ψ⟩ = ⟨x⃗−a⃗|ψ⟩ = ψ(x⃗−a⃗) = T̂a⃗ ψ(x⃗)

transformation
of wavefunctions

▶ Generators of translations along coordinate axes

Translation a⃗ = an⃗j along j=1, 2, 3 axes: [x̂i, T̂an⃗j
] = δijaT̂an⃗j

Infinitesimal translations: T̂(δa)n⃗j
≈ Î + iĜj(δa) ⇒ [x̂i, Ĝj] = −iδij Î

This is essentially the commutation relation of the momentum operator and we

can set: Ĝj = −1
ℏ p̂j

i.e., generators of translations are proportional
to momentum component operators

[Ĝi, Ĝj] = 0 ⇒ Abelian group [Ĝi, p̂j] = 0 ⇒ T̂a⃗
ˆ⃗p T̂−1

a⃗ = ˆ⃗p
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▶ Finite translations in any direction

Finite translation along the jthaxis is obtained by repetitions of many small

translations: T̂an⃗j
= lim

n→∞

(
Î − i

ℏ p̂j
a
n

)n

=e−i
ap̂j
ℏ

Finite translation along a general direction: T̂a⃗ = e−i
a⃗· ˆ⃗p
ℏ

Direct verification for the wavefunction transformation:

T̂a⃗ ψ(x⃗) =
∞∑
k=0

1
k!(−a⃗ · ∇⃗)kψ(x⃗) = ψ(x⃗−a⃗)

▶ Translation for many-particle systems

The spatial translation operator for N ≥ 2 systems is generated by the total

momentum operator
ˆ⃗
P =

N∑
k=1

ˆ⃗pk ⇒ T̂a⃗ = e−i a⃗·
ˆ⃗
P
ℏ =

N⊗
k=1

T̂a⃗,k

⇒ (T̂a⃗Ψ)(x⃗1, . . . , x⃗N) = Ψ(x⃗1−a⃗, . . . , x⃗N−a⃗)

Translation does not affect the spin variables (if any) of individual particles.

▶ Translational invariance sensu stricto

A system is invariant under spatial translations iff [T̂a⃗, Ĥ] = 0. This means
that the Hamiltonian must commute with all the generators— the components

of the (total) momentum operator
ˆ⃗
P .

For N = 1 particle this means that Ĥ = H(ˆ⃗p,
ˆ⃗
S ) ⇒ Hamiltonian does not

depend on spatial coordinates, only on momentum and spin components

For N≥2 particles: Ĥ = H
(
{ ˆ⃗pk}, {ˆ⃗xk− ˆ⃗xl}, {

ˆ⃗
Sk}

)
⇒ Hamiltonian depends

only on relative coordinates, for instance: Ĥ =
∑
k

1
2Mk

ˆ⃗pk
2
+
∑
k≥l

V
(
{ˆ⃗xk− ˆ⃗xl}

)

▶ Discrete translations (invariance of a crystal lattice)

We consider the simplest cubic crystal lattice whose elementary cell has sides
L⃗ ≡ (Lx, Ly, Lz). The Hamiltonian of a single particle moving in such an infinite
periodic structure is symmetric (sensu stricto) under a discrete set of translation

transformations T̂a⃗n⃗ = e−i
a⃗n⃗· ˆ⃗p
ℏ with translation vectors a⃗n⃗ = (nxLx, nyLy, nzLz) =

n⃗ · L⃗, where ni = 0,±1,±2, . . . It can be the Hamiltonian of the standard form

Ĥ =
ˆ⃗p2

2M + V (ˆ⃗x) with a periodic potential V (x⃗).

Symmetry: [T̂a⃗n⃗, Ĥ] = 0 ⇒ T̂a⃗n⃗ and Ĥ have a common set of eigenfunctions

A general eigenfunction has the form: ψ(x⃗) = u(x⃗) ei
Π⃗·x⃗
ℏ Bloch theorem

Here u(x⃗) is any L⃗-periodic function, u(x⃗+ a⃗n⃗) = u(x⃗)
and Π⃗ is a vector called quasimomentum
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T̂a⃗n⃗ψ(x⃗) = e−i
ˆ⃗p·⃗an⃗
ℏ u(x⃗)ei

Π⃗·x⃗
ℏ = u(x⃗−a⃗n⃗)e

i
Π⃗·(x⃗−a⃗n⃗)

ℏ = e−i
Π⃗·⃗an⃗
ℏ u(x⃗)ei

Π⃗·x⃗
ℏ = e−i

Π⃗·⃗an⃗
ℏ︸ ︷︷ ︸

eigenvalue

ψ(x⃗)

In this form of ψ(x⃗) we search for the eigenfunctions of Ĥ.

Assume the 1D case of a particle in potential V (x) with period L:

Ĥψ(x) = Eψ(x) ⇒
[

1
2M

(
−iℏ d

dx+Π
)2

+ V (x)− E
]
u(x) = 0

This equation solved for a fixed Π and x ∈ [0, L] with the boundary condition
u(0) = u(L) gives a discrete energy spectrum E = Ek(Π) with k = 1, 2, ...

Π
𝜋𝜋𝜋/𝐿𝐿

𝐸𝐸𝑘𝑘(Π)

+1 +2−1 +3−2−3

𝑘𝑘 = 1

𝑘𝑘 = 2

𝑘𝑘 = 3

The quasimomentum Π can be
restricted to the first Brillouin
zone with Π ∈ [−πℏ

L ,+πℏ
L ]. For

Π → Π′ = Π±n2πℏ
L with n=1, 2, ...

the transformation u(x) →
u′(x)=u(x)e∓i(2πnx/L) ensures
that Ek(Π)=Ek(Π+n2πℏ

L ). The
picture for Π ∈ (−∞,+∞) can
look e.g. like the one on the right.
We obtain a band spectrum
of energies. The dependence

Ek(Π) with k =
⌈∣∣ Π

πℏ/L

∣∣⌉ = 1, 2, ...

(the black curves), called the dispersion relation, represents is an analog of
the trival free-particle quadratic dispersion relation E(p)= 1

2M p2.

◀ Historical remark
1928: Felix Bloch develops the theory of electrons in crystal lattices; the underlying
mathematics was previously studied by G.W. Hill (1877) and G. Floquet (1883)

■ Space rotation

We come to another kind of fundamental spatial transformations, namely the
rotations. It turns out that generators of the rotation group coincide with
components of the total angular momentum, which makes the group non-
Abelian. While the orbital angular momentum generates rotations of scalar
single-particle wavefunctions, rotations of more complicated wavefunctions, like
vectors or spinors, require an additional angular momentum of the particle—
the spin. We will therefore complete the theory of spin by defining its trans-
formation properties under rotations. We will also introduce quantities called
spherical tensors, whose specific transformation properties will allow us to de-
velop a powerful tensor calculus with far reaching consequences.

▶ Coordinate transformation

Rotation about axis n⃗ by angle ϕ in ordinary space expressed by: x⃗ ′ =

3×3 rotation
matrix︷︸︸︷
R−1

n⃗ϕ x⃗
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Note: we assume (consistently with translations) that matrix Rn⃗ϕ represents
passive rotation of the coordinate frame, so coordinates transform by its inverse.

Radius conserved ⇒ orthogonality: RT
n⃗ϕRn⃗ϕ = I ⇒


i rijrik = δjk

R−1
n⃗zϕ

=


cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1


⇒ R−1

n⃗zδϕ
≈ I+


0 1 0
−1 0 0
0 0 0


  

iG3

δϕ

R−1
n⃗yϕ

=


cosϕ 0 − sinϕ
0 1 0

sinϕ 0 cosϕ


⇒ R−1

n⃗yδϕ
≈ I+


0 0 −1
0 0 0
1 0 0


  

iG2

δϕ

R−1
n⃗xϕ

=
 1 0 0

0 cosϕ sinϕ
0 − sinϕ cosϕ


⇒ R−1

n⃗xδϕ
≈ I+


0 0 0
0 0 1
0 −1 0


  

iG1

δϕ




R−1
n⃗ϕ = ei(G⃗·n⃗)ϕ

Any finite rotation is
expressed via generators
of infinitesimal rotations:

Commutators of the generator matrices:

[Gi,Gj] = iεijkGk

These are essentially the commutation relations
of angular-momentum components.

Hence for the operator R̂n⃗ϕ and generators Ĝi

of rotations in quantum Hilbert spaces we assume:

Postulate: Generators of rotation of an arbitrary quantum system
= 1

ℏ× operators of the total angular momentum components

▶ Quantum rotation operator R̂n⃗ϕ = e−i(
ˆ⃗
G·n⃗)ϕ with

ˆ⃗
G = 1

ℏ
ˆ⃗
J

This assumption holds for all systems, i.e. N -particle systems (with N =
1, 2, 3, ...) as well as systems of a non-particle nature, with Ĵ expressing the
total angular momentum of the system, e.g., the summed orbital and spin angu-
lar momentum of all particles. Thus the form of angular momentum operators
fully defines the system’s transformation properties under rotations. Below we
will work within the Hilbert space of a single particle, so: ˆ⃗

G = 1
ℏ(
ˆ⃗
L+

ˆ⃗
S)

▶ Transformation of coordinates & momenta

(a) rotation around z:

x̂′i ≡ R̂n⃗zϕx̂iR̂
−1
n⃗zϕ

= e−i(L̂3+Ŝ3)ϕ/ℏ  
e−iL̂3ϕ/ℏe−iŜ3ϕ/ℏ

x̂i e
+i(L̂3+Ŝ3)ϕ/ℏ  

e+iŜ3ϕ/ℏe+iL̂3ϕ/ℏ

= e−iL̂3ϕ/ℏx̂ie
+iL̂3ϕ/ℏ

Infinitesimal rotation:

x̂′i ≈

Î − i

ℏL̂3δϕ

x̂i


Î + i

ℏL̂3δϕ

≈ x̂i − i

ℏ [L̂3, x̂i]  
−iℏ(δi2x̂1−δi1x̂2)

δϕ =


x̂1+x̂2δϕ
x̂2−x̂1δϕ

x̂3

The same for momentum:

p̂′i ≈

Î − i

ℏL̂3δϕ

p̂i


Î + i

ℏL̂3δϕ

≈ p̂i − i

ℏ [L̂3, p̂i]  
+iℏ(δi1p̂2−δi2p̂1)

δϕ =


p̂1+p̂2δϕ
p̂2−p̂1δϕ

p̂3



90

(b) general rotation:

ˆ⃗x ′


x̂′
1

x̂′
2

x̂′
3




≡ R̂n⃗ϕ
ˆ⃗x R̂−1

n⃗ϕ = R−1
n⃗ϕ

ˆ⃗x  
r11 r12 r13
r21 r22 r23
r31 r32 r33

−1

x̂1

x̂2

x̂3


ˆ⃗p ′ ≡ R̂n⃗ϕ

ˆ⃗p R̂−1
n⃗ϕ = R−1

n⃗ϕ
ˆ⃗p

⇒ ˆ⃗xR̂n⃗ϕ = Rn⃗ϕR̂n⃗ϕ
ˆ⃗x * this form of the

defining relation will be useful below

▶ Transformation of angular momentum

(a) z-rotation: Ĵ ′
i ≈


Î − i

ℏ Ĵ3δϕ

Ĵi


Î + i

ℏ Ĵ3δϕ

≈ Ĵi− i

ℏ [Ĵ3, Ĵi]  
iℏε3ij Ĵj

δϕ =


Ĵ1+Ĵ2δϕ

Ĵ2−Ĵ1δϕ

Ĵ3

(b) general rotation:
ˆ⃗
J ′ ≡ R̂n⃗ϕ

ˆ⃗
JR̂−1

n⃗ϕ = R−1
n⃗ϕ

ˆ⃗
J

ˆ⃗
S ′ = R−1

n⃗ϕ
ˆ⃗
S

ˆ⃗
L′ = R−1

n⃗ϕ
ˆ⃗
L

▶ Action on wavefunctions (coordinate & momentum representation)

ˆ⃗x (R̂n⃗ϕ  
Rn⃗ϕR̂n⃗ϕ

ˆ⃗x
see formula
∗ above

|x⃗⟩) = (Rn⃗ϕx⃗)(R̂n⃗ϕ|x⃗⟩) ⇒ R̂n⃗ϕ|x⃗⟩ = |Rn⃗ϕx⃗⟩

⟨x⃗|R̂n⃗ϕψ⟩ = ⟨R−1
n⃗ϕ x⃗|ψ⟩

⟨p⃗|R̂n⃗ϕψ⟩ = ⟨R−1
n⃗ϕ p⃗|ψ⟩


⇒

R̂n⃗ϕψ(x⃗) = ψ(R−1
n⃗ϕ x⃗)

R̂n⃗ϕψ̃(p⃗) = ψ̃(R−1
n⃗ϕ p⃗)

▶ Transformation of scalar wavefunction ψ(x⃗)

A scalar wavefunction was used above to describe a spinless quantum particle.
It is a 1-component function assigning to each point of space a single complex
number which is invariant under all spatial transformations. Only the argument
of ψ(x⃗) is affected by the transformation:

R̂n⃗ϕψ(x⃗) = ψ(R−1
n⃗ϕ x⃗  
x⃗′

) ⇒ ˆ⃗
J ≡ ˆ⃗

L ⇒ spin 0

Example: R̂n⃗3δϕ  
e−iL̂3δϕ/ℏ

ψ(x⃗) ≈

Î −


x1

∂
∂x2

−x2
∂

∂x1


δϕ


ψ(x⃗) = ψ

 R−1
n⃗3δϕ  

1 +δϕ 0
−δϕ 1 0
0 0 1


x1
x2
x3



▶ Transformation of vector wavefunction ψ(x⃗) ≡


ψ1(x⃗)
ψ2(x⃗)
ψ3(x⃗)



Now we assume that a given quantum particle is described by a 3-component
wavefunction which transforms under rotations like a vector function. Besides
the argument x⃗, also the direction of the vector ψ is affected by the rotation.
The defining transformation property reads as:

R̂n⃗ϕψ(x⃗) =


r11 r12 r13
r21 r22 r23
r31 r32 r33


n⃗ϕ  

R̂n⃗ϕ≡Rn⃗ϕ


ψ1

ψ2

ψ3


(R−1

n⃗ϕ x⃗) = e−i
ˆ⃗
S·n⃗
ℏ ϕψ  
ψ′

(R−1
n⃗ϕ x⃗  
x⃗′

)
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Generators of R̂−1
n⃗ϕ : Ŝ1=ℏ


0 0 0
0 0 −i
0 +i 0


Ŝ2=ℏ


0 0 +i
0 0 0
−i 0 0


Ŝ3=ℏ


0 −i 0
+i 0 0
0 0 0



Example (z-rotation): R̂n⃗3δϕ  
e−i[Ŝ3+L̂3]δϕ/ℏ


ψ1(x⃗)
ψ2(x⃗)
ψ3(x⃗)


≈


Î −


0 +1 0
−1 0 0
0 0 0


δϕ


  

1 −δϕ 0
+δϕ 1 0
0 0 1


e−i

L̂3δϕ
ℏ


ψ1(x⃗)
ψ2(x⃗)
ψ3(x⃗)



  


ψ1(R
−1
n⃗3δϕ

x⃗)

ψ2(R
−1
n⃗3δϕ

x⃗)

ψ3(R
−1
n⃗3δϕ

x⃗)




Ŝ2
1+Ŝ2

2+Ŝ2
3 =

2  
s(s+1) ℏ2Î ⇒ s = 1

ℏDet(Ŝi−λÎ) = 0 ⇒ λ = ±1, 0 ⇒ si = ℏ
 −1

0
+1

⇒ spin 1

So, 3-component wavefuctions ψ(x⃗) with vector transformation properties de-
scribe particles with spin 1. We now find the link of Cartesian components
ψi(x⃗) with i=1,2,3 to the probability amplitudes ψms

(x⃗) for individual spin
projections ms=0,±1 to the z-axis direction:

Eigenvectors of Ŝ3: ξ+1 =
1√
2

 −1
−i
0


ξ0 =


0
0
1


ξ−1 =

1√
2


+1
−i
0



ψ+1(x⃗)ξ+1+ψ0(x⃗)ξ0+ψ−1(x⃗)ξ−1  
ψ1(x⃗)
ψ2(x⃗)
ψ3(x⃗)


=


1√
2
[ψ−1(x⃗)−ψ+1(x⃗)]

− i√
2
[ψ−1(x⃗)+ψ+1(x⃗)]

ψ0(x⃗)


⇒


ψ+1(x⃗)
ψ0(x⃗)
ψ−1(x⃗)


=


− 1√

2
[ψ1(x⃗)−iψ2(x⃗)]

ψ3(x⃗)

+ 1√
2
[ψ1(x⃗)+iψ2(x⃗)]



▶ Transformation of spinor wavefunction ψ(x⃗) ≡


ψ↑(x⃗)
ψ↓(x⃗)


spin 1

2

At last we come to the spin-12 wavefunction introduced in Sec. 1b. We know that
in this case the components ψ↑(x⃗) and ψ↓(x⃗) express directly the amplitudes of
finding the ↑ and ↓ spin z-projections of the particle at the position x⃗. But how
the spinor wavefunction ψ(x⃗) transforms under rotations? Because in this case
the spin matrices are known to be the Pauli matrices, the spinor transformation
can be easily determined from

R̂n⃗ϕψ(x⃗)=e−i
ˆ⃗
S·n⃗
ℏ ϕψ  
ψ′

(R−1
n⃗ϕ x⃗)=[Ŝn⃗ϕψ]  

ψ′

(R−1
n⃗ϕ x⃗)We now find the unknown

2× 2 matrix Ŝn⃗ϕ:

Ŝn⃗ϕ = e−i
ˆ⃗
S·n⃗
ℏ ϕ =

∞
k=0

1
k!


− iϕ

2

k

(ˆ⃗σ · n⃗)k = . . . with (ˆ⃗σ · n⃗)k =


Î for k=even
ˆ⃗σ·n⃗ for k=odd

(ˆ⃗σ·n⃗)2=
3

i,j=1

ninjσ̂iσ̂j=
1
2

3
i,j=1

ninj (σ̂iσ̂j+σ̂jσ̂i)  
2δij Î

+1
2

3
i,j=1

ninj(σ̂iσ̂j−σ̂jσ̂i)

  
0

=
3

i=1

n2
i

  
1

Î

· · · =


k=0,2,4,...

1
k!


− iϕ

2

k

  
cos ϕ

2

Î+


k=1,3,5,...

1
k!


− iϕ

2

k

  
−i sin ϕ

2

(ˆ⃗σ·n⃗) =
�
cos ϕ

2


Î−i

�
sin ϕ

2


(ˆ⃗σ · n⃗) = Ŝn⃗ϕ

spinor transformation

⇒ Ŝn⃗(2π) = −Î , Ŝn⃗(4π) = +Î Special case: Ŝn⃗zϕ =


e−iϕ/2 0
0 e+iϕ/2


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Only now the definition of spinor is complete. It does not mean just any
two-component wavefunction. The spinor is an object which transforms under
rotations in the specific way given above. Note the surprising property of
spinors that only rotations by 720◦, and not those by 360◦, yield identity!

◀ Historical remark
1913: Élie Cartan discovered complex “tensors” with spinor transform. properties
1927: Wolfgang Pauli introduces spinors to QM

▶ Rotational invariance sensu stricto

Hamiltonian Ĥ satisfying [Ĥ, R̂n⃗ϕ]=0 for any n⃗, ϕ must satisfy [Ĥ, Ĵi]=0 ∀i.
For a single-particle Hamiltonian of the form Ĥ = p̂2

2M + V̂ this means that

the potential is isotropic: V̂ ≡V (r). An N -particle Hamiltonian with N ≥ 1
may depend only on rotational invariants such as: ˆ⃗xk · ˆ⃗xl, ˆ⃗pk · ˆ⃗pl, ˆ⃗xk · ˆ⃗pl,
|ˆ⃗xk− ˆ⃗xl|=


(ˆ⃗xk− ˆ⃗xl)·(ˆ⃗xk− ˆ⃗xl),

ˆ⃗
Sk ·

ˆ⃗
Sl, ˆ⃗xk ·

ˆ⃗
Sl

ˆ⃗pk ·
ˆ⃗
Sl etc. (k, l=1, ..., N).

In combination with the symmetry under translations this reduces to combina-

tions containing scalar products of quantities (ˆ⃗xk− ˆ⃗xl), ˆ⃗pk and
ˆ⃗
Sk.

Both rotational and translational symmetries sensu stricto are strictly required
when dealing with Hamiltonians describing fundamental physics!

■ Irreducible representations of the rotation group

Since the square Ĵ2 of the total angular momentum commutes with all its com-
ponents Ĵi, the subspaces of the entire Hilbert space H spanned by the total
angular-momentum eigenvectors |ajm⟩ with any fixed j (and a standing for
arbitrary remaining quantum numbers) are invariant under the action of all
rotation operators R̂n⃗ϕ. In these subspaces, the rotations are described by a hi-
erarchy of Wigner matrices, which for each j form an irreducible representation
of the rotation group. Quantum theory thus provides a fundamental platform
for the realization of this group.

▶ Factorization of rotation operators

Any rotation expressed by a 3D matrix R can be equivalently characterized
by axis n⃗ and angle ϕ of the rotation or by 3 Euler angles α, β, γ. Quantum
rotation operator in H will be now interchangeably denoted by symbols R̂R ≡
R̂n⃗ϕ ≡ R̂(αβγ).

Rotation around n⃗ by ϕ: operator R̂R ≡ R̂n⃗ϕ = e
− i

ℏ


ˆ⃗
J ·n⃗


ϕ ̸= R̂zR̂yR̂x

Expression of a general rotation via Euler angles: 3 successive rotations
(1) around n⃗z by α
(2) around n⃗′

y ≡ Rn⃗zαn⃗y by β

(3) around n⃗′
z ≡ Rn⃗′

yβn⃗z by γ


 ⇒ R̂n⃗ϕ

R̂(αβγ)

= R̂n⃗′
zγ

R̂z′(γ)

R̂n⃗′
yβ

R̂y′(β)

R̂n⃗zα
R̂z(α)
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Using identities{
R̂z′(γ)=R̂y′(β)R̂z(γ)R̂

−1
y′ (β)

R̂y′(β)=R̂z(α)R̂y(β)R̂
−1
z (α)

}

i.e., e.g., R̂y′(β)R̂z(α)=R̂z(α)R̂y(β),

as shown on the right:

we obtain a factorized
formula in the fixed
coordinate system xyz:

R̂(αβγ) = R̂z(α)R̂y(β)R̂z(γ)

▶ Wigner matrices

Based on the above formulas, we can evaluate the form of the rotation operators
in the space spanned by angular-momentum eigenvectors |jm⟩.

R̂(αβγ)|jm⟩ =
∑
j′m′

⟨j′m′|R̂(αβγ)|jm⟩︸ ︷︷ ︸
δjj′D

j

m′m(αβγ)

|j′m′⟩ =
∑
m′

Dj
m′m(αβγ)︸ ︷︷ ︸

Wigner matrix

|jm′⟩

Dj
m′m(αβγ) ≡Dj

m′m(n⃗ϕ)≡Dj

m′m(R) matrix of dimension 2j+1

= ⟨jm′|R̂z(α)R̂y(β)R̂z(γ)|jm⟩ = e−i(m′α+mγ)

dj
m′m(β)︷ ︸︸ ︷

⟨jm′|R̂y(β)|jm⟩

Wigner matrices (D-functions) form
an irrep of the rotational group for

any fixed value j = 0, 12 , 1,
3
2 , 2,

5
2 , 3, . . .

(a) identity ϕ = 0, (b) inverse ϕ = −ϕ,
(d) group ≡ matrix multiplications
Dj

m′m(R2R1) =
∑
m′′

Dj
m′m′′(R2)D

j
m′′m(R1)

▶ Transformation of general-spin
wavefucntion The (2s+1)-component
wavefunction ψ(x⃗)≡{ψms

(x⃗)}+s
ms=−s of a particle with an arbitrary spin s in the

Ŝz representation
is transformed by means
of the Wigner matrices:

(
ψ′
+s(x⃗)

...
ψ′
−s(x⃗)

)
=

(
Ds

ss(R) ... Ds
(−s)s(R)

... ... ...
Ds

s(−s)(R) ... Ds
(−s)(−s)(R)

)(
ψ+s(R

−1x⃗)
...

ψ−s(R
−1x⃗)

)

▶ Clebsch-Gordan series for Wigner matrices

Rotation operators in the Hilbert space of coupled angular momenta:

H = H1︸︷︷︸
irrep j1

⊗ H2︸︷︷︸
irrep j2

⇒ R̂(αβγ) = R̂1(αβγ)⊗ R̂2(αβγ)

.
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Operator R̂ can be expressed in both (a) separable basis |j1m1⟩|j2m2⟩ ≡ |j1m1j2m2⟩
and (b) coupled basis |j1j2jm⟩:

⟨j1m1j2m2|R̂|j1m′
1j2m

′
2⟩ = ⟨j1m1|R̂1|j1m′

1⟩︸ ︷︷ ︸
D

j1
m1m

′
1

⟨j2m2|R̂2|j2m′
2⟩︸ ︷︷ ︸

D
j2
m2m

′
2

=
∑
jm

∑
j′m′

Cjm
j1m1j2m2︷ ︸︸ ︷

⟨j1m1j2m2|j1j2jm⟩

δjj′D
j

mm′︷ ︸︸ ︷
⟨j1j2jm|R̂|j1j2j′m′⟩

Cj′m′

j1m
′
1j2m

′
2︷ ︸︸ ︷

⟨j1j2j′m′|j1m′
1j2m

′
2⟩

⇒ Dj1
m1m′

1
(R) Dj2

m2m′
2
(R) =

j1+j2∑
j=|j1−j2|

+j∑
m
m′ =−j

Cjm
j1m1j2m2

Cjm′

j1m′
1j2m

′
2
Dj

mm′(R)

This relation determines the decomposition of the reducible product repre-
sentation of the rotation group (given by coupling of the j1 & j2 irreps) into
a direct sum of irreducible representations:

Dj1 ⊗Dj2 = D|j1−j2| ⊕ · · · · · · ⊕D(j1+j2)

■ Spherical tensor operators

We are ready now to understand and appreciate the introduction of spherical
tensors, i.e., objects (in our case operators) which transform according to a
single irreducible representation of the rotation group. Spherical tensors have
some favorable properties that make them mathematically more convenient
than the familiar Cartesian tensors.

▶ Cartesian tensors ⇔ Cartesian transformations under rotations

nth rank tensor: Tijk...︸ ︷︷ ︸
n indices

i,j,k···=1,2,3

→ T ′
ijk... =

∑
i′j′k′...

R−1
ii′ R

−1
jj′R

−1
kk′ . . .︸ ︷︷ ︸

Cartesian rot.matrices

Ti′j′k′...

Representation of the rotation group on Cartesian tensors is reducible
Example: 2nd rank tensor

Tij =

scalar︷ ︸︸ ︷
1
3TrT δij +

antisymmetric tensor︷ ︸︸ ︷
1
2 [Tij − Tji] +

traceless symmetric tensor︷ ︸︸ ︷
1
2 [Tij + Tji]− 1

3TrT δij
Each part of the decomposition constitutes an irrep of the rotation group

▶ Irreducible (spherical) tensors

These tensor quantities are transformed by irreducible Wigner matrices:

λth rank spherical tensor λth rank spherical tensor operator

(T ′)λµ =
∑
µ′

Dλ
µ′µ(R) T λ

µ′ R̂R T̂ λ
µ R̂−1

R =
∑
µ′

Dλ
µ′µ(R) T̂ λ

µ′

An alternative (equivalent) definition of spherical tensor operators is given by
the commutation relations of T̂ λ

µ with angular momentum operators. These
relations can be obtained by considering an infinitesimal rotation:
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δR̂︷ ︸︸ ︷
[Î − i

ℏ(
ˆ⃗
J · n⃗)δϕ] T̂ λ

µ

δR̂−1︷ ︸︸ ︷
[Î + i

ℏ(
ˆ⃗
J · n⃗)δϕ] =

∑
µ′

Dλ
µ′µ(δR)︷ ︸︸ ︷

⟨λµ′|[Î − i
ℏ(

ˆ⃗
J · n⃗)δϕ]|λµ⟩ T̂ λ

µ′

⇒
[
(
ˆ⃗
J · n⃗), T̂ λ

µ

]
=

∑
µ′
⟨λµ′|( ˆ⃗J · n⃗)|λµ⟩T̂ λ

µ′

⇒
[
Ĵ3, T̂

λ
µ

]
= ℏµT̂ λ

µ

[
Ĵ±, T̂

λ
µ

]
= ℏ

√
λ(λ+1)−µ(µ±1)T̂ λ

µ±1

These commutation relations are actually much simpler to check than the trans-
formation formulas with Wigner matrices.

▶ Examples: First & second rank tensors

(1) λ=1 tensor (vector):

Cartesian vector operator
ˆ⃗
V ≡ (V̂1, V̂2, V̂3) ⇒ R̂RV̂iR̂

−1
R =

3∑
i′=1

R−1
ii′ V̂i′

Infinitesimal rotation around axis n⃗ (sum. convention used):

V̂i− i
ℏδϕ[Ĵk, V̂i]nk= V̂i+δϕεijkV̂jnk ⇒ [Ĵk, V̂i] = iℏεkijV̂j

Spherical components of the vector operator:

V̂ 1
+1 = − 1√

2
(V̂1 + iV̂2)

V̂ 1
0 = V̂3

V̂ 1
−1 = + 1√

2
(V̂1 − iV̂2)

satisfy spherical tensor commut. relations[
Ĵ3, V̂

1
0

]
=

[
Ĵ±, V̂

1
±1

]
= 0[

Ĵ±, V̂
1
∓1

]
=

√
2ℏV̂ 1

0 ,
[
Ĵ±, V̂

1
0

]
=

√
2ℏV̂ 1

±1

Note: This reminds us the relations between (ψ1, ψ2, ψ3) and (ψ−1, ψ0, ψ+1)
components of a vector wavefunction ψ (spin-1 particle). The ±i terms differ
because ψ transforms as Rψ(R−1x⃗) and not as R−1ψ.

(2) λ=2 tensor (relations without proofs):

Cartesian tensor operator

T̂ij ≡
(

T̂11 T̂12 T̂13

T̂21 T̂22 T̂23

T̂31 T̂32 T̂33

)
satisfying T̂ij= T̂ji and

∑
i T̂ii=0

R̂RT̂ijR̂
−1
R =

3∑
i′,j′=1

R−1
ii′ R

−1
jj′ T̂i′j′

Spherical components

T̂ 2
0 = −

√
3
2 (T̂11 + T̂22)

T̂ 2
±1 = ∓(T̂31 ± iT̂32)

T̂ 2
±2 = 1

2(T̂11 − T̂22 ± 2iT̂21)

=
√

3
2 T̂33

= ∓(T̂13±iT̂23)

= T̂11+
1
2T̂33±iT̂12 = −T̂22− 1

2T̂33±iT̂12

▶ Coupling of spherical tensors

Let Âλ1
µ1

and B̂λ2
µ2

be spherical tensors of ranks λ1 and λ2. Then

T̂ λ
µ =

∑
µ1,µ2

Cλµ
λ1µ1λ2µ2

Âλ1
µ1
B̂λ2

µ2
≡ [Âλ1×B̂λ2]λµ is spherical tensor of rank λ
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Proof:
R̂ T̂ λ

µ R̂
−1

=
∑
µ1,µ2

Cλµ
λ1µ1λ2µ2

∑
µ′1

D
λ1
µ′1µ1

Â
λ1
µ′1

︷ ︸︸ ︷
R̂ Âλ1

µ1
R̂−1

∑
µ′2

D
λ2
µ′2µ2

B̂
λ2
µ′2

︷ ︸︸ ︷
R̂ B̂λ2

µ2
R̂−1=

∑
µ1,µ2

∑
µ′
1,µ

′
2

Cλµ
λ1µ1λ2µ2

∑
λ′

∑
µ′,µ′′

Cλ′µ′

λ1µ
′
1λ2µ

′
2
Cλ′µ′′

λ1µ1λ2µ2
Dλ′

µ′µ′′

︷ ︸︸ ︷
Dλ1

µ′
1µ1

Dλ2

µ′
2µ2
Âλ1

µ′
1
B̂λ2

µ′
2

=
∑
λ′

∑
µ′,µ′′

∑
µ′
1,µ

′
2

∑
µ1,µ2

Cλµ
λ1µ1λ2µ2

Cλ′µ′′

λ1µ1λ2µ2

︸ ︷︷ ︸
δλλ′δµµ′′

Cλ′µ′

λ1µ′
1λ2µ′

2
Dλ′

µ′µ′′Â
λ1

µ′
1
B̂λ2

µ′
2

What a beatiful
flyspeckful derivation! =

∑
µ′

Dλ
µ′µ

T̂λ
µ′︷ ︸︸ ︷∑

µ′
1,µ

′
2

Cλµ′

λ1µ′
1λ2µ′

2
Âλ1

µ′
1
B̂λ2

µ′
2
=

∑
µ′

Dλ
µ′µT̂

λ
µ′

Conclusion: coupling of spherical tensors creates other spherical tensors with
ranks given by the usual angular-momentum coupling relations.

Special case: scalar coupling

[Âλ×B̂λ]00=
∑
µ
C00

λµλ(−µ)︸ ︷︷ ︸
(−)λ−µ
√
2λ+1

Âλ
µB̂

λ
−µ=

(−)−λ
√
2λ+1

∑
µ

(−)µÂλ
+µB̂

λ
−µ

︸ ︷︷ ︸
(Âλ·B̂λ)

scalar product
of tensor operators

▶ Properties of matrix elements of spherical tensors

If spherical tensor operators are written in the angular-momentum eigenbasis,
the corresponding matrix elements exhibit interesting properties: many of them
vanishe, the remaining ones satisfy some simple relations. The rules behind this
behavior come from the coupling of angular momenta.

{|ajm⟩} ≡ angular-momentum basis with a denoting other quant. numbers

⟨a′j′m′|T̂ λ
µ |ajm⟩ ≡ matrix elements of a general spherical tensor

Application of the definition properties of spherical tensors:

(a) ⟨a′j′m′| [Ĵ3, T̂ λ
µ ]−ℏµT̂ λ

µ︸ ︷︷ ︸
=0

|ajm⟩=ℏ [(m′−m)−µ)]︸ ︷︷ ︸
=0

⟨a′j′m′|T̂ λ
µ |ajm⟩︸ ︷︷ ︸

̸=0 ⇒ m+µ=m′

(b) ⟨a′j′m′| [Ĵ±, T̂ λ
µ ]−ℏ

√
λ(λ+1)−µ(µ±1) T̂ λ

µ±1︸ ︷︷ ︸
=0

|ajm⟩ = 0

⇒
√
j′(j′+1)−m′(m′∓1)⟨a′j′(m′∓1)|T̂ λ

µ |ajm⟩
−
√
j(j+1)−m(m±1)⟨a′j′m′|T̂ λ

µ |aj(m±1)⟩
=

√
λ(λ+1)−µ(µ±1)⟨a′j′m′|T̂ λ

µ±1|ajm⟩
⇒ ⟨a′j′(m′∓1)|T̂ λ

µ |ajm⟩ =√
j(j+1)−m(m±1)

j′(j′+1)−m′(m′∓1)⟨a
′j′m′|T̂ λ

µ |aj(m±1)⟩+
√

λ(λ+1)−µ(µ±1)
j′(j′+1)−m′(m′∓1)⟨a

′j′m′|T̂ λ
µ±1|ajm⟩

The last relation is compared with the above-derived
recursive relation for the Clebsch-Gordan coefficients
with substitutions (see the r.h.s.) after which it reads:

j1,m1

j2,m2

j,m

}
→

{
j,m
λ,µ
j′,m′

± → ∓
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C
j′(m′∓1)
jmλµ =

√
j(j+1)−m(m±1)

j′(j′+1)−m′(m′∓1)C
j′m′

j(m±1)λµ+
√

λ(λ+1)−µ(µ±1)
j′(j′+1)−m′(m′∓1)C

j′m′

jmλ(µ±1)

Indeed, with mapping ⟨a′j′m′|T̂ λ
µ |ajm⟩↔Cj′m′

jmλµ both relations are the same.

⇒ matrix elements ⟨a′j′m′|T̂ λ
µ |ajm⟩ for fixed j, λ, j′ can be constructed from

the same recursive relations as Clebsch-Gordan coefficients Cj′m′

jmλµ

⇒ ⟨a′j′m′|T̂ λ
µ |ajm⟩ ∝ Cj′m′

jmλµ This is the content of the following theorem:

▶ Wigner-Eckart theorem ⟨a′j′m′|T̂ λ
µ |ajm⟩ = ⟨a′j′||T̂ λ||aj⟩︸ ︷︷ ︸

reduced
matrix element

Cj′m′

jmλµ

The meaning:
(a) The dependence on m,m′, µ is just that of the CG coefficient.
(b) The dependence on j, j′, λ is involved in both the CG coefficient and the
quantity ⟨a′j′||T̂ λ||aj⟩, called the reduced matrix element. It can be understood
as a proportionality constant (for fixed m,m′, µ) which cannot be determined
from the algebraic properties of angular-momentum operators, but needs to be
evaluated for each particular case.
(c) Overall, the theorem implies selection rules for tensor operators:

⟨a′j′m′|T̂ λ
µ |ajm⟩ ̸=0 ⇒

{
|j−λ| ≤ j′ ≤ (j+λ)

m+µ = m′

other equivalent forms
of the triangle inequality

|j′−λ|≤j≤(j+λ)
|j−j′|≤λ≤(j+j′)

These rules are essential e.g. for electromagnetic transitions between discrete
energy eigenstates of various bound systems (atoms, nuclei...). Quantum ampli-
tude of such a transition (per time unit) between states |ajm⟩ and |a′j′m′⟩ for
multipolarity λ (total angular momentum of the absorbed or emitted photon)

is given by a matrix element of the above type. So, e.g., a j
λ→ j′ transition

requires j, j′, λ satisfying the triangle inequality.

◀ Historical remark
1927: E.Wigner introduces D-matrices and applies the rotation group in QM
1930: C. Eckart publishes and applies his formulation of the W.-E. theorem
1942: G.Racah further extends the use of spherical tensors in spectroscopy

■ Space inversion

Spatial inversion (taking mirror images of all 3 spatial axes, therefore replacing
“right” by “left” and vice versa) is just a discrete transformation. Nevertheless,
there exists an observable associated with it—the spatial parity. In contrast to
the above cases, space inversion is not a valid symmetry of this world.

▶ Coordinate, momentum & angular momentum transformation

The unitary space inversion operator P̂ is defined by relations:
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P̂ ˆ⃗x P̂−1 = −ˆ⃗x P̂ ˆ⃗p P̂−1 = − ˆ⃗p ⇒ P̂
ˆ⃗
LP̂−1 = P̂ (ˆ⃗x× ˆ⃗p )P̂−1 = +

ˆ⃗
L

P̂
ˆ⃗
SP̂−1 = +

ˆ⃗
S

P̂
ˆ⃗
JP̂−1 = +

ˆ⃗
J

Cartesian coordinates:
xi → −xi (i=1,2,3)

Spherical coordinates:
r → r
ϑ → (π − ϑ)
φ → (φ+ π)

▶ Classification of observables with respect to space inversion

So far, we classified observables according to their transformation under rota-
tions. The space inversion enriches this classification.

P̂
ˆ⃗
V P̂−1 = − ˆ⃗

V vector P̂
ˆ⃗
V ′P̂−1 = +

ˆ⃗
V ′ pseudovector (axial vector)

P̂ ŜP̂−1 = +Ŝ scalar P̂ Ŝ ′P̂−1 = −Ŝ ′ pseudoscalar

So for example, the angular momentum
ˆ⃗
J is not a true vector, but pseudovector,

and a scalar product ˆ⃗p · ˆ⃗J is not a true scalar, but pseudoscalar.

▶ Invariance sensu stricto

N -particle Hamiltonian Ĥ = P̂ ĤP̂−1=
N∑
k=1

1
2Mk

(− ˆ⃗pk)·(− ˆ⃗pk)︷ ︸︸ ︷
P̂ ˆ⃗pk

2
P̂−1+

V ({−ˆ⃗xk},{
ˆ⃗
Sk})︷ ︸︸ ︷

P̂ V ({ˆ⃗xk}, {
ˆ⃗
Sk})P̂−1

⇒ V ({ˆ⃗xk}, {
ˆ⃗
Sk}) = V ({−ˆ⃗xk}, {

ˆ⃗
Sk}) potential must be even

▶ Parity

Operator P̂ not only defines the space-inversion transformation, but also rep-
resents a physical observable called parity:

P̂ 2 = Î P̂ = P̂ † = P̂−1 ⇒ eigenvalues π = ±1

For single-particle wavefunctions we get:
P̂Ψeven(x⃗) = +Ψeven(x⃗) P̂Ψodd(x⃗) = −Ψodd(x⃗)
P̂ [R(r)Ylm(ϑ, φ)] = R(r)Ylm(π − ϑ, φ+ π)︸ ︷︷ ︸

Plm(− cosϑ)eimφeimπ

= (−)l−m(−)m︸ ︷︷ ︸
(−)l

[R(r)Ylm(ϑ, φ)]

■ Time translation

We come to transformations involving time. The most important specimen of
this type represents a shift of the time-axis origin—time translation. The uni-
tary operator expressing the transition between observers with different time
settings is closely related to the evolution operator, which describes the dy-
namics. Motions of quantum systems generated by this operator will be in our
main focus starting from Sec. 5a.
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▶ Observations with different time origins

|ψyoung(t
′)⟩

|ψold(t
′+τ
t

)⟩


 ≡ states of the system seen by

“young” & “old” observers

Uniqueness requirement: |ψyoung(t
′)⟩ !

= |ψold(t)⟩

Transformation between both time frames: |ψyoung(t
′)⟩ = Û(t, t′)|ψold(t

′)⟩

⇒ Evolution transformation from time t′ to t= t′+τ : |ψold(t)⟩ = Û(t, t′)|ψold(t
′)⟩

▶ Properties of Û(t, t′)

(a) Û(t, t′) ≡ Û(

τ  
t− t′)

(b) Û(τ)−1 = Û(τ)†

(c) Û(0) = Î

(d) Û(τ1 + τ2) = Û(τ2)Û(τ1)





⇒





Û(τ) = eiχ̂τ with any χ̂= χ̂†

Consistent choice : χ̂ = −1
ℏĤ

Û(τ) = e−i
Ĥτ
ℏ evolution operator

The above association of the generator χ̂ with the full Hamiltonian Ĥ of the
system will be shown to be equivalent to the nonstationary Schrödinger equa-
tion (see Sec. 5a). The above derivation of Û(τ), in particular the requirement
(a), in fact assumes that the symmetry of the system under the time transla-
tion is meant sensu stricto, which in this case implies that the Hamiltonian is

independent of time: Ĥ(t) ≡ Ĥ For instance, a system depending on exter-
nal fields that vary in time does not possess this symmetry. However, it turns
out (Sec. 5a) that even in such situations the time-dependent Hamiltonian Ĥ(t)
fully determines the evolution operator Û(t, t′) ̸= Û(t−t′) of the system.

▶ Evolution in the general case

Postulate: Hamiltonian Ĥ(t) of the system at time t
= ℏ× generator of infinitesimal time translation ≡ evolution from t to t+dt

■ Time reversal

Time reversal means an inversion of the time arrow: going from future to
past. One can imagine a movie played backwards. When watching such a
movie, how to assign vectors to states and operators to observables to get
a consistent QM description? Like the space inversion, the time reversal is
just a discrete transformation, but a more difficult one. In quantum physics it
cannot be represented by a unitary operator and there is no physical observable
(analogous to spatial parity) associated with it. Similarly as in the case of the
space inversion, the symmetry sensu stricto under the time reversal is slightly
violated in nature (in weak interactions).
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▶ Basic requirements

We seek for operator T̂ satisfying: Û(t)T̂ |ψ(0)⟩ = T̂ Û(−t)|ψ(0)⟩ ∀|ψ(0)⟩

This means: forward evolution of the
time-reversed state = time reversal of
the backward-evolved state, see the figure:
For infinitesimal time δt this implies:�

1− iĤδt
ℏ

T̂ = T̂

�
1 + iĤδt

ℏ


⇒ We require: (−iĤ)T̂ = T̂ (iĤ)

For T̂ unitary this would mean:
ĤT̂ + T̂ Ĥ ≡ {Ĥ, T̂ }  

anticommutator

= 0

⇒ Ĥ|E⟩ = E|E⟩ ⇒ Ĥ(T̂ |E⟩) = −E(T̂ |E⟩)
This would imply that energy has no lower bound, which would lead to catas-
trophic evolution accompanied by infinite release of energy. This is not physical.
⇒ T̂ is not a unitary operator!

▶ Operator T̂ is antiunitary

This means that it satisfies T̂ (αÂ) = α∗T̂ Â ∀α ∈ C

T̂ ≡ ÛK̂ where




Û ≡ a unitary operator

K̂ ≡ complex conjugation operator: K̂

i

αi|i⟩ =

i

α∗
i |i⟩

with respect to a selected basis {|i⟩}i=1,2,...

⇒ Instead of {Ĥ, T̂ }=0 the above requirement implies: [Ĥ, T̂ ] = 0

The form of T̂ (the choice of Û and the basis for K̂) is not uniquely fixed but
depends on the specific physical application.

▶ Properties of scalar products

⟨ψ1|ψ2⟩=⟨Ûψ1|Ûψ2⟩=


i α
′∗
1iα

′
2i=(


i α

′
1iα

′∗
2i)

∗=⟨T̂ ψ1|T̂ ψ2⟩∗=⟨T̂ ψ2|T̂ ψ1⟩
⟨ψ1|Ô|ψ2⟩ = ⟨T̂ ψ2|T̂ Ô†T̂ −1|T̂ ψ1⟩ (e.g., transition matrix elements)

▶ Classification of observables with respect to time reversal

(1) T̂ Â T̂ −1= +Â even observables (e.g. Ĥ, ˆ⃗x, . . . ) T̂ keeps eigenvalues

(2) T̂ Â T̂ −1= −Â odd observables (e.g. ˆ⃗p,
ˆ⃗
L,

ˆ⃗
S, . . . ) T̂ inverts eigenvalues

▶ Invariance sensu stricto

N -particle Hamiltonian Ĥ=T̂ ĤT̂ −1 =

k

1
2Mk

(− ˆ⃗pk)·(− ˆ⃗pk)  
T̂ ˆ⃗pk

2
T̂ −1+

V ∗({ˆ⃗xk},{−
ˆ⃗
Sk})  

T̂ V ({ˆ⃗xk}, {
ˆ⃗
Sk})T̂ −1

⇒ V ({ˆ⃗xk}, {
ˆ⃗
Sk}) = V ∗({ˆ⃗xk}, {−

ˆ⃗
Sk}) real potential function (no losses) invariant

under spin inversion (no external mag. field)
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◀ Historical remark
1924: O. Laporte introduces spatial parity of electron wavefunctions in atoms
1931: E.Wigner shows that time reversal is represented by an antiunitary operator
1956: C.-S. Wu experimentally verifies that parity is violated in nuclear β decay
2012: experimental evidence of the time-reversal violation in weak decays

■ Galilean transformations

Nonrelativistic quantum mechanics must be invariant under transformations
between inertial frames with relative speed v⃗. These transformations involve
space, momentum and time variables.

▶ Quantum Galilean transformation

Classical Galilean transformation:
(

x⃗
p⃗
t

)
→

(
x⃗′

p⃗′

t′

)
≡ Gv⃗

(
x⃗
p⃗
t

)
=

(
x⃗−v⃗ t
p⃗−Mv⃗

t

)

Unitary operators Ĝv⃗ must satisfy Ĝv⃗
ˆ⃗x Ĝ−1

v⃗ = ˆ⃗x−v⃗tÎ , Ĝv⃗
ˆ⃗p Ĝ−1

v⃗ = ˆ⃗p−Mv⃗Î

Ĝv⃗ = e
i
ℏ (M

ˆ⃗x−t ˆ⃗p)·v⃗ =
3∏

i=1

e
i
ℏMvix̂i e−

i
ℏ tvip̂i e

i
ℏ
1
2Mv2i t (using the BCH formula)

Systems with N>1 particles: Ĝv⃗ =
N∏
k=1

Ĝ
(i)
v⃗

Trasformation of single-particle wavefunction:
Coordinate representation: Ĝv⃗ ψ(x⃗, t) = e

i
ℏ (Mv⃗·x⃗− 1

2Mv2t) ψ(x⃗−v⃗t, t)
Momentum representation: Ĝv⃗ ψ̃(p⃗, t) = e

i
ℏ (−tv⃗·p⃗+ 1

2Mv2t) ψ̃(p⃗−Mv⃗, t)

▶ Relativistic quantum theory
To implement the relativistic Lorenz transformation into the quantum theory
turned out to be a much more difficult task. It was not possible—at least not
in a consistent way—before an essential reinterpretation of the wavefunction.
In the relativistic theory, it does not describe a single particle, but a quantized
field of particles whose number is not fixed. We do not follow this story here.

◀ Historical remark
1925: Erwin Schrödinger attempts to create a Lorenz-invariant wave equation, but
because of problems he remains with the non-relativistic formulation
1926: Oskar Klein and Walter Gordon (simultaneously V. Fock and others) develop
a relativistic wave equation for spinless particles
1927: Paul Dirac initiates quantum field theory (the correct unification of relativity
with QM), in 1928 he creates a relativistic wave equation for spin-12 particle

■ Symmetry and degeneracy

Degeneracy of energy levels is an important signature of the system’s symmetry

sensu stricto. It occurs because for transformations Ûg ≡ ei
ˆ⃗
G·s⃗ belonging to the

symmetry group G the vector Ûg|E⟩, where |E⟩ is any eigenstate of the system’s
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Hamiltonian Ĥ, remains an eigenstate of Ĥ with the same energy E. However,
some symmetries cause no degeneracy, and some degeneracies are not caused
by usual geometric symmetries.

▶ Abelian symmetry group: Eigenstates of Ĥ are simultaneous eigenstates

of all generators Ĝi ⇒ ei
ˆ⃗
G·s⃗|E⟩= eiφ|E⟩ (with φ ≡ just a phase) ⇒ The

symmetry does not necessarily imply degeneracy. If degeneracy of eigenstates

with different eigenvalues of
ˆ⃗
G occurs, it has some other (“dynamical”) origins.

▶ Non-Abelian symmetry group: Some generators Ĝi act nontrivially on

the eigenstates of Ĥ ⇒ ei
ˆ⃗
G·s⃗|E⟩= |E ′⟩ with Ĥ|E ′⟩=E|E ′⟩ and ⟨E|E ′⟩ ̸= 0

⇒ Degeneracy in general occurs. Example: rotationally invariant Ĥ shows
degeneracy of eigenstates {|ajm⟩}+j

m=−j, where j,m ≡ total angular momentum
quantum numbers and a ≡ additional q. numbers.

▶ Dynamical symmetry

This term refers to situations when the Hamiltonian Ĥ has a higher symmetry
than the commonly required space-time symmetries (like those under transla-
tions, rotations etc.). The sensu-stricto symmetry group G of such a system
usually contains these space-time groups as subgroups. This leads to so-called
accidental degeneracies of energy levels beyond those dictated by the com-
mon symmetries.

Example (a): 3D isotropic harmonic oscillator

Dimensionless coordinate and momentum operators

{
ˆ⃗x=

1√
2ℏ/Mω

ˆ⃗x

ˆ⃗p=
1√

2ℏMω
ˆ⃗p

Ĥ = 1
2M

ˆ⃗p 2 + Mω2

2
ˆ⃗x 2 = ℏω

[
3
2 + (ˆ⃗x+ i ˆ⃗p)︸ ︷︷ ︸

ˆ⃗
b†

· (̂⃗ x− i ˆ⃗p)︸ ︷︷ ︸
ˆ⃗
b

]

Beyond the rotational symmetry defined by transformations
{

R̂ ˆ⃗x R̂−1=R ˆ⃗x
R̂ ˆ⃗p R̂−1=R ˆ⃗p

}
with

orthogonal matricesR ∈ SO(3), the Hamiltonian is also symmetric under a class

of unitary transformations
{

Û
ˆ⃗
b Û−1=U

ˆ⃗
b

Û
ˆ⃗
b† Û−1=U† ˆ⃗b†

}
with unitary matricesU ∈U(3). We

have U(3)⊃ SO(3), so the system’s actual symmetry is higher than rotational.
This causes “accidental” degeneracies of oscillator eigenstates with different
orbital quantum numbers l (see Sec. 2b).

Example (b): Coulomb potential (i.e., the hydrogen atom or Kepler problem)

Accidental degeneracy of the Hamiltonian eigenstates with different orbital
quantum numbers l exists also in isotropic potential V (r) =−K

r (see Sec. 2b).
In this case the symmetry chain is SO(4)⊃ SO(3), where 6 generators of the

SO(4) group coincide with components of the orbital angular momentum
ˆ⃗
L and

those of the Runge-Lenz vector
ˆ⃗
R = 1

2(
ˆ⃗p × ˆ⃗

L − ˆ⃗
L × ˆ⃗p )−MK ˆ⃗x, all satisfying

[Ĥ, L̂i]=[Ĥ, R̂i]=0.
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,◀ Historical remark
1926: Wolfgang Pauli associates the accidental degeneracy in the hydrogen atom
with the additional symmetry (using Lenz result from 1924)
1935-6: V. Fock & V.Bargmann analyze the dynamical symmetry of hydrogen
1960-70’s: elaboration of techniques based on dynamical symmetries in particle and
nuclear physics (A.O.Barut, Y.Ne’eman, A.Böhm, F. Iachello, D.J. Rowe et al.)

5a. UNITARY TIME EVOLUTION

After all, we are now coming to the dynamics of quantum systems, i.e., the evolu-
tion of state vectors in the Hilbert space with running time variable t. The standard
treatment of quantum mechanics declares two types of quantum evolution: (i) the
spontaneous one—motions signifying perpetual flow of time, and (ii) an induced
one—changes provoked by quantum measurements. At first we will focus on type
(i), the unitary evolution of systems which are not disturbed by any external in-
teractions. Later, when we elaborate a more sophisticated statistical description of
quantum states, we will argue that evolution of type (ii) may also be treated under
type (i) if the external probes are included into the full quantum description.

■ Evolution operator and Schrödinger equation

for systems with time-independent Hamiltonians

For quantum mechanics, the nonstationary Schrödinger equation means the
same as what the Newton equation means for classical mechanics. We have
already introduced the evolution operator from the time translation (Sec. 4b),
so we do not need to make a special postulate on the spontaneous dynamics.

▶ Spontaneous evolution of a quantum system

|ψ(t)⟩ = e−i
Ĥt
ℏ |ψ(0)⟩ ⇔

iℏ d
dt [e

−i Ĥt
ℏ |ψ(0)⟩]=Ĥ[e−i Ĥt

ℏ |ψ(0)⟩]
iℏ d

dt |ψ(t)⟩ = Ĥ|ψ(t)⟩

evolution operator nonstationary Schrödinger equation

This description of the time evolution, with proper definitions of the system’s
state vectors and the Hamiltonian (operator of total energy), is quite general—
valid in both non-relativistic and relativistic quantum theory. However, in the
relativistic domain (i.e., within the quantum field theory) it becomes too com-
plex and more viable approaches are applied instead. The non-relativistic QM
follows from from considering the wavefunction of a fixed number of particles
(in relativistic physics, particles can be created and annihilated) and from using
the non-relativistic approximation of the Hamiltonian.
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Example: Non-relativistic spinless
particle with Hamiltonian Ĥ=

ˆ⃗p2

2M+V (ˆ⃗x) : iℏ ∂
∂tψ(x⃗, t) =

[
− ℏ2

2M∆+ V (x⃗)
]
ψ(x⃗, t)

▶ Expression via stationary states

Assume a discrete energy spectrum of Ĥ that provides a complete basis {|Ei⟩}di=1

Ĥ|Ei⟩=Ei|Ei⟩ ⇒ |ψ(0)⟩ ≡ |Ei⟩
t−→ |ψ(t)⟩ = e−i

Eit

ℏ |ψ(0)⟩
Eigenstates of Ĥ evolve just through their phase factors⇒ they are “stationary”
⇒ Evolution of a general state is expressed by its expansion to eigenstates |Ei⟩:

|ψ(0)⟩≡
∑
i

αi︸︷︷︸
αi(0)

|Ei⟩
t−→

∑
i

αie
−i

Eit

ℏ︸ ︷︷ ︸
αi(t)

|Ei⟩≡|ψ(t)⟩

This yields a rather simple picture of evolution!
Example: quantum survival probability,
i.e., the probability that the initial state
|ψ(0)⟩ is found in the evolved state |ψ(t)⟩
p0(t) =

∣∣a0(t)
∣∣2 = ∣∣⟨ψ(0)|ψ(t)⟩∣∣2

=
∣∣⟨ψ(0)|e−i Ĥt

ℏ |ψ(0)⟩
∣∣2

=

∣∣∣∣
∑
i

|αi|2e−i
Eit

ℏ

∣∣∣∣
2

= p0(t)

■ Single-particle probability current

If the dynamical Schrödinger equation is applied to the scalar wavefunction of
a single particle in external fields, the resulting dependence ψ(x⃗, t) describes
how the probability density ρ(x⃗, t) = |ψ(x⃗, t)|2 flows in space. This process can
be described in terms of ordinary fluid dynamics.

▶ Continuity equation

Particle in scalar and vector potentials V (x⃗, t) and A⃗(x⃗, t):

∂
∂t |ψ|

2

︸︷︷︸
ρ

= ∂ψ
∂t︸︷︷︸ψ

∗ + ψ ∂ψ∗

∂t︸︷︷︸ =
1
iℏψ

∗
[

1
2M (−iℏ∇⃗ − qA⃗)2 + V

]
ψ +

{
complex
conjugate

}
=

from Schrödinger eq.

= 1
Mℏ Im

[
ψ∗(−ℏ2∇⃗·∇⃗+iℏq∇⃗·A⃗+iℏqA⃗·∇⃗+q2A⃗2)ψ

]
︸ ︷︷ ︸

−ℏ2∇⃗·(ψ∗∇⃗ψ)+iℏq∇⃗·(ψ∗A⃗ψ)

+ℏ2(∇⃗ψ∗)·(∇⃗ψ)−iℏq[(∇⃗ψ∗)·A⃗ψ−C.C.]+q2A⃗2|ψ|2

=−∇⃗·
[

ℏ
M Im(ψ∗∇⃗ψ)− q

Mψ∗A⃗ψ
]

︸ ︷︷ ︸
j⃗

We obtain the familiar continuity equation: ∂
∂tρ(x⃗, t) + ∇⃗ · j⃗(x⃗, t) = 0

The change of probability in an infinitesimal volume is in balance with the
incoming/outgoing flux of probability. The probability density ρ(x⃗, t) behaves
like the density of a fluid whose “substance” is locally conserved.
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Conservation of total probability: Take a sphere of radius R (volumeVR, sur-
faceSR). Then

d
dt

∫
VR

|ψ(x⃗, t)|2 dx⃗ = −
∫
VR

∇⃗ · j⃗(x⃗, t)dx⃗ = −
∫
SR

j⃗(x⃗, t) · dS⃗R −−−→
R→∞

0

(since for normalizable wavefunctions j⃗ → 0 faster than 1/SR)

⇒ The norm ⟨ψ|ψ⟩ =
∫
|ψ(x⃗, t)|2 dx⃗ = 1 is conserved in time, as was already

clear from unitarity of the evolution operator Û(t).

▶ Probability current (flux)

j⃗(x⃗, t) = ℏ
M Im

[
ψ∗∇⃗ψ

]
︸ ︷︷ ︸

− i
2 (ψ

∗∇⃗ψ−ψ∇⃗ψ∗)

− q
Mψ∗A⃗ψ = 1

2M

[
ψ∗(ˆ⃗πψ) + ψ(ˆ⃗πψ)∗

]
= j⃗

ˆ⃗π = (−iℏ∇⃗ − qA⃗) ≡ mechanical momentum

Parametrization: ψ(x⃗, t) = R(x⃗, t)e
i
ℏS(x⃗,t) ⇒ j⃗ = R2︸︷︷︸

ρ

1
M

[
∇⃗S − qA⃗

]
︸ ︷︷ ︸

v⃗

This helps to understand the meaning of complex single-particle wavefunctions:

� The squared absolute value |ψ(x⃗, t)|2 = R(x⃗, t)2 is the probability density.

� The gradient of phase ∇⃗S(x⃗, t) determines the velocity field ⇒ flux.

This means that even a stationary wavefuction ψ(x⃗) = R(x⃗)e
i
ℏS(x⃗) can have

a dynamical content if ψ(x⃗) ∈ C and the phase S(x⃗) ̸= const.

The wavefunction ψ(x⃗) can be visualized as
a mesh of arrows whose lengths are proportional
to v⃗(x⃗) = 1

M ∇⃗S(x⃗) (the velocity field) and whose
density is proportional to ρ(x⃗) = R(x⃗)2 (the
density field), see an artificial example here:

▶ Probability currents for simple wavefunctions

(a) Planar wave: ψ = N eik⃗·x⃗ j⃗ = |N |2 ℏk⃗M
(b) Spherical wave: ψ = N 1

r e
ikrr j⃗ = |N |2 ℏkr

Mr2 n⃗r

(c) Eigenstate of
orbital momentum:

ψ =R(r)︸︷︷︸
|R|eiϕr(r)

Ylm(ϑ, φ)︸ ︷︷ ︸
Plm(cosϑ)eimφ

j⃗ ∝ dϕr

dr n⃗r +
mℏ

r sinϑn⃗φ

The corresponding
probability currents are:

(a) translational
(b) divergent
(c) rotational
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▶ Interference of probability currents

Let ψ(x⃗) = ψ1(x⃗)+ψ2(x⃗), with ψ1(x⃗) and ψ2(x⃗) being wavefunctions with
currents j⃗1(x⃗) and j⃗2(x⃗). The probability current corresponding to ψ(x⃗) reads:

j⃗ = j⃗1 + j⃗2 +
1
MRe

[
ψ∗
1(−iℏ∇⃗)ψ2+ψ∗

2(−iℏ∇⃗)ψ1−2qA⃗ψ∗
1ψ2

]
︸ ︷︷ ︸

interference term j⃗int

Example:
plane waves

ψ1(x⃗)=N eik⃗1·x⃗

ψ2(x⃗)=N eik⃗2·x⃗

}
⇒ j⃗int(x⃗)= |N |2

[ ℏ
M (k⃗1+k⃗1)−2qA⃗(x⃗)

]
cos

[
(k⃗1−k⃗2) · x⃗

]

In particular, we obtain no interference for k⃗1 = ±k⃗2 and A⃗=0

▶ Stationary solutions of dynamical problems

The continuity equation enables us to solve some nonstationary single-particle
problems, like scattering on a potential V (x⃗), via the stationary Schr. equa-
tion. These techniques will be elaborated in Secs. 12& 13. Here just shortly.

Stationary state: ∂
∂t|ψ|

2 = 0 ⇒ continuity equation reads: ∇⃗ · j⃗ = 0

For systems inviariant under time reversal there exist degenerate Hamiltonian

eigenstates
{

ψE

ψ∗
E

}
with flows

{
j⃗

−j⃗

}
. We can combine these solutions to a real

solution with j⃗=0. However, when solving the dynamical problems we proceed
with complex solutions.

Example: Consider the 1D scattering problem describing passage of a particle
through a finite-range potential V (x) with V (x)→0 for x→±∞.

We search for the solutions of[
− ℏ2

2M
d2

dx2 + V (x)
]
ψE(x) =

E︷︸︸︷
(ℏk)2
2m ψE(x)

with ψE(x) having the asymptotic forms:
x → −∞: ψE(x) ∼ e+ikx︸︷︷︸

incoming

+ arefl(E)e−ikx

︸ ︷︷ ︸
reflected

arefl, atrans ≡ coefficients

x → +∞: ψE(x) ∼
transmitted waves︷ ︸︸ ︷

atrans(E)e+ikx

1D continuity eq. d
dxj(x)=0 ⇒ j(x)=const ⇒

j(−∞)=j0+jrefl︷ ︸︸ ︷(
1−|arefl(E)|2

)ℏk
M =

jtrans=j(+∞)︷ ︸︸ ︷
|atrans(E)|2 ℏkM

Hence the solution of ψE(x) of the stationary Schrödinger equation with the
above asymptotics directly yields the reflection probability prefl(E) = |arefl(E)|2
(= jrefl

j0
) and transmission propability ptrans(E) = |atrans(E)|2 (= jtrans

j0
) satisfying

prefl+ptrans=1. It turns out that, in general, even a particle with E<MaxxV (x)
has a chance ptrans(E) > 0 to pass (quantum tunneling effect), and also
a particle with E>MaxxV (x) has a chance prefl(E)>0 to get reflected.
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▶ Vorticity of the flow v⃗ ≡ ∇⃗ × v⃗

This quantity quantifies the spinning motion of the 3D velocity flow.

(a) A⃗ = 0: v⃗ = ∇⃗×
(

1
M ∇⃗S

)
= 0 except points satisfying ψ = 0, where the

phase S is not determined ⇒ In absence of mag. field, the probability flow may
produce vortices only at the points where ψ=0, cf. the rotational flow (c) in
the above example.

(b) A⃗ ̸= 0: v⃗=− q
M

B⃗︷ ︸︸ ︷
(∇⃗×A⃗) ⇒ The flow is vortical in all points where B⃗ ̸=0.

◀ Historical remark
1926: Erwin Schrödinger presents the nonrelativistic wave equation for single elec-
tron & Max Born finds its probabilistic interpretation using the probability flux
1928: George Gamow explains nuclear α-decays with the aid of quantum tunneling

■ Conservation laws and symmetries

We are ready now to appreciate the deepest dynamical consequence of symme-
try. According to the famous theorem by Emmy Noether, the symmetry sensu
stricto of a given system under an n-parameter Lie group generates n conserved
quantities. This has rather fundamental connotations. One may imagine that
the very recognition of all physical quantities relies on the particular symme-
tries that imply the conservation of these quantities in some systems. But what
the conservation law means in the indeterministic environment of QM, where
all physical quantities yield just statistical values?

▶ Conservation laws in QM

Time evolution of the probability distribution for measurement outcomes a of
quantity A for a system in initial state |ψ(0)⟩: pψ(a, t) ≡ ⟨ψ(t)|P̂a|ψ(t)⟩
Quantity A is conserved in a given quantum system iff its probability distri-
bution pψ(a, t) for any initial state does not change in time:

⇒ ∂
∂t pψ(a, t) = 0 ∀ |ψ(0)⟩ & ∀ a

⇒ statistical moments ⟨ψ(t)|Âk|ψ(t)⟩︸ ︷︷ ︸
⟨ψ(0)|ei

Ĥt
ℏ Âke−i Ĥt

ℏ |ψ(0)⟩

= ⟨ψ(0)|Âk|ψ(0)⟩ ⇒ ei
Ĥt
ℏ Âe−i Ĥt

ℏ = Â

⇒ [Â, Ĥ] = 0

So, the conserved quantities are those that commute with the Hamiltonian.

▶ Evolution of averages

iℏ d
dt⟨ψ(t)|Â|ψ(t)⟩ =

⟨ψ(t)|[Â,Ĥ]|ψ(t)⟩︷ ︸︸ ︷
−⟨ψ(0)|ei

Ĥt
ℏ ĤÂe−i Ĥt

ℏ |ψ(0)⟩+ ⟨ψ(0)|ei
Ĥt
ℏ ÂĤe−i Ĥt

ℏ |ψ(0)⟩

Time-derivative “operator”: ˆ̇A ≡ 1
iℏ [Â, Ĥ] d

dt⟨A⟩ψ ≡ ⟨ψ(t)| ˆ̇A|ψ(t)⟩
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Analogy with the Poisson bracket: Ȧ =
∑
i

(
∂A
∂pi

ṗi︸︷︷︸
−∂H

∂qi

+∂A
∂qi

q̇i︸︷︷︸
+ ∂H

∂pi

)
= {A,H}

⇒ correspondence [Â, Ĥ] ↔ iℏ {A,H}
Example: particle speed “operator” for Ĥ = 1

2M (ˆ⃗p− qA⃗)2 + V

ˆ̇
x⃗ = 1

iℏ [
ˆ⃗x, Ĥ] = 1

2iMℏ [
ˆ⃗x, (ˆ⃗p− qA⃗)2] = 1

M (ˆ⃗p− qA⃗) = 1
M
ˆ⃗π

▶ Conservation laws generated by symmetries

Let quantity Ĝ be a Hermitian generator of an n=1 Lie group G ≡ {eiĜs}s∈R
[Ĝ, Ĥ]=0

Ĝ is conserved

}
⇔

{
[eiĜs, Ĥ]=0

G is the symmetry group of Ĥ (sensu stricto)

Generalizing to higher dimensional Lie groups, we obtain the QM version of
the Noether theorem: invariance of Ĥ under a Lie group with n generators
implies conservation of quantities associated with all generators

Standard spatio-temporal symmetries of Ĥ and related conservation laws:

translational invariance ⇔ linear momentum ˆ⃗p

rotational invariance ⇔ angular momentum
ˆ⃗
J

time translation invariance ⇔ energy Ĥ

space reflection invariance ⇔ parity P̂

Note: Space reflection is not a continuous transformation; parity conservation
follows from an “accidental” Hermiticity of the reflection operator P̂

◀ Historical remark
1915: E.Noether proves the theorem relating conservation laws with symmetries
1924: N.Bohr, H.Kramers & J. Slater propose that in QM the conservation laws hold
only “statistically” (not in every event), but this is later disproved experimentally
1927: Eugene Wigner writes about symmetry & conservation laws in QM, he relates
parity conservation in elmag. decays with reflection symmetry of interaction
1956-64: Discoveries of the violation of the spatial and combined parity P̂ and ĈP̂

■ Energy × time uncertainty relation

Time does not appear as a standard physical observable. It is just “a parame-
ter” whose only role is “to fly”—and we all have to fly with it! In particular,
quantum theory offers no operator to be associated with time. It is possible to
find various observables that can be used for time measurements in association
with some specific initial states, but to find a universal time operator is not
possible. Nevertheless, it is often stated that time and energy form a pair of
conjugated quantities similar to coordinate and momentum. This can be valid
only in a limited sense, which we explore in the following.
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▶ Survival probability and energy distribution

We return to the above-outlined problem of survival probability. The amplitude
a0(t) ≡ ⟨ψ(0)|ψ(t)⟩ and probability p0(t) = |a0(t)|2 to find the system in its
t = 0 state |ψ(0)⟩ at a positive or negative time t must satisfy conditions:

a0(t)=⟨ψ(0)|e−i Ĥt
ℏ ψ(0)⟩=⟨e+i Ĥt

ℏ ψ(0)|ψ(0)⟩ = a∗0(−t) ⇒ p0(t) = p0(−t)

To evaluate a0(t), we use the completeness:





S(Ĥ)


k∈DE

|Ek⟩⟨Ek| dE = Î

⟨E ′k′|Ek⟩ = δ(E−E ′)δkk′(for continuous E & discrete k; other possibilities analogous)

a0(t)=⟨ψ(0)| ↑
Î

e−i Ĥt
ℏ ↑

Î

|ψ(0)⟩=
� 

k,k′
⟨ψ(0)|E ′k′⟩  

ω∗(E′,k′)

⟨E ′k′|e−i Ĥt
ℏ |Ek⟩  

e−iEt
ℏ δ(E−E′)δkk′

⟨Ek|ψ(0)⟩  
ω(E,k)

dE dE ′

=
 

k

|ω(E, k)|2


  
Ω(E) energy distribution

e−iEt
ℏ dE =



S(Ĥ)

Ω(E)e−iEt
ℏ dE = a0(t)

So the survival amplitude a0(t)
is the Fourier transform of the
energy distribution Ω(E). The
general rule is that { wide

narrow } energy
distributions yeild the survival

probabilities that decay


quickly
slowly


.

Defining some widths ∆E and ∆t of the energy and time distributions, we
expect an approximate relation ∆E ·∆t ∼ ℏ, where however ∆t is not an un-
certainty in the usual quantum sense. Below we illustrate this by two examples:

(1) Gaussian energy distribution

Ω(E) = 1√
2πσ2

e−
(E−E0)

2

2σ2 the energy width is naturally defined as ∆E = σ

a0(t)=
1√
2πσ2

+∞
−∞

e−
(E−E0)

2

2σ2
−iEt

ℏ  
e
− 1

2σ2
E2+(E0

σ2
− it

ℏ )E−
E2
0

2σ2

dE=e−
σ2

2ℏ2 t
2

e−i
E0t
ℏ

p0(t) = e−(
σ
ℏ)

2
t2 = e−(

t
∆t)

2

⇒ the time width

can be defined as ∆t= ℏ
σ ⇒ ∆E ·∆t = ℏ

(2) Breit-Wigner (Cauchy) energy distribution

Ω(E)=
1

π

Γ
2

(E−E0)2+
�
Γ
2

2
Γ = finite halfwidth of Ω(E)

⟨⟨E2⟩⟩ = ∞ energy disperion infinite as the decrease

of Ω(E) forE→±∞ is too slow (algebraic)
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We obtain p0(t) = e−
t
τ exponential decay with average lifetime τ = ℏ

Γ

So the energy-time uncertainty satified:

Γ︷︸︸︷
∆E ·

τ︷︸︸︷
∆t = ℏ

Inverse proof (from exponential decay to Breit-Wigner distribution):

Assume a0(t) =

{
e−Γt/(2ℏ)e−iE0t/ℏ

e+Γt/(2ℏ)e−iE0t/ℏ

}
for

{
t ≥ 0
t < 0

Coherent assumption on the
phase factors. The t>0 exponential

decay is extended also to t<0

Ω(E) = 1
2πℏ

+∞∫
−∞

a0(t)e
+iEt

ℏ dt = 1
2πℏ

( 0∫

−∞

e[
Γ
2ℏ+i

E−E0
ℏ ]tdt

︸ ︷︷ ︸
ℏ

(Γ/2)+i(E−E0)

+

+∞∫

0

e[−
Γ
2ℏ+i

E−E0
ℏ ]tdt

︸ ︷︷ ︸
−ℏ

−(Γ/2)+i(E−E0)

)
=

= 1
π

Γ/2

(E−E0)2+(Γ/2)
2

So the exponential decay of unstable
nuclei, particles and other objects is
related to the continuous Breit-Wigner
distribution of energy, which is called

the natural lineshape. However, the Breit-Wigner distribution Ω(E) is not
physical as it has the infinite energy dispersion. The real lineshape can be very
close to the natural one but must deviate from it in both low- and high-energy
tails. This leads to small deviations from the exponential law, in particular, to
a smoothening of the t = 0 cusp of the extended function p0(t); see below.

▶ Mechanism of generating a smooth lineshape
The decay of an unstable quantum system Q is often due
to its interaction with a certain quantized field F (e.g., the
electromagnetic field). The Q+F system has Hamiltonian
Ĥ = ĤQ + ĤS + ĤQF, where ĤQ (with a discrete spectrum)
and ĤF (with a continuous spectrum) are self-Hamiltonians
of Q and F, and ĤQF is a Q-F interaction. Assume an initial
state |ψ(0)⟩= |Ei⟩Q|0⟩F in the full Hilbert space H=HQ⊗HF,
where |Ei⟩Q is an excited state of Q (so ĤQ|Ei⟩Q = Ei|Ei⟩Q)
and |0⟩F is the lowest-energy eigenstate (vacuum) of F. Thus the
state |Ei⟩Q|0⟩F is an eigenstate of ĤQ+ĤS, but not of the full Hamiltonian Ĥ.
Hence this state evolves with time. The energy distribution Ω(E) in the con-
tinuous eigenbasis of Ĥ determines the survival probability function P0(t).

▶ Non-exponential decay

The decay of unstable nuclei, particles or excited states is described by the
exponential decay law, but necessary low- & high-energy deviations from the
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Breit-Wigner energy distribution imply that this law is only an approximation.
This becomes particularly apparent at very small and very large times. Devi-
ations at the small times: The exponential decay yields d

dtp0(t)
∣∣
t=0

= −1
τ while

QM always yields d
dtp0(t)

∣∣
t=0

= 0

|a0(δt)|2 = ⟨ψ(0)|e−i Ĥδt
ℏ |ψ(0)⟩⟨ψ(0)|e+i Ĥδt

ℏ |ψ(0)⟩ ≈ expand up to 2nd order in δt

≈ 1 + ⟨ψ(0)|Ĥ|ψ(0)⟩2 (δt)
2

ℏ2 − ⟨ψ(0)|Ĥ2|ψ(0)⟩ (δt)
2

ℏ2 = 1− ⟨⟨E2⟩⟩
ℏ2︸︷︷︸
τ−2

(δt)2 ≈ p0(δt)

⇒ The QM decay for small times is always quadratic.
However, this is usually very hard to measure!

⇒ We again get: ∆E︸︷︷︸√
⟨⟨E2⟩⟩

∆t︸︷︷︸
τ

= ℏ

◀ Historical remark
1950-60s: Theoretical study of deviations from the exponential decay law
1997: The first experimental detection of the short-time deviations

▶ Energy × time uncertainty in real measurements

Assume the situation in which an evolution of a certain quantity T (with quan-
tum operator T̂ ) for some particular initial states is used for the determination
of time (for a given system). What is the precision of such a chronometer?

For T̂ being an applicable “clock” operator there must be [T̂ , Ĥ] ̸= 0 (oth-
erwise the distribution of quantity T for any initial state |ψ(0)⟩ would be con-
served in time) ⇒ standard T̂ × Ĥ uncertainty relation can be applied in the
evolving state |ψ(t)⟩: √

⟨⟨E2⟩⟩ψ(t)⟨⟨T 2⟩⟩ψ(t) ≥ ℏ
2

∣∣⟨ψ(t)|
ˆ̇T︷ ︸︸ ︷

1
iℏ [T̂ , H] |ψ(t)⟩

∣∣

Quantity

√
⟨⟨T 2⟩⟩ψ(t)

|⟨ψ(t)| ˆ̇T |ψ(t)⟩|
=

∆ψ(t)T
d
dt ⟨T ⟩ψ(t)

≡∆t can be iden-

tified with an uncertainty of time determination

via the clock observable T̂ for initial state |ψ(0)⟩

⇒ real uncertainty relation ∆E ·∆t ≥ ℏ
2

Time operator in QM? For a certain subset of initial states of the given
system, it is possible to find a suitable clock operator T̂ . However, there exists
no universal time operator T̂ satisfying the canonical commutation relation
[T̂ , Ĥ] = −iℏÎ, applicable for all initial states ∈ H. For instance, this would
imply the absence of a lower bound of energy, which is unphysical.
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◀ Historical remark
1926, 1933: W.Pauli shows the difficulty in building a quantum operator of time
1928: N.Bohr proposes the E× t uncertainty principle, 1930’s debate with Einstein
1945: L.Mandelstam & I.Tamm derive E × t uncertainty for “clock observables”
1960’s–present: Discussions on the ways to formulate QM with a time operator

■ Hamiltonians depending on time

Let us have a closer look on quantum dynamics generated by a Hamiltonian

which itself changes in time: Ĥ = Ĥ(t) . This means that, for the system un-
der study, the time-translation invariance is violated, as is actually the case if a
variable external field is applied. However, as explained in the following para-
graph, time-dependent Hamiltonians naturally appear also in time-translation
invariant situations—in the so-called Dirac picture of quantum dynamics.

▶ Nonstationary Schrödinger equation for time-dependent Hamiltonians

The form of the evolution operator remains valid in the local sense (for in-

finitesimal time intervals δt): Û(t0+δt, t0) = e−i Ĥ(t)δt
ℏ

⇒ The nonstationary Schr. eq. remains the same: iℏ d
dt |ψ(t)⟩ = Ĥ(t)|ψ(t)⟩

We distinguish 2 cases:




(a) [Ĥ(t), Ĥ(t′)] = 0 ∀ t, t′

(b) [Ĥ(t), Ĥ(t′)] ̸= 0 t ̸= t′
...easy but rare
...normal&difficult

Schrödinger equation can be presented as an equation for the general evolu-
tion operator Û(t, t0):

iℏ ∂
∂t

|ψ(t)⟩  
Û(t, t0)|ψ(t0)⟩ = Ĥ(t)

|ψ(t)⟩  
Û(t, t0)|ψ(t0)⟩ valid ∀ |ψ(t0)⟩

⇒ operator equation iℏ ∂
∂tÛ(t, t0) = Ĥ(t) Û(t, t0) with Û(t0, t0) = Î

▶ Dyson series for general evolution operator

The formal solution
of the above operator
equation reads as follows:

Û(t, t0) = Î − i
ℏ

t
t0

Ĥ(t1)Û(t1, t0)  
Î− i

ℏ
t1
t0

Ĥ(t2) Û(t2,t0)  
...

dt2

dt1

By repeatedly inserting this equation
into itself we obtain the solution in the form of an infinite Dyson series:

Û(t, t0) = Î +
�
− i

ℏ
1 t

t0

Ĥ(t1) dt1 +
�
− i

ℏ
2 t

t0

t1
t0

Ĥ(t1)Ĥ(t2) dt2dt1 + . . .

+
�
− i

ℏ
n t

t0

t1
t0

. . .
tn−1
t0

Ĥ(t1)Ĥ(t2) . . . Ĥ(tn) dtn . . . dt2dt1 + . . .
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In general, the Dyson series can be summed up to a compact form only in
case (a) of the Hamiltonian time dependence. In case (b), which is much more
generic, the evolution operator can only be expressed in the infinite-series form.

▶ Case (a) commuting Hamiltonians: [Ĥ(t), Ĥ(t′)] = 0
t∫

t0

t1∫
t0

Ĥ(t1)Ĥ(t2) dt2dt1 =
1
2

t∫
t0

t∫
t0

Ĥ(t1)Ĥ(t2) dt2dt1 =
1
2

[
t∫

t0

Ĥ(t1) dt1

]2

t∫
t0

t1∫
t0

. . .
tn−1∫
t0

Ĥ(t1)Ĥ(t2) . . . Ĥ(tn) dtn . . . dt2dt1 =
1
n!

[
t∫

t0

Ĥ(t1) dt1

]n

Û(t, t0) = e
− i

ℏ

t∫
t0

Ĥ(t1) dt1 ... compact expression
of the evolution operator

▶ Case (b) non-commuting Hamiltonians: [Ĥ(t), Ĥ(t′)] ̸= 0

Note that
t∫

t0

t1∫
t0

. . .
tn−1∫
t0

Ĥ(t1)Ĥ(t2) . . . Ĥ(tn) dtn . . . dt2dt1 =

1
n!

t∫
t0

t∫
t0

. . .
t∫

t0

T
[
Ĥ(t1)Ĥ(t2) . . . Ĥ(tn)

]
︸ ︷︷ ︸

dtn . . . dt2dt1

︷ ︸︸ ︷
Ĥ(ti1)Ĥ(ti2) . . . Ĥ(tin) time ordering
(t1, t2 . . . tn) → (ti1 ≥ ti2 ≥ · · · ≥ tin)

In each term of Dyson series do the following:
(1) change the subintegral operator function

to the t-ordered product: [. . . ] → T[. . . ]
(2) extend integ. domain ⇒ all upper limits = t
(3) reduce the integral by factor 1

n!

Û(t, t0) = Te
− i

ℏ

t∫
t0

Ĥ(t1) dt1
... symbolic compact expression in the form
of the time ordered exponential−just an
abbreviation of the full Dyson series

The Dyson series for a general time-dependent Hamiltonian is not a perturba-
tion series, i.e., it is not guaranteed that the size of individual contributions
decreases with increasing order. So it might be generally difficult to make it
useful. However, below we will see that convergence properties of the Dyson
series get much better in the so-called interaction picture of the time evolution.

■ Alternative descriptions of time evolution

So far we have followed an approach to quantum dynamics in which the vectors
corresponding to physical states vary in time while the operators associated with
fundamental observables (such as coordinates and momenta) stay constant.
The varying Hamiltonians considered in the last paragraph were exceptions that
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we related to externally varied fields. However, this most common description
of the time evolution is not the only one. All equivalent descriptions can be
sorted into 3 groups, according to whether the evolution is attributed to state
vectors, operators of observables, or to both.

▶ 3 equivalent ways to express action of any unitary transformation Û

varying vectors varying operators varying both

(1)
|ψ⟩ → Û |ψ⟩
Â → Â

(2)
|ψ⟩ → |ψ⟩
Â → Û−1ÂÛ

(3)
|ψ⟩ → Û1|ψ⟩
Â → Û−1

0 ÂÛ0

for any factorization Û = Û0Û1

In all cases, matrix elements ⟨ψ′|Â|ψ⟩ are the same ⇒ equivalent descriptions

These possibilities constitute 3 equivalent types of description of quantum dy-
namics with unitary evolution operator Û(t) = e−i Ĥt

ℏ which is invariant under
the time translations.▶ (1) Schrödinger picture

It assumes varying state vectors and constant operators:

|ψ(t)⟩S = Û(t)|ψ(0)⟩S
ÂS ≡ const.

⇒




usual time evolution of state vectors

iℏ d
dt |ψ(t)⟩S = ĤS|ψ(t)⟩S

time independent operators

In nonrelativistic QM, this is the most common description of dynamics.

▶ (2) Heisenberg picture

It works with constant state vectors and varying operators. Assuming that
vectors and operators in the Heisenberg picture coincide with those of the
Schrödinger picture at time t = 0, we obtain:

|ψ(t)⟩H = |ψ⟩H ≡ const.

ÂH(t) = Û †(t) ÂS Û(t)
⇒




time independent state vectors

|ψ⟩H = Û †(t)|ψ(t)⟩S
time dependent operators

⇒ Hamiltonian ĤH = ĤS ≡ Ĥ

⇒ General observable evolution equation: iℏ d
dtÂH(t) = [ÂH(t), Ĥ]

▶ (3) Dirac (interaction) picture

It is intermediate between the Schrödinger and Heisenberg pictures.

The Hamiltonian is split to the “free” and “interaction” parts: Ĥ = Ĥ0 + Ĥ ′

While the evolution operator with the “free” Hamiltonian Ĥ0 evolves the oper-
ators, the state vectors are evolved by the remaining part of the full evolution
operator. Mind that in a generic situation we have
to assume that [Ĥ0, Ĥ

′] ̸= 0, so the factorization of
the full evolution operator is not the trivial one: Û(t) =

=e−i
Ĥ0t
ℏ  

Û0(t)

̸=e−i Ĥ
′t
ℏ  

Û1(t)
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Operators evolve by Û0(t) = e−i
Ĥ0t
ℏ ⇒ ÂD(t) = Û †

0(t) ÂS Û0(t)

⇒ Ĥ0D = Ĥ0S ≡ Ĥ0

⇒ operators satisfy differential equation iℏ d
dtÂD(t) = [ÂD(t), Ĥ0]

Vectors evolve by Û1(t) = Û †
0(t)Û(t) ⇒ |ψ(t)⟩D = Û †

0(t)|ψ(t)⟩S

iℏ d
dt |ψ(t)⟩D = −Ĥ0|ψ(t)⟩D + Û †

0(t)
(
iℏ d

dt |ψ(t)⟩S
)

︸ ︷︷ ︸
(Ĥ0+Ĥ ′)Û0(t)|ψ(t)⟩D

= Û †
0(t)Ĥ

′Û0(t)︸ ︷︷ ︸
Ĥ ′

D(t)

|ψ(t)⟩D

iℏ d
dt |ψ(t)⟩D = Ĥ ′

D(t)|ψ(t)⟩D Schwinger-Tomonaga equation

just the Schrödinger eq. with Ĥ → Ĥ ′
D(t)

The evolution according to the Schwinger-Tomonaga equation can be repre-
sented by state evolution operator Û(t, t0)D, which is expressed via the
Dyson series with Ĥ(t) ≡ Ĥ ′

D(t). In this case, due to the assumed “small-
ness” of Ĥ ′

D with respect to Ĥ0, the series can be used in a perturbative way,
i.e., neglecting higher-order terms (see Sec. 11). The Dirac interaction picture
is a common framework in the relativistic quantum field theory.

◀ Historical remark
1925-6: W.Heisenberg & E. Schrödinger use the two descriptions of QM dynamics
1930: Paul Dirac connects these descriptions in a unified picture
1934: Julian Schwinger (S.-I. Tomonaga in 1940’s) introduce the interaction picture
1949: Freeman Dyson uses the expansion of the evolution operator in QED

■ Green operator

We now briefly outline an approach to evolution which becomes very useful
later, in the context of relativistic quantum theory. Based on the old idea of
Green’s function, known from the general theory of differential equations, this
approach leads to a rather new, revealing view of quantum dynamics.

▶ General Green’s function
Assume a general differential equation D̂xf(x) = R(x) for an unknown func-

tion f(x), where D̂x is a differential operator in variable x and R(x) is a fixed
function. The Green’s function G0(x) associated with this equation satisfies

D̂xG0(x) = δ(x) ⇒ general solution
f(x) = f0(x) +

∫
dx′G0(x−x′)R(x′)

with D̂xf0(x)=0

▶ Quantum Green operator

We define the retarded Green operator Ĝ+
0 (t, t0) for nonstationary Schrödin-

ger equation with Hamiltonian Ĥ0(t) as the evolution operator Û0(t, t0) re-
stricted to t ≥ t0. It satisfies the following Green-like operator equation:
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Ĝ+
0 (t, t0) = Θ(t− t0)︸ ︷︷ ︸

=
{
1 for t≥t0
0 for t<t0

Û0(t, t0)
[
iℏ ∂

∂t − Ĥ0(t)
]
Ĝ+

0 (t, t0) = iℏδ(t−t0)

Proof:

iℏ ∂
∂t

Ĝ+
0 (t,t0)︷ ︸︸ ︷

Θ(t−t0)Û0(t, t0) = iℏ

iℏδ(t−t0)Û0(t0,t0)=iℏδ(t−t0)Î︷ ︸︸ ︷
δ(t−t0)Û0(t, t0) +

Ĥ0(t)Ĝ
+
0 (t,t0)︷ ︸︸ ︷

Θ(t−t0)Ĥ0(t)Û0(t, t0)

Note: The meaning of word “retarded” should be understood here in the sense
that Ĝ+

0 (t, t0) evolves the system from a past time t0 to a future time t. Simi-
larly, advanced Green operator (evolving from future t0 to past t) is defined

by Ĝ−
0 (t, t0) = −Θ(t0−t)Û0(t, t0) and satisfies the same Green-like equation.

Below we continue our discussion with the retarded operator only.

▶ Transition from free to full Green operator

We assume that the above Green operators with Ĥ0(t) describes free evolu-
tion and the full Hamiltonian contains also an interaction Ĥ ′(t). The retarded

Green operator of the full Hamiltonian Ĥ(t) = Ĥ0(t) + Ĥ ′(t) is defined by

Ĝ+(t, t0) = Θ(t− t0)Û(t, t0)
[
iℏ ∂

∂t − Ĥ(t)
]
Ĝ+(t, t0) = iℏδ(t−t0)

and satisfies the following integral equation:

Ĝ+(t, t0) = Ĝ+
0 (t, t0)− i

ℏ

+∞∫

−∞

Ĝ+
0 (t, t1)Ĥ

′(t1)Ĝ
+(t1, t0) dt1

... this is an analog of the
above general formof

solution of D̂xf(x)=R(x)

Proof: application of [ iℏ ∂
∂t−Ĥ0 ] to the first term and

inside the integral yields the defining eq. of Ĝ+:[
iℏ ∂

∂t − Ĥ0(t)
]
Ĝ+(t, t0) = iℏδ(t−t0) +

Ĥ ′(t)Ĝ+(t,t0)︷ ︸︸ ︷
+∞∫
−∞

δ(t−t1)Ĥ
′(t1)Ĝ

+(t1, t0) dt1

▶ Iterative solution of the full Green operator

The above integral expression of the full Green operator Ĝ+(t, t0) through the
free Green operator Ĝ+

0 (t, t0) enables us to reuse the above-introduced “insert-
to-itself” (time-reversed uroboros) technique. We obtain an infinite series:

Ĝ+(t, t0) = Ĝ+
0 (t, t0)− i

ℏ

+∞∫

−∞

Ĝ+
0 (t, t1)Ĥ

′(t1)Ĝ
+
0 (t1, t0) dt1 + · · ·

+
(
− i

ℏ
)n

+∞∫

−∞

...

+∞∫

−∞︸ ︷︷ ︸
n×

Ĝ+
0 (t, tn)Ĥ

′(tn)Ĝ
+
0 (tn, tn−1) .... Ĝ

+
0 (t2, t1)Ĥ

′(t1)Ĝ
+
0 (t1, t0) dtn ... dt1

+ · · · · · ·
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This series is analogous to the Dyson series, except (a) the zeroth term Ĝ+
0 ̸= Î,

(b) all integrals have the same limits, and (c) the alternating operators Ĝ+
0 and

Ĥ ′ inside integrals. If Ĥ ′ is small compared to Ĥ0, the series can again be
used in the perturbative way, i.e., neglecting the terms of higher order. The
meaning of this expansion will become clear in the following.

▶ Propagator

Forward evolution of a single-particle state can be written as:

⟨x⃗|ψ(t)⟩ = ⟨x⃗|Ĝ+(t, t0)|ψ(t0)⟩ =
∫
⟨x⃗|Ĝ+(t, t0)|x⃗0⟩⟨x⃗0|ψ(t0)⟩ dx⃗0

⇒ ψ(x⃗, t) =

∫
G+(x⃗t|x⃗0t0)︸ ︷︷ ︸
⟨x⃗|Ĝ+(t,t0)|x⃗0⟩

ψ(x⃗0, t0) dx⃗0 with G+(x⃗t|x⃗0t0) (coordinate repre-

sentation of the single-particle Green

operator) being called “propagator”

The propagator G+(x⃗t|x⃗0t0) can be interpreted as the wavefunction ψ(x⃗, t)
evolved from ideally localized initial state ψ(x⃗, t0) = δ(x⃗−x⃗0) ≡ |x⃗0⟩. It satisfies
the equation:

[
iℏ ∂

∂t +
ℏ2
2M∆− V (x⃗, t)

]
G+(x⃗t|x⃗0t0) = iℏδ(t−t0)δ(x⃗−x⃗0)

Let V (x⃗, t) = V0(x⃗, t) + V ′(x⃗, t) and let G+
0 (x⃗t|x⃗0t0) be the solution for V0(x⃗, t).

The iterative solution for the full potential V (x⃗, t) reads as:

G+(x⃗t|x⃗0t0) = G+
0 (x⃗t|x⃗0t0) + · · ·+

(
− i

ℏ
)n∫

...

∫

︸ ︷︷ ︸
2n×

G+
0 (x⃗t|x⃗ntn)V ′(x⃗n, tn) ...

... G+
0 (x⃗2t2|x⃗1t1)V ′(x⃗1, t1)G

+
0 (x⃗1t1|x⃗0t0) dx⃗ndtn ... dx⃗1dt1 + · · ·

This series has a visual interpretation:

with each intermediate interaction

bringing the factor 1
iℏV

′(x⃗k, tk)

and the integration over all

space-time points (x⃗k, tk)

▶ Green operator for time-independent Hamiltonian Ĥ(t) ≡ Ĥ

Expansion in stationary states: Ĝ+(t, t0) = Θ(t−t0)
∑
i,k

e−i
Ei(t−t0)

ℏ |Eik⟩⟨Eik| =

= lim
ε→0+

∑
i,k

(
iℏ
2π

∞∫
−∞

e−iω(t−t0)

ℏω−Ei+iεdω
)
|Eik⟩⟨Eik|

using the result from complex analysis (see the sketch
of integration path used in its derivation):

iℏ
2π

∞∫
−∞

e−iωt

ℏω−E+iεdω = Θ(t)e−i (E−iε)t
ℏ for ε>0
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⇒ Ĝ+(t, t0)= Ĝ+(

τ︷︸︸︷
t−t0) = lim

ε→0+

i

2π

∞∫

−∞

Ĝ+(E)︷ ︸︸ ︷
1

E−Ĥ+iε e
− i

ℏEτdE

Similarly:

Ĝ−(τ)= lim
ε→0+

i
2π

∞∫
−∞

1
E−Ĥ−iε︸ ︷︷ ︸
Ĝ−(E)

e−
i
ℏEτ dE

Operators Ĝ±(τ) & Ĝ±(E), mutually related by Fourier transformations, rep-
resent time & energy images of the retarded and advanced Green operators.

◀ Historical remark
1828: George Green applies math. analysis in electromagnetism ⇒ Green function
1949: Richard Feynman applies Green funcs. in QM+QED (later “propagator”)

5b. EXAMPLES OF UNITARY EVOLUTION

Having digested all the general approaches to the description of quantum evolution,
we need to see some concrete applications. A few examples discussed below represent
just a personal selection—a multitude of other cases could serve the purpose as well.

■ Two-level (& few-level) systems

Two-level systems yield periodic evolution. A lot of examples of such behavior
exists in nature: from oscillation phenomena in particle physics to excitation-
deexcitation cycles in quantum optics. Note that any system with Hilbert
space of a finite dimension n ≥ 2 exhibits in general a quasiperiodic evolution:
it can be expressed via a finite number of periodic motions, like the function
f(t) = g(eiω1t, eiω2t, . . . ) where ω1, ω2, . . . represent partial frequencies.

▶ General two-level Hamiltonian

The most general Hamiltonian Ĥ in d = 2 is determined (including the overall
scale) by 4 real parameters, which can be associated with coefficients ℏ(ω0, ω⃗)
at the unit and Pauli matrices that comprise Ĥ.

Ĥ =
( ℏω0+ℏω3 ℏω1−iℏω2
ℏω1+iℏω2 ℏω0−ℏω3

)
= ℏ

[
ω0Î + ω1σ̂1+ω2σ̂2+ω3σ̂3︸ ︷︷ ︸

ω⃗ · ˆ⃗σ

] √
ω2
1+ω2

2+ω2
3 ≡ ω

▶ Two-level evolution operator
is calculated as the spinor transformation (see Sec. 4b): ω⃗

ω
e−i Ĥt

ℏ = e−i(ω0t)Î e−i(ω⃗·ˆ⃗σ)t︸ ︷︷ ︸

Û(t) = e−iω0t
[
(cosωt) Î − i(sinωt)

(
ω⃗
ω · ˆ⃗σ

)]

= e−iω0t
(

cosωt−i
ω3
ω sinωt −ω2+iω1

ω sinωt
ω2−iω1

ω sinωt cosωt+i
ω3
ω sinωt

)
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This yields quasiperiodic evolution with partial frequencies ω0 and ω, but the
global phase ω0t is not relevant. For a spin-12 particle, the motion represents a
steady rotation around the spatial direction n⃗ = ω⃗/ω with frequency ω.

▶ Special case: Ĥ =
( ℏω0 ℏω

ℏω ℏω0

)
⇒ Û(t) = e−iω0t

(
cosωt −i sinωt

−i sinωt cosωt

)

|ψ(0)⟩=( 10 )
t−→ |ψ(t)⟩=e−iω0t ( cosωt

−i sinωt )

⇒
{
p0(t)= |⟨ψ(0)|ψ(t)⟩|2 =cos2 ωt
p1(t)= |⟨ψ(0)⊥|ψ(t)⟩|2=sin2 ωt

oscillations
period T = π

ω

▶ Generalization to d > 0

A general d-dimensional Hamiltonian Ĥ
is determined (including the overall scale) by d2 real parameters. The quasiperi-
odic evolution generated by this Hamiltonian has d independent frequencies
ωi =

1
ℏEi, where Ei with i = 1, ..., d are eigevalues of Ĥ. One of these frequen-

cies (any of them) can be chosen to determine just the global phase.

◀ Historical remark
1954: M. Gell-Mann and A. Pais describe oscillations of neutral particles
1960’s-present: Particle-antiparticle (d = 2) and neutrino (d = 3) oscillations stud-
ied in numerous experiments

■ Free particle

Although a scalar particle moving in empty space (no fields) represents the most
trivial example of evolution, expressed in terms of an ordinary wavefunction, the
related calculations are a bit unpleasant. Nevertheless, they yield two benefits
of general importance: the discovery of the wavepacket spreading phenomenon
and quantification of the limits of validity of nonrelativistic QM.

▶ Free-particle propagator

Hamiltonian: Ĥ = 1
2M

ˆ⃗p 2 ⇒ Green operator: Ĝ+(t, t0) = Θ(t−t0) e
−i

t−t0
2Mℏ

ˆ⃗p2

Propagator: G+(x⃗t|x⃗0t0) ≡ ⟨x⃗|Ĝ+(t, t0)|x⃗0⟩ x⃗−x⃗0≡∆x⃗
t−t0≡∆t

= Θ(∆t)
�

⟨x⃗|p⃗⟩︸ ︷︷ ︸
1√

2πℏ3
e+ip⃗·x⃗/ℏ

⟨p⃗|e−i ∆t
2Mℏ

ˆ⃗p2|p⃗0⟩︸ ︷︷ ︸
e−i ∆t

2Mℏ p⃗2δ(p⃗−p⃗0)

⟨p⃗0|x⃗0⟩︸ ︷︷ ︸
1√

2πℏ3
e−ip⃗0·x⃗0/ℏ

dp⃗ dp⃗0 =
Θ(∆t)
(2πℏ)3

∫
e

i
ℏ

[
p⃗·∆x⃗− p⃗2

2M∆t
]
dp⃗

= Θ(∆t)
(2πℏ)3

∫
ea(p⃗−q⃗)2+bdp⃗

︸ ︷︷ ︸
(−π

a)
3/2

eb for Re a<0

with a = −i ∆t
2ℏM b = iM(∆x⃗)2

2ℏ∆t q⃗ = M∆x⃗
∆t

To get Re a < 0 assume: ∆t −→ ∆t−iε with ε → 0+

· · · = lim
ε→0+

Θ(∆t)
(2πℏ)3

(
2πℏM
ε+i∆t

) 3
2 ei

M(∆x⃗)2

2ℏ∆t = Θ(∆t)
(

M
2iπℏ∆t

) 3
2 e

i
ℏ
M
2 (

∆x⃗
∆t )

2
∆t= G+(∆x⃗,∆t)
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|G+(∆x⃗,∆t)|2 =
(

M
2πℏ∆t

)3
for ∆t > 0 ⇒ immediate spread of the particle in

the whole space (⇐ nonrelativistic theory)

▶ Evolution of Gaussian wavepackets

If the particle localization is imperfect, the spreading rate of its wavefunction
should become finite.

ψ(x⃗, t) = 1
(2πℏ)3/2

∫
ψ̃(p⃗)︸︷︷︸

e−(p⃗−p⃗0)
2/4σ2p

(2πσ2
p)

3/4

e
i
ℏ

[
p⃗·x⃗− p⃗2

2M t

]

dp⃗ =

= 1
(8π3ℏ2σ2

p)
3/4

∫
e

(
− 1
4σ2

p
− it
2ℏM

)
p⃗2+

(
p⃗0
2σ2

p
+
ix⃗
ℏ

)
·p⃗−

p⃗20
4σ2

p︸ ︷︷ ︸
ea(p⃗−q⃗)2+b Re a<0

=

a=− 1
4σ2

p

(
1+i

2σ2
pt

ℏM

)
q⃗=− 1

2a

(
p⃗0
2σ2

p
+i

x⃗
ℏ

)
b=−aq⃗ 2−

p⃗20
4σ2

p= 1
(8π3ℏ2σ2

p)
3/4

(
−π

a

) 3
2 eb

Probability density: |ψ(x⃗, t)|2 =
(

1
8πℏ2σ2

p|a|2

) 3
2

e2Re b

Define σ2
x(t) ≡ 4ℏ2σ2

p|a|2 = ℏ2
4σ2

p

[
1 +

4σ4
p

ℏ2M2 t
2
]

and evaluate the exponent:

2Re b = − 1
2σx(t)2

[
16ℏ2σ2

p|a|2Re(aq⃗ 2) + 4ℏ2|a|2p⃗ 2
0

]
= −(x⃗− p⃗0

M t)
2

2σx(t)2

|ψ(x⃗, t)|2= 1

[2πσx(t)2]
3/2e

−
[x⃗−x⃗0(t)]

2

2σx(t)2
x⃗0(t)=

p⃗0
M t translation

σx(t)=σx(0)

√
1+

[
ℏ

2Mσx(0)2

]2
t2 spreading

For short times, the wavepacket moves like a classical particle with average
momentum p⃗0, but for longer times the wavepackets spreads out in space. The
smaller is the spread σx(0) at t = 0, the faster it grows at t ≫ 0.

▶ Validity limit of nonrelativistic QM

Spreading speed of the wavepacket: s ≡ 1
2
d
dtσx(t) =

σx(0)
2

[
ℏ

2Mσx(0)2

]2
t

√
1+

[
ℏ

2Mσx(0)2

]2
t2

large t−→ ℏ
4Mσx(0)

Nonrelativistic QM becomes invalid for s ≳ c. This will be so for the initial

particle localization σx(0) ≲ ℏ
4Mc =

1
4λ̄C where λ̄C (for electron

.
= 386 fm) is
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the reduced Compton wavelength of the given particle (see Sec. 2b). So the
nonrelativistic Schrödiger equation of a free particle is applicable iff σx(0) ≫ λ̄C

▶ Phase & group velocities

(a) A monochromatic planar wave ψ(x⃗, t) = ei

ϕ(k⃗,x⃗,t)  
[⃗k · x⃗− ω(k⃗)t]

Phase velocity v⃗ph given by the condition of a constant phase:

ϕ(k⃗, x⃗, t) = const. ⇒ k⃗ · x⃗ = const.+ω(k⃗)t ⇒ v⃗ph =
ω(k⃗)
k2 k⃗

k⃗= p⃗
ℏ , ℏω(k⃗)= (ℏk⃗)2

2M ⇒ QM: v⃗ph =
p⃗

2M = 1
2 v⃗clas

(b) A wave packet ψ(x⃗, t) =

a(k⃗) ei[⃗k·x⃗−ω(k⃗)t] dk⃗ with the amplitude func-

tion a(k⃗)=( ℏ
2π)

3
2 ψ̃(ℏk⃗) having a sharp maximum at k⃗= k⃗0

Group velocity v⃗gr represents the motion of the maximum of ψ(x⃗, t):

ψ(x⃗, t) ≈ a(k⃗0) e
iϕ(k⃗0,x⃗,t)


eiq⃗ · ∇⃗k⃗ϕ(k⃗,x⃗,t)|k⃗=k⃗0 dq⃗

⇒ the integral ≈ 0 except when the phase has a stationary point:
∇⃗⃗k ϕ(k⃗, x⃗, t)|k⃗=k⃗0

= 0 ⇒ x⃗ = ∇⃗⃗k ω(k⃗)|k⃗=k⃗0
t ⇒ v⃗gr = ∇⃗⃗k ω(k⃗)|k⃗=k⃗0

⇒ QM: v⃗gr =
p⃗0
M = v⃗0clas

■ Coherent states in harmonic oscillator

The harmonic oscillator potential has the magic power to prevent Gaussian
wavepackets from spreading. It provides the simplest specimen from the large
family of coherent states. These states generalized to more complex situations
represent an important tool to construct the classical limit of a quantum system
(cf. Sec. 8). For the sake of simplicity we will stay now in 1D space.

▶ Coherent states as eigenstates of the lowering operator

We know that the 1D oscillator Hamiltonian Ĥ = 1
2M p̂2 + Mω2

2 x̂2 = ℏω
�
b̂†b̂+1

2


is naturally expressed through ladder (lowering & raising) operators


b̂†=


Mω
2ℏ


x̂−i

1
Mωp̂



b̂=


Mω
2ℏ


x̂+i

1
Mωp̂




 ⇔




x̂=


ℏ

2Mω(b̂
†+b̂)

p̂=i


Mℏω
2 (b̂†−b̂)


 ⇒


b̂†|En⟩=

√
n+1 |En+1⟩

b̂|En⟩ =
√
n |En−1⟩



satisfying the commutation relation [b̂, b̂†] = Î. Operators b̂† and b̂ are thought
to create and annihilate quanta of vibrations—effective particles called phonons.

The coherent state is an eigenstate of the lowering operator:

b̂|ψz⟩ = z|ψz⟩ with an eigenvalue z ∈ C

▶ Coherent states in the energy eigenbasis |ψz⟩ = e−
|z|2
2

∞
n=0

zn√
n!
|En⟩

Proof: b̂|ψz⟩ = e−
|z|2
2

∞
n=0

zn√
n!

√
n|En−1⟩  
b̂|En⟩ = ze−

|z|2
2

∞
n=1

zn−1√
(n−1)!

|En−1⟩ = z|ψz⟩
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The coherent state |ψz⟩ shows
Poisson energy distribution

pz(En) = e−λ λn

n!

with λ ≡ |z|2 = ⟨n⟩z = ⟨⟨n2⟩⟩z.
The energy average & dispersion read as:

⟨E⟩z = ℏω
(
|z|2 + 1

2

)
⟨⟨E2⟩⟩z = (ℏω)2|z|2

Note: There exists no eigenstate of the raising operator b̂†. Indeed, assume
a general state |ψ⟩=

∑∞
n=0 αn|En⟩, where coefficients αn vanish ∀n below a cer-

tain n0 (possibly n0=0). We have b̂†|ψ⟩=
∑∞

n=0

√
n+1αn|En+1⟩=

∑∞
n=1 α

′
n|En⟩,

where coefficients α′
n vanish ∀n below n0+1. So b̂†|ψ⟩ ̸∝ |ψ⟩.

▶ Normalization & scalar products of coherent states

⟨ψz|ψz′⟩︸ ︷︷ ︸
z=|z|eiϕ

z′=|z′|eiϕ′

= e−
|z|2+|z′|2

2

∑
n

∑
n′

(z∗)n(z′)n
′

√
n!n′!

⟨En|En′⟩︸ ︷︷ ︸
δnn′

= e−
|z|2+|z′|2

2

∑
n

(z∗z′)n

n! =

· · · = e−
|z|2+|z′|2

2 +|z||z′|[cos(ϕ′−ϕ)+i sin(ϕ′−ϕ)] = e−
|z′−z|2

2 +i|z||z′| sin(ϕ′−ϕ) = ⟨ψz|ψz′⟩

Coherent states {|ψz⟩}z∈C form an overcomplete set in H:
{

⟨ψz|ψz⟩=1
⟨ψz|ψz′⟩̸=0 for z ̸=z′

▶ Coordinate & momentum averages

⟨ψz|x̂|ψz⟩ =
√

ℏ
2Mω

z∗+z︷ ︸︸ ︷
⟨ψz|(b̂† + b̂)|ψz⟩ =

⟨ψz|p̂|ψz⟩ = i
√

Mℏω
2 ⟨ψz|(b̂† − b̂)|ψz⟩︸ ︷︷ ︸

z∗−z

=

√
2ℏ
Mω Re z = ⟨x⟩z√
2Mℏω Im z = ⟨p⟩z

▶ Coordinate representation

ψz(x)=⟨x|ψz⟩=e−
|z|2
2

∞∑
n=0

zn√
n!

⟨x|En⟩︸ ︷︷ ︸
(Mω

πℏ )
1/4 1√

2nn!
e−

Mω
2ℏ x2Hn

(√
Mω
ℏ x

)
=
(
Mω
πℏ

) 1
4 e−

|z|2
2 −Mω

2ℏ x2

∞∑
n=0

(
z√
2

)n

n! Hn

(√
Mω
ℏ x

)

︸ ︷︷ ︸
e
Mω
ℏ x2−

(√
Mω
ℏ x− z√

2

)2

Applying the generating function of Hermite polynomials

Hn(ξ) ≡ dn

dηne
ξ2−(ξ−η)2|η=0 ⇒ eξ

2−(ξ−η)2 =
∑
n
Hn(ξ)

ηn

n!

we arrive to:
· · · =

(
Mω
πℏ

) 1
4 e−

|z|2
2 +Mω

2ℏ x2

e
−
(√

Mω
ℏ x− z√

2

)2

=
(
Mω
πℏ

) 1
4 e−

Mω
2ℏ x2+2z

√
Mω
2ℏ x−zRe z

|ψz(x)|2 =
(
Mω
πℏ

) 1
2 e−

Mω
ℏ
(
x−⟨x⟩z

)2

Gaussian distribution with σ2
x =

ℏ
2Mω

So coherent states of the harmonic oscillator are Gaussian wavepackets with
the z-dependent cooordinate & momentum averages and constant dispersions.
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▶ Time evolution of coherent states

e−i Ĥt
ℏ |ψz⟩ = e−

|z|2
2

∞∑
n=0

zn√
n!
e−i(n+ 1

2)ωt|En⟩ = e−iωt
2 e−

|z|2
2

∞∑
n=0

(z′)n︷ ︸︸ ︷
(ze−iωt)n√

n!
|En⟩

︸ ︷︷ ︸
|ψz′⟩Û(t)|ψz(0)⟩ = e−iωt

2 |ψz(t)⟩ z(t) = z(0)e−iωt

Evolution of coordinate & momentum averages

⟨x⟩t =
√

2ℏ
Mω

[
Rez(0)︸ ︷︷ ︸

⟨x⟩0

cos(ωt) + Imz(0) sin(ωt)
]

⟨p⟩t = −
√
2Mℏω

[
Imz(0)︸ ︷︷ ︸

⟨p⟩0

cos(ωt)− Rez(0) sin(ωt)
]

The averages satisfy the following equation of an ellipse:

1
2M ⟨p⟩2t + Mω2

2 ⟨x⟩2t = ℏω|z(0)|2︸ ︷︷ ︸
⟨E⟩z(0)−ℏω

2

Coherent state approximately imitates
the classical oscillator trajectory in
the phase space, which satisfies:

1
2M p2 + Mω2

2 x2 = E

Since ⟨E⟩z ≫ ℏω
2 for |z|2 ≫ 1, the

approximation is getting improved
with increasing |z| ↔ ⟨E⟩z

Constant widths σx =
√

ℏ
2Mω σp =

ℏ
2σx

minimize the Heisenberg relation.

◀ Historical remark
1925: Erwin Schrödinger discovers oscillator coherent states (he wrongly anticipates
that such states will make the notion of pointlike particles irrelevant)
1950-60’s: J. Schwinger and J.Klauder use coherent states in the field-theory context
1963: Roy Glauber shows the key importance of coherent states in quantum optics

■ Heisenberg picture of particle in general potential

The above-derived results concerning the free particle and particle in the harmo-
nic-oscillator potential indicate that coordinate and momentum averages may
evolve in agreement with the laws of classical dynamics. Indeed, this corre-
spondence can be generalized to the case of a particle moving in an arbitrary
potential V (x⃗). To practice non-Schrödinger views of evolution, we switch for
a moment to the Heisenberg picture.
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▶ Ehrenfest theorem

We assume a single spinless particle with Hamiltonian: Ĥ = 1
2M

ˆ⃗p 2 + V (ˆ⃗x)
Evolving operators in the Heisenberg picture satisfy the following equations:

d
dt p̂i =

1
iℏ [p̂i, Ĥ] = 1

iℏ [p̂i, V (ˆ⃗x)] = − ∂V
∂xi

(ˆ⃗x)
d
dtx̂i =

1
iℏ [x̂i, Ĥ] = 1

iℏ [x̂i,
1

2M p̂2i ] =
1
M p̂i

}
⇒

{
d
dt
ˆ⃗p = −∇⃗V (ˆ⃗x)

d
dt
ˆ⃗x = 1

M
ˆ⃗p

d2

dt2 x̂i=
d
dt

(
1
M p̂i

)
=− 1

M
∂V
∂xi

(ˆ⃗x) ⇒ M d2

dt2
ˆ⃗x = −∇⃗V (ˆ⃗x) “quantum Newton law”

▶ Semiclassical behavior
Consider an arbitrary state |ψH⟩ = |ψS(t=0)⟩.
Coordinate averages ⟨xi(t)⟩ψ = ⟨ψS(t)|x̂iS|ψS(t)⟩ = ⟨ψH|x̂i(t)H|ψH⟩ evolve in

accord with an averaged Newton law; in particular: M d2

dt2 ⟨x⃗(t)⟩ψ = −⟨∇⃗V (ˆ⃗x)⟩ψ
⇒ Semiclassical evolution of average coordinates is obtained for convenient
initial states, like narrow wavepackets. However, as we saw, the dispersions
⟨⟨x2i (t)⟩⟩ψ are not fixed and may behave in a crazy way (like in the case of a free
particle, and in contrast to the exceptional case of the harmonic oscillator).

◀ Historical remark
1927: P. Ehrenfest formulates the relation between quantum and classical dynamics

■ Spin in rotating magnetic field

In the following example we describe the evolution of quantum spin in a time
dependent external field. Although the time dependence of the Hamiltonian is
of the nontrivial type [case (b) of Sec. 5a], the solution can be found analyti-
cally—not as the Dyson series. The example touches on the physics of nuclear
magnetic resonance, which has a number of very important applications.

▶ Magnetic resonance setup: a particle (e.g. the proton) with magnetic
moment (operator µ̂) is placed in a combined stationary (homogeneous) +
variable (rotating) magnetic field. Hamiltonian reads as:

Ĥ(t) =

stationary
field︷ ︸︸ ︷

−µ̂zB0

varying
field︷ ︸︸ ︷

− ˆ⃗µ · B⃗1(t)︸ ︷︷ ︸
B1n⃗(t)

Magnetic dipole operator: ˆ⃗µ = gµN
1
ℏ
ˆ⃗
S

Ĥ(t) = − gµNB0︸ ︷︷ ︸
ℏω0

1
ℏŜ3 − gµNB1︸ ︷︷ ︸

ℏω1

(
n⃗(t) · 1

ℏ
ˆ⃗
S
)

n⃗(t) =
(

sinϑ cosωt
− sinϑ sinωt

cosϑ

)
rotating field

Without loss of generality one may set B⃗1(t)⊥B⃗0
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In the resonance case, the frequency ω of rotating field B1 (≪ B0) is tuned to
the Larmor frequency ω0 of the spin precession in the stationary filed B0,
and is applied in the form of pulses of certain duration. These pulses are used
to prepare the spin in a desired state.

▶ Hamiltonians at various time instants do not commute:

[Ĥ(t), Ĥ(t′)] = ω2
1

[(
n⃗(t)· ˆ⃗S

)
,
(
n⃗(t′)· ˆ⃗S

)]
+ω0ω1

[
Ŝ3,

(
n⃗(t′)· ˆ⃗S

)]
+ω1ω0

[(
n⃗(t)· ˆ⃗S

)
,Ŝ3

]
=

= iℏω1

(
ω1[n⃗(t)× n⃗(t′)] · ˆ⃗S + ω0[n⃗(t

′)× ˆ⃗
S ]3 − ω0[n⃗(t)×

ˆ⃗
S ]3

)
̸= 0

▶ Separation of the time dependence
Ĥ(t) = −(ω0 + ω1 cosϑ)Ŝ3 − ω1 sinϑ

[
(cosωt)Ŝ1 − (sinωt)Ŝ2

]
︸ ︷︷ ︸

e+
i
ℏωtŜ3 Ŝ1e

− i
ℏωtŜ3BCH formula: e+ÂB̂e−Â =

∑
k

1
k! [Â, [Â, . . . [Â, B̂] . . . ]k

e
iφ
ℏ Ŝ3Ŝ1e

− iφ
ℏ Ŝ3 = Ŝ1+

1
1!

(
iφ
ℏ
)1

[Ŝ3, Ŝ1]︸ ︷︷ ︸
iℏŜ2

+ 1
2!

(
iφ
ℏ
)2

[Ŝ3, iℏŜ2]︸ ︷︷ ︸
ℏ2Ŝ1

+ 1
3!

(
iφ
ℏ
)3

[Ŝ3, ℏ2Ŝ1]︸ ︷︷ ︸
iℏ3Ŝ2

+ · · · =

=

cosφ︷ ︸︸ ︷(
1− ϕ2

2! + . . .
)
Ŝ1 −

sinφ︷ ︸︸ ︷(
ϕ
1! −

ϕ3

3! + . . .
)
Ŝ2

Ĥ(t) = e+
i
ℏωtŜ3

[
−(ω0 + ω1 cosϑ)Ŝ3 − (ω1 sinϑ)Ŝ1

]
︸ ︷︷ ︸

Ĥ(0)

e−
i
ℏωtŜ3

“rotating”
Hamiltonian

So the Hamiltonian time dependence has been separated to the overall rotation.
This enables us to solve the dynamics explicitly, using the rotating frame.

▶ Transformation to the rotating frame

|ψ(t)⟩ → |ψ′(t)⟩ ≡ e−
i
ℏωtŜ3|ψ(t)⟩ the evolving state in the frame that rotates with B⃗1(t)

iℏ d
dt |ψ

′(t)⟩ = ωŜ3 e
− i

ℏωtŜ3|ψ(t)⟩︸ ︷︷ ︸
|ψ′(t)⟩

+ e−
i
ℏωtŜ3Ĥ(t)e+

i
ℏωtŜ3︸ ︷︷ ︸

Ĥ(0)

e−
i
ℏωtŜ3|ψ(t)⟩︸ ︷︷ ︸
|ψ′(t)⟩

Schrödinger equation in rotating frame: iℏ d
dt |ψ

′(t)⟩ =
[
Ĥ(0) + ωŜ3

]
︸ ︷︷ ︸

Ĥeff

|ψ′(t)⟩

Ĥeff = (ω−ω0−ω1 cosϑ)Ŝ3 − (ω1 sinϑ)Ŝ1

So, in the rotating frame we obtain a stationary effective Hamiltonian Ĥeff ,
for which the evolution |ψ′(t)⟩ can be easily found analytically as it is just a
certain rotation. To obtain |ψ(t)⟩, we have to finally apply an inverse transfor-
mation from the rotation frame back to the laboratory frame.

▶ Solution
For |ψ(0)⟩ ≡ |ψ′(0)⟩ we obtain: |ψ(t)⟩ = e+

i
ℏωtŜ3e−

i
ℏĤefft|ψ(0)⟩

The leftmost operator is a rotation around the n⃗z axis by angle −ωt, the right-
most operator represents a rotation around a direction n⃗Ω by an angle Ωt.
We assume B⃗1(t)⊥B⃗0 (ϑ=

π
2 ), as the parallel component can be included in B⃗0:
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Û(t) = e+
i
ℏωtŜ3e−

i
ℏΩt(n⃗Ω·

ˆ⃗
S) Ω=

√
(ω−ω0)2+ω2

1 n⃗Ω=
1
Ω

 −ω1
0

ω−ω0

 resonant case
ω=ω0 :
Ω=ω1, n⃗Ω=−n⃗x

◀ Historical remark
1938: I. Rabi proposes the magnetic resonance method to measure mag.moments
1946: F. Bloch & E.M.Purcell develop a spectroscopic method based on the magnetic
resonance and provide its theoretical description
1971: dawn of the magnetic resonance imaging (tomography) applications

6a. QUANTUM STATISTICAL ENSEMBLES

Physics would not be nearly as powerful if it did not have the branch of statistical
physics. It deals with situations— rather generic for all complex systems—when the
system’s initial state cannot be precisely determined. Instead, one has some knowl-
edge on the probability distribution characterizing a multitude of possible states in
which the system may occur. In classical statistical physics, a single realization of
the given system at a point (p⃗0, q⃗0) of a multidimensional phase space is replaced by
a statistical ensemble of replicas of the system at different points. This means that
δ(p⃗ − p⃗0, q⃗ − q⃗0) changes into a delocalized probability distribution ρ(p⃗, q⃗). We are
ready now to apply this kind of statistical description to quantum physics.

■ Generalization of quantum states in terms of the density operator

Statistical description implies statistical uncertainty resulting from the im-
perfect knowledge of the system’s state. However, quantum physics, as we have
learned it so far, already contains quantum uncertainty, which exists even
if the system’s state is known exactly. It is useful to unify both these types
of uncertainty in a generalized notion of quantum state. It is expressed by a
positive-definite Hermitian operator in H, called the density operator.

▶ Unified description of quantum & statistical uncertainties

In analogy to classical statistical ensemble, we want to introduce a quantum
statistical ensemble. We assume that the state vector describing a given system
is randomly selected from a certain predefined set:

ۧ|𝜓𝜓14ۧۧ||||𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓1414||𝜓𝜓𝜓𝜓 ۧۧ𝜓𝜓𝜓𝜓1414𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓 ۧۧۧۧۧۧۧۧۧۧۧۧۧۧۧۧۧۧ

ۧ|𝜓𝜓15





|ψ1⟩ . . . drawn with probability p1
|ψ2⟩ . . . drawn with probability p2
...

...




where ⟨ψk|ψk⟩=1 ∀ k and

k

pk = 1.

We stress that the orthogonality of states is
not required, so in general ⟨ψk|ψl⟩ ̸= 0 for k ̸= l.
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We note that probabilities pk express only the statistical uncertainty of drawing
a state from the ensemble. An additional quantum uncertainty expresses the
fact that the actually drawn state |ψk⟩ can be mixed up with other states |ψl⟩
in the process of measurement.

Example: electrons from an
accelerator are delivered to the
target in the spin states:




|↑⟩ ...probability p↑
|→⟩ = 1√

2
| ↑⟩− i√

2
| ↓⟩ ...probability p→

|←⟩ = 1√
2
| ↑⟩+ i√

2
| ↓⟩ ...probability p←




The probability of measuring the spin z-projection ↑ in an unknown state that
has been delivered is p↑ +

p→
2 + p←

2 =


k pk|⟨↑ |ψk⟩|2, which takes into account
both statistical and quantum uncertainties.

This statistical ensemble of quantum states is described by the

density operator ⇔ density matrix

ρ̂ ≡

k

pk|ψk⟩⟨ψk| ρij = ⟨i|ρ̂|j⟩ =

k

pk⟨i|ψk⟩⟨ψk|j⟩

Taking into account both satatistical and quantum uncertainties, we see that
the density operator ρ̂ generates probabability distribution in the entire
Hilbert space H: The probability to find an arbitrary |ψ⟩ ∈ H in a state ran-

domly drawn from the ensemble is given by

k

pk |⟨ψ|ψk⟩|2  
pψk

(ψ)

= ⟨ψ|ρ̂|ψ⟩ = pρ̂(ψ)

▶ Pure and mixed states

Since statistical and quantum uncertainties involved in quantum statistical en-
sembles cannot be resolved, it is convenient to incorporate both of them into a
generalized definition of quantum state. So the general state of a quan-
tum system with Hilbert space H is described by the density operator ρ̂ acting
in H. This formalism naturally includes the previous definition of states as
vectors in H, i.e., the description in absence of statistical uncertainty.

pure state ρ̂ = |ψ⟩⟨ψ| ⇔ |ψ⟩ ∃ state vector
mixed state ρ̂ =


k

pk|ψk⟩⟨ψk| ⇔ × ∄ state vector
no stat. uncertainty

stat. uncertainty exists

▶ Properties of the density operator

(a) Hermiticity ρ̂ = ρ̂†

(b) Tr


k

pk|ψk⟩⟨ψk|

=

i


k

pk⟨i|ψk⟩⟨ψk|i⟩=

k

pk

⟨ψk|ψk⟩=1  
i

⟨ψk|i⟩⟨i|ψk⟩ = 1 = Trρ̂

(c) ⟨ψ|ρ̂|ψ⟩ ≡ pψ(ρ) ∈ [0, 1] ∀ |ψ⟩ ⇒ eigenvalues ρi ∈ [0, 1]

(d) Diagonalized density matrix:
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ρ̂=
∑
i

ρi|ϕi⟩⟨ϕi| ≡

( ρ1 0 0 ...
0 ρ2 0
0 0 ρ3
... ...

) ∑
i

ρi = 1 ρi . . . probability to find |ϕi⟩
∑
i

ρ2i ≤ 1

For a pure state |ψ⟩, the diagonalization yields ρ̂=

(
1 0 0 ...
0 0 0
0 0 0
... ...

)
with |ϕ1⟩ = |ψ⟩.

The quantity γρ = Tr ρ̂2 ∈ [0, 1] is called purity of the state ρ̂. It allows one

to distinguish pure&mixed states, and for mixed
states to quantify the degree of impurity 1− γρ. γρ

{
=1 for pure state
<1 for mixed state

▶ Ambiguity in the expansion of ρ̂

The diagonalized form ρ̂ =
∑
i

ρi|ϕi⟩⟨ϕi| (with {|ϕi⟩} orthonormal) can be consid-

ered to be a “canonical expression” of a general density operator. This form
represents an ideal statistical ensemble, in which the states |ϕi⟩ are mutually
distinguishable. However, the same diagonalized form is assigned to different

non-diagonal expressions ρ̂ =
∑
k

pk|ψk⟩⟨ψk|
(

with {|ψk⟩} normalized
but otherwise arbitrary

)
. This indi-

cates equivalence of various statistical ensembles (those with the same diagonal
form), which is due to some kind of arbitrariness in dividing the total uncer-
tainty between the statistical and quantum components.

▶ Statistical properties of observables

If the density operator ρ̂ defines the state of the system, we have to learn how to
use it for the determination of statistical properties of measurement outcomes.

⟨A⟩ρ ≡ average of quantity Â in state ρ̂ ≡
∑
k

pk|ψk⟩⟨ψk|

⟨A⟩ρ =
∫
a

pρ(a)︷ ︸︸ ︷∑
k

pk ⟨ψk|P̂a|ψk⟩︸ ︷︷ ︸
pψk

(a)

da =
∑
k

pk⟨ψk|Â|ψk⟩ =
∑
ij

∑
k

pk⟨ψk|i⟩⟨i|Â|j⟩⟨j|ψk⟩ =

=
∑
ij

∑
k

pk⟨j|ψk⟩⟨ψk|i⟩
︸ ︷︷ ︸

⟨j|ρ̂|i⟩

⟨i|Â|j⟩ = Tr(ρ̂ Â) = Tr(Â ρ̂) = ⟨A⟩ρ

For a pure state: ⟨A⟩ψ =
∑
i

⟨i|ψ⟩⟨ψ|Â|i⟩ = ⟨ψ|Â|ψ⟩

Dispersion: ⟨⟨A2⟩⟩ρ = ⟨A2⟩ρ − ⟨A⟩2ρ = Tr(Â2ρ̂)− Tr2(Â ρ̂) = ⟨⟨A2⟩⟩ρ

Probability distribution pρ(a) =
∑
k

pk⟨ψk|P̂a|ψk⟩ = Tr(P̂a ρ̂)

◀ Historical remark
1927: John von Neumann introduces the density operator (matrix) to build quan-
tum statistical mechanics; simultaneously, Lev Landau uses the density operator to
describe quantum states of subsystems of a larger composite system
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■ Entropy and canonical ensemble

The concept of entropy plays an important role in thermodynamics as well as
in mathematical information theory. Statistical physics is a bridge between
both these seemingly distant coasts. States with null entropy are the pure
states of ordinary QM. In contrast, states whose entropy is maximal—within
given constraints upon some physical averages—represent equilibrated systems
in contact with a thermal bath.

▶ Shannon information entropy
General probability distribution for a finite set of events:

event i ∈ {1, 2, . . . n} ↔ probability {pi} ≡ {p1, p2, . . . , pn}
Information entropy is a functional on the space of

probability distributions: S[{pi}] = −
n∑

i=1

pi ln pi

Properties

Maximum
Minimum

S = lnn for pi = const = 1
n ∀ i

S = 0 for pi = δij (with any j)
maximal uncertainty
minimal uncertainty

Additivity: 2 sets of independent events
{

i ↔ pi
j ↔ pj

}
⇒ entropy

{
S1
S2

}

Joint distribution: event (i ∧ j) with prob. pij=pipj ⇒ entropy S12 = S1 + S2

However, for correlated events (pij ̸=pipj): S12 = S1 + S2 +∆S with ∆S ≷ 0

▶ VonNeumann entropy

Sρ = −k

d∑
i=1

ρi ln ρi = −kTr
[
ρ̂ ln ρ̂

] To make contact with the
thermodynamic entropy we use
theBoltzmann const. k=8.6·10−5eV/K

Sρ = 0 for pure state
Sρ > 0 for mixed state (Sρ = Smax = ln d for “maximally mixed” state)

▶ Equilibrium state of a quantum system which exchanges energy with the
surrounding environment (thermal bath):

ρ̂ diagonal in the system’s energy eigenbasis: ρ̂ =
∑
i

ρi|Ei⟩⟨Ei| ⇒ stationary

state with respect to system’s Hamiltonian: ρ̂(t)=
∑
i

ρie
−i

Eit

ℏ |Ei⟩⟨Ei|e+i
Eit

ℏ = ρ̂(0)

Probabilities ρi determined from constrained maximal entropy prinicple:
Search for max. Sρ with fixed energy average ⟨E⟩ρ =

∑
i ρiEi and

∑
i ρi = 1

⇒ method of Lagrange multipliers: we look for an extreme of function

f = −
∑
i

ρi ln ρi + (α + 1)
∑
i

ρi − β
∑
i

ρiEi

∂f
∂ρi

= − ln ρi − ρi
1
ρi
+ (α + 1)− βEi = 0 ⇒ ρi = eα−βEi =

normalization︷︸︸︷
eα e−βEi

Constants α, β determined from the Tr ρ̂=1 & fixed average ⟨E⟩ρ conditions
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▶ Canonical density operator

From the above-derived result ρ̂β = eα
∑
i

e−βEi|Ei⟩⟨Ei| we obtain:

ρ̂β = 1
Z(β) e

−βĤ with β = 1
kT inverse temperature

the only parameter of the canonical state

Z(β) =
∑
i

e−βEi = Tr e−βĤ canonical partition function
normalization factor eα ≡ 1

Z(β)

▶ Z(β) contains complete information on thermal properties

d
dβZ(β) =

d
dβTr e

−βĤ = −Tr
[
Ĥ e−βĤ︸ ︷︷ ︸

Z(β)ρ̂β

]
= −Z(β) Tr[Ĥρ̂β]︸ ︷︷ ︸

⟨E⟩β

⟨E⟩β = − 1
Z(β)

d
dβZ(β) = − d

dβ lnZ(β) energy average

− d
dβ ⟨E⟩β = kT 2 d

dT ⟨E⟩T︸ ︷︷ ︸
cV (T )

specific heat at temperature T

− d
dβ ⟨E⟩β= d2

dβ2 lnZ(β)=

1
Z(β)Tr[Ĥ

2e−βĤ]︷ ︸︸ ︷
1

Z(β)
d2Z(β)
dβ2 −

⟨E⟩2β︷ ︸︸ ︷
1

Z(β)2

[
dZ(β)
dβ

]2
=⟨E2⟩β − ⟨E⟩2β=⟨⟨E2⟩⟩β

⟨⟨E2⟩⟩β = 1
kβ2cV (β) =

d2

dβ2 lnZ(β) energy dispersion & specific heat

▶ Z(β) contains complete information on energy spectrum

energy levels {Ei} ⇒ level density ϱ(E) =
∑
i

δ(E − Ei)

ϱ(E) can be obtained as the inverse Laplace
transform of Z(β) =

∫
ϱ(E)e−βEdE

Thermal distribution of energy
wβ(E) (probabability density for
finding the system at energy E
if temperature is T ) is expressed
via the level density ϱ(E):

wβ(E) ∝ ϱ(E) e−βE

Z(β)

Usually the (increasing× decreasing)
function product yields a peak at
a certain value [E]β close to ⟨E⟩β

▶ Imaginary time t=−iℏβ evolution operator Û(t)= e−i Ĥt
ℏ is equivalent to

the unnormalized canonical density operator e−βĤ = Z(β) ρ̂β = Û(−iℏβ)
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This is used in some advanced calculations of thermal & dynamical properties.

▶ Similar procedure (using maximal entropy principle) is applicable also for
systems with variable numbers Ni of particles (types i = 1, 2, . . . n) but fixed
averages ⟨Ni⟩ (particles exchanged with the bath) ⇒ grand-canonical ensemble
characterized by inverse temperature β and chemical potentials µi (see Sec. 15).

◀ Historical remark
1878: J.W.Gibbs presents the concept of canonical ensemble & entropy formula
1927: J. von Neumann introduces the density operator & entropy in QM
1948: C. Shannon applies entropy in the information theory

■ Wigner quasiprobability distribution

As the density-operator formalism merges statistical and quantal fluctuations
into a unified picture, it may raise hopes of formulating quantum mechanics in
a purely statistical language—via some appropriate statistical distributions in
the classical phase space. Although it turns out that such a formulation is not
possible, the product of this effort is useful by itself.

▶ Motivation: Assume a system with f degrees of freedom with coordinate
& momentum eigenvectors |x⃗⟩ & |p⃗⟩. The { coordinate

momentum } representations of an ar-

bitrary density operator ρ̂ are given by functions
{

⟨x⃗ ′|ρ̂ |x⃗ ⟩ ≡ ρ(x⃗ ′, x⃗ )
⟨p⃗ ′|ρ̂ |p⃗ ⟩ ≡ ρ(p⃗ ′, p⃗ )

}
. Could we

also construct ρ(x⃗, p⃗ ), i.e., an analog of the classical phase-space distribution?

▶ Characteristic function of a probability distribution

Any continuous probability distribution ρ(x) is equivalently expressed through
its so-called characteristic function χρ(η), which is the Fourier transform of
ρ(x). For a distribution ρ(x⃗, p⃗ ) in the classical phase space we can write:

χρ(ξ⃗, η⃗ )=
∫
ρ(x⃗, p⃗ )e

i
h (η⃗·x⃗+ξ⃗·p⃗)dx⃗ dp⃗ ↔ ρ(x⃗, p⃗ )= 1

(2πh)2f

∫
χρ(ξ⃗, η⃗ )e

− i
h (η⃗·x⃗+ξ⃗·p⃗)dξ⃗ dη⃗

where
{

ξ⃗
η⃗

}
are f -dimensional variables having the same units as

{
x⃗
p⃗

}
, and h is

an arbitrary constant in units of the product xp

⇒ characteristic function expressed as the average: χρ(ξ⃗, η⃗ )=
〈
e

i
h (η⃗·x⃗+ξ⃗·p⃗)

〉
ρ

▶ Quantum characteristic function and its inverse

The last expression enables us to find a quantum analog of characteristic func-
tion. In QM we naturally set h = ℏ and obtain:

χρ(ξ⃗, η⃗ )≡Tr
[
e

i
ℏ (η⃗·ˆ⃗x+ξ⃗· ˆ⃗p)ρ̂

]
Fourier inverse:

Wρ(x⃗, p⃗ ) ≡ 1
(2πℏ)2f

∫
χρ(ξ⃗, η⃗ ) e

− i
ℏ (η⃗·x⃗+ξ⃗·p⃗) dξ⃗ dη⃗ Wigner distribution
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This represents a distribution in the phase space. Some of its properties are
consistent with the interpretation in terms of a probability distribution, but
there is one essential drawback: The distribution can take negative values!

▶ Wigner distribution for f = 1

The characteristic function:

χρ(ξ, η) =
∫
⟨x|ρ̂ e i

ℏ (ηx̂+ξp̂)|x⟩ dx BCH
= ei

ηξ
2ℏ
∫
⟨x|ρ̂ e i

ℏηx̂e
i
ℏξp̂|x⟩ dx

special BCH formula for [Â, B̂]= Ĉ, [Â, Ĉ]=[B̂, Ĉ]=0: eÂ+B̂ = eÂeB̂e−
1
2 Ĉ

= ei
ηξ
2ℏ
�

⟨x|ρ̂e
i
ℏηx̂|x′⟩︸ ︷︷ ︸

e
i
ℏηx′⟨x|ρ̂|x′⟩

⟨x′|e
i
ℏξp̂|x⟩︸ ︷︷ ︸

⟨x′|x−ξ⟩=δ(x′−x+ξ)

dx dx′ = e−i ηξ2ℏ
∫
⟨x|ρ̂|x−ξ⟩︸ ︷︷ ︸

ρ(x,x−ξ)

e
i
ℏηx dx

subst. x′=x− ξ
2

⇒ χρ(ξ, η) =

∫
ρ(x′+ ξ

2 , x
′− ξ

2) e
i
ℏηx

′
dx′

The Wigner distribution:

Wρ(x, p) =
1

(2πℏ)2
�

[∫
ρ(x′+ ξ

2 , x
′− ξ

2) e
i
ℏηx

′
dx′

]
e−

i
ℏ (ηx+ξp) dη dξ =

= 1
(2πℏ)2

�

ρ(x′+ ξ
2 , x

′− ξ
2)

[∫
e

i
ℏη(x

′−x) dη

]

︸ ︷︷ ︸
2πℏδ(x′−x)

e−
i
ℏξp dx′ dξ

Wρ(x, p) =
1

2πℏ

+∞∫

−∞

ρ
(
x+ ξ

2 , x−
ξ
2

)
e−

i
ℏξp dξ

where

ρ(x′+ ξ
2 , x

′− ξ
2) = ⟨x′+ ξ

2 |ρ̂|x
′− ξ

2⟩

Reality: Wρ(x, p)
∗ = 1

2πℏ
∫
ρ
(
x− ξ

2 , x+
ξ
2

)
e+

i
ℏξp dξ = Wρ(x, p)

Normalization:
�

Wρ(x, p)dx dp = 1
(2πℏ)2

� [ ∫
e−

i
ℏξp dp

]
︸ ︷︷ ︸

2πℏδ(ξ)

ρ
(
x+ ξ

2 , x−
ξ
2

)
dx dξ =

=
∫
ρ(x, x)dx=Trρ̂=1

These are properties of a probability distribution.
However, Wρ(x, p) =

1
2πℏ

∫ [
Reρ(x+ξ

2 , x−
ξ
2) cos(

ξp
ℏ )+Imρ(x+ξ

2 , x−
ξ
2) sin(

ξp
ℏ )
]
̸≥ 0

Taking negative values in some phase-space domains, the distribution func-
tion Wρ(x, p) does not have the meaning of an ordinary probability density. It
is sometimes called the quasiprobability distribution.
Moral: quantum oddity is unremovable!

◀ Historical remark
1927: H.Weyl derives a mapping of Hermitian operators to phase-space functions
1932: E.Wigner introduces quasiprobability distribution related to density operators
1940’s-present: developments in the phase-space formulation of QM

■ Density operator for open systems

The way we introduced the density operator invokes a picture of somebody
drawing numbered balls from a wheel of fortune. The balls are prepared
there, one just does not know which number will be drawn. However, there
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is another—and probably more important—use of the density-matrix formal-
ism. It deals with open quantum systems, i.e., systems interacting with some
other quantum systems, such as the surrounding environment or some intrin-
sic degrees of freedom, which are not explicitly considered on a given level
of description. Such composite objects generically occur in entangled quantum
states and the density operator is the only tool that allows one to extract states
of individual subsystems.

▶ Two coupled systems

{
1 ≡ the quantum system of interest
2 ≡ environment (external systemor internal degrees of freedom)

The total Hilbert space H = H1 ⊗H2 with
{
|ϕkl⟩

}
l
≡ basis of Hk (k=1, 2)

A general pure state of the whole system 1+2 is given by: |Ψ⟩=
∑
ij

αij|ϕ1i⟩|ϕ2j⟩
This is in general an entangled state
⇒ state vectors of subsystems 1 or 2 do not exist!

▶ Reduced density operator

The information on the state of any subsystem of a larger system is avail-
able only in the form of a density operator. This means that any such state
represents in general a statistical ensemble. The density operator of a given
subsystem is obtained as a partial trace of the density operator of the whole
system over the Hilbert spaces of all the other subsystems. In our present case,
the density operator ρ̂1 of system 1 is given as a partial trace of the full density
operator ρ̂12 over the basis of system 2:

pure state |Ψ⟩ −→ |Ψ⟩⟨Ψ| ≡ ρ̂12 −→ ρ̂1 ≡ Tr2 ρ̂12 ≡
∑
l

⟨ϕ2l|ρ̂12|ϕ2l⟩

|Ψ⟩=
∑
ij

αij|ϕ1i⟩|ϕ2j⟩ ⇒ ρ̂1 =
∑
l

∑
ij

∑
i′j′

αijα
∗
i′j′ ⟨ϕ2l|ϕ2j⟩︸ ︷︷ ︸

δjl

|ϕ1i⟩⟨ϕ1i′| ⟨ϕ2j′|ϕ2l⟩︸ ︷︷ ︸
δj′l

⇒ ρ̂1 =
∑
ii′

(∑
j

αijα
∗
i′j

)

︸ ︷︷ ︸
ρ1ii′=ρ∗

1i′i

|ϕ1i⟩⟨ϕ1i′| This is an operator in H1 which has
(as shown below) all the properties
of a density operator, and therefore
it is a density operator of system 1

▶ Properties of ρ̂1 = Tr2 ρ̂12:

(a) ρ̂†1 =
∑
ii′

ρ∗1ii′|ϕ1i′⟩⟨ϕ1i| = ρ̂1

(b) Tr1ρ̂1 =
∑
ij

|αij|2 = 1

(c) ⟨ψ1|ρ̂1|ψ1⟩ ≥ 0 ∀ |ψ1⟩ ≡
∑
l

βl|ϕ1l⟩
⇒ eigenvalues≥ 0

Proof: ⟨ψ1|ρ̂1|ψ1⟩=
∑
ll′

β∗
l′βl

∑
ii′

(∑
j

αijα
∗
i′j

)
⟨ϕ1l′|ϕ1i⟩︸ ︷︷ ︸

δl′i

⟨ϕ1i′|ϕ1l⟩︸ ︷︷ ︸
δi′l

=
∑
j

∣∣∑
i

β∗
i αij

∣∣2≥0
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(d) Tr1ρ̂
2
1 ≤ 1 ⇐ (b),(c)

(e) Average value of a local observable Â ≡ Â1 ⊗ Î2

⟨Ψ|Â|Ψ⟩ =

ij


i′j′

αijα
∗
i′j′⟨ϕ1i′|Â1|ϕ1i⟩ ⟨ϕ2j′|ϕ2j⟩  

δjj′

=

Tr(Â1ρ̂1)  
ii′


j

αijα
∗
i′j

  
ρ1ii′

⟨ϕ1i′|Â1|ϕ1i⟩

⇒ ⟨A⟩Ψ = Tr(Â1ρ̂1)

▶ Pure states of the subsystem

The reduced density operator allows us to capture situations in which all prede-
fined subsystems of the composite system are in pure states, which happens iff
the state of the composite system is factorized with respect to the given decom-
position: ρ̂1=Tr2 ρ̂12 is a pure state |ψ1⟩≡


i

βi|ϕ1i⟩ ⇔ |Ψ⟩=

ij

βiγj
αij

|ϕ1i⟩|ϕ2j⟩
= |ψ1⟩

�
j

γj|ϕ2j⟩

= |ψ1⟩|ψ2⟩ is factorized.

ρ̂1 = |ψ1⟩⟨ψ1| ⇒ ρ1ii′ = ⟨ϕ1i|ρ̂1|ϕ1i′⟩ = βiβ
∗
i′

|Ψ⟩ = |ψ1⟩|ψ2⟩ ⇒ ρ1ii′ =

j

αij
βiγj

α∗
i′j

β∗
i′γ

∗
j

= βiβ
∗
i′

1  
j

|γj|2


 same expressions

▶ Schmidt decomposition of an entangled state

Any entangled state of a general coupled system composed of two subsystems
1 and 2 (with Hilbert space dimensions d1 and d2, respectively) can be expressed
in a “canonical form” which makes use of the eigenvectors of both reduced
density matrices ρ̂1 and ρ̂2. Consider the general state |Ψ⟩ =


ij

αij|ϕ1i⟩|ϕ2j⟩:

State of subsystem 1: State of subsystem 2:
ρ̂1 = Tr2 ρ̂12 =


ii′

�
j

αijα
∗
i′j


|ϕ1i⟩⟨ϕ1i′| ρ̂2 = Tr1 ρ̂12 =


jj′

�
i

αijα
∗
ij′


|ϕ2j⟩⟨ϕ2j′|

Suppose αij =
√
ρi δij ⇒


ρ1ii′=


j

αijα
∗
i′j=


j

√
ρi δij

√
ρi′ δi′j=ρiδii′

ρ2jj′=

i

αijα
∗
ij′=


i

√
ρi δij

√
ρi δij′=ρjδjj′


diagonal


ρ̂1
ρ̂2

This form of |Ψ⟩ corresponds to the
singular value decomposition
of the generally non-square d1 × d2
matrix α of coefficients αij through

the formula α = u†α′v , where α′ is semidiagonal and u, v unitary. In partic-

ular, we get αij =
d1
k=1

d2
l=1

u∗ki(
√
ρkδkl)vlj with


k

ρk=

ij

|αij|2=1 and { u≡uik
v≡vlj } ≡

some


d1×d1
d2×d2


unitary matrices.

⇒ |Ψ⟩=
d1
i=1

d2
j=1

αij|ϕ1i⟩|ϕ2j⟩=
d1
k=1

d2
l=1

√
ρkδkl

|χ1k⟩  
d1
i=1

u∗ki|ϕ1i⟩

|χ2l⟩  
d2
j=1

vlj|ϕ2j⟩

fromunitarity
of u andv  

⟨χ1k|χ1k′⟩=δkk′
⟨χ2l|χ2l′⟩=δll′
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⇒ |Ψ⟩=
Min{d1,d2}∑

k=1

√
ρk |χ1k⟩|χ2k⟩ where

{
{|χ1k⟩}d1k=1

{|χ2k⟩}d2k=1

}
are eigenvectors of

{
ρ̂1
ρ̂2

}

with the same sets of eigenvalues ρk

{
> 0 for k=1,...,Min{d1,d2}

= 0 for k=Min{d1,d2}+1,...,Max{d1,d2}

Remark: Note the potentially large difference in the size of both expressions
|Ψ⟩=

∑d1
i=1

∑d2
j=1αij|ϕ1i⟩|ϕ2j⟩=

∑Min{d1,d2}
k=1

√
ρk |χ1k⟩|χ2k⟩. The respective num-

bers of terms d1d2 and Min{d1, d2} in these two formulas are for an example
with d1=2 (qubit) and d2=106 (large environment) equal to 2 · 106 and 2. The
use of the Schmidt decomposition can imply a huge simplification!

From the Schmidt decomposition we also see that:

S1 = S2 ≡ Sent = −
Min{d1,d2}∑

k=1

ρk ln ρk

Von Neumann entropies corresponding to

both subsystems 1&2 are equal, expressing

information on the mutual entanglement

of both subsystems in the full state |Ψ⟩,
which was lost in the transition from |Ψ⟩ to ρ̂1 & ρ̂2. The entropy Sent (Boltz-
mann const.= 1 here) is called the entanglement entropy and quantifies the
amount of entanglement involved in the given pure state |Ψ⟩.

Example: H1 basis ≡ {|↑⟩, |↓⟩} H2 basis ≡ {|1⟩, |2⟩, |3⟩}

|Ψ⟩= 1√
6

[
|↑⟩1|1⟩2+|↑⟩1|2⟩2+|↑⟩1|3⟩2+

√
2|↓⟩1|1⟩2− 1√

2
|↓⟩1|2⟩2− 1√

2
|↓⟩1|3⟩2

]

=
√

1
2︸︷︷︸√

ρ1

|↑⟩1︸︷︷︸
|χ11⟩

1√
3

[
|1⟩2+|2⟩2+|3⟩2

]
︸ ︷︷ ︸

|χ21⟩

+
√

1
2︸︷︷︸√

ρ2

|↓⟩1︸︷︷︸
|χ12⟩

1√
3

[√
2|1⟩2− 1√

2
|2⟩2− 1√

2
|3⟩2

]
︸ ︷︷ ︸

|χ22⟩

ρ̂1=
1
2 |χ11⟩⟨χ11|+ 1

2 |χ12⟩⟨χ12|, ρ̂2=
1
2 |χ21⟩⟨χ21|+ 1

2 |χ22⟩⟨χ22|+0|χ⊥⟩⟨χ⊥|

◀ Historical remark
1907: E. Schmidt formulates the decomposition theorem (in theory of integral eqs.)

■ Evolution of density operator

The density operator in general depends on time. The form of this dynamics
can be easily deduced from the evolution of individual states in H. However,
we come to an essential point here: There is a fundamental difference between
the evolutions of density operators for closed and open systems! The density
operator of a closed system undergoes just a continuous unitary transforma-
tion by ordinary evolution operator. This implies a fully reversible picture of
dynamics. In contrast, the evolution of a reduced density operator associated
with an open system is more complicated. Since the environment in general
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interacts with the system, one cannot write its dynamical equation in an au-
tonomous way (i.e., just in terms of the system’s degrees of freedom). This is
the place where irreversibility enters the physical description!

▶ Evolution of a closed system

Consider density operator in the form given by an initial set of state vectors.
Evolution of the density operator determined by evolution of individual vectors:

initial state evolved state
ρ̂(0) =

∑
k

pk|ψk⟩⟨ψk|
t−→ ρ̂(t) =

∑
k

pkÛ(t)|ψk⟩⟨ψk|Û(t)−1

General evolution:

ρ̂(t) = Û(t)ρ̂(0)Û(t)−1 ← operator differential →
forms

iℏ d
dt ρ̂(t) = [Ĥ, ρ̂(t)]

quantum Liouville equation

▶ Analogy with the classical Liouville equation for a statistical ensemble with
the probability distribution ρ(q⃗, p⃗, t) in phase space:

d
dtρ(q⃗, p⃗, t) =

∑
i

[
∂ρ
∂qi

dqi
dt︸︷︷︸

+
∂H
∂pi

+ ∂ρ
∂pi

dpi
dt︸︷︷︸

−∂H
∂qi

]
+ ∂ρ

∂t = 0 ⇒ ∂ρ
∂t = {H, ρ}

▶ Evolution of a closed system does not change traces and entropy:

Unitary transformation ρ̂(t)= Û(t)ρ̂(0)Û(t)−1=
∑
k

ρi Û(t)|ϕi⟩︸ ︷︷ ︸
|ϕi(t)⟩

⟨ϕi|Û(t)−1

︸ ︷︷ ︸
⟨ϕi(t)|

Tr ρ̂(t) = Tr ρ̂(0) ⇒ normalization conserved
Tr ρ̂(t)2 = Tr ρ̂(0)2 ⇒ any { pure

mixed } state remains a { pure
mixed } state

Eigenvalues ρi conserved ⇒ entropy Sρ(t)=−k
∑

ρi ln ρi=Sρ(0) =const

▶ Evolution of open systems: non-interacting case

Consider first the case when the system under study and its environment do
not interact with each other. Below we verify that this effectively coincides
with the isolated case, as may be immediately anticipated.

The total Hamiltonian Ĥ = Ĥ1 ⊗ Î2 + Î1 ⊗ Ĥ2 ≡ Ĥ1 + Ĥ2 consists of two

commuting components acting separately on the sybsystem 1 and subsystem 2

⇒ separable evolution Û(t) = e−i Ĥt
ℏ = Û1(t)⊗ Û2(t)

Û1(t) = e−i
Ĥ1t
ℏ

Û2(t) = e−i
Ĥ2t
ℏ

}
⇒

{
ρ̂1(t) = Û1(t)ρ̂1(0)Û1(t)

−1 iℏ d
dt ρ̂1(t) = [Ĥ1, ρ̂1(t)]

ρ̂2(t) = Û2(t)ρ̂2(0)Û2(t)
−1 iℏ d

dt ρ̂2(t) = [Ĥ2, ρ̂2(t)]

For an initial pure state |Ψ(0)⟩ =
∑
i

√
ρi |χ1i⟩|χ2i⟩

of the whole system 1+2 we get: |Ψ(t)⟩ =
∑
i

√
ρi

|χ1i(t)⟩︷ ︸︸ ︷
Û1(t)|χ1i⟩

|χ2i(t)⟩︷ ︸︸ ︷
Û2(t)|χ2i⟩
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⇒ The entropies of both partial density

matrices remain equal and conserved:
S1(t)=S2(t)=−k

∑
i

ρi ln ρi = const

⇒ Factorized initial states |Ψ(0)⟩= |ψ1(0)⟩|ψ2(0)⟩ remain factorized:
|Ψ(t)⟩= |ψ1(t)⟩|ψ2(t)⟩

▶ Evolution of open systems: interacting case

If the system-environment interaction is turned on, the system’s evolution be-
comes qualitatively different. We assume the total Hamiltonian in the form

Ĥ = Ĥ1 ⊗ Î2 + Î1 ⊗ Ĥ2 + V̂12 where V̂12 acts irreducibly on H ≡ H1 ⊗H2.

Hence the evolution of the whole system is non-separable: Û(t) ̸= Û1(t)⊗ Û2(t)

A general pure state of 1+2 evolves as |Ψ(t)⟩=
∑
ij

αij(t)|ϕ1i⟩|ϕ2j⟩, which in

the Schmidt decomposition yields |Ψ(t)⟩=
∑
i

√
ρi(t) |χ1i(t)⟩|χ2i(t)⟩, where the

common eigenvalues ρi(t) of both partial density matrices vary in time.

⇒ The entropies of both subsys-

tems are the same but vary:
S1(t)=S2(t)=−k

∑
i

ρi(t) ln ρi(t) ̸= const

⇒ non-unitary evolution of partial density matrices ρ̂1(t) and ρ̂2(t),

iℏ d
dt ρ̂1(t)−[Ĥ1, ρ̂1(t)] ̸= 0 ̸= iℏ d

dt ρ̂2(t)−[Ĥ2, ρ̂2(t)]▶ Decoherence

Assume that the [system⊗ environment] composite evolves from a separable
[pure⊗ general] initial state at t=0: |ψ⟩⟨ψ|1︸ ︷︷ ︸

ρ̂1(0)

⊗ ρ̂2(0)︸ ︷︷ ︸
may be a pure state |ψ̃⟩⟨ψ̃|2

= ρ̂12(0)
t−→ ρ̂12(t)

For V̂12 ̸= 0, the evolved total density operator at t > 0 is most probably un-
factorizable, ρ̂12(t) ̸= ρ̂1(t) ⊗ ρ̂2(t), and moreover yields the partial density
operator ρ̂1(t) ≡ Tr2 ρ̂12(t) equivalent to a mixed state ⇒ Loss of the system’s
initial coherence (purity):

pure state ρ̂1(0)
t−→ ρ̂1(t) mixed state

Entropy relations:
=0︷ ︸︸ ︷

S1(0)+

≥0︷ ︸︸ ︷
S2(0)+

=0︷ ︸︸ ︷
∆S(0)︸ ︷︷ ︸

S12(0)

=

>0︷ ︸︸ ︷
S1(t)+

>0︷ ︸︸ ︷
S2(t)+

̸=0︷ ︸︸ ︷
∆S(t)︸ ︷︷ ︸

S12(t)

where the correlation-induced

term ∆S(t) compensates

the change of S1(t)+S2(t)

The decoherence process results from the system’s entanglement with environ-
ment, which takes place due to their mutual interaction. An increase of the
system’s entropy can be interpreted as spreading of information (quantum cor-
relations) from the system alone to the composite system+environment. Since
mixed states often carry semiclassical properties, decoherence usually induces
loss of quantum features and emergence of classical behavior (cf. Sec. 8).
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Note: The canonical (micro-canonical, grand-canonical) density operators rep-
resent equilibrium states resulting from a “generic” and “long-enough” interac-
tion of the system with a “large-enough” environment. The reason why nature
prefers these states is their maximal (under given constraints) entropy.

◀ Historical remark
1970: H.Dieter Zeh introduces the concept of environmentally-induced decoherence
1980’s-present: intense research of various aspects of decoherence (W. Zurek et al.)

6b. EXAMPLES OF STATISTICAL ENSEMBLES

We will briefly present a few applications of the above-outlined theory of quantum
statistical ensembles. It is worth emphasizing here that the density operator is not
just a superfluous appendix of the quantum formalism, suitable only in some more
or less exotic situations. Strictly speaking, hardly any quantum system is perfectly
isolated. Almost all systems are embedded in some external environments and hide
some effectively “irrelevant” internal degrees of freedom. Therefore, the density
operator represents the most fundamental language of quantum theory, while the
previously established description based on pure states appears as a mere approxi-
mation which holds only in some favorable situations.

■ Harmonic oscillator at nonzero temperature

Let us start with the most familiar system, the ordinary harmonic oscillator. It
will be immersed now into a heat bath with temperature T > 0. This example
has a great historical importance as it indicates the correct quantum solution
of a so-called specific-heat paradox—the fact that the specific heat of solids
gradually vanishes with the temperature going down to absolute zero (despite
the equipartition theorem of classical thermodynamics, which predicts that the
specific heat should be constant). The same calculation, just in slightly different
clothes, applies also to the well-known problem of thermal blackbody radiation,
which was historically the first hint of the coming quantum theory.

▶ Partition function of a 3D oscillator

Energies: En1n2n3
=

3∑
i=1

ℏωi

(
ni +

1
2

)
ni = 0, 1, 2, . . .

Partition function: Z(β)=
∞∑

{
n1
n2
n3

}
=0

e−βEn1n2n3 =
3∏

i=1

[
e−β

ℏωi
2

∞∑
ni=0

e−βℏωini

︸ ︷︷ ︸
1

1−e−βℏωi

]
=

3∏
i=1

e−β
ℏωi
2

1−e−βℏωi =

=
3∏

i=1

(
e+β

ℏωi
2 − e−β

ℏωi
2

)−1

︸ ︷︷ ︸
[2 sinh(β ℏωi

2 )]
−1

lnZ(β) = −
3∑

i=1

ln
(
e+β

ℏωi
2 − e−β

ℏωi
2

)
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▶ Specific heat

We utilize the above-derived formulas:

Energy average: ⟨E⟩β = − d
dβ lnZ(β) =

3∑
i=1

ℏωi

2

coth
βℏωi
2︷ ︸︸ ︷

e+β
ℏωi
2 + e−β

ℏωi
2

e+β
ℏωi
2 − e−β

ℏωi
2

Molar specific heat: cmol
V (β) = NAkβ

2 d2

dβ2 lnZ(β) = NAk
3∑

i=1

(
βℏωi

e+β
ℏωi
2 − e−β

ℏωi
2

)2

High-T ⇒ β ≪ (ℏωi)
−1

cmol
V (T ) ≈ 3NAk = const

classical behavior
Low-T ⇒ β ≫ (ℏωi)

−1

cmol
V (T ) ≈ NAk

3∑
i=1

(ℏωi

kT

)2
e−

ℏωi
kT −−→

T→0
0

quantum behavior

◀ Historical remark
1907: A. Einstein derives the specific heat formula for a quantized oscillator

■ Coherent superposition vs. statistical mixture

The following example attempts to clarify the difference between a coherent
superposition, which is a pure state composed of several components weighted
by complex/real amplitudes, and a statistical mixture, which is a mixed state
involving the same components but just with the respective probabilities. We
consider states of a single structureless particle.

▶ Coherent superposition of states |ψI⟩ & |ψII⟩
For a pure state |ψ⟩ with wavefunction ψ(x⃗) ≡ ⟨x⃗|ψ⟩ the density operator

ρ̂= |ψ⟩⟨ψ| in the coordinate representation is: ⟨x⃗|ρ̂|x⃗ ′⟩=ρ(x⃗, x⃗ ′)=ψ(x⃗)ψ∗(x⃗ ′)

For a superposition |ψ⟩ = α|ψI⟩+ β|ψII⟩ ≡ αψI(x⃗) + βψII(x⃗) we obtain

ρ(x⃗, x⃗ ′) = [αψI(x⃗)+βψII(x⃗)] [α
∗ψ∗

I (x⃗
′)+β∗ψ∗

II(x⃗
′)]

Probability distribution: ρ(x⃗, x⃗) = |αψI(x⃗)|2+|βψII(x⃗)|2+2Re [αβ∗ψI(x⃗)ψ
∗
II(x⃗)]︸ ︷︷ ︸

interference
▶ Statistical mixture ρ̂= |α|2|ψI⟩⟨ψI|+|β|2|ψII⟩⟨ψII|

ρ(x⃗, x⃗ ′) = |α|2ψI(x⃗)ψ
∗
I (x⃗

′)+|β|2ψII(x⃗)ψ
∗
II(x⃗

′)

Probability distribution: ρ(x⃗, x⃗) = |αψI(x⃗)|2 + |βψII(x⃗)|2 no interference

▶ 1D example

(a) Coherent superposition ψ(x) ≈ 1√
2
δϵ(x+a) + 1√

2
δϵ(x−a)
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with δϵ(x±a) = 1

(2πϵ2)
1
4
e−

(x±a)2

4ϵ2 , so that |δϵ(x±a)|2 = 1√
2πϵ2

e−
(x±a)2

2ϵ2 are Gaussians

with averages ⟨x⟩=∓a and small widths ϵ≪a (normalization exact for ϵ→0)

ρ(x, x′) ≈ 1
2

[
δϵ(x+a)δϵ(x

′+a)+δϵ(x−a)δϵ(x′−a)+δϵ(x+a)δϵ(x
′−a)+δϵ(x−a)δϵ(x′+a)

]

Probability distribution: ρ(x, x) ≈ 1
2

1√
2πϵ2

e−
(x+a)2

2ϵ2

︸ ︷︷ ︸
→δ(x+a)

+1
2

1√
2πϵ2

e−
(x−a)2

2ϵ2

︸ ︷︷ ︸
→δ(x−a)

+ 1√
2πϵ2

e−
x2+a2

2ϵ2

︸ ︷︷ ︸
→0 for ϵ→0

Wigner quasiprobability distribution:

Wρ(x, p) =
1

2πℏ

+∞∫
−∞

ρ(x+ ξ
2 , x−

ξ
2)e

− i
ℏξpdξ

≈ 1
2πℏ

1
2
√
2πϵ2

[(
e−

(x+a)2

2ϵ2 +e−
(x−a)2

2ϵ2
) +∞∫
−∞

e−
ξ2

8ϵ2
− i

ℏξpdξ

+e−
x2

2ϵ2
(+∞∫
−∞

e−
(a+ξ/2)2

2ϵ2
− i

ℏξpdξ+
+∞∫
−∞

e−
(a−ξ/2)2

2ϵ2
− i

ℏξpdξ
)]

Using the Gaussian integral formula
+∞∫
−∞

e−(Ax2+Bx+C)dx =
√

π
Ae

B2

4A−C for ReA>0

we arrive to:

Wρ(x, p) ≈ 1
2πℏ

(
e−

(x+a)2

2ϵ2 + e−
(x−a)2

2ϵ2 + 2e−
x2

2ϵ2 cos 2ap
ℏ
)
e
− p2

2(ℏ/2ϵ)2 ⋛ 0

This distribution (satisfying
�

Wρ(x, p) dx dp=1) consists of two factorized
Gaussian peaks of widths σx = ϵ and σp =

ℏ
2ϵ centerred at (x, p) = (∓a, 0) and

an oscillatory pattern (taking both positive and negative values) with the same
factorized Gaussian envelope centerred at (x, p)=(0, 0). The oscillatory pattern
does not fade away as ϵ→0. It indicates the coherence of both components in
the superposition state ψ(x).

(b) Statistical mixture ρ(x, x′) = 1
2 δϵ(x+a)δϵ(x

′+a) + 1
2 δϵ(x−a)δϵ(x

′−a)

Probability distribution: ρ(x, x) ≈ 1
2

1√
2πϵ2

e−
(x+a)2

2ϵ2 + 1
2

1√
2πϵ2

e−
(x−a)2

2ϵ2

Wigner distribution: Wρ(x, p) ≈ 1
2πℏ

(
e−

(x+a)2

2ϵ2 + e−
(x−a)2

2ϵ2
)
e
− p2

2(ℏ/2ϵ)2 ≥ 0
(the oscillatory pattern is gone!) can be interpreted as a classical probability
density in the phase space. The two components of ρ(x, x′) are incoherently
mixed and do not interfere.

■ Density operator and decoherence for a two-state system

The rest of this section is devoted to the familiar spin-12 system—a qubit.
A general pure or mixed state of this system can be visualized in a simple
unified way. We examine a qubit in equilibrium with a thermal bath and
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illustrate the process of decoherence, which can be generated even by a very
gentle interaction with some environment.

▶ Parametrization of general d = 2 density matrix

ρ̂ = 1
2

[
Î + b⃗ · ˆ⃗σ

]
= 1

2

(
1+b3 b1−ib2
b1+ib2 1−b3

) b⃗ ≡ (b1, b2, b3) is a vector of parameters
⇒ normalization Tr ρ̂ = 1 satisfied

Tr ρ̂2= 1
4 Tr

[
Î+2(⃗b · ˆ⃗σ)+(⃗b · ˆ⃗σ)2︸ ︷︷ ︸

|⃗b|2Î

]
= 1+|⃗b|2

2

{
= 1
< 1

for
|⃗b|=1 pure state

|⃗b|<1 mixed state

(⃗b·ˆ⃗σ)2= 1
2

∑
ij

bibj (σ̂iσ̂j + σ̂jσ̂i)︸ ︷︷ ︸
2δij Î

=|⃗b|2Î
▶ Spin polarization

The average values of the 3 spin components:
ˆ⃗
S ≡ ℏ

2
ˆ⃗σ ⇒ ⟨Si⟩ρ = Tr (Ŝiρ̂) =

ℏ
4 Tr

[
σ̂i + (⃗b · ˆ⃗σ)σ̂i

]
= ℏ

4

∑
j

bj

2δij︷ ︸︸ ︷
Tr(σ̂jσ̂i) =

ℏ
2 bi

⟨S⃗ ⟩ρ = ℏ
2 b⃗

average polarization vector

Geometric interpretation
with the Bloch sphere:
mixed states lie inside
the sphere, pure states
are on the surface.

(cf. the stereographic projection
of spin states in Sec. 2b)

▶ Thermal ensemble

General Hamiltonian: Ĥ = ℏω0 Î + ℏ ω⃗ · ˆ⃗σ with |ω⃗| ≡ ω

To get e−βĤ , we use the same trick as when calculating the evolution operator
(Sec. 5b), but now for imaginary time t= iℏβ:

e−βĤ = e−βℏω0

∞∑
k=0

(−βℏω)k
k!

(
ω⃗
ω · ˆ⃗σ

)k

= e−βℏω0

[ ∑
k=0,2,4...

(−βℏω)k
k!

︸ ︷︷ ︸
e+βℏω+e−βℏω

2

Î+
∑

k=1,3,5...

(−βℏω)k
k!

︸ ︷︷ ︸
− e+βℏω−e−βℏω

2

(
ω⃗
ω · ˆ⃗σ

)]

= e−βℏω0

[
cosh(βℏω)Î − sinh(βℏω)

(
ω⃗
ω · ˆ⃗σ

)]

The partition function: Tr e−βĤ= 2e−βℏω cosh(βℏω)=Z(β)

|ω⃗|1 > |ω⃗|2

The canonical density matrix:

ρ̂β=
1

Z(β)e
−βĤ= 1

2

[
Î− tanh(βℏω)

(
ω⃗
ω · ˆ⃗σ

)]

b⃗β=− tanh(βℏω) ω⃗ω

The average spin polarization ⟨S⃗⟩β= ℏ
2 b⃗β is

oriented along the direction of the unit vector n⃗=− ω⃗
ω and with a decreasing

temperature T → 0 it increases to the maximal size
∣∣⟨S⃗⟩β

∣∣= ℏ
2 associated with

the (pure) ground state of Ĥ.
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▶ Dynamics of qubit coupled to environment

Bases in the spin & environment Hilbert spaces:

H1︷ ︸︸ ︷{
|↑⟩, |↓⟩

}
⊗

H2︷ ︸︸ ︷{
|ei⟩

}
i

We assume evolution of the qubit-environment system over time t defined by:

|↑⟩|ei⟩
t−→ |↑⟩|ei↑(t)⟩

|↓⟩|ei⟩
t−→ |↓⟩|ei↓(t)⟩

where |ei↑(t)⟩, |ei↓(t)⟩ ∈ H2 stand for some states
of the environment which in general overlap:

⟨ei↓(t)|ei↑(t)⟩ ̸= 0

This represents a rather special evolution, which conserves the z component of
spin. So one may think that the influence of the environment on a general pure
spin state |ψ⟩ = α| ↑⟩+β| ↓⟩ should be small. However, as shown below, the
evolution quickly changes the above pure state to a mixed one.

Separable initial
state: ρ̂12(0)= |ψ⟩⟨ψ|︸ ︷︷ ︸

ρ̂1(0)

⊗
(∑

i

wi|ei⟩⟨ei|
)

︸ ︷︷ ︸
ρ̂2(0)

|ψ⟩ = α|↑⟩+ β|↓⟩

ρ̂1(0) =
(

|α|2 αβ∗

α∗β |β|2

)

Evolution:
ρ̂12(t) =

∑
i

wi

[
|α|2|ei↑(t)⟩|↑⟩⟨↑ |⟨ei↑(t)|+ αβ∗|ei↑(t)⟩|↑⟩⟨↓ |⟨ei↓(t)|+

α∗β|ei↓(t)⟩|↓⟩⟨↑ |⟨ei↑(t)|+ |β|2|ei↓(t)⟩|↓⟩⟨↓ |⟨ei↓(t)|
]

Evolved spin state:
ρ̂1(t) = Tr2ρ̂12(t) =

|α|2|↑⟩⟨↑ |
[∑

ij

wi⟨ej|ei↑(t)⟩⟨ei↑(t)|ej⟩
]

︸ ︷︷ ︸
1

+αβ∗|↑⟩⟨↓ |
[∑

ij

wi⟨ej|ei↑(t)⟩⟨ei↓(t)|ej⟩
]

︸ ︷︷ ︸∑
i

wi⟨ei↓(t)|ei↑(t)⟩≡ D(t)

+α∗β|↓⟩⟨↑ |
[∑

ij

wi⟨ej|ei↓(t)⟩⟨ei↑(t)|ej⟩
]

︸ ︷︷ ︸∑
i

wi⟨ei↑(t)|ei↓(t)⟩≡ D(t)∗

+|β|2|↓⟩⟨↓ |
[∑

ij

wi⟨ej|ei↓(t)⟩⟨ei↓(t)|ej⟩
]

︸ ︷︷ ︸
1

ρ̂1(t) =

(
|α|2 αβ∗D(t)

α∗βD(t)∗ |β|2
)

where |D(t)| ≤
∑
i

wi

≤1︷ ︸︸ ︷
|⟨ei↓(t)|ei↑(t)⟩| ≤ 1

▶ Spin decoherence

The evolved spin state is most probably mixed:

Tr ρ̂1(t)
2 = Tr

(
|α|4+|α|2|β|2|D(t)|2 (|α|2+|β|2)αβ∗D(t)

(|α|2+|β|2)α∗βD(t)∗ |α|2|β|2|D(t)|2+|β|4

)
= |α|4 + 2|α|2|β|2|D(t)|2 + |β|4

= (|α|2 + |β|2)2︸ ︷︷ ︸
1

−
[
1− |D(t)|2

]
︸ ︷︷ ︸

∈[0,1]

2|α|2|β|2︸ ︷︷ ︸
∈[0,1]

{
= 1 for |D(t)|=1 or αβ=0
< 1 for |D(t)|<1 and αβ ̸=0

For a large environment, |D(t)| is usually a very quickly decreasing function ⇒

pure state
|ψ⟩=α|↑⟩+β|↓⟩

}
t−→

{
mixed state, for t → ∞ :
ρ̂1= |α|2|↑⟩⟨↑ |+|β|2|↓⟩⟨↓ |
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This process of changing the coherent superposition of spin | ↑⟩, | ↓⟩ states at
t = 0 to a statistical mixture of these states in asymptotic times represents
decoherence of the spin/qubit system. It is caused by the entanglement of the
spin with the environment, which records the spin states into almost orthogonal
(distinguishable) states of the environment. It is essentially the same situation
as in the double-slit experiment when the path of the particle is somehow
(anyhow) recorded—the coherence of the particle wavefunction is destroyed
and the interference pattern must disappear.

▶ Evolution of polarization vector

Spin initially along direction n⃗=


sinϑ cosφ
sinϑ sinφ

cosϑ


: |ψ⟩ =

α  
e−iφ cos ϑ

2 |↑⟩+
β

sin ϑ
2 |↓⟩  

|sn⃗=+
ℏ
2 ⟩

The decoherence paramneter: D(t) = |D(t)|eiχ(t)

b⃗(t) =




|D(t)| sinϑ cos[φ−χ(t)]
|D(t)| sinϑ sin[φ−χ(t)]

cosϑ




⇒ b⃗(0) = n⃗
t→∞−→ cosϑ n⃗z = b⃗(∞)

dephasing of the xy-projection of b⃗(t)

7a. QUANTUM MEASUREMENT

Besides spontaneous evolution, described by the nonstationary Schrödinger equa-
tion, quantum mechanics assumes also another type of dynamics—a sudden change
of the state vector induced by a measurement performed on the system. In contrast
to classical physics, where measurements just specify states of the system without
essentially disturbing them (in an ideal case, the influence of measurement can be
reduced to zero), quantum physics needs a special treatment of measurements. Their
impact on the system is irreducible and rather dramatic! This “sector” of QM has
quite unusual consequences and is a permanent subject of a vivid debate.

■ State vector reduction

The spontaneous quantum evolution is smooth and deterministic (in the sense
of uniqueness of the evolved state vector in the Hilbert space). We may call this
motion “process U”, which emphasizes its unitary character. In contrast, the
evolution induced by quantum measurement—at least in the form assumed
by conventional quantum theory— is abrupt and indeterministic. Following
R.Penrose, we can abbreviate this reduction of the state vector as “process R”.
We have to admit that the exact nature of this process is still partly unclear.
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▶ Why do we need process R ?

Without the process R, the theory would not be able to explain correlations of
results obtained in repeated measurements of the same quantity on the same
system. Assume that we measure quantity A twice, first at time t0 and then
at time t1 = t0+∆t. The conditional probability to measure eigenvalue aj of Â
at t1 given the result at t0 was ai reads as: p(ajt1|ait0) = ⟨ψ̄|Û †(∆t)P̂ajÛ(∆t)|ψ̄⟩,
where |ψ̄⟩≡


state vector immediately
after the first measurement.

For ∆t→ 0 the second measurement must

yield the same outcome as the first one: lim
∆t→0

p(ajt1|ait0) = δij, so |ψ̄⟩ = |ai⟩

Example: repeated position measurement
on a particle with wavefunction given by
an isotropic spherical wave

Sketch of the U and R evolutions
for a position measurement:

▶ Measurement postulate

This leads us to the postulate on the instantenous evolution of a general quan-
tum system induced by a measurement of an arbitrary observable A:

|ψ⟩
measurement
of quantityA−−−−−−−→ |ψ̄⟩ ≡ R̂A|ψ⟩=




|a1⟩ iff a1 measured, prob. pψ(a1)=⟨ψ|P̂a1|ψ⟩
|a2⟩ iff a2 measured, prob. pψ(a2)=⟨ψ|P̂a2|ψ⟩
...

R̂A|ψ⟩
ai= 1√

⟨ψ|P̂ai
|ψ⟩

P̂ai|ψ⟩ where
ai= means conditional equality, which holds

iff the outcome of the measurement is equal to ai.

This process is called either the “state vector reduction”, or more dramatically
the “collapse of wavefunction”. We stress that the term “collapse” does not
mean here the “end of wavefunction”, but just its instantenous localization to a
certain subspace of the Hilbert space. After the measurement, the wavefunction
continues its evolution according to ordinary Schrödinger equation.

▶ Properties of the reduction operator R̂A

non-deterministic: one knows only probabilities of possible outputs
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non-linear: R̂A|a1⟩=|a1⟩
R̂A|a2⟩=|a2⟩

}
but R̂A

(
α|a1⟩+ β|a2⟩

)
=

{
|a1⟩
|a2⟩

}
̸=αR̂A|a1⟩+βR̂A|a2⟩

non-unitary: |ψ⟩=α|a1⟩+β|a2⟩
|ψ′⟩=α′|a1⟩+β′|a2⟩

}
R̂A−→

{
⟨ |a1⟩|a2⟩

⟨ |a1⟩|a2⟩
⇒ ⟨ψ|ψ′⟩︸ ︷︷ ︸

arbitrary

R̂A−→ ⟨ψ̄|ψ̄′⟩︸ ︷︷ ︸
0 or 1

“non-local”,“acausal”: ψ(x⃗, t) collapses simultaneously in the whole space.

This indicates that R in the present form is not real but only an effective

process—a shortcut for a so far unknown physics or ontology (see below).

◀ Historical remark
1927: Werner Heisenberg first explicitly considers the wavefunction collapse
1932: John von Neumann includes the reduction postulate into the mathematical
formulation of QM and discusses its properties

▶ The unknown nature of process R

Numerous solutions of the quantum measurement problem (and the emergence
of the “classical world”) have been proposed, but none of them can be declared
as the final answer. We do not aim here at the interpretation issues, so we only
briefly outline basic directions in which various interpretations operate:
(a) Classical answer : R is an unavoidable and irreducible consequence of inter-
action between a “quantum system” and a “classical apparatus”. This early-day
answer is not considered satisfactory as everything is made of quantum con-
stituents: Where ends the quantum domain and starts the classical one?
(b) Metaphysical answers : R “happens” on the interface between the quantum
world and (human?) consciousness. The hard form of this idea (consciousness
having an impact on physical reality) seems inadmissible, but a softer form
looks acceptable: the state vector is not the “reality” itself but just a max-
imal (ultimate?) “information on reality”. R captures a sudden change of
this information and thus does not have to conform with “materialistic” forms
of causality. Another answer of this type was given by the so-called “many-
worlds” interpretation, in which the observer, identified with one of the possible
recorded observation sequences, becomes a part of the physical description.
(c) Logical answers : R is avoided in the very formulation of QM. Example:
formulation in terms of the path integral or quantum histories. The notion of
state vector, hence also its reduction, is eliminated from the formalism. The
theory is considered as a mere “machinery” to compute observable results.
(d) Physical answers : R results from a so far unknown, but completely natural
process, which happens spontaneously when the “amount of matter” involved in
unitary quantum evolution becomes “macroscopic”. Examples: spontaneous-
localization hypothesis, hypothesis of gravitationally-induced collapse (to be
elaborated within the future theory of quantum gravity).
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The vagueness of the reduction postulate can be
illustrated by the celebrated paradox
of Schrödinger’s cat and its various
extensions. The cat is, by a genuinely
quantum mechanism (such as a decay
of a single unstable nucleus), brought
to a superposition state

|ψ⟩ = 1√
2
|dead⟩+ 1√

2
|alive⟩ If the situation is observed by multiple observers,

who of them causes the wavefunction collapse?

◀ Historical remark
1926-9: N.Bohr & W.Heisenberg put cornerstones of “Copenhagen interpretation”
1930’s: J. von Neumann & E.Wigner consider consciousness-induced collapse
1935: E. Schrödinger points out oddities of QM description of macroscopic objects
1957: H. Everett proposes the “many-worlds” (relative-state) interpretation
1960’s: E.Wigner writes about quantum paradoxes and introduces the “friend”
1980’s-90’s: attempts to introduce R as a spontaneous process (G.C.Ghirardi et al.,
R. Penrose) and to explain R from the decoherence theory (W. Zurek)
1990’s: attempts to formulate collapse-free QM (R.B.Griffiths, M.Gell-Mann)

■ System–apparatus interaction

We should quickly descend to a more physical level. Let us consider a schematic
model of the measurement process, involving a specific interaction between the
measured system and any kind of measuring “apparatus”. We will see that a
correctly performed measurement induces the system–apparatus entanglement
expressed in the basis of the measured quantity. Both subsystems are then
described by statistical ensembles involving alternative measurement outcomes.

▶ A model of measurement

The measured system S and the instrument I form a pair with the total Hilbert
space H = HS ⊗ HI. The I space HI (within the rigged space) is spanned by
continuous position vectors |x⟩I (where x may define a “pointer” position). The

S-I interaction is taken in the form Ĥint = κ(Â⊗ P̂ ) where κ is an interaction

strength, Â is the quantity to be measured on S, with eigenvalues ai and the
corresponding eigenvectors |ai⟩S, and P̂ is the momentum operator of I. We
neglect self-Hamiltonians of both S & I, and consider an initial factorized state
|Ψ(0)⟩ =

(∑
i αi|ai⟩S

)
⊗ |x0⟩I, where αi are arbitrary coefficients (normalization

assumed) and x0 is a fixed initial position of I. The evolution leads to:

e−
i
ℏĤintt|Ψ(0)⟩ =

∑
i

αi |ai⟩S ⊗
[
e−

i
ℏκtaiP̂ |x0⟩I

]
︸ ︷︷ ︸

translation
x0→x0+κtai

=
∑
i

αi |ai⟩S|x0+κtai︸︷︷︸
∆xi

⟩I = |Ψ(t)⟩
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This is the Schmidt form of an entangled state, therefore both S & I partial
density matrices are diagonal in the given bases (see bellow).

▶ States of the system & apparatus

The state of S & I after the interaction:

ρ̂S(t) = TrI|Ψ(t)⟩⟨Ψ(t)| =
∑
i,i′

αiα
∗
i′|ai⟩S⟨ai′|

δ(∆xi−∆xi′)︷ ︸︸ ︷∫
dx ⟨x|x0+∆xi⟩I⟨x0+∆xi′|x⟩

ρ̂I(t) = TrS|Ψ(t)⟩⟨Ψ(t)| =
∑
i,i′

αiα
∗
i′

∑
j

⟨aj|ai⟩S⟨ai′|aj⟩

︸ ︷︷ ︸
δii′

|x0+∆xi⟩I⟨x0+∆xi′|

The resulting reduced density operators

ρ̂S(t) =
∑
i

|αi|2|ai⟩S⟨ai| and ρ̂I(t) =
∑
i

|αi|2|x0+∆xi⟩I⟨x0+∆xi|

are diagonal in the given bases and express statistical mixtures of all possible
orthogonal measurement outcomes with probabilities |αi|2 corresponding to the
expression of the initial state of S. In this formulation of the measurement
process, the reduction postulate represents just drawing one particular state
from the pool of states contained in the statistical mixture ρ̂S(t) or ρ̂I(t).

▶ Imperfect (weak) measurement

Instead of the localized initial state |x0⟩I of the instrument in the above model,
consider a non-ideal initial state given by a Gaussian wavefunction of width σ, so

ψI(x) =
1

(2πσ2)1/4
e−x2/4σ2

and the initial state is |Ψ(0)⟩=
(∑

i αi|ai⟩S
)
⊗ ψI(x)

The system S evolves evolves from the state before the measurement

TrI|Ψ(0)⟩⟨Ψ(0)| =
∑
i,i′

αiα
∗
i′ |ai⟩S⟨ai′| = ρ̂S(0)

to the state after the measurement:

TrI|Ψ(t)⟩⟨Ψ(t)| =
∑
i,i′

αiα
∗
i′ |ai⟩S⟨a′i| 1√

2πσ2

∫
dx e−

(x−∆xi)
2+(x−∆xi′ )

2

4σ2 =

= (with the aid of Gaussian integration) =
∑
i,i′

αiα
∗
i′ e

− 1
2σ2

(
∆xi−∆xi′

2

)2

|ai⟩S⟨ai′| = ρ̂S(t)

Limiting cases:
σ=0
idealmeasurement

}
⇒ ρ̂S(t)=

∑
i

|αi|2|ai⟩S⟨ai| Trρ̂2S(t)=
∑
i

|αi|4<1

σ=∞
nomeasurement

}
⇒ ρ̂S(t)=

∑
i,i′

αiα
∗
i′ |ai⟩S⟨ai′|= ρ̂S(0) Trρ̂2S(t)=

(∑
i

|αi|2
)2
=1

The intermediate case σ ∈ (0,∞) corresponds to a measurement with a limited
accuracy (some shifts ∆xi=κtai of the pointer cannot be distinguished because
of the pointer uncertainty σ). The final state ρ̂S(t) is between the pure initial
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state and the maximally damaged (mixed) final state of an ideal measurement,
yielding an intermediate purity Trρ̂2S(t)=

∑
i,i′

|αi|2|αi′|2e−
(

∆xi−∆xi′
2σ

)2

∈
(∑

i

|αi|4, 1
)
.

■ Repeated measurements

Altering considerably the state of a quantum system, the measurement be-
comes an important constituent of the evolution. We will briefly consider what
happens when we measure one or two observables in a quick succession.

▶ Quantum Zeno effect

Repeated measurements of the same quantity slowdown, or even completely
stop (in the limiting case of infinite measurement frequency) the evolution.

Define a binary quantity (“yes/no” outcomes) Â ≡ 1|ψ⟩⟨ψ|+0
∑
i

|ϕ⊥
i ⟩⟨ϕ⊥

i |
where |ψ⟩ ≡ an arbitrary selected state ∈ H,

{|ϕ⊥
i ⟩}i ≡ a basis in the orthogonal complement H⊥

ψ to |ψ⟩ in H.

If the system at t=0 is prepared in the state |ψ(0)⟩= |ψ⟩, the survival prob-
ability of the spontaneously evolving system for small times t reads as:

p0(t) = |⟨ψ(0)|ψ(t)⟩|2 ≈ 1−
(
t
τ

)2
+ . . . where τ =

√
⟨⟨E2⟩⟩ψ/ℏ

Periodic measurement of Â with time interval δt = t
n → 0 leads to a modified

(larger) survival amplitude:

p′0(t) =
[
p0

(
t
n

)]n ≈
[
1−

(
t
nτ

)2]n
=

→e−t/τ︷ ︸︸ ︷(
1− t

nτ

)n
→e+t/τ︷ ︸︸ ︷(
1 + t

nτ

)n n→∞−−−−−−→ 1

Note: for an exponential decay, in contrast, the measurement has no effect:
p′0(t) = [e−λ t

n ]n = e−λt = p0(t)

▶ Description via system–apparatus interaction

Although it seems that the role of the collapse in the quantum Zeno effect is
essential, an equivalent result can be obtained in a collapse-free formulation.
Assume that at each time tk=k t

n with k=1, 2, ..., n, the state of the system is
measured by an instrument Ik ∈ {Ik}nk=1 and recorded in its state |1⟩k (intact
system) or |0⟩k (decayed system). The δt= t

n evolution of the system can be

written as |ψ⟩S
δt→

√
1−ϵ |ψ⟩S+ϵ |ψ⊥

1 ⟩S where ϵ is a small number and |ψ⊥
1 ⟩S is

a state from the orthogonal complement H⊥
ψ . We assume H⊥

ψ so large that it

confines any evolving state for a very long time, so that we can write |ψ⊥
1 ⟩S

δt→
|ψ⊥

2 ⟩S
δt→ . . .

δt→ |ψ⊥
n ⟩S, with {|ψ⊥

k ⟩S}nk=1 being a sequence of states in H⊥
ψ .

⇒ After time t the composite system is in a state:

|Ψ(t)⟩=(1−ϵ)
n
2 |ψ⟩S⊗

(
|1⟩1...|1⟩n−1|1⟩n

)
I
+(1−ϵ)

n−1
2 ϵ

1
2 |ψ⊥

1 ⟩S⊗
(
|1⟩1...|1⟩n−1|0⟩n

)
I

+(1−ϵ)
n−2
2 ϵ

2
2 |ψ⊥

2 ⟩S ⊗
(
|1⟩1...|0⟩n−1|0⟩n

)
I
+ · · ·+ ϵ

n
2 |ψ⊥

n ⟩S ⊗
(
|0⟩1...|0⟩n−1|0⟩n

)
I

We see that the term recording the measurement history
(
|1⟩1...|1⟩n−1|1⟩n

)
I

dominates for small δt, the other terms vanishing in the limit δt → 0.
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◀ Historical remark
1977: G. Sudarshan & B. Misra theoretically describe the quantum Zeno effect
1989-present: exp. evidences of the measurement-induced slowdown of evolution

▶ Consecutive measurements of incompatible observables

The reduction postulate has also a striking consequence for measurements of
incompatible observables: Statistical distributions of outcomes of successive
measurements of such observables depend on the order of measurements.

Measurement of quantities A and B in sequences (A,B) and (B,A) performed
at times t0 and t0+∆t with ∆t → 0 on an initial state |ψ(t0)⟩ ≡ |ψ⟩
Joint probabilities of results A=a and B=b: pψ(a, b)︸ ︷︷ ︸

joint

= pψ(b|a)︸ ︷︷ ︸
conditional

pψ(a)

(i) Order A-B: p
(AB)
ψ (a, b) = ⟨ψ̄|P̂b|ψ̄⟩⟨ψ|P̂a|ψ⟩
= ⟨ψ|P̂aP̂bP̂a|ψ⟩

⟨ψ|P̂a|ψ⟩
⟨ψ|P̂a|ψ⟩ = ⟨ψ|P̂aP̂bP̂a|ψ⟩

(ii) Order B-A: p
(BA)
ψ (b, a) = · · · · · · · · · = ⟨ψ|P̂bP̂aP̂b|ψ⟩

Compatible versus incompatible observables:

[Â, B̂] = 0 = [P̂a, P̂b] ⇒ p
(AB)
ψ (a, b) = p

(BA)
ψ (b, a) order independent

[Â, B̂] ̸= 0 ̸= [P̂a, P̂b] ⇒ p
(AB)
ψ (a, b) ̸= p

(BA)
ψ (b, a) order dependent

Statistical dependence of results
The reduction postulate trivially implies that the results of subsequent A & B
measurements are in general statistically dependent.
The correlation between results exists for both
incompatible and compatible observables.

pψ(a|b) ̸= pψ(a)
pψ(b|a) ̸= pψ(b)
pψ(a, b) ̸= pψ(a)pψ(b)

■ Measurements on entangled states

A real puzzle arises when we start thinking about the effects of quantum mea-
surements on coupled systems. If such a system is in an entangled state, any
local measurement on one of the subsystems can alter the potential outcomes
of local measurements on the second subsystem. This is independent of how
large is the spatial separation of both subsystems.

▶ Local measurements on a coupled system

A system composed of two subsystems, with total Hilbert space H = H1 ⊗H2

Local observables defined separately on both subsystems:

{
Â ≡ Â1 ⊗ Î2
B̂ ≡ Î1 ⊗ B̂2We trivially have [Â, B̂] = 0 ⇒ compatible observables

The statistical dependence of the results of subsequent measurements of these
local observables appears only for entangled states. It generates a possibility
to influence subsystem 2 by a local action on 1 and vice versa:
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Effect of


A
B


measurements in H: R̂k ∝


(R̂A)1 ⊗ Î2 k=1

Î1 ⊗ (R̂B)2 k=2

Factorized state |Ψ⟩= |ψ1⟩1|ψ2⟩2 ⇒ R̂k|Ψ⟩=


|a⟩1|ψ2⟩2 k=1
|ψ1⟩1|b⟩2 k=2

⇒ measurement on subsystem 1 has no consequence on 2 and vice versa,
hence the results are statistically independent

Entangled state |Ψ⟩=

i,j

γij|ϕi⟩1|ϕj⟩2 ⇒ R̂k|Ψ⟩=




N1


ij

γij⟨a|ϕi⟩1|a⟩1|ϕj⟩2
k=1

N2


ij

γij⟨b|ϕj⟩2|ϕi⟩1|b⟩2
k=2

N1=(


ii′j γ
∗
ijγi′j⟨ϕi|P̂a|ϕi′⟩1)−1/2 and N2 = · · · are normalization factors

⇒ both measurements change the state from entangled to separable
⇒ measurement on subsystem 1 generally alters probabilities of measure-

ment outcomes for subsystem 2 and vice versa:

Before: pΨ(b)=⟨Ψ|Î⊗P̂b|Ψ⟩=

ijj′

γ∗
ijγij′⟨ϕj|P̂b|ϕj′⟩2

After: pR̂1Ψ
(b)=⟨R̂1Ψ|Î⊗P̂b|R̂1Ψ⟩=N 2

1


ii′jj′

γ∗
ijγi′j′⟨ϕi|P̂a|ϕi′⟩1⟨ϕj|P̂b|ϕj′⟩2 ̸= pΨ(b)

⇒ local measurements on entangled states have non-local effects! However,
the nature of these effects must prevent any possibility of causality violation.

▶ EPR situation

The paradoxical consequences of measurements on entangled systems were first
noticed by Einstein, Podolsky and Rosen, so the corresponding situation is often
referred to by the acronym “EPR”. The original EPR thought experiment was
later reformulated in terms of the spin singlet state of an entangled pair

of spin-12 particles. Essentially the same
results can be obtained with other types
of maximally entangled states, e.g., polarization states of a pair of photons.

|ΨEPR⟩ = 1√
2
(|↑⟩1|↓⟩2 − |↓⟩1|↑⟩2)

It is assumed that particle 1 goes to observer A (named Alice) and particle 2
to observer B (named Bob).

Since |ΨEPR⟩ is the state with
total spin s = 0 (see Sec. 3b),
it may originate from the decay
of a spin-0 object to a pair of
spin-12 particles. The |ΨEPR⟩ state is naturally invariant under arbitrary

rotations R̂n⃗ϕ = Û ⊗ Û , where Û≡Sn⃗ϕ=


α −β∗

β α∗


with α,β≡ normalized coefficients:

|α|2+|β|2=1R̂n⃗ϕ|ΨEPR⟩ =
1√
2

�
α|↑⟩1+β|↓⟩1

�
−β∗|↑⟩2+α∗|↓⟩2


−
�
−β∗|↑⟩1+α∗|↓⟩1

�
α|↑⟩2+β|↓⟩2


=
  
(|α|2+|β|2) |ΨEPR⟩
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So, we can use any of the infinite number of equivalent expressions:
|ΨEPR⟩ = 1√

2
(|↑⟩1|↓⟩2−|↓⟩1|↑⟩2) = 1√

2
(|↗⟩1|↙⟩2−|↙⟩1|↗⟩2) = 1√

2
(|↖⟩1|↘⟩2−|↘⟩1|↖⟩2) = ······

▶ Local spin measurements
Due to the invariance of |ΨEPR⟩ under rotations, the a priori probabilities of
individual spin projections before any measurement are all the same:
p(↑1)=p(↑2)=p(↓1)=p(↓2)=p(↗1)=p(↗2)=p(↙1)=p(↙2)= · · · · · · = 1

2

This changes once Alice makes the measurement on particle 1 in any spin basis:
Alice measures particle 1, e.g., in the basis {|↑⟩1, |↓⟩1}:

|ΨEPR⟩
Alice−−−→ R̂1|ΨEPR⟩ =

{
|↑⟩1|↓⟩2 iff ↑1 measured . . . case (a)
|↓⟩1|↑⟩2 iff ↓1 measured . . . case (b)

Bob then measures particle 2 in the same basis {|↑⟩2, |↓⟩2}:[
p(↑2)
p(↓2)

]
=

[
0
1

]
in case (a),

[
1
0

]
in case (b) ̸=

{
probabilities before
Alices′s measurement

The same holds for any basis {|↗⟩1, |↙⟩1}, {|↖⟩1, |↘⟩1} . . . chosen by Alice as
long as Bob uses the same basis. In fact, Bob’s particle is always polarized
(either up, or down) in the basis selected by Alice!

◀ Historical remark
1935: Albert Einstein, Boris Podolsky, Nathan Rosen publish the EPR paper, ques-
tioning “completeness” of the quantum description
1951: David Bohm reformulates the “EPR paradox” to the spin language

▶ Description via density matrices

The reduced density operators of particles 1 & 2 in the entangled state |ψEPR⟩:
ρ̂1 = Tr2|ΨEPR⟩⟨ΨEPR| =

∑
•=↑,↓

1
2

(
|↑⟩1⟨•|↓⟩2−|↓⟩1⟨•|↑⟩2

)(
⟨↓ |•⟩2⟨↑ |1−⟨↑|•⟩2⟨↓ |1

)

= 1
2 |↑⟩1⟨↑ |+

1
2 |↓⟩1⟨↓ | =

1
2 Î1 = ρ̂1

ρ̂2 = Tr1|ΨEPR⟩⟨ΨEPR| =
∑

•=↑,↓

1
2

(
⟨•|↑⟩1|↓⟩2−⟨•|↓⟩1|↑⟩2

)(
⟨↓ |2⟨↑ |•⟩1−⟨↑|2⟨↓ |•⟩1

)

= 1
2 |↑⟩2⟨↑ |+

1
2 |↓⟩2⟨↓ | =

1
2 Î2 = ρ̂2ρ̂1 & ρ̂2 are obviously invariant under

any spin basis transformation.
Let t0 be the time of the pair emission, t1 the time of Alice’s measurement, and
t2 the time when Bob learns (by some classical means) about Alice’s results. In
the language of reduced density matrices the evolution is described as follows:

time particle 1 particle 2

t ∈ [t0, t1) ρ̂1 =
(

1
2 0

0 1
2

)
ρ̂2 =

(
1
2 0

0 1
2

)
quantumuncertainty

(Alice&Bob)

t ∈ [t1, t2) ρ̂1 = ( 1 0
0 0 ) or ( 0 0

0 1 ) ρ̂2 =
(

1
2 0

0 1
2

)
purely statistical
uncertainty (Bob)

t ∈ [t2,∞) ρ̂1 = ( 1 0
0 0 ) or ( 0 0

0 1 ) ρ̂2 = ( 0 0
0 1 ) or ( 1 0

0 0 ) , resp.
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In the first line, the states are those calculated from |ψEPR⟩. In the second line,
Alice already has either the |↑⟩1 or |↓⟩1 state, but Bob does not know which one
it actually is, so he has to use the density matrix to account for this statistical
uncertainty. In the third line, the information about Alice’s result arrives to
Bob who therefore modifies (in his mind) the state of particle 2 accordingly.

▶ Impossibility of superluminal communication

The fact that the density matrix of particle 2
remains in the basis-invariant form ρ̂2=

1
2 Î2

until t= t2 shows that no local measurement
on particle 2 in time interval t ∈ [t1, t2) can
reconstruct the result or the spin basis of
Alice’s measurement. For instance, imagine that
in repeated emissions of particles 1& 2 in state
|ψEPR⟩ Alice always performs her measurement

in the bases
{

{|↗⟩1,|↙⟩1}
{|↖⟩1,|↘⟩1}

}
to communicate the { 0

1 } bit value to Bob. The basis

used by Alice is indeed imprinted in the state of particle 2, but Bob cannot
determine it as both up and down orientations of spin in this basis are equally
probable. The situation would change if Bob can somehow make a number of
identical copies of the particle-2 state. Having e.g., a sample of n≫1 particles
in states |↙⟩2|↙⟩3 . . . |↙⟩n+1, he would be able to deduce on a high level of
certainty that Alice is sending the bit value 0. However, this is not possible!

No-cloning theorem: it is impossible to copy the state vector to more carriers
as the ideal “cloning” transformation |ψ⟩1|•⟩2 →|ψ⟩1|ψ⟩2 ∀|ψ⟩ violates linearity:
|ψa⟩1|ϕ⟩2 → |ψa⟩1|ψa⟩2
|ψb⟩1|ϕ⟩2 → |ψb⟩1|ψb⟩2

}
⇒ (α|ψa⟩1+β|ψb⟩1)︸ ︷︷ ︸

|ψ⟩1

|ϕ⟩2 → α|ψa⟩1|ψa⟩2+β|ψb⟩1|ψb⟩2︸ ︷︷ ︸
̸=|ψ⟩1|ψ⟩2

In can be proven rigorously that the EPR setup cannot be used to send
information out of the light cone. Note that the treatment of the EPR
problem would remain the same even within the relativistic QM formulation.

▶ Order of measurements

Alice’s and Bob’s measurements can be off the light cone. We know that the
time order of such events can be reversed by a suitable Lorentz transformation
⇒ In the new frame, Bob can make his measurement (and the state reduction)
first. Which picture is true? Both pictures are equivalent as they yield the
same probabilities of measurement outcomes. This follows from mutual com-
patibility of local measurements on subsystems 1 & 2 (see above), which implies
independence of the joint probabilities on the succession of measurements.
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■ Quantum nonlocality, Bell inequalities

The EPR thought experiment challenges the assumption of locality, which—
since the formulation of Einsten’s relativity— represents an untouchable ingre-
dient of any ultimate physical theory. From the above explanations it seems
that the locality is rescued. Indeed, we saw that even with entangled states and
the reduction postulate, the quantum description of EPR-like systems does not
allow for superluminal communications and remains local on the operational
level. However, there is a subtle consequence of quantum theory which goes be-
yond the classical version of locality. To show this, we use the same EPR setup
but allow Alice and Bob to select spin bases of their respective measurements
differently, independently from each other. With different spin bases, Alice’s
and Bob’s results are no more strictly anticorrelated. Nevertheless, it turns out
that the correlation is stronger than might be expected from any classical con-
sideration satisfying the locality assumption. This subtle type of “nonlocality”
is the real mystery of quantum theory.

▶ Hidden variables

Historically, the aim of EPR was to demonstrate incompleteness of QM. A com-
plete theory was assumed to be classical-like (“realistic”), although possibly
indeterministic, based on some so far unknown parameters called “hidden vari-
ables”. Can the entire QM be replaced by a hidden-variable theory? A hidden-
variable description of some special situations can be easily developed.
Example: the EPR situation when Alice & Bob perform their measurements
in the same fixed spin basis, e.g., {| ↑⟩, | ↓⟩}. At each emission of the pair of

particles, a random hidden variable κ =
{

0 probability 50%
1 probability 50% decides whether the

pair is emitted in the state ↑1↓2 (e.g., when κ=0) or ↓1↑2 (when κ=1).
A hidden-variable description can be formulated even if the basis is varied but
remains the same for both Alice’s & Bob’s measurement. However, it was
shown (see below) that once Alice & Bob are allowed to chose their bases
independently, the corresponding hidden-variable theory reproducing the QM
predictions would have to be nonlocal.

▶ EPR via hidden variables

We assume a classical-like, but probabilistic description of the EPR situation.
Let us introduce all relevant quantities:

(a) outputs of Alice’s & Bob’s measurements: a, b ∈ {
↑︷︸︸︷
+1 ,

↓︷︸︸︷
−1 }

(b) rotation angles of Alice’s & Bob’s spin bases: ΦA,ΦB

(c) hidden variables sorted to 3 groups:
α ≡ {α1 . . . }
β ≡ {β1 . . . }

}
related to particles

{
1
2

}
and the corresponding measurements,
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γ ≡ {γ1 . . . } related to the emitted pair 1& 2 as a whole.

Scheme:

+1
−1

}
= a

angle ΦA︷ ︸︸ ︷
Alice ←−−−−−−

particle 1︸ ︷︷ ︸
hidden variables α

EPR source︸ ︷︷ ︸
hidden

variables γ

−−−−−−→
particle 2

angle ΦB︷ ︸︸ ︷
Bob

︸ ︷︷ ︸
hidden variables β

b =
{

+1
−1

Probabilities
Conditional probabilities of outputs
Conditional & apriori probabilities

of hidden variables

pΦA
(a|αγ) pΦB

(b|βγ)
pΦA

(α|γ) pΦB
(β|γ)

}
conditional

p(γ) apriori

Here we assume that output a cannot depend on b, β, ΦB (similarly b cannot
depend on a, α, ΦA), hidden variable α cannot depend on β, ΦB (similarly β
cannot depend on α, ΦA), and variable γ cannot depend on any other quantity.
This follows from the required locality of the hidden-variable description.

▶ Consequences of locality

A less obvious consequence of the required locality is the factorization of the

joint probability of outputs a & b: pΦAΦB
(ab|αβγ) = pΦA

(a|αγ)pΦB
(b|βγ)

This follows from statistical independence of variables {a, α} on {b, β} and vice
versa, and from no influence of angles { ΦA

ΦB
} on probabilities related to { Bob

Alice }:

pΦAΦB
(ab|αβγ) =

pΦAΦB
(abαβγ)

pΦAΦB
(αβγ) =

pΦAΦB
(a|bαβγ)pΦAΦB

(bαβγ)

pΦAΦB
(αβγ) = pΦA��ΦB

(a|�bα��βγ)p��ΦAΦB
(b|�αβγ)

⇒ For fixed {γ,ΦA,ΦB}, the average ⟨ab⟩ΦAΦBγ=
�

+1∑
a,b=−1

ab pΦAΦB
(ab|αβγ) dα dβ

factorizes: ⟨ab⟩ΦAΦBγ = ⟨a⟩ΦAγ⟨b⟩ΦBγ

Variable γ is out of our control, so we evaluate the observable correlation coef-
ficient between A&B measurement outcomes as ⟨ab⟩ΦAΦB

=
∫
⟨ab⟩ΦAΦBγP (γ)dγ

We finally consider the following 4-angle combination of correlation coefficients:

B(ΦA,Φ
′
A,ΦB,Φ

′
B) ≡ ⟨ab⟩ΦAΦB

+ ⟨ab⟩ΦAΦ′
B
+ ⟨ab⟩Φ′

AΦB
− ⟨ab⟩Φ′

AΦ
′
B

=

∫ [
⟨ab⟩ΦAΦBγ + ⟨ab⟩ΦAΦ′

Bγ
+ ⟨ab⟩Φ′

AΦBγ − ⟨ab⟩Φ′
AΦ

′
Bγ

]
p(γ)dγ =∫ [

⟨a⟩ΦAγ⟨b⟩ΦBγ + ⟨a⟩ΦAγ⟨b⟩Φ′
Bγ

+ ⟨a⟩Φ′
Aγ
⟨b⟩ΦBγ − ⟨a⟩Φ′

Aγ
⟨b⟩Φ′

Bγ

]
︸ ︷︷ ︸

∈[−2,+2] ⇐ ⟨a⟩,⟨b⟩∈[−1,+1]

p(γ)dγ

∈ [−2,+2]

The last constraint follows from the fact that xy+xy′+x′y−x′y′ ∈ [−2,+2] for
x, x′, y, y′ ∈ [−1,+1]. Hence the locality requirements restrict B so that

−2 ≤ B(ΦA,Φ
′
A,ΦB,Φ

′
B) ≤ +2

Bell inequalities
(one of their forms)

These inequalities represent necessarily conditions to be satisfied by any local
classical-like theory that aspires to fully describe the EPR experiment.
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▶ Quantum factorized states satisfy Bell inequalities

General factorized state |Ψ⟩=
(
α|↑⟩1+α′| ↓⟩1

)
︸ ︷︷ ︸

|φ⟩1

(
β|↑⟩2+β′| ↓⟩2

)
︸ ︷︷ ︸

|χ⟩2

(with α,α′β,β′ ≡
normalized coefficients)

For this state we have ⟨ab⟩ΦAΦB
= ⟨φ|ÂΦA

|φ⟩⟨χ|B̂ΦB
|χ⟩=

∈[−1,+1]︷ ︸︸ ︷
⟨a⟩ΦA

∈[−1,+1]︷ ︸︸ ︷
⟨b⟩ΦB

, where{ ÂΦA
=ÛΦA

σ̂zÛ
−1
ΦA

B̂ΦB
=ÛΦB

σ̂zÛ
−1
ΦB

}
is the spin operator of particle { 1

2 } in
{

Alice′s
Bob′s

}
basis.

⇒ B = ⟨a⟩ΦA
⟨b⟩ΦB

+⟨a⟩ΦA
⟨b⟩Φ′

B
+⟨a⟩Φ′

A
⟨b⟩ΦB

−⟨a⟩Φ′
A
⟨b⟩Φ′

B
∈ [−2,+2]

▶ Quantum entangled states violate Bell inequalities

The average ⟨ab⟩ΦAΦB
for entangled state like |ΨEPR⟩ does not factorize!

Spinor transformation between mea-
suring frames (y-axis rotation by Φ•):

(
|↑⟩k
|↓⟩k

)
=
(

cos Φ•
2 sin Φ•

2

− sin Φ•
2 cos Φ•

2

)
︸ ︷︷ ︸

ÛΦ•

(
|↗Φ•⟩k
|↙Φ•⟩k

)
k=1,•=A
k=2,•=B

The |ψEPR⟩ in rotated bases is expressed as:

1√
2
(|↑⟩1|↓⟩2−|↓⟩1|↑⟩2)︸ ︷︷ ︸

|ΨEPR⟩

=
sin

ΦA
2 cos

ΦB
2 −cos

ΦA
2 sin

ΦB
2√

2︸ ︷︷ ︸
a++(ΦA,ΦB)

|↗ΦA
⟩1|↗ΦB

⟩2︸ ︷︷ ︸
ab=+1

+
sin

ΦA
2 sin

ΦB
2 +cos

ΦA
2 cos

ΦB
2√

2︸ ︷︷ ︸
a+−(ΦA,ΦB)×

|↗ΦA
⟩1|↙ΦB

⟩2︸ ︷︷ ︸
ab=−1

+
− sin

ΦA
2 sin

ΦB
2 −cos

ΦA
2 cos

ΦB
2√

2︸ ︷︷ ︸
a−+(ΦA,ΦB)

|↙ΦA
⟩1|↗ΦB

⟩2︸ ︷︷ ︸
ab=−1

+
sin

ΦA
2 cos

ΦB
2 −cos

ΦA
2 sin

ΦB
2√

2︸ ︷︷ ︸
a−−(ΦA,ΦB)

|↙ΦA
⟩1|↙ΦB

⟩2︸ ︷︷ ︸
ab=+1

⟨ab⟩ΦAΦB
= |a++(ΦA,ΦB)|2−|a+−(ΦA,ΦB)|2−|a−+(ΦA,ΦB)|2+|a−−(ΦA,ΦB)|2

= · · · with a little push · · · = − cos (ΦA−ΦB)

B = − cos (ΦA−ΦB)− cos (ΦA−Φ′
B)− cos (Φ′

A−ΦB) + cos (Φ′
A−Φ′

B)

−2
√
2 ≤ B(ΦA,Φ

′
A,ΦB,Φ

′
B) ≤ +2

√
2

Bell inequalities violated, replaced
by wider “quantum inequalities”

For example, with ΦA=0◦,Φ′
A=45◦,ΦB=112.5◦,Φ′

B=67.5◦ we get B = +2
√
2

⇒ Predictions of QM differ from those of a general local hidden-variable theory

Conclusion: “Quantum nonlocality” does not exist in the sense of an exploitable
superluminal communication. Nevertheless, a trace of nonlocality lies in corre-
lations between Alice’s & Bob’s results in the generalized EPR situation. These
correlations are stronger than possible classical ones if locality is required in the
classical description ⇒ The following soft form of nonlocality is valid: Quan-
tum mechanics cannot be replaced by any classical-like local theory!

◀ Historical remark
1964: John Bell derives the first version of his inequalities
1969: J. Clauser et al. derive the most common form of Bell’s inequalities
1981: A.Aspect et al. provide the first reliable experimental test confirming the
violation of Bell’s inequalities; discussion continues about potential “loopholes”
1990’s-present: many more experimental tests, including “loophole-free” ones
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7b. EXAMPLES OF QUANTUM MEASUREMENTS

In the previous section we have introduced the universal process of quantum mea-
surement in a rather abstract, mathematical way. But how can any real measure-
ment of tiny quantum objects be actually performed?

■ Destructive & nondestructive measurements

The collapse postulate, describing what happens with the wavefunction of a
quantum system in an ideal measurement, does not apply in all cases. Real
measurements often completely destroy the measured object. The cases, when
the object is preserved and its wavefunction “collapses”, are usually connected
with indirect measurements based on the entanglement of the measured system
with some other pieces of matter.

▶ Destructive measurements

The measured system (a particle) is often
destroyed in the measurement process. For instance,
the detection of photons goes almost always this way,
both for the measurements of tracks and polarizations
of photons (the latter being performed with the aid of
polarizing beam splitters based on birefringent crystals).

▶ Nondestructive measurements

These are most commonly based on an entanglement of the measured system
with another system, on which the actual measurement takes place. Examples:
(a) Tracks (positions) of charged particles: These can be detected through
the ionization caused by the particle in the surrounding material. Schematically
the instantaneous state of the particle+ surrounding can be written as:

|Ψ⟩ =
∫
dx⃗ ψ(x⃗) | ionizationaround x⃗ ⟩

ۧ| ↑
ۧ| ↓

∇𝐵𝐵𝑧𝑧

Spin orientations of charged
particles can be nondestructively
measured using the Stern-Gerlach
type of instrument, in which
different spin orientations lead to
different deflections of the magnetic
dipole in inhomogeneous magnetic
field. If

{ ψ↑(x⃗)
ψ↓(x⃗)

}
is the shifted wavefunction corresponding to

{ |↑⟩
|↓⟩
}
spin-12 state,

we schematically write:

|Ψ⟩ = α|↑⟩
∫
dx⃗ ψ↑(x⃗) | ionizationaround x⃗ ⟩+ β|↓⟩

∫
dx⃗ ψ↓(x⃗) | ionizationaround x⃗ ⟩,

where we assume negligible overlap of components ψ↑(x⃗) and ψ↓(x⃗).
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(b) Decay processes: To measure
whether the “parent” system (an excited
atom, an unstable nucleus or particle...)
has decayed to a “daughter” system,
we usually detect the emitted particles
(photons, α-particles, electrons...).
Schematically, the instantaneous state of the entire system can be written as

|Ψ⟩ = α|ψparent⟩|0⟩+ β|ψdaughter⟩|χ⟩,{|0⟩
|χ⟩
}
denoting states in the Fock space of decay products with products

{
absent
present

}

▶ Partially destructive measurements – filters

Another type of measurement arises if the measured system is destroyed only
for a certain subset of possible measurement outcomes. Imagine the above
example of the photon polarization measurement with one of the destructive
detectors removed: Each time when the photon enters the device and there is
no signal from the remaining detector, the photon is in the other arm of the
beam splitter and has the corresponding polarization.
In general, for this type of measurement we can write

R̂A|ψ⟩ =
{

× probability= ⟨ψ|P̂a1|ψ⟩ ⇒ result a1 measured

N (Î−P̂a1)|ψ⟩ probability= 1−⟨ψ|P̂a1|ψ⟩⇒ result ̸=a1 deduced

A partially destructive instrument acts as a filter. We stress that a quantum
filter changes the state of the system (unlike the classical filter, which only lets
some states through). This is illustrated by the problem of three polarizers:
Two polarization filters with φ=0◦ & 90◦

stop every photon. The third filter
with φ=45◦ inserted between the
two changes the photon polarization
state to |ψ⟩ = 1√

2
|x⟩+ 1√

2
|y⟩ (see be-

low) and hence enables some photons
to pass through the whole device.

▶ “Interaction-free” measurements

The class of measurements, in which a certain outcome is deduced just from
the absence of the measured particle in the branches of the instrument corre-
sponding to the remaining outcomes, is sometimes cast as “interaction-free”.
Consider a two-path interferometer, in which one of the paths contains the
detector. If the detector is silent, the particle is localized on the other path,
which prevents the two-path interference from occurring. So once we observe
the particle propagating in the forbidden direction, in which the interference
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would be destructive, we can say that the measurement was successful, but—at
the same time—the particle went along the path with no detector!

Example: Bomb testing problem

Mach-Zehnder photon interferometer:
The photon beam is split on the first beam
splitter (BS1) to paths I and II, which both
after a normal-mirror reflection merge at the
second beam splitter (BS2) followed by
detectors 1 & 2. A symbolic expression
of the evolving photon state reads as:

|1⟩ BS1−−→ 1√
2
(|I⟩+i|II⟩) mirrors−−−−→ i√

2
(|I⟩+i|II⟩) ≡ |ψ⟩

|I⟩
BS2−−→ 1√

2
(|2⟩+i|1⟩)

|II⟩
BS2−−→ 1√

2
(|1⟩+i|2⟩)

with
{|1⟩
|2⟩
}
≡ two exit

directions

}
⇒ |ψ⟩ BS2−−→ −|1⟩≡|1⟩.

The photon goes only to detector 1, so an interference occurs. Now assume
that a bomb with a trigger sensitive to a single-photon reflection is placed, e.g.,
in arm II. The bomb acts as a which-path detector, reducing the photon state

as follows: 1√
2
(|I⟩+i|II⟩) R̂−→

{
|I⟩ 50%
|II⟩ 50% . In both cases, the photon can then exit

in either of states
{|1⟩
|2⟩
}
. The sequence |1⟩→ · · · R̂−→|I⟩ BS2−−→|2⟩ (with probability

25%) indicates functionality of the bomb without causing its explosion! Note
that more sophisticated setups have been described in which the efficiency of
the “bomb detection” may increase arbitrarily close to 100%

■ Production & measurement of entangled states

An increasingly important role in QM is played by measurements that are able
to distinguish various entangled states of some elementary objects (like qubits).
Such measurements are often performed on photons, so we first outline some
facts about the photon polarization.

▶ Photon polarization as spin-1 projection

All kinds of light polarization are manifestations of the photon spin s = 1. We
start from the basis states {|x⟩, |y⟩} of linear polarization, where the directions
n⃗x⊥ n⃗y ⊥ photon flight direction n⃗c =

c⃗
c

Rotated linear
polarization basis:

(
|x′⟩
|y′⟩

)
=

(
cosϑ sinϑ
− sinϑ cosϑ

) ( |x⟩
|y⟩

)

Circular
polarization basis:

(
|L⟩
|R⟩

)
≡
(

|→n⃗c⟩
|←n⃗c⟩

)
= 1√

2

(
1 −i
1 +i

) ( |x⟩
|y⟩

)
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Here we introduced spin-1 projection states in the photon flight direction:
| →n⃗c

⟩ ≡ |s=1,mn⃗c
=+1⟩ & | ←n⃗c

⟩ ≡ |s=1,mn⃗c
=−1⟩.

Note that state |s=1,mn⃗c
=0⟩ does not exist for massless (v=c) particles.

▶ Bell states

The EPR experiment is most commonly realized not with spin-12 particles,
but with photons, the photon polarization states playing the role of spin-12
projections. Since the EPR particles represent essentially a pair of qubits, we
proceed with the qubit-basis notation |0⟩, |1⟩. The basis in the 2-qubit Hilbert
space can be taken factorized, as well as entangled:




|0⟩1|0⟩2
|0⟩1|1⟩2
|1⟩2|0⟩2
|1⟩1|1⟩2





unitary
transf.

Û−→





1√
2
(|0⟩1|1⟩2 + |1⟩1|0⟩2) ≡ |Ψ+⟩

1√
2
(|0⟩1|1⟩2 − |1⟩1|0⟩2) ≡ |Ψ−⟩

1√
2
(|0⟩1|0⟩2 + |1⟩1|1⟩2) ≡ |Φ+⟩

1√
2
(|0⟩1|0⟩2 − |1⟩1|1⟩2) ≡ |Φ−⟩





orthonormal
Bell basis

Bell states show maximal entanglement as the entanglement entropy of both
partial density matrices for any of these states is maximal S1 = S2 = ln 2. The
violation of Bell inequalities is the same for any state of the Bell basis.

▶ Production of Bell states

At present, various entangled states of pairs of photons are prepared with the
aid of so-called parametric down conversion, which is a nonlinear optical process
in some crystals. We mention here an older method based on a two-step cascade
of electromagnetic transitions in atoms:

J = 0 ⇝ photon 1
J = 1 ⇝ photon 2
J = 0

The total angular momentum of both
emitted photons must be 0, so the
photon spin state is :

1√
2
(| →⟩1| ←⟩2 + | ←⟩1| →⟩2) =

= 1√
2
(|x⟩1|x⟩2 + |y⟩1|y⟩2) ≡ |Φ+⟩

▶ Measurement in the Bell basis

The identification of Bell states is equivalent to an ideal measurement of a suit-
able quantity composed of these states, e.g.:

Â = 1|Ψ+⟩⟨Ψ+|+ 2|Ψ−⟩⟨Ψ−|+ 3|Φ+⟩⟨Φ+|+ 4|Φ−⟩⟨Φ−|
The problem is that the resolution of all 4 Bell states is possible only with
measurements that simultaneously affect both qubits. Alternatively, one can

 |Ψ+⟩
|Ψ−⟩
|Φ+⟩
|Φ−⟩


Û−1

−→

 |0⟩1|0⟩2 ... output 1
|0⟩1|1⟩2 ... output 2
|1⟩1|0⟩2 ... output 3
|1⟩1|1⟩2 ... output 4

perform an inverse of the above unitary
transformation (which involves mutual
interaction of both quibits) and perform
local measurements on both qubits.
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◀ Historical remark
1922.: O. Stern & W.Gerlach perform the first spin-projection measurement
1970-90’s: development of techniques to produce photon pairs in entangled states
1993: A. Elitzur & L.Vaidman present the bomb testing problem
1990-present: rapid progress in controlling & measurements of simple quantum sys-
tems on various experimental platforms (S.Haroche, D.Wineland, A. Zeilinger...)

8. LINKS BETWEEN QUANTUM AND CLASSICAL

This is a breaking point of our journey. In Secs. 1a–7a we have constructed the
basic formalism of quantum theory and in Secs. 1b–7b we have have demonstrated
some of its elementary applications. This stage is now finished. Before proceeding
to some more complex applications of QM in the forthcoming sections, we need
to specify under which circumstances the new quantum description gives rise the
familiar classical laws. It turns out that the land on the border between quantum
and classical physics contains a rather inaccessible and sometimes hardly passable
terrain. Genuinely quantum structures often hide classical roots, and conversely, our
classical word has to emerge from purely quantum substrate. I dare to say that the
quantum-classical correspondence belongs to the most interesting topics in physics.

■ Classical limit of quantum theory

When quantum dynamics becomes approximately classical? We will see that
even for classical-like initial states, which seem to guarantee an almost perfectly
classical description of the system, the classical-like dynamics tends to become
invalid after a certain finite time (not tremendously long even for really large
systems). Quantum-classical correspondence at these time scales can be main-
tained only due to decoherence—the process in which quantum attributes of
the system get lost though interactions with any kind of “environment”. The
role of decoherence seems really substantial as it is also the main suspect in the
matter of selecting the ultimate basis of alternative states in which the classical
world emerges. On the other hand, to answer the final question “who selects
the actually realized alternative?” is probably only an issue of interpretation,
which may forever remain outside the competences of physics.

▶ Singular limit ℏ → 0

A general physical theory can be subject to a limiting procedure: the variation
of its essential constant to the limit in which a particular approximate the-
ory takes the reins. Familiar examples are the limits c → ∞ (or v

c → 0), when
special relativity changes to classical mechanics, and N → ∞, when statisti-
cal physics becomes thermodynamics. It turns out that the limit ℏ → 0 (or
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∆S
ℏ → ∞), in which quantum mechanics should crossover to classical mechanics,
is rather tricky—we may even say singular.

Example I: harmonic-oscillator eigenstates

Classical motion with period T = 2π
ω is given by: x(t) =

√
2E

Mω2︷ ︸︸ ︷
xmax(E) sinωt

Probability density for finding the oscillator at position x in random time:

ρclas(x)Edx = 2
T

∣∣ dt
dx

∣∣
︸︷︷︸
1/|ẋ|

dx = 1
π

1
xmax(E)| cosωt|dx ⇒ ρclas(x)E ≡ 1

π
1√

xmax(E)2−x2

Is there any link to the quantum probability density ρquant(x)En
≡ |ψn(x)|2 ?

To keep En ≡ E = const for ℏ → 0, we need
n → ∞ ⇒ infinitely dense oscillations of ψn(x)

We introduce a smoothed quantum distribution

ρ̄quant(x)En
≡ 1

dx

x+dx
2∫

x−dx
2

|ψn(x
′)|2dx′ n→∞−−−→ ρclas(x)E

which gets close to the classical one for n ≫ 1.
Therefore, the limit ℏ → 0 reproduces the
classical case only if smoothing of |ψn(x)|2
is performed along with the limiting procedure.

Example II: potential-barrier transmission probability

We consider the square potential barrier of width a and height V0. The reflection
& transmission of quantum waves on this barrier depends on a dimensionless
barrier parameter γ= 1

ℏ
√
2MV0a2 and dimensionless energy ϵ= E

V0
. The use of

the method of probability currents (see Sec. 5a) yields the quantum transmission
coefficient (probability to get to the other side of the barrier):

Tquant(ϵ)︸ ︷︷ ︸
ptrans(ϵ)

=

{ 1
1+ 1

4ϵ(1−ϵ) sinh
2(γ

√
1−ϵ)

ϵ < 1

1
1+ 1

4ϵ(ϵ−1) sin
2(γ

√
ϵ−1)

ϵ ≥ 1

What is the link to the classical
transmission coefficient

Tclas(ϵ) =

{
0 ϵ < 1
1 ϵ ≥ 1

for ℏ → 0 ⇒ γ → ∞ ?

(a) ϵ < 1: lim
γ→∞

Tquant(ϵ) = 0 = Tclas(ϵ)

(b) ϵ ≥ 1: lim
γ→∞

Tquant(ϵ) shows infinitely-dense oscillations within the interval

[ 1
1+1/4ϵ(ϵ−1) , 1]. This is not Tclas=1. To get to the classical result, we need

two types of smoothening:
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(i) of the potential: V̄ (x) ≡ 1
dx

x+dx
2∫

x−dx
2

V (x′)2dx′ (which smooths out the edge),

(ii) of the transmission coefficient: T̄quant(ϵ) ≡ 1
dϵ

ϵ+dϵ
2∫

ϵ−dϵ
2

Tquant(ϵ
′)dϵ′.

▶ Problem of long times

Limitations of the Ehrenfest theorem: We consider a particle moving in a
potential field. The Ehrenfest theorem (see Sec. 5b) seems to guarantee the cor-
respondence between the classical dynamics and the quantum evolution of the
average position and momentum for initially well localized wavepackets. A good
example are coherent states of the harmonic oscillator, which evolve in close
correspondence with classical trajectories. However, for a vast majority of sys-
tems, such a correspondence is limited to not too long times. The spreading of
wavepackets (in almost all potentials) implies that the semiclassical descrip-
tion ceases to apply at times t≳τQ, in which the variance of the force across the
wavepacket spread becomes comparable with (or larger than) the force aver-
age. This leads to a criterion: Maxj

〈∣∣ ∂2V
∂xjxi

∣∣〉
ψ(τQ)

∆xj(τQ) ≈
〈∣∣ ∂V

∂xi

∣∣〉
ψ(τQ)

, where

∆xj(τQ) is the spread along direction xj at t = τQ.

Phase-space description: Consider an initial t=0 state of a general system
represented by a non-negative Wigner quasiprobability distribution W (x⃗, p⃗, 0)
in the 2f -dimernsional phase space, equivalent with a classical probability dis-
tribution ρ(x⃗, p⃗, 0). The support Sρ(0) of the initial distribution is a sim-
ple compact domain of volume Ωρ(0). The semiclassical approximation holds
if W (x⃗, p⃗, t) evolved by quantum dynamics roughly coincides with ρ(x⃗, p⃗, t)
evolved by classical dynamics.

W (x⃗, p⃗, 0)
quantum evolution−−−−−−−−−−→ W (x⃗, p⃗, t)

≡ ?≡
ρ(x⃗, p⃗, 0)

classical evolution−−−−−−−−−−→ ρ(x⃗, p⃗, t)

The classical dynamics conserves the
volume, so Ωρ(t)=Ωρ(0), but makes
the shape of Sρ(t) more and more
complicated with increasing time.
Its maximal linear size grows typically as Lρ(t) ≈ Lρ(0)e

t/τchaos, where τ−1
chaos

is the maximal Lyapunov exponent characterizing sensitivity of dynamics to
initial conditions. Semiclassical behavior ends when fine structures of Sρ(t)
reach the size ℏf of the quantum cells deduced from the uncertainty principle.
A rough estimate of this time:

τQ ≈ τchaos ln
Ωρ(0)
ℏf

At t ∼ τQ, the distribution
W (x⃗, p⃗, t) develops negative
domains ⇒ gets non-classical.
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▶ The effects of decoherence

Even a maximally isolated system interacts with omnipresent matter (relict ra-
diation, solar photons, dark matter...) or with some internal degrees of freedom
is most likely out of control. This has important consequences:

Semiclassical behavior in long times: On the classical level, interactions of
the system with some environment show up as random noise which prevents
the distribution ρ(x⃗, p⃗, t) from developing the ∼ ℏf fine structures. Hence for
classical-like initial states, predictions of (a) classical theory with noise and
(b) quantum theory with decoherence are usually consistent up to long times.

“Einselection”: A quantum system S interacts with some environment E. The
total Hilbert space is H = HS ⊗HE. Assume a basis {|ak⟩}k of HS formed by
eigenvectors of an observable Â (we neglect possible degeneracies) and a general
basis {|ei⟩}i of HE. As in the spin example in Sec. 6b, we start from a factorized
S+E state ρ̂(0) at t=0, in which the system is in a pure state |ψ⟩S, and end in

|ψ⟩S =
∑
k

αk|ak⟩a generally non-separable mixed state ρ̂(t) at t > 0.
We assume that the quantity Â is conserved (it com-
mutes with the total Hamiltonian including the S-E
interaction), so the evolution of basis states reads as: |ak⟩|ei⟩

t→ |ak⟩|eki(t)⟩
where |eki(t)⟩ are some states of the environment.
This leads to the following evolution of the whole S+E system:

ρ̂(0)= |ψ⟩⟨ψ|︸ ︷︷ ︸∑
k,k′

αkα∗
k′ |ak⟩⟨ak′ |

⊗
(∑

i

wi|ei⟩⟨ei|
)

︸ ︷︷ ︸
ρ̂E(0)

t−→
∑
i

wi

∑
k,k′

αkα
∗
k′|ak⟩|eki(t)⟩⟨ek′i(t)|⟨ak′|= ρ̂(t)

=ρ̂S(0)

⇒ ρ̂S(t) = TrE ρ̂(t) =∑
k,k′

αkα
∗
k′

(∑
i

wi⟨ek′i(t)|eki(t)⟩
)
|ak⟩⟨ak′|

We may assume that for t > τdecoh, where the decoherence time τdecoh quickly de-
creases with an increasing size of the environment, we obtain ⟨ek′i(t)|eki(t)⟩ ≈ δkk′

∀i (the scalar product approximately factorizes to the overlap integrals in all
individual degrees of freedom of E). Then we have:

ρ̂S(t) ≈
∑
k

|αk|2|ak⟩⟨ak|⇒ the state of system S expressed in variable ak is
a classical-like statistical mixture of alternatives. The
basis diagonalizing ρ̂S(t), in which the system becomes classical, is selected by
the S-E interaction, which conserves Â. This process is sometimes called “ein-
selection”, or “environmentally-induced superselection” (of “classical” basis).

◀ Historical remark
1913: N.Bohr discusses the quantum-classical correspondence within the “old QM”
1920’s-present: research of various aspects of quasiclassical quantum mechanics
1970’s-90’s: M.Berry points out the singularity of the ℏ → 0 limit
1970-90’s: H.D. Zeh and W.Zurek consider environmentally-induced decoherence as
an effective mechanism for quantum-to-classical transition
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■ Feynman integral

When the classical trajectories of particles were replaced by quantum wavefunc-
tions, people might believe that trajectories became irretrievably outmoded.
However, they returned in all their glory in a later reformulation of quantum
theory in terms of path integration. This brilliant approach further elucidates
the link between quantum and classical, but also serves as a computational tool
for some more advanced problems of quantum theory. Here we just take a little
taste of this powerful technique.

▶ Infinitesimal single-particle propagator

Free-particle propagator: G+
0 [(x⃗+∆x⃗)(t+∆t)|x⃗t] =

(
M

2iπℏ∆t

) 3
2 e

i
ℏ

L0(x⃗,∆x⃗
∆t )∆t=dS0︷ ︸︸ ︷

M
2

(∆x⃗)2

∆t

Infinitesimal ∆t → 0 propagator of particle in potential V (x⃗):

L
(
x⃗, ∆x⃗

∆t

)
= M

2

(
∆x⃗
∆t

)2−V (x⃗)

G+[(x⃗+∆x⃗)(t+∆t)|x⃗t] =
(

M
2iπℏ∆t

) 3
2 e

i
ℏ

dS︷ ︸︸ ︷
L
(
x⃗, ∆x⃗

∆t

)
∆t

= G+
0 [(x⃗+∆x⃗)(t+∆t)|x⃗t] e−

i
ℏV (x⃗)∆t ≈

(
M

2iπℏ∆t

) 3
2 e

i
ℏ
M
2

(∆x⃗)2

∆t
[
1− i

ℏV (x⃗)∆t
]

It must be so since the ∆t → 0 limit of evolution operator factorizes:

Û(∆t) = e
− i
ℏ

[
− ℏ2
2M ∇⃗2+V (x⃗)

]
∆t

≈ e
− i
ℏ

[
− ℏ2
2M ∇⃗2

]
∆t

︸ ︷︷ ︸
Û0(∆t)

e−
i
ℏV (x⃗)∆t

(from [T̂∆t,V̂∆t]∼O(∆t2)→0)

▶ Finite single-particle propagator

Since any finite time interval can be split to a sequence of infinitesimal intervals,
we can compose a finite-time propagator from the infinitesimal ones. We pro-
ceed in the Heisenberg representation, in which the propagator represents the
scalar product of time-dependent position eigenvectors: G+(x⃗t|x⃗0t0) ≡ ⟨x⃗t|x⃗0t0⟩

|x⃗t⟩ ≡ eigenvector of
ˆ⃗
XH(t)

G+(x⃗t|x⃗0t0) =
∫ G+(x⃗t|x⃗1t1)︷ ︸︸ ︷
⟨x⃗t|x⃗1t1⟩

G+(x⃗1t1|x⃗0t0)︷ ︸︸ ︷
⟨x⃗1t1|x⃗0t0⟩ dx⃗1 =∫

. . .
∫
G+(x⃗t|x⃗ntn)︸ ︷︷ ︸

( M
2iπℏ∆tn )

3
2e

i
ℏL(x⃗n,∆x⃗n

∆tn )∆tn

. . . G+(x⃗k+1tk+1|x⃗ktk)︸ ︷︷ ︸
(

M
2iπℏ∆tk

) 3
2
e

i
ℏL(x⃗k,∆x⃗k

∆tk
)∆tk

. . . G+(x⃗1t1|x⃗0t0)︸ ︷︷ ︸
(

M
2iπℏ∆t0

) 3
2
e

i
ℏL(x⃗0,∆x⃗0

∆t0
)∆t0

dx⃗n...dx⃗k...dx⃗1

Assume ∆tk ≡ ∆t = t−t0
n+1

⇒ G+(x⃗t|x⃗0t0) =

n→∞−→
∫

D[x⃗(t)]

︷ ︸︸ ︷∫
. . .

∫
dx⃗n. . .dx⃗1

[
M

2iπℏ(∆t)

] 3
2 (n+1)

e

i
ℏ

n→∞−→
∫

L
(
x⃗, ˙⃗x

)
dt ≡ S[x⃗(t)]

︷ ︸︸ ︷
n∑

k=0

L
(
x⃗k,

x⃗k+1−x⃗k

∆t

)
∆t

(x⃗ ′,t′)≡(x⃗n+1,tn+1)
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Path integral:

G+(x⃗t|x⃗0t0) =
∫

D[x⃗(t)] e
i
ℏS[x⃗(t)]

≡ functional integral over the space
of all possible trajectories x⃗(t)
satisfying x⃗(t0)= x⃗0 −→ x⃗= x⃗(t)

Note: the functional integration is in
fact a very complicated procedure, whose
technical aspects we do not explore here!

▶ Classical correspondence

The contribution to the functional integral is most significant for trajectories
in a vicinity of the classical trajectory x⃗c(t), for which δS = 0 (these trajec-
tories contribute “in phase” while the others tend to cancel each other). This
effect in general increases as we approach to the classical limit ℏ → 0.

Example: free particle

G+
0 (x⃗t|x⃗0t0) =

[
M

2πiℏ(t−t0)

] 3
2

e
i
ℏ

S0[x⃗c(t)]︷ ︸︸ ︷
M
2

(x⃗−x⃗0)
2

t−t0
⇒ non-classical trajectories cancel

out perfectly even for ℏ > 0

▶ Path-integral formulation of the double-slit interference

To see the path integration in action, we try to apply it to the double-slit
experiment from Introduction. Let us stress, however, that the calculations in
this and the following paragraphs are rather schematic.
We consider the usual scheme:

Emitter x⃗0 ≡ ( −s︸︷︷︸
→−∞

, 0) −→ Slits

{
x⃗A ≡ (0,+d

2)
x⃗B ≡ (0,−d

2)

}
−→ Screen x⃗ ≡ (l, y)

We assume the initial state (t→−∞) as a Gaussian wavepacket with average
momentum p⃗=(Mv, 0) and width

√
σp≡∆p≪p.⇒ On the slit plane we get an

approximately planar wave with almost a sharp de Broglie wavelength λB=
h

Mv .
We divide the trajectories to two disjunct subsets {x⃗A(t)} & {x⃗B(t)} passing
the slits A & B:

G+(x⃗t|x⃗0t0) =
∫
D[x⃗A(t)] e

i
ℏS[x⃗A(t)] +

∫
D[x⃗B(t)] e

i
ℏS[x⃗B(t)]

Assume that only classical trajectories contribute to almost free propagation:

G+(x⃗t|x⃗0t0) ∝
[
e

i
ℏSA+e

i
ℏSB

]
= e

i
ℏ
SA+SB

2
[
e+

i
ℏ
SA−SB

2 +e−
i
ℏ
SA−SB

2
]
∝ cos SA−SB

2ℏ
SA−SB

2ℏ =M
2ℏ

vA+vB
2︸ ︷︷ ︸

π
λB

∆path︸ ︷︷ ︸
≈y

l d

⇒ ρscr(y) ∝ cos2
(

π
λB

d
l y
)

⇒ ∆y= l
dλB interval between

two minima/maxima

The approximations of ∆path and the constant prefactor are valid only for
small y, and the real interference pattern disappears outside a limited domain.
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▶ Aharonov-Bohm effect

A bonus of the path-integral treatment of the double-slit experiment is an el-
egant explanation of the so-called Aharonov-Bohm effect. Consider an ideal
electric coil placed in between both slits A & B. The coil is oriented perpen-
dicularly to the plane defined by emitter & both slits, with the section area S.
Magnetic flux Φ = B⊥S is confined inside the coil. The area S can be made
arbitrarily small and the coil can be shielded against the passage of particles, so
that the particles have no chance to experience the field B⊥. Yet the field has
a strong impact on the interference pattern! The reason for this surprising be-
havior is that the vector potential, which appears in the Schrödinger equaition,
may take nonvanishing values A⃗(x⃗) ̸=0 even in the spatial domains, where the
field induction vanishes, B⃗(x⃗)=0.

For a cylindrical coil of radius R: A⃗(x⃗) =
{

1
2Bre⃗φ r<R (region of B ̸=0)
1
2BR2 1

r e⃗φ r≥R (region of B=0)

Lagrangian of a charged particle: L(x⃗, ˙⃗x) −→ L(x⃗, ˙⃗x) + q ˙⃗x · A⃗(x⃗)

G+(x⃗t|x⃗0t0) ∝
[
e

i
ℏ

(
S
(0)
A +q

∫
A

v⃗A·A⃗Adt
)
+e

i
ℏ

(
S
(0)
B +q

∫
B

v⃗B·A⃗Bdt
)]

∝ cos
[
1
ℏ

(
S
(0)
A −S

(0)
B + qΦ

2

)]

where S
(0)
A , S

(0)
B are actions for zero field

and where we used the relation:
∫
A

v⃗A ·A⃗A dt−
∫
B

v⃗B ·A⃗B dt =
∮
AB

A⃗ · dx⃗

=
∫
S

(∇⃗×A⃗) · d⃗S = B⊥S = Φ

⇒ ρscr(y) ∝ cos2
(

π
λB

d
l y +

qΦ
2ℏ

)

The interference pattern is shifted although the particle cannot enter the region
with B⃗(x⃗) ̸=0. So what affects quantum dynamics of charged particles seems
to be rather the field of the vector potential A⃗(x⃗) than the field of B⃗(x⃗). Nev-
ertheless, as we saw, the observable shift of the interference pattern depends
only on the flux Φ, which is independent of the gauge—a particular choice of
A⃗(x⃗) consistent with the given B⃗(x⃗).

▶ Application of path integral to level density

Despite the quantization of energy in bound quantum systems is considered
as a genuinely quantum attribute of such systems, it turns out that the key
properties of energy spectra follow from classical dynamics. To show this, we
first relate the density of energy spectrum to the evolution operator of the
system and then use the Feynman integral.
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Level density (cf. Sec. 6a)

ϱ(E) =
∑
k

δ(E − Ek)

contains complete information on the
system’s discrete energy spectrum {Ek}.
The unit of ϱ(E) is (energy)

−1 and the

number of levels in any energy interval [E1, E2] is given by N[E1,E2]=
E2∫
E1

ϱ(E) dE.

The exact level density can be smoothed by any weight function δσ(x) ≥ 0
satisfying

∫
δσ(x) dx=1,

∫
xδσ(x) dx=0 and

∫
x2δσ(x) dx=σ2:

ϱσ(E) =
∫
δσ(E−E ′)ϱ(E ′) dE ′ =

∑
k

δσ(E − Ek).

If the width σ>⟨Ek+1−Ek⟩ (average level spacing), the smoothed density ϱσ(E)
does not show individual levels but the main trends of the spectrum.

The link to the evolution operator is obvious from the relations:

Tr Û(t) =
∑
k

⟨Ek|Û(t)|Ek⟩ =
∑
k

e−
i
ℏEkt =

∫
ϱ(E)e−

i
ℏEtdE Fourier

transformation

ϱ(E) = 1
2πℏ

+∞∫
−∞

Tr Û(t)e+
i
ℏEtdt = 1

πℏRe
+∞∫
0

Tr Û(t)e+
i
ℏEtdt inverse Fourier

transformation

= 1
πℏRe

+∞∫
0

Tr Ĝ(t)e+
i
ℏEtdtIn the x⃗-representation:

ϱ(E) = 1
πℏ Re

∫
dx⃗

+∞∫

0

dt G+(x⃗ t | x⃗ 0) e+
i
ℏEt x⃗

t→ x⃗ propagator

⟨x⃗|Ĝ+(t, 0)|x⃗⟩ ≡ G+(x⃗t|x⃗0)

⇒ The path integral method for G+(x⃗t|x⃗00) can be also used to evaluate ϱ(E)

▶ Oscillatory level density via classical periodic orbits

It turns out that the main features of the level density can be determined from

periodic orbits (the x⃗
t→ x⃗ orbits which also satisfy p⃗

t→ p⃗). While the
classical periodic orbits determine the so-called oscillatory component of the
level density, the most trivial nonclassical orbits of zero length determine the
smooth part of the level density. So we assume a decomposition:

ϱ(E) = ϱ(E)︸︷︷︸ + ϱ̃(E)︸︷︷︸
smooth oscillatory

components

where ϱ(E) can approximated by the
above ϱσ(E), but is precisely defined by
the zero-length orbit calculation below.

The oscillatory component is given in the form of so-called Berry-Tabor (for
integrable systems) or Gutzwiller (for chaotic systems) formulas. We do not
derive these formulas here, but just give their general form using a sum over
all classical periodic orbits of the system:
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ϱ(E) = 1
πℏ


o

∞
r=1

τo
|Mo| cos


1
ℏ rSo(E) + ϕo


where




o≡ identifier of periodic orbit
r≡ number of repetitions of o
τo≡ basic time period of o
|Mo|≡ a stability measure of o
So(E)≡ action along o
ϕo≡ a phase connected with o

For a “cavity” (a compact spatial domain with V =0 surrounded by inaccessible
complementary domain with V =∞):

1
ℏSo(E)= 1

ℏ

p⃗·dx⃗= 1

ℏ

√
2ME lo=

2
ℏ τo(E)  
2π/∆o(E)

E




lo≡ geometric length of orbit o
τo(E)≡ its time period at energy E
∆o(E)≡ variable wavelength of the energy

oscillation: ∆o(E)= πℏ
τo(E)

Long (lo≫L)
Short (lo≈L)


periodic orbits (L≡ cavity linear size) cause


short
long


oscillations of ϱ(E).

Very long orbits, yielding ∆o ≲Min(Ek+1−Ek), can be cut off. The summed
oscillatory density ϱ(E) typically exhibits “beating patterns” which result from
interfering terms caused by several most relevant stable orbits. This generates
thickenings & dilutions of energy spectra with respect to the slowly-varying
smooth level density. Such phenomena are relevant for the stability of some
quantum systems (cf. various shell effects in atoms or metallic clusters).

▶ Smooth level density via zero-length orbits

The smooth level density ϱ(E) can be derived from the contribution G+
l=0 of

zero-length orbits to the path-integral expression of G+(x⃗ t | x⃗ 0). For single-
particle applications, these “orbits” correspond to the particle remaining at
rest, which for nonzero potentials is not a classical behavior.

In the single-particle case we get: G+
l=0(x⃗ t | x⃗ 0) = lim

∆x⃗→0

�
M

2iπℏ t
 3

2 e
i
ℏ


M
2

∆x⃗2

t −V (x⃗) t



ϱ(E) = 1
πℏ Re

 +∞
0

G+
l=0(x⃗ t | x⃗ 0) e+

i
ℏEt dt dx⃗


=

= 1
πℏ lim

∆x⃗→0
Re

�
M
2iπℏ

 3
2
 +∞

0

t−
3
2 e

i
ℏ


M
2

∆x⃗2

t



  
∗

e
i
ℏ [E−V (x⃗)]t dt dx⃗


= . . .

Trick: ∗ =
�

i
2πℏM

 3
2

e

i
ℏ


p⃗·∆x⃗− p⃗ 2

2M t



dp⃗ (Gaussian integral)

· · · = 1
πℏ

1
(2πℏ)3 lim

∆x⃗→0
Re


�

+∞
0

e
i
ℏ


p⃗·∆x⃗− p⃗ 2

2M t



e
i
ℏ [E−V (x⃗)]t dt dx⃗ dp⃗



= 1
(2πℏ)3

�

lim
∆x⃗→0

1
πℏRe




+∞

0

e
i
ℏ


E− p⃗ 2

2M−V (x⃗)


t
dt




  
δ


E− p⃗ 2

2M−V (x⃗)



e
i
ℏ p⃗·∆x⃗ dx⃗ dp⃗

ϱ(E)= 1
(2πℏ)3

�

δ

E− p⃗ 2

2M −V (x⃗)

dx⃗ dp⃗

  
d
dEΩ(E)

Ω(E) ≡
�

Θ

E− p⃗ 2

2M −V (x⃗)

dx⃗ dp⃗

≡ phase-space volume available

for a particle with p⃗ 2

2M +V (x⃗) ≤ E
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Example: “Cavities” of general dimension f =


1 ... 1D infinite squarewell
2 ... 2D billiard
3 ... 3D cavity

d
dEΩ(E)=

�

δ

E− p⃗2

2M


dx⃗ dp⃗ = Vf

space
volume

 
δ

E− p2

2M


  

M
p0
δ(p−p0)

pf−1dpf(θ)dθ  
polar/spher.
angle(s)

=Vf
M
p0
Sfp

f−1
0  

sphere
surface

f = 3
f = 2

f = 1

p0 =
√
2ME

ϱ(E) ∝ E
f−2
2 =




E−1/2 f = 1
E0 f = 2

E+1/2 f = 3

An analogous result, a generalized Weyl formula, is valid for general systems
with 2f -dimensional phase space (e.g., N -particle systems with f=3N):

ϱ(E) = 1
(2πℏ)f

d
dEΩ(E)

Ω(E) ≡
�

Θ [E−H(p⃗, x⃗)] dx⃗ dp⃗ ≡ phase-space
volume available for the system with H(p⃗, x⃗) ≤ E

⇒ N[E0,E]=
E
E0

ϱ(E) dE = Ω(E)
(2πℏ)f ≡ the phase-space volume for energy ∈ [E0, E]

in units of the elementary quantum cell given by the uncertainty principle

◀ Historical remark
1912: Hermann Weyl derives a formula for the density of resonances in a cavity
1927-30’s: development of semiclassical methods in the level-density evaluation
1948: Richard Feynman presents the path-integral formulation of QM
1959: Yakir Aharonov & David Bohm discover the effect of elmg. potentials in QM
1970’s: M.Gutzwiller, M.Berry, M.Tabor et al. derive periodic-orbit formulas

■ Semiclassical approximation

Not only that the quantum-classical correspondence represents a problem of
fundamental importance, its investigation also yields a class of powerfull ap-
proximation techniques. Here we present the so-called WKB theory.

▶ Classical Hamilton-Jacobi theory

Classical mechanics can also be formulated in a “wave” form. The appearance
of classical trajectories in this formulation is quite analogous to the way how
rays of light arise from electromagnetic waves in geometrical optics.

We remind the action S[x⃗(t)]t1t0 =
 t1
t0
L[x⃗(t), ˙⃗x(t)]dt of a structureless particle

with Lagrangian L(x⃗, ˙⃗x) = M
2
˙⃗x2−V (x⃗), represents a functional on the space

of trajectories x⃗(t). For a fixed initial point x⃗(t0) = x⃗0 and a fixed final point
x⃗(t1)= x⃗1 the classical equations of motion select the trajectory x⃗c(t) satisfying
the variational principle δS[x⃗c(t)]

t1
t0 = 0
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Consider a bunch of classical trajectories
{
x⃗c(t)

}
(satisfying δS = 0) leading

from a fixed initial point (x⃗0, t0) to variable final point (x⃗1, t1). The action
along these trajectories as a function of (x⃗1, t1) is the central object of the H.-J.
theory:

S(x⃗1, t1) =
t1∫
t0

L[x⃗c(t), ˙⃗xc(t)]dt

Differential equations for S(x⃗1, t1):

(a) Space variation (x⃗1, t1) → (x⃗1+δx⃗1, t1)
⇒ S → (S+δS)

δS =
t1∫
t0

(
∂L
∂xi

δxi +
∂L
∂ẋi

δẋi︸ ︷︷ ︸
d
dt (

∂L
∂ẋi

δxi)−( d
dt

∂L
∂ẋi

)δxi

)
dt

=
[
∂L
∂ẋi

δxi

]t1
t0︸ ︷︷ ︸

∂L
∂ẋi

δx1i

+
t1∫
t0

[
∂L
∂xi

δxi − ( d
dt

∂L
∂ẋi

)δxi
]

︸ ︷︷ ︸
0

dt ⇒ ∂S(x⃗1,t1)
∂x1i

=

pi︷ ︸︸ ︷
∂L(x⃗, ˙⃗x)
∂ẋi

∣∣
x⃗=x⃗c(t1)
˙⃗x= ˙⃗xc(t1)

⇒ ∇⃗x⃗1
S(x⃗1, t1) = p⃗1

(b) Time variation (x⃗1, t1) → (x⃗1, t1+δt1)
dS
dt1︸︷︷︸

L[x⃗c(t1), ˙⃗xc(t1)]

= ∂S
∂t1

+ ∂S
∂x1i︸︷︷︸
p1i

ẋ1i︸︷︷︸
ẋci(t1)

⇒ ∂S
∂t1

=
[
L − p⃗ · ˙⃗x

]
t=t1︸ ︷︷ ︸

−H(x⃗1,p⃗1,t1)

⇒ ∂
∂t1

S(x⃗1, t1) = −H(x⃗1, p⃗1, t1)

Both these equations together yield a single equation for S(x⃗1, t1) ≡ S(x⃗, t):

∂
∂t1

S(x⃗1, t1) +H[x⃗1, ∇⃗x⃗1
S(x⃗1, t1), t1] = 0 or shortly: ∂

∂tS +H(x⃗, ∇⃗S, t) = 0

Example: massive particle in a scalar potential ∂
∂tS + 1

2M (∇⃗S)2 + V (x⃗) = 0

For a time-independent Hamiltonian the energy is conserved: H=E=const

⇒ ∂
∂tS =−E ⇒ S(x⃗, t) = W (x⃗)− Et ⇒ H(x⃗, ∇⃗W ) = E

⇒ the generating function W (x⃗) can be determined from ∇⃗W = p⃗

⇒ W (x⃗) =
x⃗∫

x⃗0

p⃗ · dx⃗′ contour integral along a classical trajectory from an
arbitrary initial point x⃗0 to the given point x⃗

If S(x⃗, t) is a solution of the H-J equation, the momentum p⃗=∇⃗S at each point
is perpendicular to the surfaces S(x⃗, t)=const ⇒ classical trajectories are like
rays associated with a “wave” whose phase is represented by S(x⃗, t).

▶ WKB equations for a single particle

In the language of so-called WKB equations (named after G.Wentzel, H.A.Kra-
mers and L.Brillouin, who—among some others– formulated the related theory
in the early days of QM), quantum description becomes related to the Hamilton-
Jacobi theory. We will stick to the case of a single particle in a potential.

Let us rewrite the Shrödinger equation
[
− ℏ2

2M ∇⃗2+V (x⃗)
]
ψ(x⃗, t) = iℏ ∂

∂tψ(x⃗, t)
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with substitution ψ(x⃗, t) =
√

ρ(x⃗, t)e
i
ℏS(x⃗,t) where ρ(x⃗, t) & S(x⃗, t) are some

unknown functions:

− ℏ2
2M

[
∆
√
ρ+ 2i

ℏ (∇⃗
√
ρ) · (∇⃗S) + i

ℏ
√
ρ∆S − 1

ℏ2
√
ρ(∇⃗S)2

]
e

i
ℏS + V

√
ρe

i
ℏS

= iℏ
[
∂
√
ρ

∂t + i
ℏ
√
ρ∂S

∂t

]
e

i
ℏS

Separate

{
Re part : − ℏ2

2M∆
√
ρ+ 1

2M

√
ρ(∇⃗S)2 + V

√
ρ = −√

ρ∂S
∂t

Im part : − ℏ
M (∇⃗√

ρ) · (∇⃗S)− ℏ
2M

√
ρ∆S = ℏ∂

√
ρ

∂t

2
√
ρ × Im part ⇒ ∂ρ

∂t +
1
M

[
ρ∆S + (∇⃗ρ) · (∇⃗S)

]
︸ ︷︷ ︸

∇⃗·(ρ∇⃗S)

=0 continuity equation

⇒ ∂ρ
∂t + ∇⃗ ·

(
ρ ∇⃗S

M

)
︸ ︷︷ ︸

j⃗=ρv⃗

= 0
Re part ⇒

− ℏ2
2M

1√
ρ∆

√
ρ

︸ ︷︷ ︸
∗

+ 1
2M (∇⃗S)2 + V + ∂S

∂t = 0

Hamilton-Jacobi equation
+quantum correction ∗ ∝ ℏ2

In the classical limit ℏ → 0, the quantum correction term ∗ → 0 ⇒ one
obtains a coupled pair of classical equations: (a) the Hamilton-Jacobi equation
for S(x⃗, t) ⇒ velocity field v⃗(x⃗, t) ≡ 1

M ∇⃗S(x⃗, t), (b) the continuity equation
for ρ(x⃗, t), given v⃗(x⃗, t) determined in step (a). These equations describe an
ensemble of classical particles with initial space density ρ(x⃗, 0) evolving in
agreement with classical equations of motion.

▶ “Pilot-wave” picture of QM

In the quantum case, the correction term ∗ ≇ 0 may be considered as an
addition to the potential V (x⃗). Then the WKB equations may be interpreted
in terms of classical trajectories of an ensemble of particles moving in a modified
potential Vpilot(x⃗, t) = V (x⃗)− ℏ2

2M
1√
ρ∆

√
ρ

︸ ︷︷ ︸
VQ(x⃗,t)

The “quantum potential” VQ(x⃗, t) depends on the
solution of the quantum problem—on |ψ(x⃗, t)|2
⇒ The force F⃗pilot=−∇⃗Vpilot acts also at places

where no classical field F⃗clas=−∇⃗V is present.
⇒ Quantum wavefunction ψ(x⃗, t) plays the role of

a “pilot wave” which modulates individual particle trajectories.
⇒ Quantum interference patterns can be explained without abandoning

the concept of trajectories.
However, VQ is a strange field (not an interaction with other particles of the
ensemble ⇐ acts even for 1 particle) which turns out to have explicitly non-
local character (⇒ non-local hidden-variable theory equivalent to QM).
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Example: Gaussian wavepacket of free particle: ρ(x, t) = 1√
2πσx(t)2

e
− [x−x0(t)]

2

2σx(t)2

⇒ VQ(x, t) =
ℏ2

4Mσx(t)2

{
1− [x−x0(t)]

2

2σx(t)2

}

Force increasing with the wavepacket localization
⇒ consistent with the wavepacket spreading

▶ WKB approximation – conditions of use

Even with the actual value of the Planck constant, the quantum term in the
WKB equations can sometimes be neglected. This is the essence of the semi-
classical approximation in terms of the WKB theory. When the quantum term
can be considered small? ∗ = − ℏ2

2M
1√
ρ∆

√
ρ ∼ O(ℏ2)

?
≪ terms ∼

{
O(ℏ0)
O(ℏ1)

For the sake of simplicity we assume the 1D case in the stationary regime:
Continuity eq. ∂ρ

∂t︸︷︷︸
0

+ ∂
∂x(ρ

∂S
∂x ) = 0 ⇒ ρ∂S

∂x = const

WKB eq. − ℏ2
2M

∂2
√
ρ

∂x2√
ρ + 1

2M

(
∂S
∂x

)2
+V+

−E︷︸︸︷
∂S
∂t =0 ⇒

∗︷ ︸︸ ︷
− ℏ2

2M

[ ∂2ρ

∂x2

2ρ −
( ∂ρ∂x )

2

4ρ2

]
+ 1
2M

(
∂S
∂x

)2
=E−V

Substituting ρ from 1st to 2nd eq. and comparing the quantum & classical terms,
we obtain the quasiclassicality condition:(

ℏ∂2S
∂x2

(∂S∂x )
2

)2

≪ 1 ⇒
λ̄B︷︸︸︷
ℏ
p

| ∂p∂x |
p ≪ 1 ⇒

∣∣∣∆p
p

∣∣∣
∆x=λ̄B

≪ 1
So the relative momentum
change at the distance of de Broglie wavelength must be negligible!

This condition is usually satisfied for sufficiently
high energy E except:
(a)“wild” (rapidly oscillating) potentials V (x)
(b) regions near turning points x0 with E=V (x0)
(c) regions near stationary points x0 with

dV
dx (x0)=0

In case (a), ∆p
p can be arbitrary, in cases (b)& (c) we always

get ∆p
p →∞ as x approaches to the return or stationary point x0.

▶ Stationary WKB approximation around 1D turning point

From the stationary continuity equation we already know: ρ(x)∂S(x)∂x = const

From the H.-J. theory: W (x) = S(x, t)+Et =
x∫

x0

p dx = ±
x∫

x0

√
2M [E−V (x′)]dx′

⇒ ρ(x) ∝ 1√
2M [E−V (x)]

∝ 1
|vclas(x)| in the classically available region V (x) < E

The WKB wavefunction on both sides of a turning point x0 with V (x0)=E:
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ψI(x, t) =
±N�

2M [E−V (x)]
1/4e

± i
ℏ

x
x0

√
2M [E−V (x′)]dx′− i

ℏEt

for V (x) < E (region I)

ψII(x, t) =
±N�

2M [V (x)−E]
1/4e

± 1
ℏ

x0
x

√
2M [V (x′)−E]dx′− i

ℏEt
for V (x) > E (region II)

How to connect these solutions at x0 where the WKB approximation fails?
Bypassing x0 from II to I in the complex plane x ∈ C along a half-circle with
radius ε:

starting in region II... ...arriving to region I
following ∆x

x−x0

=−εeiϕ from ϕ=0... ...to ϕ=π: ∆x
x−x0

=−εeiπ=+ε

dV
dx


x0
ε  

≈V (−ε)−E

eiϕ → → eiπ ε
dV
dx


x0  

≈E−V (+ε)

⇒ the wavefunction prefactor, exponent and whole ψ change as follows:

N�
2M [V (x)−E)]

1/4


x0−ε

≈ N
2M|dVdx |x0εe

i0
1/4

x0
x0−ε


2M [V (x′)− E]dx′ ≈ 0

ψII(x, t)

x0−ε




II ↷ I
=




N
2M|dVdx |x0εe

iπ
1/4≈ e−iπ/4 N�

2M [E−V (x)]
1/4


x0+ε

0 ≈
x0+ε
x0


2M [E − V (x′)]dx′

e−iπ/4 ψI(x, t)

x0+ε

⇒ ψI(x, t) given above receives an extra phase factor e−iπ/4

▶ Application to bound states in a potential well

2 classical turning points in the well:
II

−−−−−−−−
forbidden

x01•
↑

I
−−−−−−−−

allowed

x02•
↑

II′
−−−−−−−−

forbidden

Wavefunction in the allowed region can be connected to the left or right for-
bidden region II or II’:

ψI(x) =




±N (2M [E−V (x)])
−1/4

e
i

[
+1

ℏ
x∫

x01

√
2M [E−V (x′)]dx′−π

4

]

using left return point x01

±N (2M [E−V (x)])
−1/4

e
i

[
− 1

ℏ

x02∫
x

√
2M [E−V (x′)]dx′+π

4

]

using right return point x02

Consistency condition:
+1

ℏ

x
x01


2M [E − V (x′)]dx′ − π

4


−


−1

ℏ

x02
x


2M [E − V (x′)]dx′ + π

4


= ±nπ

n=0,1,2,3,...

2

x02

x01


2M [E − V (x′)]dx′

  
p dx

=
�
n+ 1

2


2πℏ
h

Bohr−Sommerfeld
energy quantization
(derived in old QM
without the 1

2 term)
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Examples in which the WKB energies reproduce the exact 1D QM results:

(a) harmonic oscillator
1

2M p2 + Mω2

2 x2 = E ⇒ ellipse
(
x
a

)2
+
(
p
b

)2
=1 with area S = πa b ≡

∮
p dx

= π
√

2E
Mω2

√
2ME =

(
n+ 1

2

)
h

⇒ E =
(
n+ 1

2

)
ℏω

(b) infinite well
no access to region II
⇒ consistency condition reads as:

+1
ℏ

x∫
x01

√
2MEdx′ + 1

ℏ

x02∫
x

√
2MEdx′ = kπ with k=1, 2, 3, . . .

⇒
∮
p dx = 2

√
2ME L = kh ⇒ E = (πℏ)2

2ML2k
2

▶ Application to tunneling through a potential barrier

2 turning points on both barrier sides:
I

−−−−−−−−
allowed

x01•
↑

II
−−−−−−−−

forbidden

x02•
↑

I′
−−−−−−−−

allowed

The WKB method is applied to the wave-
function ansatz for scattering problems from
Sec. 5a. We assume a wavefunction with the
x→−∞ asymptotics of incoming & reflected
waves, and the x→+∞ asymptotics of the
transmitted wave. The WKB approximation
of the transmission coefficient T = jtrans

j0
is: TWKB ≈ e

− 2
ℏ

x02∫
x01

√
2M [V (x)−E]dx

◀ Historical remark
1913: Niels Bohr proposed a model of hydrogen based on semiclassical quantization
1919: Arnold Sommerfeld elaborates the semiclassical quantization ⇒ old QM
1926: G. Wentzel, H.A.Kramers, L. Brillouin (based on earlier work of A. Einsten,
H. Jeffreys...) develop the WKB approximation for a single-particle Schrödinger eq.
1927: Louis de Broglie formulates the basis of the pilot wave theory
1928: George Gamow uses the WKB transmission coeff. to explain nuclear α-decay
1952: David Bohm uses the idea to formulate a hidden-variable alternative to QM

9. QUANTUM INFORMATION

Having spent so much effort by building the foundations of quantum theory and de-
veloping the paths back to our classical world, we deserve now to see some genuine
quantum miracles! Not just paradoxes, but practical applications of the strange
and beautiful quantum laws—applications that may help us to design new magical
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technologies and to impress friends! There are three main resources for such appli-
cations, namely the quantum superposition, quantum entanglement and quantum
measurement. These new concepts actually revolutionized the information science.

■ Quantum information channel

Classical information (bits 0 & 1) is often transmitted by means of quantum
objects, like photons. However, the use of full quantum properties of the carrier
particles tremendously enhances the capabilities of the transmission. Of course,
this comes at a price of a much more demanding requirements upon the physical
maintenance of the channel over which the particles are sent.

▶ Quantum cryptography

The measurement-induced collapse
of wavefuction can, in principle,
disclose any hidden measurement
performed on the system. This can be used to detect an eavesdropper Eve (E)
in secret quantum-channel communication between Alice (A) and Bob (B). It is
assumed that A&B are also connected by a classical communication channel.
Protocol (i): Alice sends a binary sequence by individual photons in linear

polarization states |x⟩
|x′⟩

}
≡ 0 and |y⟩

|y′⟩

}
≡ 1, selecting between 2 rotated polar-

ization frames S & S′. Bob measures photon polarizations using independent
selection of the same frames S & S′. If E is absent, the photons for which
A&B frames coincide must yield the same A&B polarizations. Any violation
of this rule, which is detected on a released sample of photons, indicates that
the photon state was distorted during the transmission (Eve’s measurement).
If no eavesdropping is detected, the states of the remaining photons, for which
A&B frames were the same, can be used as a private key.
Protocol (ii): The communication is repeatedly interrupted by test measure-
ments, in which A&B probe the violation of Bell’s inequalities on a sample
of EPR pairs of entangled photons, one of which is sent through the quantum
channel. Eve’s local measurement makes the the state of the pair factorized, so
in case of eavesdropping the A&B test measurements satisfy Bell’s inequalities.

▶ Quantum teleportation

The teleportation means a transfer
of the state of a given physical
object to another carrier composed
of different particles (possibly far
away from the original particles).
Quantum mechanics offers a way how this goal can be achieved using quantum
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entanglement. It needs to be stressed that quantum teleportation is a causal
process with no superluminal action!
We will demonstrate the teleportation of an unknown single-qubit state |ψ⟩
of particle 1 (on Alice’s side) to particle 3 (on Bob’s side), which belongs to an
entangled EPR pair of qubit particles 2 (going to Alice) and 3 (going to Bob).

The unknown state of particle 1 is |ψ⟩1 = α|0⟩1+β|1⟩1 ≡ ( αβ )1 and the pair of

particles 2& 3 is in any of the Bell states, e.g. |Ψ−⟩23 = 1√
2

�
|0⟩2|1⟩3−|1⟩2|0⟩3



(like the spin-12 singlet state). The procedure is as follows:

Alice measures particles 1& 2 in the entangled basis of 4 Bell states (Sec. 7b):



#1 |Ψ+⟩12= 1√
2
(|0⟩1|1⟩2+|1⟩1|0⟩2)

#2 |Ψ−⟩12= 1√
2
(|0⟩1|1⟩2−|1⟩1|0⟩2)

#3 |Φ+⟩12= 1√
2
(|0⟩1|0⟩2+|1⟩1|1⟩2)

#4 |Φ−⟩12= 1√
2
(|0⟩1|0⟩2−|1⟩1|1⟩2)





This suggests the following decomposition
of the initial 1& 2&3 state:

(α|0⟩1 + β|1⟩1)  
|ψ⟩1

1√
2
(|0⟩2|1⟩3 − |1⟩2|0⟩3)  

|Ψ−⟩23

=

=
1√
4


|Ψ+⟩12

|ψ#1⟩3  
(−α|0⟩3+β|1⟩3) +|Ψ−⟩12

|ψ#2⟩3  
(−α|0⟩3−β|1⟩3) +|Φ+⟩12

|ψ#3⟩3  
(α|1⟩3−β|0⟩3) +|Φ−⟩12

|ψ#4⟩3  
(α|1⟩3+β|0⟩3)



Define: Û#1=( −1 0
0 1 ) Û#2=

� −1 0
0 −1


Û#3=( 0 1

−1 0 ) Û#3=( 0 1
1 0 )

In correlation with the result #k of Alice’s measurement, Bob receives particle 3
in the state |ψ#k⟩3. Alice communicates the result #k of her measurement via
the classical 2-bit channel to Bob, who then applies the corresponding unitary

transformation Û#1 such that Û#k|ψ#k⟩3 = ( αβ )3 = α|0⟩3+β|1⟩3 ≡ |ψ⟩3
The teleportation of the state |ψ⟩ from particle 1 to particle 3 is completed.

▶ Quantum dense coding

Reception of one particle from an
entangled pair enables Eve to send
information to Bob in a compressed
form. Assume that the entangled
pair is in the Bell state |Ψ−⟩. Alice performs one of the above-defined unitary
transformations Û#k on particle 1 and sends this particle to Bob.
Bob then receives the pair 1& 2 in the corresponding Bell state:
(up to the overall phase). By performing a measurement in the

 |Ψ+⟩ for k=1
|Ψ−⟩ for k=2
|Φ+⟩ for k=3
|Φ−⟩ for k=4

Bell basis, Bob can deduce which of the 4 transformations Alice applied. So
Alice transfers to Bob 2 bits of classical information by sending him only a sin-
gle 1-qubit particle. This can double the speed of the A→B information flow.

■ Quantum computation

The use of quantum laws for a substantial speedup of some computational tasks
would be the most spectacular practical application of QM. This field attracts
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a lot of theoretical and experimental effort and public attention since 1990’s,
when fast quantum algorithms for crucial computational problems were de-
signed, and has made tremendous progress since then. Possession of a powerful
quantum computer might be a strategic advantage, so this is a race!

▶ From reversible to quantum computation

Thoughts about the role of QM in computation came as the size of electronic
elements started approaching the atomic scale. Can the computation be per-
formed by elementary physical constituents? An obvious obstacle is irreversibil-
ity of common computational procedures, which is in contrast to reversibility
of fundamental physical processes. The irreversibility leads to the production
of entropy (⇒ heat) and thus sets fundamental limits to macroscopic comput-
ers. Theoretical attempts to compose the computation of reversible steps grew
into considerations whether the involvement of QM cannot have more substan-
tial consequences. It was pointed out that the impossibility to replace QM by
a local classical-like theory (Bell inequalities, see Sec. 7a) implies that quantum
dynamics cannot be simulated in parallel by a classical computer. This then led
to the question whether some types of quantum evolution can be equivalent to
the fast solution of some classical computational problems. Yes, they can.

▶ Quantum computer

From Sec. 1b we know that the quantum generalization of the classical bit
b ∈ {0, 1} is the qubit carrying any superposition of the 0,1 states, and that
the generalization of an N -bit register (b0, b1, ..., bN−1) ≡ x =

∑N−1
i=0 bi 2

i ∈
{0, 1, ..., 2N−1} is the quantum register carrying any superposition of numbers x:
Qubit: Quantum register:

|ψ⟩ = α0|0⟩+α1|1⟩ with
{

α0,α1∈C
|α0|2+|α1|2=1 , |Ψ⟩ =

2N−1∑
x=0

αx|x⟩ with
{

αx∈C∑
x
|αx|2=1

|x⟩≡|b0⟩|b1⟩...|bN−1⟩≡ separable
basis inH=H0⊗H1⊗...⊗HN−1Quantum computer is an N -qubit device that

for a general state |Ψ⟩ allows to perform (i) controllable unitary operations
Û (not necessarily all but a sufficiently large class of them) and (ii) quantum
measurements (usually a class of local measurements on individual qubits).

▶ One- and two-qubit operations

A general N -qubit unitary operation can be decomposed into a product of
unitary operations acting only on single qubits or on pairs of qubits:

Û = ÛM ÛM−1 . . . Û2Û1 with Ûk ∈
{
Û

(1)
i , Û

(2)
ij

} {
Û

(1)
i ≡ a 1qubit unitary op. on qubit i

Û
(2)
ij ≡ a 2qubit unitary op. on qubits i,j

With increasing N , the numberM scales polynomially in favorable cases (which
can be implemented as scalable quantum algorithms) or faster than polynomi-
ally in cases when quantum computation would not be scalable.
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Examples of 1- and 2-qubit operations:
Hademard transformation: a 1-qubit unitary operation

H defined as
{
|0⟩ → 1√

2

(
|0⟩+|1⟩

)
, |1⟩ → 1√

2

(
|0⟩−|1⟩

)
.
}

This operation can be used to produce a uniform superposition of all |x⟩ states:(⊗
i

ÛH

)
|0⟩ =

N−1⊗
i=0

(
ÛH
i |0⟩i

)
= 1

2N/2

2N−1∑
x=0

|x⟩

CNOT transformation (controlled NOT): a 2-qubit unitary operation

a

b

defined as

{
|0⟩a|0⟩b → |0⟩a|0⟩b, |0⟩a|1⟩b → |0⟩a|1⟩b,
|1⟩a|0⟩b → |1⟩a|1⟩b, |1⟩a|1⟩b → |1⟩a|0⟩b.

}

This operation generates entanglement between qubits:

ÛCNOT
ab

(
α|0⟩a+β|1⟩a

)
|0⟩b = α|0⟩a|0⟩b + β|1⟩a|1⟩b

▶ Some many-qubit operations

Two important examples of unitary transformations acting on many qubits:

(i) Quantum Fourier transformation:

ÛQPT|x⟩ = 1
2N/2

2N−1∑
y=0

ei
2πxy

2N |y⟩
The unitarity follows from:

⟨ÛQPTx|ÛQPTx′⟩ = 1
2N

2N−1∑
y=0

2N−1∑
y′=0

ei
2π(x′y′−xy)

2N ⟨y|y′⟩ = 1
2N

2N−1∑
y=0

ei
2π(x′−x)y

2N = δxx′

There exists a 1-& 2-qubit decomposition with M= N(N+1)
2 (polynomially fast).

(ii) Function evaluation: The trivial transformation |x⟩ → |f(x)⟩, or rather
|x⟩ → |f(x)mod 2N⟩ (since f(x) may exceed the capacity of the N -qubit regis-
ter) would not work since for non-invertible functions f(x) the operation would
be irreversible (⇒ non-unitary). Instead, we split the whole register to part A
with n qubis and part B with m qubits. The input x is realized on part A, the
output f(x) on part B. More precisely, the transformation reads as:

Û f |x⟩A|y⟩B → |x⟩A|[y+f(x)]mod 2m⟩BThe unitarity follows from:
⟨Û fxy|Û fx′y′⟩ = ⟨x|x′⟩A⟨[y+f(x)]mod 2m|[y′+f(x′)]mod 2m⟩B = δxx′δyy′

The decomposition of Û f to 1-& 2-qubit operations depends on f(x) and is not
generally guaranteed to be polynomial.

▶ Quantum algorithms

Quantum algorithm is a particular sequence of 1- and 2-qubit unitary operations
and a particular final quantum measurement to be performed on a properly
initialized quantum register. It is usually assumed that the initial state of the
register is the trivial factorized state |0⟩ = |0⟩1|0⟩2...|0⟩N−1. The same sequence
of operations and measurements with the same initial state can be repeated K
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times to yield a sufficiently large statistical sample of outputs. A common task
is finding properties of an unknown function f(x) : x︸︷︷︸

∈{0,...,2n−1}

→ f(x)︸︷︷︸
∈{0,...,2m−1}The usual scheme is this:

groups A & B with
n & m qubits

H⊗n ≡
n−1⊗
i=0

ÛH
i

f ≡ evaluation of f(x)
ÛA, ÛA ≡ unitary opera-

tions to be specified

Examples:
f(0) f(1)

(a) 0 0
(b) 1 1
(c) 0 1
(d) 1 0

(i) Deutsch-Jozsa algorithm: A toy algorithm deciding
whether an unknown (1-bit) → (1-bit) function f(x) is
constant [cases (a)& (b)] or balanced [cases (c)& (d)]
in a single call of the function-evaluation routine.

Here n=m=1 and the unitary operations ÛA = ÛH and ÛB = ÛHσ̂x (where
σ̂x represents the 1-qubit NOT operation).
The state of the register at the indicated control points is as follows:

1
�

2
�

3
�

4
�

|0⟩A|0⟩B 1
2 (|0⟩+|1⟩)A(|0⟩−|1⟩)B 1

2 (|0⟩A|0⟩B−|0⟩A|1⟩B+|1⟩A|0⟩B−|1⟩A|1⟩B) 1√
2
|0⟩A(|0⟩−|1⟩)B (a)

1
2 (|0⟩A|1⟩B−|0⟩A|0⟩B+|1⟩A|1⟩B−|1⟩A|0⟩B) 1√

2
|0⟩A(|1⟩−|0⟩)B (b)

1
2 (|0⟩A|0⟩B−|0⟩A|1⟩B+|1⟩A|1⟩B−|1⟩A|0⟩B) 1√

2
|1⟩A(|0⟩−|1⟩)B (c)

1
2 (|0⟩A|1⟩B−|0⟩A|0⟩B+|1⟩A|0⟩B−|1⟩A|1⟩B) 1√

2
|1⟩A(|1⟩−|0⟩)B (d)So the measurement on

qubit A distinguishes the constant ⇒ |0⟩A and balanced ⇒ |1⟩A cases. Note
that in the classical case one would necessarily need two calls of the function-
evaluation procedure! This example illustrates the synergy of quantum super-
positions (both inputs are simultaneously present in stage 2

�) and quantum
entanglement (individual inputs are correleted with the corresponding outputs
in stage 3

�). None of these ingredients can be absent in quantum computation.

(ii) Shor algorithm: It is the heart of Shor’s factorization algorithm— its
quantum part, which determines the period r of a certain function f(x).

In this case ÛB = Î (so this operation is absent) and ÛA = ÛQPT

1
�

2
�

3
�

4
�

|0⟩A|0⟩B 1√
2n

∑
x
|x⟩A|0⟩B 1√

2n

∑
x
|x⟩A|f(x)⟩B 1

2n

∑
x

∑
y
ei

2πxy
2n |y⟩A|f(x)⟩B

The probability of a particular output y on subregister A is thus given by:

pA(y) =
1
22n

∑
x,x′

ei
2π(x−x′)y

2n ⟨f(x′)|f(x)⟩︸ ︷︷ ︸
=1 for x−x′=kr
=0 otherwise

= 1
22n

∑
k=0,±1,...

eik
2πr
2n y

For large n,m, this probability is a periodic function of y sharply peaked around
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values satisfying 2πr
2n y=2πl with l=0,1,2,..., so y= l 2

n

r . The period r (an integer
number) is therefore deducible from a relatively small number of repeated runs
of the procedure. Indeed, Shor’s algorithm solves the factorization problem
(finding a pair of prime factors P,Q of a given integer I = PQ) so that the
computational complexity (the number of elementary operations performed in
the solution) grows only polynomially with the number of digits of I (the best
known classical algorithm exhibits an exponential growth of complexity).

▶ Correcting errors

The efficiency of quantum computation quickly fades away if interactions with
any kind of environment induce decoherence of the computer. As such inter-
actions are hardly preventable, the feasibility of a functioning quantum com-
puter seems to be rather questionable. Fortunately, there exist methods for
repeatadly correcting the state of the computer so that the effects of decoher-
ence can be considerably slowed down. An unpleasant consequence is however
a multiplication of the number of qubits needed for the computation.

Assume a single qubit with density operator ρ̂(0) = |ψ⟩⟨ψ| corresponding to
a pure initial state |ψ⟩=α0|0⟩+α1|1⟩. At t>0, the qubit state ρ̂(t) is generally
mixed because of decoherence. The density operator can be decomposed as
ρ̂(t)=

∑
i pi|ψi⟩⟨ψi| to arbitrary 4 linearly independent states |ψi⟩. We choose

one specific decomposition yielding a clear classification of errors:

ρ̂(t) = p0(t)|ψ⟩⟨ψ|︸ ︷︷ ︸
no error

+pz(t) σ̂z|ψ⟩⟨ψ|σ̂z︸ ︷︷ ︸
phase error

+px(t) σ̂x|ψ⟩⟨ψ|σ̂x︸ ︷︷ ︸
flip error

+pxz(t) σ̂xσ̂z|ψ⟩⟨ψ|σ̂zσ̂x︸ ︷︷ ︸
combined error

The probabilities are normalized, p0+pz+px+pxz=1, and for small times t=δt
satisfy p0∼1−O(δt2) and px, py, pxz∼O(δt2).

The quantum error correction proceeds as follows: Each logical qubit is repre-
sented by k>1 physical qubits, the states being mapped

|0⟩ → |0⟩ =
2k−1∑
x=0

αx|x⟩

|1⟩ → |1⟩ =
2k−1∑
x=0

βx|x⟩

⟨0|0⟩=⟨1|1⟩=1, ⟨0|1⟩=0

as
[
|ψ⟩=α0|0⟩+α1|1⟩

]
→

[
|ψ⟩=α0|0⟩+α1|1⟩

]
. The whole

quantum algorithm is performed on the logical instead of
physical qubits. For a given number k it can be assumed
that within a certain small time interval ∆t(k) only one
(any) of the physical qubits is affected by an error. This yields a limited number
of possible errors, which can be detected and fixed. Performing computation
on N logical qubits with kN physical qubits, the correcting procedure on each
logical qubit must be repeated with period ∆t(k). The correction of a general
single-qubit error was shown to require redundancy k ≥ 5

Example: correction of single-qubit flip errors with k=3 encoding
{

|0⟩=|000⟩
|1⟩=|111⟩

Quantum measurement of a quantity Â =
∑3

i=1 iP̂i on each logical

qubit, with projectors P̂i = σ̂
(i)
x

(
|000⟩+ |111⟩

)(
⟨000|+⟨111|

)
σ̂
(i)
x , yields as the
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result a the number i∈{1, 2, 3} of the flipped qubit (the result a=0 indicates no
flip). This measurement does not destroy the superposition and entanglement
of the logical qubit, so it keeps the logical state of the whole computer intact!
The correction of the ith-qubit error on the given logical qubit is achieved
simply by applying the operator σ̂

(i)
x on this qubit.

◀ Historical remark
1982: R. Feynman anticipates potential use of quantum systems for computation
1985: D.Deutsch defines quantum computing and seeks for quantum algorithms
1985: A. Peres proposes the method for correcting single-qubit flip errors
1984: C.H.Bennet & G.Brassard describe a protocol for quantum cryptography
1991: A. Ekert proposes entanglement-based method of quantum cryprography
1993: C.H.Bennett et al. describe a scheme for quantum teleportation
1994: P. Shor develops an efficient quantum algorithm for prime factorization
1995: P. Shor proposes the first general single-qubit error correction code
1997: first experimental realization of quantum teleportation by A. Zeilinger et al.
1995-present: massive effort to built the quantum computer on various platforms

10. STATIONARY APPROXIMATION METHODS

Application of quantum theory to realistic systems results in very complicated com-
putational problems, which often cannot be solved exactly on the present-day com-
puters. Not surprisingly, there exists a plethora of approximation techniques that
help us to get close to exact solutions. Here we start with techniques used to approx-
imate stationary states, i.e., eigenstates of a general Hamiltonian. We focus on the
two main methods—the variational and perturbation method—and describe some
applications of the latter (the variational method will come into play in Sec. 15).

■ Variational method

In classical physics, variational principles represent an autonomous formulation
of the fundamental laws of nature. The role of these principles in nonrelativistic
quantum mechanics is not as important. Nevertheless, they constitute a very
useful approximation method.

▶ Dynamical variational principle

Let us start with a variational formulation of the dynamical Schrödinger equa-
tion. Trying to keep the formalism parallel to that of classical mechanics, we
employ the notion of independent bra & ket variations. In particular, we search
a quantum analog of classical variational principle:

δ
t2∫
t1

L[x⃗(t), ˙⃗x(t)] dt = 0 with boundary conditions

{
δx⃗(t1) = 0 = δx⃗(t2)

δ ˙⃗x(t1) ̸= 0 ̸= δ ˙⃗x(t2)
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The quantum variational principle can be cast as:

δ

t2

t1


ψ(t)

iℏ d
dt − Ĥ

ψ(t)

dt

  
t2
t1


⟨δψ′(t)|iℏ d

dt−Ĥ|ψ(t)⟩+⟨ψ(t)|iℏ d
dt−Ĥ|δψ(t)⟩


dt

= 0 with




ket variation |δψ(t)⟩
|δψ(t1)⟩=0= |δψ(t2)⟩

bra variation ⟨δψ′(t)|
⟨δψ′(t1)| ̸=0 ̸=⟨δψ′(t2)|

We consider the variations of kets and bras
independently, distinguishing 4 different entities:
⟨δψ(t)| ↔ |δψ(t)⟩ & ⟨δψ′(t)| ↔ |δψ′(t)⟩
The only correlation between |δψ(t)⟩ and ⟨δψ′(t)|
is through the conserved normalization ⟨ψ|ψ⟩ = 1

⇒ δ⟨ψ|ψ⟩ = ⟨δψ′(t)|ψ(t)⟩+ ⟨ψ(t)|δψ(t)⟩ = 0

Proof of the variational principle (we show that it implies Schrödinger eq.):
t2
t1


⟨δψ′(t)|iℏ d

dt − Ĥ|ψ(t)⟩+ ⟨ψ(t)|iℏ d
dt − Ĥ|δψ(t)⟩  

⟨δψ(t)|iℏ d
dt−Ĥ|ψ(t)⟩∗+iℏ d

dt ⟨ψ|δψ⟩


dt

=
t2
t1


⟨δψ′(t)|iℏ d

dt − Ĥ|ψ(t)⟩+ ⟨δψ(t)|iℏ d
dt − Ĥ|ψ(t)⟩∗


dt+ iℏ

0  
[⟨ψ|δψ⟩]t2t1

!
= 0 ∀ ⟨δψ′(t)|& ⟨δψ(t)| (with the above constraints) ⇒


iℏ d

dt − Ĥ

|ψ(t)⟩ = 0

Note: If ⟨δψ′(t)|=⟨δψ(t)| (kets & bras varied in the same way), we would only
get Re⟨δψ(t)|iℏ d

dt − Ĥ|ψ(t)⟩ = 0, which would not imply Schrödinger eq.
An alternative treatment of the variational principle (without independent bra
& ket variations) is possible if the variation is performed only in kets (or bras):
δ⟨ψ|iℏ d

dt − Ĥ|ψ⟩ ≡ ⟨ψ|iℏ d
dt − Ĥ|δψ⟩

▶ Transition to stationary problems

The dynamical variational principle for nonrelativistic QM, derived in the pre-
vious paragraph, is not very impressive. Indeed, the Schrödinger equation can
be recognized in it already before its formal derivation. On the other hand, the
variational techniques are rather useful for stationary problems—in approxi-
mating the lowest eigenstates of complicated Hamiltonians.

Assume |ψ(t)⟩ = e−
i
ℏEt|ψ⟩ ⇒


|δψ(t)⟩=e−

i
ℏEt|δψ⟩

⟨δψ′(t)|=e+
i
ℏEt⟨δψ′|

t2
t1


⟨δψ′(t)|iℏ d

dt−Ĥ|ψ(t)⟩+ ⟨ψ(t)|iℏ d
dt−Ĥ|δψ(t)⟩


dt

=
t2
t1


⟨δψ′|E−Ĥ|ψ⟩+ ⟨ψ|E−Ĥ|δψ⟩  

δ⟨ψ|E−Ĥ|ψ⟩


dt = (t2−t1)  

̸=0

δ⟨ψ|E−Ĥ|ψ⟩  
!
=0

= 0
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δ⟨ψ|Ĥ−E|ψ⟩ = δ
[
⟨ψ|Ĥ|ψ⟩−E⟨ψ|ψ⟩

]
= 0 ⇔ δ⟨ψ|Ĥ|ψ⟩ = 0 & ⟨ψ|ψ⟩=1

with a Lagrange multiplier with explicit normalization constraint

If the above variational conditions are applied in the whole Hilbert space H,
they yield the ground state. To obtain the first excited state, the conditions
must be applied only within the orthogonal complement in H of the ground-
state energy subspace. Increasing restrictions reveal higher excited states.

▶ Stationary variational principle

Define F(|ψ⟩) = ⟨ψ|Ĥ|ψ⟩
⟨ψ|ψ⟩

≡ functional on H

The ground-state energy & eigenvector
correspond to the global minimum of F :

E0 = Min {F(|ψ⟩)}|ψ⟩∈H = F(|E0⟩)

Proof: |ψ⟩ =
∑
i

αi|Ei⟩ ⇒ F(|ψ⟩) =
∑
i

|αi|2Ei ≥ E0 = F(|E0⟩)

If H(1) is the orthogonal complement of the ground-state subspace H0,
the 1st excited-state energy & eigenvector read as:

E1 = Min {F(|ψ⟩)}|ψ⟩∈H(1) = F(|E1⟩)

Proof: |ψ⟩ =
∑
i≥1

αi|Ei⟩ ⇒ F(|ψ⟩) =
∑
i≥1

|αi|2Ei ≥ E1 = F(|E1⟩)
... et cetera for higher states▶ Ritz variational method

Choose a suitable (for the given Ĥ) subset of test vectors |ψ(a)⟩ controlled by
continuous real parameters a ≡ {a1, a2, . . . an} forming a domain Da ⊂ Rn.

Functional F(|ψ⟩) −→ function F(a) ≡ F(|ψ(a)⟩) = ⟨ψ(a)|Ĥ|ψ(a)⟩
⟨ψ(a)|ψ(a)⟩ on Da

The search for an approximate ground state, and eventually also for approxi-
mate excited states, is performed within this set of vectors:

Ground state: Min{F(a)}a∈Da
≡ F(a0) = Ẽ0 ≳ E0 is an estimate of the

g.s. energy and |ψ(a0)⟩ ≡ |ψ̃ 0⟩ ≈ |E0⟩ is an estimate of the g.s. eigenvector.

Excited states: If the set of test vectors is sufficiently rich, we can se-
lect a subdomain D(1)

a ⊂ Da such that ⟨ψ(a)|ψ(a0)⟩ = 0 ∀a ∈ D(1)
a . Then

Min{F(a)}
a∈D(1)

a
≡F(a1) = Ẽ1≳E1 is an estimate of the 1st excitation energy

and |ψ(a1)⟩≡ |ψ̃ 1⟩≈ |E1⟩ is an estimate of the 1st e.s. eigenvector. For higher
states we can proceed analogously (if the set of test functions is really rich).
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◀ Historical remark
1909: W.Ritz publishes a method for solving variational problems
1926: E. Schrödinger uses variational arguments in derivation of stationary Sch. eq.
1930’s: P.Dirac, J. Frenkel et al. formulate dynamical variational principle of QM

■ Stationary perturbation method

The stationary perturbation method is very useful if the actual Hamiltonian Ĥ
is just a small modification of a simpler Hamiltonian Ĥ0, whose eigensolutions
are known. The difference between both Hamiltonians represents a pertur-
bation which is quantified by a dimensionless parameter λ. If expressing the
eigensolutions of Ĥ as power series in λ, one may believe that high-power terms
will naturally die out. A closely related dynamical technique is a principal tool
of the present theories of fundamental interactions.

▶ Formulation of the problem

Ĥ =

unperturbed
part︷︸︸︷
Ĥ0 +

perturbation︷︸︸︷
λ Ĥ ′We look for eigensolutions of a Hamiltonian given by

with the perturbation λ Ĥ ′ much smaller than Ĥ0.
Here we assume that both Hamiltonians Ĥ0 and Ĥ ′ are comparable in size
(their matrix elements in the relevant energy domain are of the same average
size), while the dimensionless parameter λ ≪ 1 sets the smallness of the per-
turbation. In contrast, some textbooks prefer to consider the size of Ĥ ′ much
smaller than Ĥ0 and treat λ just as an auxiliary parameter, whose only role is
to indicate the power of Ĥ ′ in the relevant equations, and set its value to 1 in
the final expressions. Both approaches are equivalent.

For each level i=0, 1, 2... we know the unperturbed energy E0i. The unper-
turbed eigenvector |ψ0i⟩ is unique if the level is nondegenerate. In the de-
generate case the unperturbed eigenvector is ambiguous within the degeneracy
subspace H0i ≡ Span {|ψ0i;1⟩, |ψ0i;2⟩, . . . |ψ0i;di⟩}. It will turn out that the per-
turbation selects an appropriate basis in this subspace.

We assume [Ĥ0, Ĥ
′] ̸= 0, so the perturbation has a nontrivial effect. The task

is to expresses the eigensolutions as power-law series in λ, so that the size of
contributions can be assumed to decrease with increasing power:

Ei(λ) = λ0E0i + λ1E1i + λ2E2i + λ3E3i + · · ·︸ ︷︷ ︸
E′

i(λ)

|ψi(λ)⟩ = λ0|ψ0i⟩+ λ1|ψ1i⟩+ λ2|ψ2i⟩+ λ3|ψ3i⟩+ · · ·︸ ︷︷ ︸
|ψ′

i(λ)⟩

unnormalized
vector

In the nondegenerate case, |ψi(λ)⟩ represents the expansion of the only eigen-
vector. In the degenerate case, |ψi(λ)⟩ expands a selected vector from the
unperturbed degeneracy subspace H0i. These issues will be clarified below.
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Orthogonality condition for the eigenvector correction: ⟨ψ0i|ψ′
i(λ)⟩ = 0

This is a natural requirement since the changes
in the direction of the unperturbed vector
|ψ0i⟩ can be expressed by normalization.
(In some textbooks, the ortogonality is not
assumed, but the results are equivalent.)

The term with λn ≡ the nthorder correction
The sum of corrections up to λn ≡ the total correction in the nthorder
The sum of all terms up to λn ≡ the solution in the nth order

E
(n)
i (λ) = E0i +

E
(n)′
i (λ)︷ ︸︸ ︷

n∑
n′=1

λn′
En′i |ψ(n)

i (λ)⟩ = |ψ0i⟩+

|ψ(n)′
i (λ)⟩︷ ︸︸ ︷

n∑
n′=1

λn′|ψn′i⟩

Since λ≪1, we may hope in fast convergence,
so that some n=nup gives a sufficient precision :

{
Ei(λ) ≈ E

(nup)
i (λ)

|ψi(λ)⟩ ≈ |ψ(nup)
i (λ)⟩

Normalization
in nthorder :

|ψ(n)
i (λ)⟩=

N (n)(λ)︷ ︸︸ ︷
1√

1+⟨ψ(n)′
i (λ)|ψ(n)′

i (λ)⟩

[
|ψ0i⟩+ |ψ(n)′

i (λ)⟩
]

The nthorder correction to eigen-
vectors given as an expansion
in unperturbed eigenbasis:

|ψni⟩ =
∑
k ̸=i

anik|ψ0k⟩
anii=0 following
from the ortho−
gonality condition

▶ Equations for corrections of increasing order

Schrödinger equation:
[
Ĥ0 + λ Ĥ ′

] (
|ψ0i⟩+λ|ψ1i⟩+λ2|ψ2i⟩+λ3|ψ3i⟩+· · ·

)

=
[
E0i + λE1i + λ2E2i + λ3E3i + · · ·

] (
|ψ0i⟩+λ|ψ1i⟩+λ2|ψ2i⟩+λ3|ψ3i⟩+· · ·

)

Comparison of different orders ∝ λn:

Ĥ0|ψ0i⟩ = E0i|ψ0i⟩ n = 0

Ĥ0|ψ1i⟩+ Ĥ ′|ψ0i⟩ = E0i|ψ1i⟩+ E1i|ψ0i⟩ n = 1

Ĥ0|ψ2i⟩+ Ĥ ′|ψ1i⟩ = E0i|ψ2i⟩+ E1i|ψ1i⟩+ E2i|ψ0i⟩ n = 2
· · · · · ·

Ĥ0|ψni⟩+ Ĥ ′|ψ(n−1)i⟩ =
n∑

n′=0

En′i|ψ(n−n′)i⟩ general n

▶ Nondegenerate case

The nondegenerate case is easier than the degenerate one, so we start with it.
In this case, the solutions in the 0thorder are determined from the n=0 equation
above, which singles out the vector |ψ0i⟩ equal to the unique eigenvector of Ĥ0.
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1storder correction to energy:

Multiply the n=1 equation by ⟨ψ0i|

⇒ ⟨ψ0i|Ĥ0|ψ1i⟩︸ ︷︷ ︸
E0i⟨ψ0i|ψ1i⟩

+⟨ψ0i|Ĥ ′|ψ0i⟩ = E0i⟨ψ0i|ψ1i⟩+ E1i

1︷ ︸︸ ︷
⟨ψ0i|ψ0i⟩

⇒ E1i = ⟨ψ0i|Ĥ ′|ψ0i⟩
1storder correction to eigenvector:

The n=1 equation ⇒
[
Ĥ0−E0i

](∑
k ̸=i

a1ik|ψ0k⟩
)

︸ ︷︷ ︸
|ψ1i⟩

=
[
⟨ψ0i|Ĥ ′|ψ0i⟩−Ĥ ′

]
|ψ0i⟩

Multiply by ⟨ψ0j| for j ̸= i

⇒
∑
k ̸=i

(E0j − E0i) a1ik

δjk︷ ︸︸ ︷
⟨ψ0j|ψ0k⟩ = ⟨ψ0i|Ĥ ′|ψ0i⟩

0︷ ︸︸ ︷
⟨ψ0j|ψ0i⟩−⟨ψ0j|Ĥ ′|ψ0i⟩

⇒ a1ij = −⟨ψ0j |Ĥ ′|ψ0i⟩
E0j−E0i

⇒ |ψ1i⟩ =
∑
j ̸=i

⟨ψ0j|Ĥ ′|ψ0i⟩
E0i − E0j

|ψ0j⟩

Multiplication by ⟨ψ0i| yields just identity
0 = 0 ⇒ a1ii undetermined ⇒ consistent with the above setting a1ii=0

2ndorder correction to energy:

Multiply the n=2 equation by ⟨ψ0i|
⇒ E0i⟨ψ0i|ψ2i⟩+ ⟨ψ0i|Ĥ ′|ψ1i⟩ = E0i⟨ψ0i|ψ2i⟩+ E1i

0︷ ︸︸ ︷
⟨ψ0i|ψ1i⟩+E2i

1︷ ︸︸ ︷
⟨ψ0i|ψ0i⟩

⇒ E2i = ⟨ψ0i|Ĥ ′|ψ1i⟩ ⇒ E2i =
∑
j ̸=i

|⟨ψ0j|Ĥ ′|ψ0i⟩|2

E0i − E0j

General-order correction to energy:

Multiply the general-n equation by ⟨ψ0i|
⇒ E0i ⟨ψ0i|ψni⟩︸ ︷︷ ︸

0

+⟨ψ0i|Ĥ ′|ψ(n−1)i⟩ =
n∑

n′=0

En′i

δnn′︷ ︸︸ ︷
⟨ψ0i|ψ(n−n′)i⟩

⇒ Eni = ⟨ψ0i|Ĥ ′|ψ(n−1)i⟩
We see that the nthorder correction to energy are
determined from (n−1)thorder correction to the eigenvector.

General-order correction to eigenvector:
[
Ĥ0−E0i

](∑
k ̸=i

anik|ψ0k⟩
)

︸ ︷︷ ︸
|ψni⟩

+Ĥ ′
(∑

k ̸=i

a(n−1)ik|ψ0k⟩
)

︸ ︷︷ ︸
|ψ(n−1)i⟩

=
n∑

n′=1

En′i

(∑
k ̸=i

a(n−n′)ik|ψ0k⟩
)

︸ ︷︷ ︸
|ψ(n−n′)i⟩

Multiply the above general-n equation by ⟨ψ0j| for j ̸= i

⇒ [E0j − E0i] anij +
∑
k ̸=i

⟨ψ0j|Ĥ ′|ψ0k⟩a(n−1)ik =
n−1∑
n′=1

En′ia(n−n′)ij
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⇒ anij =
1

E0j − E0i

[ n−1∑
n′=1

En′ia(n−n′)ij −
∑
k ̸=i

⟨ψ0j|Ĥ ′|ψ0k⟩a(n−1)ik

]

We see that the nthorder correction to the eigenvector is determined from the
corrections to energy & eigenvector of all lower orders 1, 2, . . . , (n−1)

If an′ii = 0 ∀n′ ≤ (n−1), the multiplication by ⟨ψni| yields just identity 0 = 0
⇒ anii undetermined ⇒ consistent with the above setting anii = 0

We note that the above-derived corrections contain denominators with differ-
ences of the unperturbed energies. These imply that if levels of the unperturbed
system come close together, the size of corrections quickly increases. In other
words, a generic perturbation gets more efficient in dense parts of the spectrum
than in sparse ones.

▶ Degenerate case

What about if the level E0i becomes exactly degenerate? Then the derivation
presented above fails and must be redone from the scratch.

The di-dimensional degeneracy subspace H0i=Span {|ψ0i;1⟩, |ψ0i;2⟩, ..., |ψ0i;di⟩}
has a randomly selected basis of vectors satisfying ⟨ψ0i;k|ψ0i;l⟩=δkl.

The n = 0 equation does not determine a unique vector |ψ0i⟩ ∈ H0i which
would fix the 0thorder solution as the starting point for the whole procedure.

We satisfy the n=0 equation using |ψ0i⟩ =
di∑
k=1

αk|ψ0i;k⟩ with
{

αk≡ unknown
coefficients

}
and

apply the n=1 equation:

Ĥ0|ψ1i⟩+
di∑
k=1

αkĤ
′|ψ0i;k⟩ = E0i|ψ1i⟩+ E1i

di∑
k=1

αk|ψ0i;k⟩
Multiply by ⟨ψ0i;l|:

E0i⟨ψ0i;l|ψ1i⟩+
di∑
k=1

αk⟨ψ0i;l|Ĥ ′|ψ0i;k⟩ = E0i⟨ψ0i;l|ψ1i⟩+ E1i

di∑
k=1

αk

δkl︷ ︸︸ ︷
⟨ψ0i;l|ψ0i;k⟩ ⇒

di∑
k=1

⟨ψ0i;l|Ĥ ′|ψ0i;k⟩︸ ︷︷ ︸
H ′

lk

αk=E1iαl ⇔

(
H ′

11 H ′
12 ...

H ′
21 H ′

22 ...
... ...

)( α1

α2

...

)
=E1i

( α1

α2

...

)

This represents the diagonalization of the perturbation matrix in the
degeneracy subspace. We stress that the degeneracy subspace is not in gen-
eral invariant under Ĥ ′ (since [Ĥ0, Ĥ

′] ̸= 0), but the above formula implicitly
projects the action of Ĥ ′ to the degeneracy subspace prior the diagonalization.

0thorder eigenstates & 1storder energies:

We have di energy solutions of polynomial eq. Det

(
H ′

11−E1i H ′
12 ...

H ′
21 H ′

22−E1i ...
... ...

)
=0

E1i = E1i;k k = 1, 2, . . . di
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⇒ The degeneracy is lifted in the 1storder correction.

Determination of the corresponding eigenvectors:
(

H ′
11 H ′

12 ...
H ′

21 H ′
22 ...

... ...

)( α1;k
α2;k

...

)
= E1i;k

( α1;k
α2;k

...

) This equation yields the eigenvector
associated with the correction E1i;k

⇒ |ψ0i⟩ → |ψ̃0i;k⟩

⇒ The perturbation selects the proper basis of H0i in the 0thorder.

Eigenfunction in 0thorder: Energy up to 1storder:

|ψ̃0i;k⟩ =
di∑
l=1

αl;k|ψ0i;l⟩ ⇔ E
(1)
i;k (λ) = E0i + λE1i;k k = 1, 2, . . . di

Special case d = 2:(
H ′

11 H ′
12

H ′
21 H ′

22

)(
α1

α2

)
= E1i

(
α1

α2

)
⇒ Det

(
H ′

11−E1i H ′
12

H ′
21 H ′

22−E1i

)
= 0

⇒ 2 solutions: E1i± = H ′
11+H ′

22

2 ±

D︷ ︸︸ ︷√(
H ′

11−H ′
22

2

)2

+H ′
12H

′
21(

H ′
11 H ′

12

H ′
21 H ′

22

)(
α1±

α2±

)
= E1i±

(
α1±

α2±

)

Lowest-order eigenfunctions & energies:

{
|ψ̃0i±⟩ = α1±|ψ0i;1⟩+ α2±|ψ0i;2⟩
E

(1)
i± (λ) = E0i + λE1i±

Higher-order corrections:

Diagonalize the perturbation Ĥ ′ in the degeneracy subspace of every level

⇒ orthonormal basis
{{

|ψ̃0i;k⟩
}di
k=1

}
i

⇒ ⟨ψ̃0i;l|Ĥ ′|ψ̃0i;k⟩=0 for l ̸=k
⇒ the procedure used in non-degenerate case can be reiterated without prob-
lems with zero energy denominators. So we obtain:

Ei;k(λ) = E0i + λ⟨ψ̃0i;k|Ĥ ′|ψ̃0i;k⟩+ λ2
∑
j( ̸=i)

dj∑
l=1

|⟨ψ̃0j;l|Ĥ ′|ψ̃0i;k⟩|2
E0i−E0j

+O(λ3)

|ψi;k(λ)⟩ = |ψ̃0i;k⟩+ λ
∑
j( ̸=i)

dj∑
l=1

⟨ψ̃0j;l|Ĥ ′|ψ̃0i;k⟩
E0i−E0j

|ψ̃0j;l⟩+O(λ2)

◀ Historical remark
1860’s: Ch.-E.Delaunay performs a perturbation analysis of three-body problem
1894: Lord Rayleigh studies harmonic vibrations in presence of small inhomogenities
1926: E. Schrödinger introduces the stationary perturbation theory to QM
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■ Application in atomic physics

The primary domain of application of the perturbation theory in the old-day
quantum theory was atomic physics. Already the plain hydrogen Hamiltonian
needs to be corrected for some subtle internal effects beyond the Coulomb
attraction, as well as for effects caused by external electric or magnetic fields.

▶ Alternative eigensolutions of the hydrogen atom

Plain hydrogen Hamiltonian: Ĥ0 = − ℏ2
2M∆− e2

4πϵ0
1
r spectrum En=−

α2Mc2︷ ︸︸ ︷
e2

4πϵ0
1
aB

1
2n2

(n=1,2,3... )

Remind (see Sec. 2b) the fine-structure constant α= e2

4πϵ0λ̄C

1
Mc2 =

e2

4πϵ0ℏc
.
= 1

137

and the Bohr radius aB=
λ̄C

α = 4πϵ0ℏ2
Me2

.
= 0.53 · 10−10m (with λ̄C ≡ ℏ

Mc).

The eigenvectors are usually expressed as |ψnlmlms
⟩ in the basis of observables

Ĥ, L̂2, L̂z, Ŝz, but we can also express them as |ψnljmj
⟩ in the basis of observables

Ĥ, L̂2, Ĵ2, Ĵz, using the total (orbital+spin) angular momentum
ˆ⃗
J :

[L̂i, Ĥ0]=0=[Ŝi, Ĥ0] ⇒ [L̂i+Ŝi︸ ︷︷ ︸
Ĵi

, Ĥ0]=0
i=1,2,3

Uncoupled eigenstates:

|ψnlmlms
⟩ ≡

ψnlml
(r⃗)︷ ︸︸ ︷

Rnl(r)Ylml
(ϑ, φ)

|↑⟩ or |↓⟩︷ ︸︸ ︷
|12 ,ms⟩

Nomenclature: nlms
≡ 1s↑↓︸︷︷︸

E1

, 2s↑↓, 2p↑↓︸ ︷︷ ︸
E2

, 3s↑↓, 3p↑↓, 3d↑↓︸ ︷︷ ︸
E3

, 4s↑↓, 4p↑↓, 4d↑↓, 4f↑↓︸ ︷︷ ︸
E4

. . .

Coupled eigenstates:

|Ψnljmj
⟩ = C

jmj

l(mj− 1
2 )

1
2 (+

1
2 )︸ ︷︷ ︸

±
√

l±mj+
1
2

2l+1

ψnl(mj− 1
2 )
(r⃗)︸ ︷︷ ︸

RnlYl(mj−
1
2 )

|↑⟩︸︷︷︸
( 10 )

+C
jmj

l(mj+
1
2 )

1
2 (−

1
2 )︸ ︷︷ ︸√

l∓mj+
1
2

2l+1

ψnl(mj+
1
2 )
(r⃗)︸ ︷︷ ︸

RnlYl(mj+
1
2 )

|↓⟩︸︷︷︸
( 01 )

j = l ± 1
2

= Rnl(r)
1√
2l+1

(
±
√

l±mj+
1
2 Y

l(mj−
1
2 )
(ϑ,φ)

√
l∓mj+

1
2 Y

l(mj+
1
2 )
(ϑ,φ)

)

︸ ︷︷ ︸
Yljmj

(ϑ,φ)

spinor spherical functions

Nomenclature: nlj ≡ 1s 1
2︸︷︷︸

E1

, 2s 1
2
, 2p 1

2
, 2p 3

2︸ ︷︷ ︸
E2

, 3s 1
2
, 3p 1

2
, 3p 3

2
, 3d 3

2
, 3d 5

2︸ ︷︷ ︸
E3

, . . .

▶ Stark effect

Hydrogen atom in a homogeneous external electric field of intensity E⃗λ ≡ λE1n⃗z

(we introduce a dimensionless factor λ to scale the intensity):

Ĥ = Ĥ0 + λĤ ′ with Ĥ ′ = eE1z ≡ T̂ 1
0 component of a spherical vector

Unperturbed hydrogen solutions expressed in the uncoupled basis |ψnlmlms
⟩

Selection rules for matrix elements:

(a) ⟨ψnlmlms
|Ĥ ′|ψnlmlms

⟩=0 ⇐ parity conservation (
∫ even︷ ︸︸ ︷
|ψnlml

(r⃗)|2 z dr⃗ = 0)

(b) ⟨ψn′l′m′
lm

′
s
|Ĥ ′|ψnlmlms

⟩=0 for m′
l ̸=ml or m′

s ̸=ms or |l−l′|>1 ⇐
{

Wigner−Eckart
theorem
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We disregard spin quantum number ms as the interaction does not affect it

Ground-state: the 1storder term vanishes (reasoning: any state with a good
parity shows no electric dipole moment ⇒ no linear effect of an electric field)

Correction up to 2ndorder: E
(2)
1 = E1 + (eEλ)2

∞∑
n=2

n−1∑
l=0

+l∑
ml=−l

|⟨ψnlml
|z|ψ100⟩|2

E1−En
< E1

Excited-states: the 1storder term contributes
(reasoning: “accidental” degeneracy
in the H atom involves states with
different parity ⇒ a superposition
of such states, as obtained in the
degenerate-case perturb. expression,
can yield electric dipole moment ̸=0)

Example: n = 2 shell with l = 0, 1
We proceed according to the degenerate-case perturbation theory. According
to the above selection rules, the only nonzero matrix element within the degen-
eracy subspace is the following one (its calculation is not presented here):

⟨ψ210|Ĥ ′|ψ200⟩ = ⟨ψ200|Ĥ ′|ψ210⟩ = −3aBeE1

−3aBeE1
(

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

)( α200
α21(−1)
α210

α21(+1)

)
= ∆E

( α200
α21(−1)
α210

α21(+1)

)
⇒

|ψ0;k⟩ E
(1)
2

−−−−−−−−− −−−−−−−−−
1√
2
(|ψ200⟩+|ψ210⟩) ⇒ E2−3aBeEλ

1√
2
(|ψ200⟩−|ψ210⟩) ⇒ E2+3aBeEλ
|ψ21(−1)⟩ ⇒ E2

|ψ21(+1)⟩ ⇒ E2The states with eigenvalues ∆E ̸=0 show the
linear Stark effect, those with ∆E=0 show the quadratic Stark effect.

▶ Zeeman effect

Hydrogen atom in a homogeneous externalmagnetic field of induction B⃗λ ≡ λB1n⃗z

(where we again use a dimensionless field scaling factor λ):

Ĥ = Ĥ0 + λĤ ′ with Ĥ ′ = − e
2MB1(L̂z + 2Ŝz) = − e

2MB1(Ĵz + Ŝz)

Here we used Ĥ ′ = −(ˆ⃗µl+ˆ⃗µs) · B⃗ with the orbital and spin magnetic moments
expressed via gyromagnetic ratios gl=1 and gs=2 (Sec. 2b).

The perturbation is diagonalized in the uncoupled basis:
⟨ψnlmlms

|Ĥ ′|ψnlmlms
⟩ = − eℏ

2M︸︷︷︸
µB

B1(ml + 2ms) This is the exact solution,

Bohr magneton no perturbation theory is needed.

The 1storder perturbation formula can be used to express the energy corrections
in the coupled basis: ⟨Ψnljmj

|Ĥ ′|Ψnljmj
⟩ = (using L̂z+2Ŝz=Ĵz+Ŝz )

−µBB1

[
mj+

1
2(C

jmj

l(mj− 1
2 )

1
2 (+

1
2 )
)2−1

2(C
jmj

l(mj+
1
2 )

1
2 (−

1
2 )
)2
]
=

{
−µBB1

2l+2
2l+1mj for j= l+ 1

2

−µBB1
2l

2l+1mj for j= l− 1
2
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▶ Spin-orbital coupling

Correction caused by an interaction of the spin magnetic moment of electron
with the magnetic field generated by its orbital motion. In the electron’s rest
frame, this can be seen as an interaction of its magnetic moment with the
magnetic field produced by a “moving” nucleus (then a relativistic effect, so-
called Thomas precession, must be taken into account). The crucial operator

term that appears in the perturbation Hamiltonian is (
ˆ⃗
L · ˆ⃗S ), which is why this

correction is called the spin-orbital interaction. To evaluate the action of this

operator, we use the identity
ˆ⃗
J 2 =

( ˆ⃗
L+

ˆ⃗
S
)2

=
ˆ⃗
L2+

ˆ⃗
S2+2

ˆ⃗
L · ˆ⃗S, which leads to an

expression diagonal in the coupled basis |ψnljmj
⟩. The resulting perturbation

term for the hydrogen Hamiltonian reads as follows:

Ĥ ′ = e2

4πϵ0
1

2M2c2
1
r3 (

ˆ⃗
L · ˆ⃗S ) = 1

4α
4Mc2

(
aB
r

)3 1
ℏ2

(
ˆ⃗
J 2 − ˆ⃗

L 2 − ˆ⃗
S 2

)

1storder effect in the coupled basis:

⟨ψnljmj
|Ĥ ′|ψnljmj

⟩ = 1
4α

4Mc2
[
j(j+1)− l(l+1)− 3

4

]
a3B

∞∫
0

1
r3 |Rnl(r)|2r2dr≡⟨( r

aB
)−3⟩nl

︷ ︸︸ ︷
⟨ψnljmj

|
(
aB
r

)3|ψnljmj
⟩

=

{
+1

4α
4Mc2⟨( r

aB
)−3⟩nl l for j = l+ 1

2

−1
4α

4Mc2⟨( r
aB
)−3⟩nl (l+1) for j = l− 1

2
Assuming ⟨( r

aB
)k⟩nl∼1, we see

that the relative corrections with
respect to the unperturbed energies are of the order ∆Enl

En
∼α2∼10−4.

▶ Relativistic correction

The correction due to the spin-orbital coupling is of the same order of magnitude
as another correction of a completely different nature, namely the correction
caused by relativistic deviations from the familiar kinetic energy formula p2

2M .

Rel. kinetic energy: T =
√

(Mc2)2 + (pc)2︸ ︷︷ ︸
Mc2

√
1+( p

Mc )
2

−Mc2 ≈ p2

2M − 1
2Mc2

(
p2

2M

)2

+ . . .
√
1+δ=1+ δ

2−
δ2

8 +...

The effect of this correction can be treated within the non-relativistic QM,

adding to Ĥ0 a perturbation term: Ĥ ′ = − 1
2Mc2

(
p̂2

2M

)2

= − 1
2Mc2 (Ĥ0 − V̂ )2

1storder effect in the coupled basis:

⟨ψnljmj
|Ĥ ′|ψnljmj

⟩ = − 1
2Mc2

[
E2

n − 2En

α2Mc2⟨( r
aB

)−1⟩nl︷ ︸︸ ︷
⟨ψnljmj

|V̂ |ψnljmj
⟩+

(α2Mc2)2⟨( r
aB

)−2⟩nl︷ ︸︸ ︷
⟨ψnljmj

|V̂ 2|ψnljmj
⟩
]

Using an estimate ⟨( r
aB
)k⟩nl∼1, we obtain relative corrections ∆Enl

En
∼α2∼10−4.

▶ Fine structure of hydrogen levels

After the precise evaluation of all radial integrals, the spin-orbital coupling and
the relativistic correction together yield a formula describing the fine structure
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of hydrogen levels: ∆EFS ≈ −α4Mc2 1
4n4

(
2n
j+ 1

2

− 3
2

)
We see that this formula

partly lifts the accidental degeneracy of unperturbed hydrogen levels in quan-
tum number l (see Sec. 4b). Note that the Zeeman splitting for magnetic field
strengths B ∈ (1, 10)T would be of the same order of magnitude.

▶ Helium atom

We know (Sec. 2b) that the non-relativistic description of multi-electron atoms
has to include the mutual electric repulsion of electrons (besides single-particle
terms of individual electrons expressing their kinetic energy and potential en-
ergy in the attractive Coulomb field of the nucleus). This in general requires to
use many-body techniques such as the mean-field method. Here we present a
simple treatment of the 2-electron Hamiltonian of helium in terms of the per-
turbation theory. The Hamiltonian Ĥ=Ĥ0+Ĥ ′ (we set λ=1) is defined by:

Ĥ0 = − ℏ2
2M (∆1 +∆2)− 2e2

4πϵ0

(
1

|x⃗1| +
1

|x⃗2|

)
Ĥ ′ = e2

4πϵ0
1

|x⃗1−x⃗2|
The calculation can be performed in the coupled spin basis of both electrons:

|S,MS⟩ =
{

|0,0⟩ singlet (antisymmetric under exchange)
|1,MS⟩ triplet (symmetric under exchange)

As the total 2-electron wavefunction must be antisymmetric under the exchange
(fermions), the orbital part associated with spin singlet/triplet is
symmetric/antisymmetric:

Ψ0±(x⃗1, x⃗2) =
1√
2

[ ψ1(x⃗1)︷ ︸︸ ︷
ψn1l1m1

(x⃗1)

ψ2(x⃗2)︷ ︸︸ ︷
ψn2l2m2

(x⃗2)±
ψ2(x⃗1)︷ ︸︸ ︷

ψn2l2m2
(x⃗1)

ψ1(x⃗2)︷ ︸︸ ︷
ψn1l1m1

(x⃗2)
]

Define EA
12 =

{
e2

4πϵ0

∫
ψ∗
1(x⃗1)ψ

∗
2(x⃗2)

1
|x⃗1−x⃗2|ψ1(x⃗1)ψ2(x⃗2) dx⃗1dx⃗2

e2

4πϵ0

∫
ψ∗
2(x⃗1)ψ

∗
1(x⃗2)

1
|x⃗1−x⃗2|ψ2(x⃗1)ψ1(x⃗2) dx⃗1dx⃗2

and EB
12 =

{
e2

4πϵ0

∫
ψ∗
1(x⃗1)ψ

∗
2(x⃗2)

1
|x⃗1−x⃗2|ψ2(x⃗1)ψ1(x⃗2) dx⃗1dx⃗2

e2

4πϵ0

∫
ψ∗
2(x⃗1)ψ

∗
1(x⃗2)

1
|x⃗1−x⃗2|ψ1(x⃗1)ψ2(x⃗2) dx⃗1dx⃗2

1storder energy correction:
Singlet & triplet spin states are degenerate, but Ĥ ′ is
diagonal in these states ⇒ the nondegenerate case
expression is applicable:

⟨Ψ0±|Ĥ ′|Ψ0±⟩ = 1
2(E

A
12 + EA

12 ± EB
12 ± EB

12) = EA
12 ± EB

12

For spin

{
singlet
triplet

}
states the energies up to 1storder are: E

(1)
i =E0i+

{
EA

12+EB
12

EA
12−EB

12

We stress that the correction is in fact not small (potential energy of the
electron-electron interaction is comparable to that of the proton-electron in-
teraction), so higher-order expressions would be needed for a qualitative de-
scription. Nevertheless, the above calculation shows the most essential effect.
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The splitting of singlet & triplet states is a direct witness of the indistinguisha-
bility principle in action! The corresponding subsets of the helium spectrum
(connected only by weak electromagnetic transitions) form two seemingly dis-
tinct helium species, called parahelium & orthohelium.

◀ Historical remark
1892: F. Paschen & C.Runge discover the splitting of He spectrum
1897: P. Zeeman discovers the splitting of atomic lines in magnetic field
1913: J. Stark & A. Lo Surdo discover the effect of electric field on atomic levels
1916: A. Sommerfeld introduces the fine-structure constant and calculates the rela-
tivistic splitting of hydrogen levels within the old QM
1925: so-called anomalous Zeeman effect contributes to the discovery of spin
1925-6: L. Thomas presents relativistic calculation of atomic spin-orbital interaction
1926: W.Heisenberg explains the split He spectrum via electron exchange symmetry

■ Application to level dynamics

So far it was assumed that the parameter λ, weighting the perturbation term
in the Hamiltonian, has a fixed (small) value. However, one may think of
Hamiltonians Ĥ(λ) for which λ ∈ R is a control parameter that can vary in a
large domain. The energy spectrum Ei(λ) and the set of eigenvectors |ψi(λ)⟩
change with running λ and one may use the perturbation theory to write down
a set of differential equations governing these changes (sometimes referred to
as “level dynamics”) in terms of local properties of the spectrum at given λ.
The most interesting situations are encountered if the variation of λ leads to a
qualitative change of the nature of the evolving eigenstates.

▶ Hamiltonian with a linear parametric dependence

We assume a linear dependence: Ĥ(λ) = Ĥ0 + λ Ĥ ′ λ ∈ (−∞,+∞)

Perturbative treatment at any λ: Ĥ(λ+δλ) = Ĥ0 + λ Ĥ ′︸ ︷︷ ︸
Ĥ(λ)

+(δλ) Ĥ ′

Level dynamics:

evolving energy levels Ei(λ) ←→ xi(t) “particle trajectories” in 1D

▶ Local “dynamical” equations obtained from the perturbation theory

d
dλEi(λ) = ⟨ψi(λ)|Ĥ ′|ψi(λ)⟩ ⇒ Ėi = H ′

ii velocity

d2

dλ2Ei(λ) = 2
∑
j( ̸=i)

|⟨ψj(λ)|Ĥ ′|ψi(λ)⟩|2
Ei(λ)−Ej(λ)

⇒ Ëi = 2
∑
j( ̸=i)

|H ′
ji|2

Ei−Ej
acceleration

The “force” on the right-hand side of the last equation consists of terms∝ 1
Ei−Ej

,

which are analogous to the Coulomb repulsion force |F⃗ | ∝ 1
|x⃗i−x⃗j | on particle i
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interacting with another charged particle j in a 2D world. However, mind that
in the present case, the numerator in the force expression cannot be factorized
to individual “charges”: |H ′

ji|2 ̸= qjqi.

d
dλ⟨ψj(λ)|Ĥ ′|ψi(λ)⟩ = ⟨ d

dλψj(λ)|Ĥ ′|ψi(λ)⟩+ ⟨ψj(λ)|Ĥ ′| d
dλψi(λ)⟩ =∑

k( ̸=j)

⟨ψj(λ)|Ĥ ′|ψk(λ)⟩
Ej(λ)−Ek(λ)

⟨ψk(λ)|Ĥ ′|ψi(λ)⟩+
∑
k( ̸=i)

⟨ψj(λ)|Ĥ ′|ψk(λ)⟩⟨ψk(λ)|Ĥ ′|ψi(λ)⟩
Ei(λ)−Ek(λ)

⇒ Ḣ ′
ji =

∑
k( ̸=j)

H ′
jkH

′
ki

Ej−Ek
+

∑
k( ̸=i)

H ′
jkH

′
ki

Ei−Ek
evolution of matrix elements H ′

ji

For given Ei(0) &H ′
ji(0) (∀ i, j) the above system of differential equations allows

one can calculate Ei(λ) & H ′
ji(λ) for any λ. There exist many “integrals of

motion” (in the sense λ ≡ t), in fact so many of them that the system is
integrable. For instance:

P = TrĤ ′ =
∑
i

H ′
ii =

∑
i

Ėi =const

W = 1
2Tr(Ĥ

′)2 = 1
2

∑
i,j

H ′
ijH

′
ji =

1
2

∑
i

Ė2
i +

1
2

∑
i̸=j

|H ′
ij|2 =const

▶ Global properties of spectrum
for finite dimension d

The “center of mass” of the spectrum
evolves linearly with λ:
Ē(λ) ≡ 1

n

∑
i

Ei(λ) =
1
nTrĤ(λ)

=
[
1
nTrĤ0

]
+ λ

[
1
nĤ

′
]

The variance (squared spread) of the
spectrum evolves quadratically with λ:

D(λ) ≡
√

1
n

∑
i

[Ei(λ)− Ē(λ)]2

=
√

1
n

∑
i

Ei(λ)2 − Ē2(λ) =

√[
1
nTrĤ

2
0− 1

n2Tr
2Ĥ0

]
+λ

[
2
nTr(Ĥ0Ĥ ′)− 2

n2TrĤ0TrĤ ′
]
+λ2

[
1
nTr(Ĥ

′)2− 1
n2Tr

2Ĥ ′
]

The spectrum is maximally compressed [reaches a minimal spread D(λ)] at a
certain value λ=λ0, while for λ→±∞ the spectrum freely expands: D(λ)∝λ.

▶ No-crossing rule

The equation for Ëi, which contains the repulsive 2D Coulomb “force”, prevents
the levels of the spectrum to cross each other. Consider a crossing of two levels
at λ=λ×. Near the crossing, the dynamics of the two levels is well approximated
by the corresponding 2-level Hamiltonian, which in general yields:
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ĥ(λ)=

(
e1(λ) v(λ)
v(λ)∗ e2(λ)

)
⇒ energies E 1

2
(λ)= e1(λ)+e2(λ)

2 ∓
√[e1(λ)−e2(λ)

2

]2
+|v(λ)|2

To get E1(λ×)=E2(λ×), one needs to simultaneously satisfy 2 real equations:
e1(λ×)=e2(λ×) and |v(λ×)|=0. This is not generically achievable with just
a single real variable parameter λ, except of some accidental rare cases.

Instead of real crossings there exist numerous
so-called avoided crossings of energy levels
(close encounters with subsequent split-ups).
At such places, the corresponding eigenfunctions
change very rapidly, as can be seen from the
overlap formula (λ → λ+δλ survival probability):

pi(λ, δλ) ≡ |⟨ψi(λ+δλ)|ψi(λ)⟩|2 = 1− δℓ2i (λ) ≈ 1− (δλ)2
∑
j( ̸=i)

|⟨ψj(λ)|Ĥ ′|ψi(λ)⟩|2
[Ei(λ)−Ej(λ)]2

Here, δℓ2i (λ)= gλλi (λ) (δλ)2 can be interpreted as an infinitesimal squared dis-
tance between parameter points λ and λ+δλ with respect to the variation of
the ithlevel eigenfunction. Then gλλi is identified with the ithlevel quantum
metric tensor (generalization to matrices gλµi in higher-dimensional parame-
ter spaces is obvious). We see that near the avoided crossing gλλi (λ) is large, so

the distance ℓi(λ0, λ)=
∫ λ

λ0

√
gλλi (λ′)dλ′ from λ0 to λ grows quickly when λ goes

through the avoided crossing.
Proof of the overlap formula: |⟨ψi(λ+δλ)|ψi(λ)⟩|2 =

⟨ψi(λ+δλ)

Î−
∑

j(̸=i)

|ψj(λ)⟩⟨ψj(λ)|

︷ ︸︸ ︷
|ψi(λ)⟩⟨ψi(λ)|ψi(λ+δλ)⟩ = 1−

∑
j( ̸=i)

(δλ)2
|⟨ψj(λ)|Ĥ

′|ψi(λ)⟩|
2

[Ei(λ)−Ej(λ)]
2︷ ︸︸ ︷

|⟨ψj(λ)|ψi(λ+δλ)⟩|2

On the other hand, real crossings are abundant if matrix elementsH ′
ji between

some subsets of levels vanish identically. This typically happens because of
some symmetries of the system. For example, the rotational symmetry yields
H ′

ji=0 for levels i, j with total angular momentum quantum numbers ji ̸=jj:

0 = ⟨ψj(λ)| [Ĥ ′, Ĵ2]︸ ︷︷ ︸
0

|ψi(λ)⟩ = ℏ2 [ji(ji+1)−jj(jj+1)]︸ ︷︷ ︸
̸=0

⟨ψj(λ)|Ĥ ′|ψi(λ)⟩︸ ︷︷ ︸
⇒ =0

We stress that the crossing of levels with different symmetry quantum numbers
has no effect on the corresponding eigenvectors.

For a given pair of levels i and i+1, the avoided crossings (minimal spacing
∆=Ei+1−Ei) appear at individual points along a single parameter axis λ, and
generally on some (n−1)-dimensional subsets of n-dimensional parameter spaces
λ ≡ (λ1, ..., λn), in particular along some curves in n=2 spaces. In contrast,
the real degeneracies of levels with the same symmetry quantum numbers form
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(n−2)-dimensional subsets in n-dimensional parameter spaces, so in particular
they appear as isolated points (so-called diabolic points) in n=2 spaces.

▶ Quantum phase transitions

In some systems, an increasing size parameterN (typically a number of particles
or other elementary constituents) induces lowering of matrix elements

H ′
ji(λ) ≡ ⟨ψj(λ)|Ĥ ′|ψi(λ)⟩ = [Ej(λ)−Ei(λ)]⟨ψ̇j(λ)|ψi(λ)⟩

This is due to the asymptotic behavior ⟨ψ̇j(λ)|ψi(λ)⟩
N→∞−→ 0 resulting from

a dominantly power-law scaling of scalar products with N (this would be exact
for states factorized in individual constituents). As a consequence, the avoided
crossings become gapless in the limit N→∞.

Assume that E1(λc)−E0(λc)
N→∞−→ 0. The point λc of asymptotically unavoided

crossing of the ground & first-excited states is the critical point of the
(ground-state) quantum phase transition. From the degenerate perturbation
theory at λ=λc we obtain generic eigensolutions for small δλ=λ−λc:

E0(λ)≈E0(λc))+

{
δλE10+ for δλ<0
δλE10− for δλ>0

E1(λ)≈E0(λc))+

{
δλE10− for δλ<0
δλE10+ for δλ>0

where E10+>E10− are eigenvalues of Ĥ ′ in the degeneracy subspace. The levels
and the corresponding eigenvectors swap at λ = λc ⇒ the first derivative of
energy d

dλE0(λ) and the eigenvector |ψ0(λ)⟩ are discontinuous. This situation is
referred to as the discontinuous (first order) quantum phase transition. It is
commonly pictured via a Hamiltonian with two potential wells, one increasing
and one decreasing in energy: the critical point is where both wells become
degenerate. Such systems also typically show multiple crossings of excited
states, in which the structures of the corresponding wavefunctions swap.

Another type of ground-state criticality, a continuous quantum phase transi-
tion, arises when the matrix element H ′

10(λ) increases with λ→λc and the level
energies are affected so that E0(λ) does not develop a discontinuity but a softer
kind of nonanalyticity that occurs in some higher derivatives dk

dλkE0(λc). Also
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the eigenvector |ψ0(λ)⟩ changes continuously, with nonanalyticity affecting only
some derivatives. This is often pictured via a single-well Hamiltonian evolving
in such a way that the minimum becomes locally flat (quartic) at λ=λc and bi-
furcates into two quadratic minima (and one maximum in between). Again, the
accompanying crossings of excited states often come in some typical patterns.

◀ Historical remark
1929: J. von Neumann & E.Wigner formulate the no-crossing rule
1932: L. Landau & C. Zener calculate transition rate for a 2-level avoided crossing
1970’s-present: investigation of quantum phase transitions in specific systems
1980: J.P. Provost & G.Vallee introduce the quantum metric tensor
1980’s: P. Pechukas & T.Yukawa elaborate the Coulomb analogy for level dynamics

11. NONSTATIONARY APPROXIMATION METHODS

The goal of this section is to introduce some techniques for approximate solutions of
quantum dynamical problems. We start with the most commonly used method—
the nonstationary perturbation theory—and then briefly outline some computa-
tional approaches to externally driven systems, which attract growing attention due
to their potential role in quantum simulations and related applications.

■ Nostationary perturbation method

The basic approximation method for nonstationary problems is conceptually
close to the stationary perturbation method. It assumes the total Hamiltonian
being split to the principal stationary part Ĥ0 and a small perturbation λĤ ′(t),
which may (but does not have to) be time-dependent. The task is to estimate
the probabilities per time unit for transitions between various eigenstates of the
main Hamiltonian induced by the perturbation. Here we focus mainly on the
general formulation of the method. We will see that its application to realistic
problems, particularly to decay and scattering processes, may be technically
involved because of a rather difficult structure of the corresponding Hilbert
spaces (associated with typically composite participating objects) and intricate
mixtures of discrete & continuous energy spectra.

▶ General setup

Total Hamiltonian assumed in the form Ĥ(t) = Ĥ0 + λĤ ′(t) where:

Ĥ0 ≡ free stationary Hamiltonian

Ĥ ′(t) ≡ generally time dependent perturbation
λ ≡ dimensionless parameter




matrix elements of Ĥ0

and Ĥ ′(t) are of about
the same size, λ ≪ 1

The task is to evaluate probabilities of transitions between eigenstates of Ĥ0 as
a function of time in the form of a power-law series in λ
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▶ Typology of applications

Example I: stimulated transition A ↔ A∗

The Hamiltonian Ĥ0 describes a bound quantum system with a discrete energy
spectrum {E0i}i, while the perturbation λĤ ′(t) represents a non-stationary
external field inducing transitions between the unperturbed eigenstates {|E0i⟩}i.
These states may be taken as a basis of the Hilbert space H of the problem.

Example II: spontaneous decay A∗ → A+ γ

The Hamiltonian Ĥ0 = Ĥa+Ĥγ describes a bound system (e.g., an atom or
atomic nucleus) with discrete energy spectrum {E0i}i and the free electromag-
netic field (photons) with continuous energy spectrum Eγ ∈ [0,+∞). The time-
independent perturbation λĤ ′ represents the interaction of the system with the
electromagnetic field. The initial state is |ψ0i⟩ ≡ |E0i⟩a ⊗ |0⟩γ (an excited state
of the system and the electromagnetic vacuum). The final states are of the
form |ψ0j⟩ ≡ |E0j⟩a ⊗ |⃗kν⟩γ (the system’s ground or lower excited state, j < i,

and a single-photon state with a given wave vector k⃗ and polarization ν). The
Hilbert space H = Ha⊗Hγ can decomposed into two relevant parts: the space

of initial states Hini ≡ Ha ⊗H(0)
γ and the space of final states Hfin ≡ Ha⊗H(1)

γ ,

where H(Nγ)
γ is the photon Fock space segment with Nγ photons.

Example III: scattering a+ A → B + b

The free Hamiltonian Ĥ0 with continuous energy spectrum represents non-
interacting particles a,A,B, b that will participate in the process and the sta-
tionary perturbation term λĤ ′ describes all their interactions. We stress that
at least some of the participating particles are in general composite and write
states in the corresponding Hilbert spaces as |p⃗⟩|ϕ⟩a,b or |p⃗⟩|Φ⟩A,B, where p⃗
stands for an overall momentum and ϕ or Φ for a relevant internal state of the
given particle. The initial state (in the center-of-mass system, where the sum
of linear momenta is equal to zero) reads as |ψ0i⟩ ≡ |p⃗i⟩|ϕi⟩a ⊗ |−p⃗i⟩|Φi⟩A, the
final state as |ψ0j⟩ ≡ |p⃗j⟩|Φj⟩B ⊗ |−p⃗j⟩|ϕj⟩b, where the indices i and j are used
to label the initial and final states. The relevant initial and final Hilbert spaces
are Hini ≡ Ha ⊗HA and Hfin ≡ HB ⊗Hb.

▶ Dyson series for transition amplitudes

It is favorable to move to theDirac interaction picture of the time evolution,
identifying the free Hamiltonian with Ĥ0. This immediately yields the desired
power-law series in the perturbation.

Operators: ÂD(t) = Û †
0(t) ÂS

e−i
Ĥ0t
ℏ︷ ︸︸ ︷

Û0(t) ⇒
{

Ĥ0D = Ĥ0S ≡ Ĥ0

Ĥ ′
D(t) = Û †

0(t)Ĥ
′(t)Û0(t)

Vectors: |ψ(t)⟩D = Û †
0(t)|ψ(t)⟩S ⇒ iℏ d

dt |ψ(t)⟩D = Ĥ ′
D(t)|ψ(t)⟩D
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Dyson series for evolution operator:

ÛD(t, t0)= Î +
(
− i

ℏλ
)1 t∫

t0

Ĥ ′
D(t1) dt1 +

(
− i

ℏλ
)2 t∫

t0

t2∫
t0

Ĥ ′
D(t2)Ĥ

′
D(t1) dt1dt2 + . . .

+
(
− i

ℏλ
)n t∫

t0

tn∫
t0

· · ·
t2∫
t0

Ĥ ′
D(tn)Ĥ

′
D(tn−1) · · · Ĥ ′

D(t1) dt1 . . . dtn−1dtn + . . .

This series can be rewritten to yield
amplitudes of transitions between
individual eigenstates of Ĥ0 within the
time interval [t0, t]:

wavefunction |ψ0i⟩−→|ψ0j⟩
unperturbed energy E0i −→ E0j

transition frequency ωji =
E0j−E0i

ℏ

aji(t, t0) ≡ ⟨ψ0j|ÛD(t, t0)|ψ0i⟩ = δij +
(
− i

ℏλ
)1 t∫

t0

⟨ψ0j|Ĥ ′
D(t1)|ψ0i⟩︸ ︷︷ ︸

H ′
ji(t1)e

iωjit1

dt1+

+
(
− i

ℏλ
)2 t∫

t0

t2∫
t0

∑
k

H ′
ji(t1)e

iωjkt2︷ ︸︸ ︷
⟨ψ0j|Ĥ ′

D(t2)|ψ0k⟩

H ′
ji(t1)e

iωkit1︷ ︸︸ ︷
⟨ψ0k|Ĥ ′

D(t1)|ψ0i⟩ dt1dt2 + . . .

+
(
− i

ℏλ
)n t∫

t0

tn∫
t0

· · ·
t2∫
t0

∑
kn−1

∑
kn−2

· · ·
∑
k1

H ′
jkn−1

(tn)e
iωjkn−1

tn

︷ ︸︸ ︷
⟨ψ0j|Ĥ ′

D(tn)|ψ0kn−1
⟩

H ′
kn−1kn−2

(tn−1)e
iωkn−1kn−2

tn−1

︷ ︸︸ ︷
⟨ψ0kn−1

|Ĥ ′
D(tn−1)|ψ0kn−2

⟩ · · ·
· · · ⟨ψ0k1|Ĥ ′

D(t1)|ψ0i⟩︸ ︷︷ ︸
H ′

k1i
(t1)e

iωk1i
t1

dt1 · · · dtn−1dtn + . . . . . .

This leads to the following perturbation series:

aji(t, t0) =
∞∑
n=0

anji(t, t0) = δij [n=0]

[n=1] +
(
− i

ℏλ
)1 t∫

t0

H ′
ji(t1)e

iωjit1dt1

[n=2] +
(
− i

ℏλ
)2 t∫

t0

t2∫
t0

∑
k

H ′
jk(t2)e

iωjkt2H ′
ki(t1)e

iωkit1dt1dt2 + . . .

[gen. n] +
(
− i

ℏλ
)n t∫

t0

tn∫
t0

· · ·
t2∫
t0

∑
kn−1

∑
kn−2

· · ·
∑
k1

H ′
jkn−1

(tn)e
iωjkn−1

tn

· · ·H ′
kn−1kn−2

(tn−1)e
iωkn−1kn−2

tn−1 · · ·H ′
k1i
(t1)e

iωk1i
t1dt1 · ·dtn−1dtn

+ . . . . . .

▶ S-matrix

The dependence of aji(t, t0) on times t0 & t can be removed by considering an
asymptotic time limit with respect to a certain short time scale (see below).
The resulting so-called scattering matrix (S-matrix) includes asymptotic-time
amplitudes of the i → j
transitions:

aji(t, t0) −→ Sji ≡

{
lim
t→∞

aji(+t, 0) (with t0 = 0) (a)

lim
t→∞

aji(+t,−t) (with t0 = −∞) (b)
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Case (a) applied if the interaction is “homogeneous” in time (decay processes)
Case (b) applied if interaction Ĥ ′

D(t) can be “centered” at t = 0 (scattering)

▶ Limiting time scales

The nonstationary perturbation method describes quantum processes on the
time scale somewhere in between two limiting scales: T< ≪ ∆t ≪ T>.

Upper time scale: Fast convergence of the above series is expected if the time
difference (t−t0) is much smaller than a characteristic time scale of the exact
state evolution. The scale T> is therefore given
by the total energy width of the evolving state
in the eigenbasis of the full Hamiltonian.

t−t0 ≪ T> ∼ ℏ√
⟨⟨E2⟩⟩ψ(t)

Example: for a decay process, the upper scale T> is associated with the mean
lifetime τ= ℏ

Γ (with Γ≡width of the Breit-Wigner peak) of the decaying state.

Note: for a time-dependent perturbation, T> should be evaluated from a maxi-
mal energy width acquired during the evolution: T>∼Min

{
ℏ/
√
⟨⟨E2⟩⟩ψ(t′)

}
t′∈[t0,t]

Lower time scale : The “asymptotic-time” S-matrix is defined for time differ-
ences (t−t0) much longer than a short time scale associated with the system’s
internal or single-particle dynamics. For systems with discrete spectra, this
scale is determined by the average
density of unperturbed energy
levels around the initial state.

ℏ ϱ0(E0i) ≈
2ℏ

E0(i+1)−E0(i−1)
∼ T< ≪ t−t0

Examples: For decay processes of composite objects, T< represents a charac-
teristic period of motions of internal particles. For scattering of particles with
a short-range interaction, T< is given by the time spent
by the colliding particles within the interaction distance.

Consequence: For a discrete spectrum, the time window
(T<, T>) for application of the nonstationary perturbation
method exists iff the total energy width of the initial state

is much less than the spacing of unperturbed levels: Γ ≪ ∆E

▶ Step perturbation

Consider first the case in which the perturbation is switched on abruptly, in
a step-like fashion, at time t= 0. This is, in fact, the same as if we describe
the t > 0 effects of a stationary perturbation Ĥ ′ on a system, which was
prepared at t=0 in the initial eigenstate |ψ0i⟩ of Ĥ0.

Perturbation Hamiltonian

[
Ĥ ′(t)=Ĥ ′, t0=0

]
or

[
Ĥ ′(t)=

{
0 t<0,

Ĥ ′ t≥0,
t0≤0

]
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Transition amplitude & probability up to 1storder contribution

We consider transitions |ψ0i⟩ → |ψ0j⟩ for j ̸= i

a
(1)
ji (t) = a1ji(t) = − i

ℏλH
′
ji

t∫
0

eiωjit1dt1 = λH ′
ji

1
ℏ

1−eiωjit

ωji

p
(1)
ji (t) = |a(1)ji (t)|2 = 1

ℏ2 |λH
′
ji|2

(1−cosωjit)
2+sin2 ωjit

ω2
ji︸ ︷︷ ︸

4 sin2(
ωji
2 t)

ω2
ji

= 1
ℏ2 |λH

′
ji|2

sin2
(ωji

2 t
)

(ωji

2 t
)2 t2

The right way of treating this expression:

(a) Consider long time t≫ ℏ
Γ (see above)⇒ t → ∞ ⇒ sin2(

ωji
2 t)

(
ωji
2 t)

2 t ≈ 2π δ(ωji)

sin2(αx)
αx2 =

{
α for x=0,
0 for x=π

α ,
2π
α ,··· ,

+∞∫
−∞

sin2(αx)
αx2 dx = π ⇒ lim

α→∞
sin2(αx)

αx2 = πδ(x)

⇒ p
(1)
ji (t) ≈ 2π

ℏ |λH ′
ji|2 δ(E0j−E0i) t

(b) Instead of transition probability calculate the transition rate

Rji(t) ≡ d
dtpji(t) ⇒ R(1)

ji = 2π
ℏ |λH

′
ji|2δ(E0j−E0i)

(c) Sum over all final states at energy Ef=E0i making use of averaging with
respect to an ϵ-smoothened density of final states ϱf(Ef)ϵ ≡

∑
j

δϵ(Ef−E0j)︸ ︷︷ ︸
e.g.
= 1

π
ϵ

ϵ2+(Ef−E0j)
2

Remark: The density of final states at energy E0i differs
in general from the density of initial states at the same
energy. This is so because initial and final states are often treated as vectors
in different Hilbert spaces. Consider the the decay A∗ → A + γ of an excited
system A∗ (example II above): Here Hini ≡ Ha ⊗H(0)

γ (the space of states

with no photon is equivalent to Ha alone) and Hfin ≡ Ha⊗H(1)
γ (the space of

system-field states with a single photon). Therefore, the density of final states
at energy Ef ≡ E0j + Eγ = E0i is calculated in the larger space Hfin.

The summation over final states leads to the following general expression:

Rji(t) → Rfi(t) = 2π
ℏ

∑
j

|λH ′
ji|2 δ(E0j−E0i)︸ ︷︷ ︸

→ δϵ(E0i−E0j)︸ ︷︷ ︸
≈⟨|λH ′

ji|2⟩f
∑
j

δϵ(E0i−E0j)

= 2π
ℏ ⟨|λH ′

ji|2⟩f︸ ︷︷ ︸
averagewith

respect to ϱf (Ef )ϵ

ϱf(Ef =E0i)ϵ︸ ︷︷ ︸
ϵ→0−→ ϱf (E0i)

▶ Fermi golden rule

The above derivation is summarized in a very useful and famous formula, whose
validity turns out to be much wider than in the presently studied case:
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R(1)
fi =

2π

ℏ


|λH ′

ji|2


f

ϱf(E0i) where




⟨|λH ′
ji|2⟩f ≡ squared matrix element

averaged over available final states
ϱf(E0i) ≡ density of final states
at final energy Ef = E0i

▶ 2ndorder correction

a2ji(t)=
�
− i

ℏλ
2

k

H ′
jkH

′
ki

t

0

t2

0

eiωjkt2eiωkit1dt1dt2

  
−

e
iωjit−1
ωkiωji

− e
iωjkt−1
ωjkωki



=λ2

k

H ′
jkH

′
ki


e
i
ℏ (E0j−E0i)t−1

(E0k−E0i)(E0j−E0i)

− e
i
ℏ (E0j−E0k)t−1

(E0j−E0k)(E0k−E0i)


ωki+ωjk=ωji ⇒

Assuming E0j ̸= E0k ̸= E0i (so H ′
jkH

′
ki ≈ 0 for equal energies) we may neglect

the second time-dependent term (otherwise special treatment needed). The
first term yields the same dependence on (E0j−E0i) as the 1

st-order correction:

R(2)
fi =

2π

ℏ

λH ′
ji + λ2


k

H ′
jkH

′
ki

E0i−E0k

2


f

ϱf(E0i) “direct”+“virtual” transitions

◀ Historical remark
1927-30: Paul Dirac derives the 1st & 2ndorder perturbative expressions and applies
the theory to calculations of electromagnetic transition rates in atoms & nuclei
1950: Enrico Fermi coins the name “golden rule” for the general 1storder expression

▶ Exponential perturbation

Another perturbation type, for which the Dyson series can be evaluated explic-
itly, is the one with an exponential time dependence. In this case, we move the
initial time t0→−∞ and look at the effect of a slowly rising term Ĥ ′(t).

Perturbation Hamiltonian

Ĥ ′(t) = eηtĤ ′ η ≥ 0

Initial state |ψ0i⟩ prepared at t0 → −∞
Final state |ψ0j⟩ with j ̸= i measured at any t

Transition rate up to 1storder contribution

Transition amplitude: a
(1)
ji (t)=− i

ℏλH
′
ji

t
−∞

e(η+iωji)t1dt1 = − i
ℏ λH

′
ji

e(η+iωji)t

η+iωji

Transition probability: p
(1)
ji (t) = |a(1)ji (t)|2= 1

ℏ2 |λH
′
ji|2 e2ηt

η2+ω2
ji

Transition rate:

d
dtp

(1)
ji (t) = R(1)

ji (t) =
2π
ℏ2 |λH

′
ji|2 1

π
η

η2+ω2
ji  

ℏΩBW(E0j−E0i)

e2ηt
ΩBW(E) ≡ Breit -Wigner
energy distribution (Sec. 5a)

with the width Γ = 2ℏη
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Adiabatic limit (η,Γ → 0)

lim
Γ→0

ΩBW(E0j−E0i) = δ(E0j−E0i) ⇒ lim
η→0

R(1)
ji = 2π

ℏ |λH
′
ji|2δ(E0j−E0i)

This is consistent with the previous result on constant Ĥ ′ ⇒ golden rule

▶ Harmonic perturbation

Expressions similar to those derived above apply also to harmonic perturbations
with period T=2π

ω . In this case, however, the perturbation induces transitions
up and down to final energies Ei+ℏω or Ei−ℏω.
Perturbation Hamiltonian

Ĥ ′(t) = V̂ e+iωt+V̂ †e−iωt =

{
(V̂ +V̂ †) cos(ωt)

+i(V̂ −V̂ †) sin(ωt)

Initial state |ψ0i⟩ at t0 = 0

Up/down transition rates to 1storder

Transition amplitude
to |ψ0j⟩(j ̸= i) :

a
(1)
ji (t) = − iλ

ℏ

[
Vji

t∫
0

ei(ωji+ω)t1dt1+V ∗
ij

t∫
0

ei(ωji−ω)t1dt1

]

= λ
ℏ

[
Vji

1−ei(ωji+ω)t

ωji+ω +V ∗
ij
1−ei(ωji−ω)t

ωji−ω

]

Transition probability:

p
(1)
ji (t)=

λ2

ℏ2

[
|Vji|2

sin2
(

ωji+ω

2 t
)

(
ωji+ω

2 t
)2 t2 + |Vij|2

sin2
(

ωji−ω

2 t
)

(
ωji−ω

2 t
)2 t2

+2Re
(
VjiVij

−2eiωt cosωjit−cosωt

ω2
ji

−ω2

︷ ︸︸ ︷
1−ei(ωji+ω)t

ωji+ω
1−e−i(ωji−ω)t

ωji−ω

)]

The first 2 terms yield: 2πt δ(ωji+ω) & 2πt δ(ωji−ω)

The last term for ωji = ±ω +ϵ︸︷︷︸
→0

is negligible relative to
the previous terms:

∝ −cosωjit−cosωt

ω2
ji−ω2 = −cos(±ω+ϵ)t−cosωt

(±ω+ϵ)2−ω2

ϵ→0−−→ t sinωt
2ω ∼ 0

Transition rates

R(1)
fi =

{
2π
ℏ
〈
|λVji|2

〉
f
ϱf(E0i−ℏω) stimulated emission

2π
ℏ
〈
|λVij|2

〉
f
ϱf(E0i+ℏω) absorption

◀ Historical remark
1916: A. Einstein theoretically discovers stimulated emission and discusses the de-
tailed balance between absorption and emission processes
1950’s: Application of these ideas in the construction of laser

■ Application to stimulated electromagnetic transitions

The above results of the perturbation theory for a periodic field can be directly
applied to atoms or nuclei interacting with external classical electromagnetic
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waves of appropriate wavelengths. We outline these issues here, leaving the
discussion of the spontaneous emissions of electromagnetic quanta to Sec. 14
(where the quantization of electromagnetic field will be outlined).

▶ Planar electromagnetic wave
Vector potential:

A⃗(x⃗, t) = A0 ε⃗ cos
( k⃗︷︸︸︷

ω
c n⃗ · x⃗− ωt

)

with |n⃗|=1= |ε⃗ | and ε⃗ · n⃗ = 0 following
from the Coulomb gauge condition ∇⃗·A⃗(ˆ⃗x, t)=0

⇒ el. &mg. field intensities:
(

E⃗(x⃗,t)

B⃗(x⃗,t)

)
= −A0

(
ω ε⃗ sin(k⃗·x⃗−ωt)

ω
c [n⃗×ε⃗] sin(k⃗·x⃗−ωt)

)

⇒ averaged energy density: ⟨w⟩ = 1
2 [ϵ0⟨E⃗

2(x⃗, t)⟩+µ−1
0 ⟨B⃗2(x⃗, t)⟩] = 1

2ϵ0A
2
0ω

2

⇒ averaged energy flow: ⟨P ⟩ = ⟨w⟩c = 1
2ϵ0A

2
0ω

2c

▶ Hamiltonian of particles in the external elmg.wave field

Ensemble of N charged interacting particles in a classical elmg. field:

Ĥ(t) =
N∑
k=1

1
2Mk

[
ˆ⃗pk−qkA⃗(ˆ⃗xk, t)

]2
+

N∑
k=1

V (ˆ⃗xk, t) +
N∑
k=1

N∑
l=k+1

W (ˆ⃗xk, ˆ⃗xl)

with V (x⃗, t) & A⃗(x⃗, t) standing for the scalar & vector potentials of the ex-
ternal field, and W (x⃗, x⃗′) for the potential of a mutual interaction (of any na-
ture) of the particles. Neglecting q2kA⃗(

ˆ⃗xk, t)
2, setting the scalar potential V =0

(elmg. field far from its sources) and assuming the Coulomb gauge ∇⃗·A⃗(ˆ⃗x, t)=0:

Ĥ(t) ≈
N∑
k=1

1
2Mk

ˆ⃗pk
2 +

N∑
k=1

N∑
l=k+1

W (ˆ⃗xk, ˆ⃗xl)

︸ ︷︷ ︸
Ĥ0

−
N∑
k=1

qk
Mk

[
A⃗(ˆ⃗xk, t) · ˆ⃗pk

]

︸ ︷︷ ︸
−
∫
A⃗(x⃗,t)·⃗jel(x⃗) dx⃗ ≡ Ĥ ′(t)

For the above planar elmg.wave we thus get the harmonic perturbation:

Ĥ ′(t) = −A0

2

N∑
k=1

qk
Mk

[
e−iωc n⃗·ˆ⃗xk(ε⃗ · ˆ⃗pk)︸ ︷︷ ︸

∝V̂ ↔ stimul. emission

e+iωt+ e+iωc n⃗·ˆ⃗xk(ε⃗ · ˆ⃗pk)︸ ︷︷ ︸
∝V̂ † ↔ absorption

e−iωt

]

emission: ℏω = E0i − E0j absorption: ℏω = E0j − E0i

So the external elmg.wave interacting with the particle system of energy E0i

induces stimulated emission and/or absorption, depending on whether the wave
frequency ω matches some of the internal frequencies ωij or ωji.

▶ Absorption cross section

In the following, we focus on the absorption processes (the procedure for stimu-
lated emission is analogous). We define the absorption cross section, which can
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be seen as an area on the plane perpendicular to the incident wave propagation
direction. The elmg. energy passing through this area is being continuously
transferred to the system:

σabs
ji =

energy absorbed in unit time

incoming energy flow
=

ℏω Rji
1
2ϵ0A

2
0ω

2c

Perturbation theory prediction (1storder):

σabs
ji ≈ π

ϵ0ωc

∣∣∣∣
〈
ψ0j

∣∣∣∣
N∑
k=1

qk
Mk

e+iωc n⃗·ˆ⃗xk(ε⃗ · ˆ⃗pk)
∣∣∣∣ψ0i

〉∣∣∣∣
2

δ(E0i+ℏω−E0j)

▶ Electric dipole approximation

Assume that the atom/nucleus size R ≪ λ radiation wavelength

⇒ e+iωc n⃗·ˆ⃗xk =1+
∞∑
n=1

1
n!

(
i ω
c n⃗· ˆ⃗xk

)n

≈ 1 (only the n=0 term considered)
〈
ψ0j

∣∣∣∣
N∑
k=1

qk
Mk

e+iωc n⃗·ˆ⃗xk(ε⃗ · ˆ⃗pk)
∣∣∣∣ψ0i

〉
≈

〈
ψ0j

∣∣∣∣ε⃗ ·
N∑
k=1

qk
Mk

ˆ⃗pk

∣∣∣∣ψ0i

〉
= . . .

Trick: ˆ⃗pk = − i
ℏMk[ˆ⃗xk, Ĥ0] ⇒ · · · = i

ℏ (E0j − E0i)︸ ︷︷ ︸
ℏω

〈
ψ0j

∣∣∣∣ε⃗ ·
N∑
k=1

qk ˆ⃗xk

︸ ︷︷ ︸
ˆ⃗
D

∣∣∣∣ψ0i

〉

where we introduced the operator of electric dipole moment:

⇒ σabs
ji ≈ πω

ϵ0c

∣∣∣⟨ψ0j|ε⃗ ·
ˆ⃗
D|ψ0i⟩

∣∣∣
2

δ(E0i+ℏω−E0j)

For ε⃗ = n⃗x: σabs
ji dω ≈ πω

ϵ0ℏc

∣∣∣⟨ψ0j|D̂x|ψ0i⟩
∣∣∣
2

̸= 0 iff |ji−1| ≤ jj ≤ (ji+1)

The above condition for the initial- & final-state spin quantum numbers ji& jj

follows from the Wigner-Eckart theorem applied to the λ=1 tensor operator
ˆ⃗
D

(see Sec. 4b).

▶ Beyond electric dipole approximation

We look at the n=1 term in the expansion of ⟨ψ0j|
N∑
k=1

qk
Mk

e+iωc n⃗·ˆ⃗xk(ε⃗ · ˆ⃗pk)|ψ0i⟩

It contains matrix elements of quantity (n⃗ · ˆ⃗xk)(ε⃗ · ˆ⃗pk)=(ε⃗ · ˆ⃗pk)(n⃗ · ˆ⃗xk)+iℏ (ε⃗ · n⃗)︸ ︷︷ ︸
0= 1

2(F̂k++F̂k−), where we define F̂k±=(ε⃗ · ˆ⃗pk)(n⃗ · ˆ⃗xk)±(ε⃗ · ˆ⃗xk)(n⃗ · ˆ⃗pk).

(a) Electric quadrupole term arises from the component F̂k+ treated using

the same trick as above: iωc ⟨ψ0j|
N∑
k=1

qk
2Mk

[(ε⃗ · ˆ⃗pk︸︷︷︸
− i

ℏMk[ˆ⃗xk,Ĥ0]

)(n⃗ · ˆ⃗xk)+(ε⃗ · ˆ⃗xk)(n⃗ · ˆ⃗pk︸︷︷︸
− i

ℏMk[ˆ⃗xk,Ĥ0]

)]|ψ0i⟩

= ω
2ℏc(E0j−E0i)⟨ψ0j|

N∑
k=1

qk(n⃗ · ˆ⃗xk)(ε⃗ · ˆ⃗xk)|ψ0i⟩ = ω2

2c

3∑
l,m=1

nlεm⟨ψ0j|Q̂lm|ψ0i⟩ where

Q̂lm=
N∑
k=1

qk(x̂klx̂km−1
3δlmx̂

2
kl) (with the last term, which ensures

3∑
l=1

Q̂ll=0, being

added without any harm because of ε⃗ · n⃗=0) are Cartesian components of the
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λ=2 electric quadrupole tensor. Thus the angular-momentum selection rules
for electric quadrupole transitions are: |ji−2| ≤ jj ≤ (ji+2)

(b) Magnetic dipole term arises from the component F̂k−: Using the identity

(ε⃗ · ˆ⃗pk)(n⃗ · ˆ⃗xk)−(ε⃗ · ˆ⃗xk)(n⃗ · ˆ⃗pk)=[n⃗× ε⃗ ] · [ˆ⃗xk × ˆ⃗pk]︸ ︷︷ ︸
ˆ⃗
Lk

we get: iωc ⟨ψ0j|
N∑
k=1

qk
2Mk

F̂k−|ψ0i⟩

= iωc [n⃗ × ε⃗ ] · ⟨ψ0j|
N∑
k=1

ˆ⃗µk︷ ︸︸ ︷
qk

2Mk

ˆ⃗
Lk |ψ0i⟩ = iωc [n⃗ × ε⃗ ] · ⟨ψ0j| ˆ⃗µ|ψ0i⟩, with ˆ⃗µ denoting

the orbital magnetic dipole moment. For particles with spin the spin magnetic
moment needs to be added. Since the magnetic dipole moment is a λ=1 tensor,
the selection rules for magnetic dipole transitions are: |ji−1| ≤ jj ≤ (ji+1)

▶ Multipole expansion

To systematically evaluate transitions of higher multiopolarities λ, it is conve-
nient to expand the incoming planar wave into the spherical waves. This is not
quite trivial as one needs to correctly treat the wave polarization, which on the
quantum level results from the photon spin (s=1).
Plane wave expansion into spherical harmonics & Bessel functions (cf. Sec. 13):

eik⃗·x⃗ = 4π
∞∑
l=0

+l∑
m=−l

il jl(kr) Y
∗
lm

(
k⃗
k

)
Ylm

(
x⃗
x

)

To include the polarization, we introduce circular & linear polarization bases

in a general coordinate system
{

e⃗±=∓ 1√
2
(ε⃗x±iε⃗y)

e⃗0=ε⃗z

}
so that an arbitrary linear

polarization vector can be written as: ε⃗ =
√

4π
3

∑
ν=0,±1

Y ∗
1ν(ε⃗) e⃗ν (note that the

circular polarization vector e⃗0 is present because the evaluation is performed in
an arbitrary coordinate system unrelated to the wave vector k⃗).

Introduce a “vector spherical function” with total angular momentum (multi-
polarity) λ: Y⃗lλµ

(
x⃗
x

)
=

∑
ν,m

Cλµ
1νlme⃗νYlm

(
x⃗
x

)
⇔ e⃗νYlm

(
x⃗
x

)
=

∑
λ,µ

Cλµ
1νlmY⃗lλµ

(
x⃗
x

)

ε⃗ eik⃗·x⃗ = (4π)
3
2

3

∑
λ,µ

∑
l,m

∑
ν

il Cλµ
1νlm Y ∗

1ν(ε⃗) Y
∗
lm

(
k⃗
k

)
jl(kr) Y⃗lλµ

(
x⃗
x

)
︸ ︷︷ ︸
spatial dependence

For each multipolarity λ one can separate terms with both parities, electric
component Eλ with parity (−1)λ and magnetic component Mλ with parity
(−1)λ+1, and construct expressions for the rates of the corresponding transi-
tions. The previously treated terms are identified with E1 (electric dipole), E2
(electric quadrupole) and M1 (magnetic dipole) transitions.

◀ Historical remark
1900’s-10’s: Multipole expansion of elmg. field elaborated within the classical theory
1940’s-50’s: Multipole expansion applied in QM (M.E.Rose et al.)
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■ Driven systems

We will now briefly deal with problems combining parameter-dependent and
time-dependent descriptions. The aim will be to analyze the dynamics of sys-
tems whose Hamiltonian parameters are driven, i.e., varied with a given, exter-
nally controlled time dependence. This can be achieved with the aid of some
approximation techniques based on suitable perturbative expansions.

▶ “Forward” driven system

Consider Hamiltonian Ĥ(G⃗) depending on a set of parameters G⃗ ≡ (G1, G2, . . . )
and define a curve G⃗(g) in the parameter space described by variable g ∈ R.
We denote Ĥ

(
G⃗(g)

)
≡Ĥ(g) and the corresponding eigenvalues and eigenvectors

as Ei(g) and |ψi(g)⟩. Now consider motion g(t)= ġt along the curve, assuming
(without any loss of generality) ġ =constant. The actual “speed” in the pa-

rameter space
˙⃗
G(t) = ġ dG⃗

dg

∣∣
g=g(t)

depends on the selected parametrization G⃗(g)

and generally varies. So we switch to a time-dependent

problem: Ĥ(G⃗) −→ Ĥ
(
G⃗(g(t))

)
≡ Ĥ(ġt)

The speed ġ is assumed to be “small” and the
task is to approximate the evolution induced by
the Hamiltonian Ĥ(ġt) on the level of precision
which is consistent with a selected power ġ 0, ġ 1, ġ 2...

▶ Equations for instantaneous eigenvectors

Stationary Schr. eq.: Ĥ(g)|ψi(g)⟩=Ei(g)|ψi(g)⟩

⇒ dĤ(g)
dg |ψi(g)⟩+Ĥ(g)|dψi

dg (g)⟩=
dEi(g)
dg |ψi(g)⟩+Ei(g)|dψi

dg (g)⟩
Multiply by ⟨ψj(g)| for j ̸=i:

⟨ψj|dĤdg |ψi⟩+ Ej⟨ψj|dψi

dg ⟩ =
dEi

dg

0︷ ︸︸ ︷
⟨ψj|ψi⟩+Ei⟨ψj|dψi

dg ⟩

⇒ ⟨ψj(g)|dψi

dg (g)⟩ =
⟨ψj(g)|dĤdg (g)|ψi(g)⟩

Ei(g)−Ej(g)
for j ̸=i

For j=i we use: d
dg⟨ψi|ψi⟩ = ⟨dψi

dg |ψi⟩+ ⟨ψi|dψi

dg ⟩ = 2Re⟨ψi|dψi

dg ⟩ = 0

⇒ ⟨ψi(g)|dψi

dg (g)⟩ = iϕi(g) with ϕi(g) ∈ R

With substitutions g → ġt and d
dg → 1

ġ
d
dt the above formulas become t-dependent

▶ Time evolution by the driven Hamiltonian

Expansion in the instantaneous eigenbasis: |ψ(t)⟩ =
∑
j

αj(t)|ψj(ġt)⟩

Nonstationary Schr. eq.: iℏ d
dt |Ψ(t)⟩ = Ĥ(ġt)|Ψ(t)⟩
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⇒ iℏ
∑
j

(
α̇j(t)|ψj(ġt)⟩+αj(t)

d
dt |ψj(ġt)⟩

)
=

∑
j

αj(t)Ej(ġt)|ψj(ġt)⟩

Multiply by ⟨ψi(ġt)|: iℏα̇i(t) + iℏ
∑
j

αj(t) ⟨ψi(ġt)| ddtψj(ġt)⟩︸ ︷︷ ︸
ġ
⟨ψj(g)|dĤdg (g)|ψi(g)⟩

Ei(g)−Ej(g)
iġϕi(g)

for i ̸=j for i=j

= αi(t)Ei(ġt)

Here we use the previously derived result

and obtain a system of coupled

differential equations for αi(t):

dαi

dt
(t) =

[
− i

ℏEi(ġt)+iġϕi(ġt)
]
αi(t)+ġ

∑
j( ̸=i)

⟨ψj(ġt)|dĤdg (ġt)|ψi(ġt)⟩
Ei(ġt)−Ej(ġt)

αj(t)
d
dt = ġ d

dg

ġt = g

▶ Adiabatic approximation

Let the initial state is one of the g=0 eigenstates: |ψ(t=0)⟩ ≡ |ψi(g=0)⟩

⇒ αj(0)=δij. We further assume that ġ is very small →0 (adiabatic limit).

The offdiagonal terms of the above set of differential eqns. yield contributions
∝ ġ p with p≥1 to the solutions αj(t)
⇒ they can be neglected in the 0thorder
(so called adiabatic) approximation.
So the 0thorder solution reads as follows:

αj(t)=δij e
− i

ℏ

t∫
0

Ei(ġt
′)dt′

︸ ︷︷ ︸
dynamical

phase

e
i

g∫
0

ϕi(g
′)dg′

︸ ︷︷ ︸
geometrical

factor

The non-adiabatic p≥1 terms ∝ ġ1, ġ2... can be also systematically constructed
within the so-called adiabatic perturbation theory (not discussed here).

▶ Adiabatic state preparation

We see that the adiabatic approximation yields |αj(t)|2=δij, so in the true ġ→0
limit the driven system remains all the time in the instantaneous eigenstate
|ψi(g)⟩ following from the initial eigenstate |ψi(0)⟩. This result is known as
the adiabatic theorem. However, for ġ small but ̸= 0 this remains a good
approximation iff the levels do not come too close to each other (see the energy
denominator in the neglected term of the above equation).

The adiabatic theorem is used in various protocols of quantum computation
& quantum state preparation. An N -qubit system is prepared in the ground
state |ψ0(G⃗)⟩ of a parameter-dependent Hamiltonian Ĥ(G⃗) at an initial param-
eter point G⃗=G⃗(0), where the ground state is fully separable (e.g., spins at low
temperature in strong external magnetic field). An adiabatic parameter change
G⃗(t) in time interval t ∈ [0, τ ] then drives the system into a highly entangled
ground state of the Hamiltonian at the final parameter point G⃗(τ) (correspond-
ing, e.g., to mutually interacting spins with vanishing external field). Note that
|ψ0(G⃗(τ))⟩ cannot typically be prepared directly by cooling down the system at
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point G⃗(τ) becuase of a too complicated structure of the corresponding thermo-
dynamic potentials. The entangled state |ψ0(G⃗(τ))⟩ can be used as a resource
for various quantum information applications, including quantum computation.
The crucial question, which decides about the practical applicability of the pro-
cedure, concerns the scaling of the time τ , which still ensures adiabaticity of
the driving, with the increasing number N of qubits.

▶ Berry phase

We saw that the adiabatic evolution generates two types of phase factors:
(a) dynamical phase

φdyn
i (t)=−1

ℏ

t∫
0

Ei

(
g(t′)

)
dt′

derived from the standard
evolution of energy eigenstates

(b) geometrical phase (Berry’s phase)

φgeo
i (t)=

g(t)∫
0

ϕi(g
′)dg′ depending only on the

geometrical path in the parameter space G⃗.

g(t)= ġt ⇒ φdyn
i (t) ∝ ġ−1 ġ→0→ ∞, but φgeo

i (t) is finite

In fact, the phases of Hamiltonian eigenvectors in the space of G⃗ can be cho-
sen arbitrarily, having no physical meaning: physics is invariant under local
gauge (phase) transformations of eigenvectors |ψi(G⃗)⟩. However, the geometri-

cal phase can yield a nonzero value φgeo
i [℘]=

∮
℘ ϕi(g

′)dg′ even for the adiabatic

drive along a closed path ℘ returning back to the initial point. Such phase
changes are gauge-independent and have measurable implications.

▶ Periodically driven systems

Consider a driven Hamiltonian Ĥ
(
G⃗(g(t))

)
with a periodic dependence g(t)=g(t+T ),
where T = 2π

ω . Any periodic Hamiltonian

Ĥ(t) = Ĥ(t+T ) can be written as

Ĥ(t) = Ĥ0 +
+∞∑

k=−∞
k ̸=0

V̂ke
ikωt with V̂−k= V̂ †

+k

In particular, there exist the following two special types of periodic driving:

(a) harmonic (V̂k=0 if |k|≥2): Ĥ(t)=Ĥ0+(V̂1+V̂ †
1 ) cosωt+i(V̂1−V̂ †

1 ) sinωt

(b) kicked (V̂k= V̂ ̸=0 if k ̸=0): Ĥ(t)=Ĥ0−V̂ +V̂ T
+∞∑

l=−∞
δ(t−lT )

The evolution operator over 1 period Û(t0+T, t0)≡ F̂ (t0) ≡ Floquet operator

F̂ (t′0) = Û(t′0+T, t
′
0) = Û(t′0+T, t0+T )︸ ︷︷ ︸

Û(t′0,t0)

F̂ (t0)Û(t0, t
′
0) = Û−1(t0, t

′
0)F̂ (t0)Û(t0, t

′
0)

Floquet states |ϕi(t0)⟩ and the corresponding quasienergies Ei are solutions
of the eigenproblem: F̂ (t0)|ϕi(t0)⟩=e−

i
ℏEiT |ϕi(t0)⟩ where the values Ei do not
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depend on t0 and |ϕi(t
′
0)⟩= Û(t0, t

′
0)|ϕi(t0)⟩.

Any initial state can be expanded as |ψ(t0)⟩=
∑

i

αi︷ ︸︸ ︷
⟨ϕi(t0)|ψ(t0)⟩ |ϕi(t0)⟩ and its

evolution from t0 to t = t0+nT +∆t with integer n and ∆t ∈ [0, t) reads as
|ψ(t)⟩ = Û(t, t0)|ψ(t0)⟩ =

∑
i αie

− i
ℏnEiT |ϕi(t0+∆t)⟩. So the general evolution is

solved via the full set of Floquet eigensolutions within 1 period.
The unitary operator F̂ (t0) can be expressed as an exponential of a selfadjoint

operator ĤF(t0), called the effective (Floquet) Hamiltonian: F̂ (t0) = e−
i
ℏĤF(t0)T

It can be expressed as series in powers of the period: ĤF(t0)=
∞∑
n=0

ĥn(t0)T
n

Example: periodically switched Hamiltonian

Ĥ(t)=g(t)Ĥ1+[1−g(t)]Ĥ2 with g(t)=
{
1 for tmodT ∈ [0,fT ),
0 for tmodT ∈ [fT,T ), f ∈ (0, 1)

F̂ (0)=e−
i
ℏĤ2(1−f)Te−

i
ℏĤ1fT =e−

i
ℏĤF(0)T expressed by the BCH formula (Sec. 4a):

eX̂eŶ = eX̂+Ŷ+ 1
2 [X̂,Ŷ ]+ 1

12 ([X̂,[X̂,Ŷ ]]+[Ŷ ,[Ŷ ,X̂]])+··· ⇒ ĤF(0) =

fĤ1 +(1−f)Ĥ2︸ ︷︷ ︸
ĥ0(0)

+f(1−f)
2ℏ i[Ĥ1, Ĥ2]︸ ︷︷ ︸

ĥ1(0)

T−f(1−f)
12ℏ2

[
fĤ1−(1−f)Ĥ2, [Ĥ1, Ĥ2]

]
︸ ︷︷ ︸

ĥ2(0)

T 2+ · · ·

Periodic drivings of various types can be used in quantum simulations of sys-
tems with the corresponding Hamiltonians Ĥ = ĤF(t0). If T is much smaller
than the time scale of the internal dynamics, the series for ĤF(t0) can be trun-
cated. For instance, a very fast switching between Ĥ1 & Ĥ2 in the last example
effectively simulates the Hamiltonian Ĥ = fĤ1 +(1−f)Ĥ2 = ĥ0(0).

◀ Historical remark
1884: G. Floquet develops formalism for solutions of periodic differential equations
1928: Max Born & Vladimir Fock formulate the quantum adiabatic theorem
1984: Michael Berry presents the theory of geometrical phase (later linked to an
earlier work of S. Pancharatnam from 1956)
1980’s-present: perturbative approaches to forward & periodically driven systems
1990’s-present: use of periodically driven external fields for trapping particles in
quantum experiments and simulating complex quantum Hamiltonians
2000-present: development of adiabatic protocols for quantum computation

12. SCATTERING: ITERATIVE APPROACHES

Description of the processes induced by scattering of particles belongs to the most
important application domains of quantum theory. Knowing the the initial state and
the interaction Hamiltonian between all particles involved in the scattering process,
can we predict all outcomes and their probabilities? And inversely: knowing the
outcomes & probabilities for various initial states, can we determine the form of the
interaction Hamiltonian? This may resemble a task to analyze an internal structure
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of a watch by detecting tiny parts shot out when the thing is smashed on an anvil.
In the quantum world, this is often the only research method available.

The scattering theory is a rather wide area, of which we are going to taste only
a little bit. Here is a general typology of scattering processes:

(1) a+ A → A+ a elastic scattering (total kinetic energy conserved)

(2) a+ A → A∗ + a∗ inelastic scattering (intrinsic excitations of particles

involved, total kinetic energy not conserved)

(3) a+ A → B + b+ b′ + . . . more complex reaction (reconfiguration of the

interacting particles, appearance of new objects)

Scattering theory is closely related to the nonstationary perturbation theory.
Indeed, the solution of the scattering problem can be searched in the form of a power
series in the particle interaction strength. This approach will be elaborated in the
present section. We will start with an intuitive stationary description of elastic
scattering and then proceed to a rather powerful formalism which will allow us
to transform general nonstationary scattering problems into equivalent stationary
problems that support iterative solutions.

■ Elementary description of elastic scattering

In a large part of this and the following sections we will deal with elastic scat-
tering—the simplest scattering process which does not change the nature or
internal structure of the scattered objects. We first focus on an elementary de-
scription of this process, based on solving the stationary Schrödinger equation
with an appropriate asymptotic form of the wavefunction.

▶ Scattering by a fixed potential

Consider a spinless projectile (a particle with the scalar wavefunction) moving
in a fixed potential field. This corresponds to elastic scattering of the projectile
on an infinite-mass scattering center (target particle). We further assume that
the target–projectile interaction has a limited reach, being described by finite-
range potential satisfying V (x⃗) ≈ 0 for |x⃗|>R

The projectile’s initial state coincides
with one of the momentum eigenstates.
Choosing the initial momentum p⃗ = pn⃗z,
we start with the incoming plane wave
ψ(x⃗) ∝ eikz with k= p

ℏ . To determine the
probability distribution for the projectile being
scattered to various angles ϑ, φ (spherical coordinates),
we apply the method of probability currents outlined in Sec. 5a: We solve the
stationary Schrödinger equation

[
− ℏ2

2M∆ + V (x⃗)
]
ψ(x⃗) = Eψ(x⃗) with energy



212

E = (ℏk)2
2M equal to the initial kinetic energy (this energy has to belong to the

continuous spectrum of the full Hamiltonian so that it corresponds to un-
bound states) and with the following
asymptotic form of the wavefunction: ψk(x⃗)

|x⃗|≫R∼ eikz︸︷︷︸
incoming
planewave

+ fk(ϑ, φ)
eikr

r︸ ︷︷ ︸
outgoing

sphericalwave
The function fk(ϑ, φ), which is called
the scattering amplitude, modulates
the amplitude of the outgoing spherical wave in various directions. This func-
tion contains all relevant information on the scattering of the incoming particle
with momentum p⃗ = ℏkn⃗z to various angles (ϑ, φ).

▶ Differential cross section

Probabilities of scattering to various final states are usually quantified by the
corresponding cross sections. In general, the production rate RX of a given
final state X (the number of X events per unit time) is given by RX = NjinσX
where N is the number scattering centers, jin is the flux of incoming particles
and σX is the cross section of the process X (it can be seen as an area per-
pendicular to the incoming flux such that the passage of the incoming particle
through this area leads to the process X). If X depends on a continuous variable

x, we can introduce a differential cross section defined by d
dxRX(x) = Njin

dσX(x)

dx

The integral cross section is given by σX =
∫
dx

dσX(x)

dx .

In the present case N =1 and the outgoing state X depends on two spherical
angles (ϑ, φ), so it is convenient to differentiate σX with respect to the space
angle element dΩ=sinϑ dϑdφ. The rate of the scattering events to the direction
around (ϑ, φ) measured by a detector of front area S placed at distance r from
the target would be R(ϑ,φ) = Njin

S
r2

dσ
dΩ(ϑ, φ). The differential cross section

dσ
dΩ(ϑ, φ) can be determined from the above ansatz wavefunction:
Incoming flux: Outgoing flux in direction (ϑ, φ) & distance r:

j⃗in =
ℏk
M n⃗z j⃗out(r, ϑ, φ) =

|fk(ϑ,φ)|2
r2

ℏk
M n⃗r

⇒ dσ(ϑ, φ)= outgoing flux to space angle dΩaround (ϑ,φ)
incoming flux = |⃗jout(r,ϑ,φ)|

dS︷︸︸︷
r2dΩ

|⃗jin|
= |fk(ϑ, φ)|2dΩ

⇒ differential cross section for elastic scattering:
(
dσ
dΩ

)
k
(ϑ, φ)= |fk(ϑ, φ)|2

▶ Transformation to the center-of-mass coordinates

We need to adapt the above-outlined procedure to the cases when the target
particle is not fixed in space (does not have infinite mass). Elastic scattering
of two finite-mass particles represents a genuine two-body problem. The
familiar way of solving this problem proceeds via separating the relative target-
projectile degree of freedom from that related the system’s center of mass:
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2 particles with masses
(
M1
M2

)
. Position & momentum operators

(
ˆ⃗x1

ˆ⃗x2

)
&

(
ˆ⃗p1
ˆ⃗p2

)

Transformation to new coordinates & momenta:

ˆ⃗xc =
M1

M1+M2

ˆ⃗x1 +
M2

M1+M2

ˆ⃗x2
ˆ⃗xr = ˆ⃗x1 − ˆ⃗x2

⇔
ˆ⃗pc = ˆ⃗p1 + ˆ⃗p2
ˆ⃗pr =

M2

M1+M2

ˆ⃗p1 − M1

M1+M2

ˆ⃗p2

center of mass
relative

Commutators: [x̂ci, p̂cj] = [x̂ri, p̂rj] = iℏδij, [x̂ci, p̂rj] = [x̂ri, p̂cj] = 0

⇒ corresponding Poisson brackets ⇒ the transformation is canonical

Transformation of the Hamiltonian:

Kinetic energy of both particles: T̂ =
ˆ⃗p1

2

2M1
+

ˆ⃗p2
2

2M2
=

ˆ⃗pc
2

2(M1+M2)
+

ˆ⃗pr
2

2
M1M2

M1+M2

Define reduced mass: M =
M1M2

M1+M2

Potential depending on x⃗1−x⃗2︸ ︷︷ ︸
x⃗r

⇒ Hamiltonian Ĥ =

Ĥc︷ ︸︸ ︷
ˆ⃗pc

2

2Mtot
+

Ĥr︷ ︸︸ ︷
ˆ⃗pr

2

2M
+ V (ˆ⃗xr)

This represents the separation of center-of-mass and relative motions. Solution
of the Schrödinger eq. with Ĥc is a plane wave in center-of-mass coordinates.
We need to solve the equation with Ĥr in relative coordinates. This represents

just the M → M change with respect to the fixed-potential problem.

▶ Transformation of scattering angles & cross section

Once the two-body problem is solved in the the center-of-mass (CM) system (as
described above), one has to return back to the laboratory (LAB) system, in
which the scattering angles and cross sections are measured.

Notation: particle 1≡ projectile, particle 2≡ target
v⃗1, v⃗2, p⃗1, p⃗2, ϑ, φ ≡ velocities & momenta & scattering angles in LAB

v⃗C1, v⃗C2, p⃗C1, p⃗C2, ϑC, φC ≡ velocities & momenta & scattering angles in CM

Center-of-mass speed in LAB:

u⃗ = M1

M1+M2
v⃗1 +

M2

M1+M2
v⃗2

=constant (along z)

p⃗C1=M1(v⃗1−u⃗)=M(v⃗1−v⃗2)≡+p⃗C= p⃗r p⃗C2=M2(v⃗2−u⃗)=M(v⃗2−v⃗1)=−p⃗C=−p⃗r

It is obvious that φ = φC and we can set φ = 0

⇒ p1 sinϑ = pC sinϑC p1 cosϑ−M1u = pC cosϑC

⇒ tanϑ = pC sinϑC

pC cosϑC+M1u
tanϑC = p1 sinϑ

p1 cosϑ−M1u
transformation ϑ ↔ ϑC



214

Outgoing fluxes in both LAB & CM systems must be the same:
(
dσ
dΩ

)
L
dΩL

!
=

(
dσ
dΩ

)
C
dΩC ⇒

(
dσ
dΩ

)
L
=

(
dσ
dΩ

)
C

dΩC

dΩL

dΩL = sinϑdϑdφ
dΩC = sinϑCdϑCdφC(

dσ
dΩ

)
L
(ϑ, φ) =

(
dσ
dΩ

)
C
(ϑC, φC)

sinϑC

sinϑ
dϑC

dϑ︸ ︷︷ ︸
p1

p1−M1u
d
dϑ arctan

p1 sinϑ
p1 cosϑ−M1u

relation between LAB & CM

differential cross sections

From now on we will work in CM, skipping the indices “C” and “R”.

▶ Scattering of indistinguishable particles

Quantum indistinguishability of identical particles has a substantial effect on
the cross section of elastic scattering. Depending on whether the scattered
particles are identical bosons or fermions, the asymptotic wavefunction in CM

ψ(x⃗) ∝ eikz+fk(ϑ, φ)
eikr

r must be symmetrized or antisymmetrized with respect
to the particle exchange.

Exchange of particles in CM:

x⃗ → −x⃗ ⇒
{ r → r

ϑ → π−ϑ
φ → π+φ

Symmetrized wavefunction (for example 4
2He +

4
2He scattering):

ψ(x⃗) ∝
[
eikz + e−ikz

]
+
[
fk(ϑ, φ) + fk(π−ϑ, π+φ)

]
eikr

rCross section:
(
dσ
dΩ

)+
k
= 1

2

{
|fk(ϑ, φ)|2+|fk(π−ϑ, π+φ)|2+2Re[fk(ϑ, φ)f

∗
k (π−ϑ, π+φ)]

}

where 1
2 comes from the normalization of the incoming flux.

The same expression applies for 2 fermions in antisymmetric spin state
(for example e+ e in spin singlet).

Antisymmetrized wavefunction (for example e+ e in spin triplet):

ψ(x⃗) ∝
[
eikz − e−ikz

]
+
[
fk(ϑ, φ)− fk(π−ϑ, π+φ)

]
eikr

rCross section:
(
dσ
dΩ

)−
k
= 1

2

{
|fk(ϑ, φ)|2+|fk(π−ϑ, π+φ)|2−2Re[fk(ϑ, φ)f

∗
k (π−ϑ, π+φ)]

}

Example: unpolarized e + e scattering

Probabilities for finding spin singlet & triplet states are 1
4 & 3

4 ⇒
(
dσ
dΩ

)
k
= 1

4

(
dσ
dΩ

)+
k
+ 3

4

(
dσ
dΩ

)−
k
=

= 1
2

{
|fk(ϑ, φ)|2 + |fk(π−ϑ, π+φ)|2 − Re[fk(ϑ, φ)f

∗
k (π−ϑ, π+φ)]

}

◀ Historical remark
1926: M.Born applies QM to scattering processes (probabilistic interpretation)
1930: N.Mott describes the effects of indistinguishability in Coulomb scattering
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■ General formalism: Lippmann-Schwinger equation

We now turn to a rigorous theory of scattering processes. It is based on the
so-called Lippmann-Schwinger equation, which transforms general quantum
scattering problems—genuinely time dependent—to a stationary form, and
moreover allows for a perturbative expansion of its solutions.

▶ Full & free Hamiltonians and their evolution & Green operators

The full Hamiltonian of the system is supposed to have the form Ĥ = Ĥ0 + V̂

where Ĥ0 represents the free Hamiltonian of the particles involved in the scat-
tering process and V̂ is their mutual interaction.

Û0(t) = e−
i
ℏĤ0t Ĝ±

0 (E) = 1
E−Ĥ0±iϵ

free evolution & Green operators

Û(t) = e−
i
ℏĤt Ĝ±(E) = 1

E−Ĥ±iϵ
full evolution & Green operators

Here, the energy representation of retarded and advanced Green operators are
obtained as follows:

Ĝ+(E) =
(
− i

ℏ
)
lim
ϵ→0+

+∞∫
−∞

Ĝ+(t,0)︷ ︸︸ ︷
Θ(t′)e−

i
ℏĤt e+

i
ℏ (E+iϵ)t′dt′ =

(
− i

ℏ
)
lim
ϵ→0+

[
e−

i
ℏ (Ĥ−E−iϵ)t

− i
ℏ (Ĥ−E−iϵ)

]∞
0

=
(
− i

ℏ
)[
0− lim

ϵ→0+

1
− i

ℏ (Ĥ−E−iϵ)

]
= lim

ϵ→0+

1
E−Ĥ+iϵ

≡ 1
E−Ĥ+iϵ

Ĝ−(E) =
(
− i

ℏ
)
lim
ϵ→0+

+∞∫
−∞

Ĝ−(t,0)︷ ︸︸ ︷
−Θ(−t′)e−

i
ℏĤt e+

i
ℏ (E−iϵ)t′dt′ =

(
+ i

ℏ
)
lim
ϵ→0+

[
e−

i
ℏ (Ĥ−E+iϵ)t

− i
ℏ (Ĥ−E+iϵ)

]0
−∞

=
(
+ i

ℏ
)[

lim
ϵ→0+

1
− i

ℏ (Ĥ−E+iϵ)
− 0

]
= lim

ϵ→0+

1
E−Ĥ−iϵ

≡ 1
E−Ĥ−iϵ

Note that the fraction 1
Ô

= Ô−1 means inversion. The infinitesimal quantity
ϵ>0 is used to make the above integrals converging. Due to the ±iϵ term, the
expressions for Ĝ±(E) do not diverge at states |Ψ⟩ satisfying Ĥ|Ψ⟩ = E|Ψ⟩.
At last we prepare for later use the following identities:

Û(+t)Û0(−t) = Î +
t∫
0

Û(t′)
(
− i

ℏĤ
)
Û0(−t′)+Û(t′)

(
+ i

ℏĤ0

)
Û0(−t′)︷ ︸︸ ︷

d
dt′

[
Û(+t′)Û0(−t′)

]
dt′ = Î − i

ℏ

t∫
0

Û(+t′)V̂ Û0(−t′)dt′

Û(−t)Û0(+t) = Î +
t∫
0

d
dt′

[
Û(−t′)Û0(+t′)

]
︸ ︷︷ ︸

Û(−t′)
(
+ i

ℏĤ
)
Û0(t′)+Û(−t′)

(
− i

ℏĤ0

)
Û0(t′)

dt′ = Î + i
ℏ

t∫
0

Û(−t′)V̂ Û0(+t′)dt′

▶ Transformation to t = 0

We consider a scattering process in which the initial state |Ψ(−∞)⟩ of the par-
ticles involved is prepared at time t→−∞ and evolves to a final state |Ψ(+∞)⟩
at t→+∞. A quantum measurement of scattering products may identify the
final state with a plethora of other states |Ψ′(+∞)⟩. The task is to determine
the amplitudes ⟨Ψ′(+∞)|Ψ(+∞)⟩, which characterize the corresponding tran-
sitions from |Ψ(−∞)⟩ to |Ψ′(+∞)⟩. From unitarity of quantum evolution we
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get ⟨Ψ′(+∞)|Ψ(+∞)⟩ = ⟨Ψ′(t)|Ψ(t)⟩, so the
transition amplitudes can be obtained
from the corresponding evolving
states at any finite time t.

We assume that the interaction
between the particles takes place
only in a limited time domain near
t≈0, so it is quite natural to shift
all the evolving states to t=0.
To avoid distortions of the total wavefunctions by the interaction potentials,
we perform the shift using the free evolution operator:

incoming state |Ψ(−∞)⟩ −→ |Ψin⟩ = lim
t→∞

Û0(+t)

|Ψ(−t)⟩︷ ︸︸ ︷
Û(−t)|Ψ(0)⟩

outgoing state |Ψ′(+∞)⟩ −→ |Ψout⟩ = lim
t→∞

Û0(−t) Û(+t)|Ψ′(0)⟩︸ ︷︷ ︸
|Ψ′(+t)⟩From this and from the above prepared relations we obtain:

|Ψ(0)⟩ = lim
t→∞

Û(+t)Û0(−t)|Ψin⟩ =
[
Î − i

ℏ
∫∞
0 Û(+t′)V̂ Û0(−t′)dt′

]
|Ψin⟩

|Ψ′(0)⟩ = lim
t→∞

Û(−t)Û0(+t)|Ψout⟩ =
[
Î + i

ℏ
∫∞
0 Û(−t′)V̂ Û0(+t′)dt′

]
|Ψout⟩

▶ Expansion of incoming & outgoing states to “plane waves”

We now use the eigenbasis {|ΦEn⟩} of the free Hamiltonian: Ĥ0|ΦEn⟩ = E|ΦEn⟩
In case of a potential scattering, these states would be plane waves, with n de-
noting a degeneracy index which determines the direction of wave propagation.
In the 1D space (e.g., in tunneling problems) the index takes only 2 discrete
values n=±1, while in 2D & 3D scattering problems it is a continuous quantity
expressing a unit vector n⃗.
The expansion the incoming & outgoing states yields

|Ψin⟩ =
∫
dE

∑
n

αEn|ΦEn⟩ |Ψout⟩ =
∫
dE

∑
n

α′
En|ΦEn⟩

where αEn, α
′
En ≡ coefficients and

∑
n possibly means an integral

∫
dn⃗.

From the above-derived expressions we obtain:

|Ψ(0)⟩ =
∫
dE

∑
n

αEn

|Ψ+
En⟩︷ ︸︸ ︷[

Î − i
ℏ

∫ ∞

0

Û(+t′)V̂ Û0(−t′)dt′
]
|ΦEn⟩

|Ψ′(0)⟩ =
∫
dE

∑
n

α′
En

[
Î + i

ℏ

∫ ∞

0

Û(−t′)V̂ Û0(+t′)dt′
]
|ΦEn⟩

︸ ︷︷ ︸
|Ψ−

En⟩
⇒ ⟨Ψ′0)|Ψ(0)⟩ =

�

dE dE ′ ∑
n,n′

α∗
E′n′αEn⟨Ψ−

E′n′|Ψ+
En⟩
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▶ Equations for |Ψ±
En⟩

For the incoming & outgoing states identified with plane waves |ΦEn⟩ & |ΦE′n′⟩,
respectively, the above relation can be diagrammatically expressed in the form:

incoming state t=0 state outgoing state
|Ψin⟩= |ΦEn⟩ −→ |Ψ+

En⟩
|Ψ−

E′n′⟩ ←− |ΦE′n′⟩= |Ψout⟩
⇒




amplitude of
|ΦEn⟩ → |ΦE′n′⟩
transition
= ⟨Ψ−

E′n′|Ψ+
En⟩

The vectors |Ψ±
En⟩ can be further evaluated as:

|Ψ+
En⟩

=

Î− i

ℏ

∞
0

e−
i
ℏĤt′e+

i
ℏEt′dt′


V̂ |ΦEn⟩

=

Î− lim

ϵ→0+

i
ℏ

∞
0

e−
i
ℏ (Ĥ−E−iϵ)t′dt′


V̂ |ΦEn⟩

=

Î+lim

ϵ→0+

1
E−Ĥ+iϵ

V̂

|ΦEn⟩

|Ψ−
En⟩

=

Î+ i

ℏ

∞
0

e+
i
ℏĤt′e−

i
ℏEt′dt′


V̂ |ΦEn⟩

=

Î+lim

ϵ→0+

i
ℏ

∞
0

e+
i
ℏ (Ĥ−E+iϵ)t′dt′


V̂ |ΦEn⟩

=

Î+lim

ϵ→0+

1
E−Ĥ−iϵ

V̂

|ΦEn⟩

Skipping the “lim” symbol (see the definition of the Green operator) we get:

|Ψ±
En⟩ =


Î +

Ĝ±(E)  
1

E − Ĥ ± iϵ
V̂


|ΦEn⟩

Lippmann-Schwinger equation
in explicit form (LSE)

In principle, this formula explicitly determines the desired states |Ψ±
En⟩ for

each plane wave |ΦEn⟩. However, to evaluate the full Green operators Ĝ±(E)
for a general Hamiltonian Ĥ=Ĥ0+V̂ is usually a difficult task. We would like
to use the free Green operators Ĝ±

0 (E) associated with Ĥ0 only. Manipulating
with the LSE equation |Ψ±

En⟩=

Î+ 1

E−Ĥ0−V̂±iϵ
V̂

|ΦEn⟩ we obtain:

(E−Ĥ0−V̂ ±iϵ)|Ψ±
En⟩=[E−Ĥ0−V̂ ±iϵ+V̂ ]|ΦEn⟩

(E−Ĥ0±iϵ)|Ψ±
En⟩=[E−Ĥ0±iϵ]|ΦEn⟩+V̂ |Ψ±

En⟩

|Ψ±
En⟩ = |ΦEn⟩+

Ĝ±
0 (E)  
1

E − Ĥ0 ± iϵ
V̂ |Ψ±

En⟩
Lippmann-Schwinger equation
in implicit form (LSI)

This formula indeed makes use of the free Green operators, but the price we
pay for this is that the searched solution |Ψ±

En⟩ occurs also on the right-hand
side of the equation, so it is determined only implicitly. Fortunately, as shown
below, the solution can be written in an iterative form.

We may consider both the LSE & LSI equations as modified forms of the
Schrödinger equation, which are however tailored directly to the scattering
problem. Indeed, using Ĥ0|ΦEn⟩ = E|ΦEn⟩ in the equation above the LSI yields:
(E−Ĥ0±iϵ)|Ψ±

En⟩=[E−E±iϵ]|ΦEn⟩+V̂ |Ψ±
En⟩ ⇒ (Ĥ0+V̂ )|Ψ±

En⟩=E|Ψ±
En⟩
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⇒ |Ψ±
En⟩ is a solution of the stationary Schrödinger equation with the full

Hamiltonian Ĥ which has the property: |Ψ±
En⟩ → |ΦEn⟩ for V̂ → 0

▶ Iterative solution of the LSI

The LSI can apparently be expanded in an iterative way. If we repeatedly
substitute |ΦEn⟩+Ĝ±

0 (E)V̂ |Ψ±
En⟩ for |Ψ

±
En⟩ on the right-hand side, we obtain:

|Ψ±
En⟩ =

[
Î + Ĝ±

0 (E)V̂ + Ĝ±
0 (E)V̂ Ĝ±

0 (E)V̂ + · · · · · ·
]
|ΦEn⟩

This is apparently a series in powers of V̂ , so if the interaction is small com-
pared to the free Hamiltonian, the series can be understood as a perturbative
expansion of the solution |Ψ±

En⟩.
This can be equivalently expressed
through the T -operator defined by:

T̂±(E)|ΦEn⟩ = V̂ |Ψ±
En⟩

The LSI in terms of this operator reads as: |Ψ±
En⟩=[Î+ Ĝ±

0 (E)T̂±(E)]|ΦEn⟩.
Multiplying this formula by V̂ from left we obtain:
T̂±(E)|ΦEn⟩=[V̂ +V̂ Ĝ±

0 (E)T̂±(E)]|ΦEn⟩ ⇒ T̂±(E)= V̂ +V̂ Ĝ±
0 (E)T̂±(E)

⇒ T̂±(E) = V̂ + V̂ Ĝ±
0 (E)V̂ + V̂ Ĝ±

0 (E)V̂ Ĝ±
0 (E)V̂ + · · · · · ·

▶ S-matrix

The scattering matrix Ŝ (so-called S-matrix, cf. Sec. 11) expresses probability
amplitudes of transitions |ΦEn⟩ −→ |ΦE′n′⟩ that occur in the scattering process.
We already know that this amplitude is equal to ⟨Ψ−

E′n′|Ψ+
En⟩, so we can write:

⟨ΦE′n′|Ŝ|ΦEn⟩ = ⟨Ψ−
E′n′|Ψ+

En⟩

Using LSE & LSI consecutively on both sides of the scalar product we derive:

⟨Ψ−
E′n′︸ ︷︷ ︸

LSE...

|Ψ+
En⟩ = ⟨ΦE′n′|Î+ V̂ 1

E′−Ĥ+iϵ
|Ψ+

En⟩ = ⟨ΦE′n′|Ψ+
En︸︷︷︸

LSI...

⟩+⟨ΦE′n′|V̂ |Ψ+
En⟩

1
E′−E+iϵ

= ⟨ΦE′n′|ΦEn⟩+ ⟨ΦE′n′|

1
E−E′+iϵ︷ ︸︸ ︷

1
E−Ĥ0+iϵ

V̂ |Ψ+
En⟩+ ⟨ΦE′n′|V̂ |Ψ+

En⟩
1

E′−E+iϵ

= ⟨ΦE′n′|ΦEn⟩︸ ︷︷ ︸
δ(E−E′)δnn′

+
(

1
E−E′+iϵ +

1
E′−E+iϵ

)
︸ ︷︷ ︸

−2iπ 1
π

ϵ
(E−E′)2+ϵ2

ϵ→0−→ −2iπδ(E−E′)

⟨ΦE′n′|V̂ |Ψ+
En⟩

⇒ ⟨ΦE′n′|Ŝ|ΦEn⟩ = δ(E−E ′)δnn′ − 2iπ δ(E−E ′) ⟨ΦE′n′|V̂ |Ψ+
En⟩

From the T -operator expression we finally obtain:

⟨ΦE′n′|Ŝ|ΦEn⟩ = δ(E−E ′) ×[
δnn′ − 2iπ ⟨ΦE′n′|V̂ +V̂ Ĝ±

0 (E)V̂ +V̂ Ĝ±
0 (E)V̂ Ĝ±

0 (E)V̂ +· · · |ΦEn⟩
]
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◀ Historical remark
1937: J.A.Wheeler introduces the scattering matrix in nuclear processes
1943-4: W.Heisenberg elaborates a general scheme of the S-matrix theory
1950: B.A. Lippmann & J. Schwinger derive the LSE & LSI equations

■ Application to elastic scattering

The above-developed theory based on the Lippmann-Schwinger equation and
its iterative solution will now be applied in the simplest setting of the elastic
scattering (no change of the target/projectile internal structure). We move
back from the S-matrix to the description using the differential cross section.

▶ Evaluation of LSI for elastic scattering by a potential V (x⃗)

The general notation is transformed to the coordinate representation:

|Ψ±
En⟩ ≡ ψ±

k⃗
(x⃗) and |ΦEn⟩ ≡ ϕk⃗(x⃗) with k⃗ ≡ the initial wave vector

The LSI+ equation: ψ+

k⃗
(x⃗)=ϕk⃗(x⃗)+

∫ 〈
x⃗
∣∣ 1
E−Ĥ0+iℏϵ

∣∣x⃗ ′〉⟨x⃗ ′|V̂ |ψ+

k⃗
⟩ dx⃗ ′

(a) ⟨x⃗ ′|V̂ |ψ+

k⃗
⟩ = V (x⃗ ′)ψ+

k⃗
(x⃗ ′) local potential

(b)
〈
x⃗
∣∣ 1
E−Ĥ0+iℏϵ

∣∣x⃗ ′〉 = � ⟨x⃗|p⃗ ′⟩︸ ︷︷ ︸
1

(2πℏ)
3
2
e+

i
ℏ p⃗ ′·x⃗

〈
p⃗ ′∣∣ 1

E−Ĥ0+iℏϵ

∣∣p⃗ ′′〉
︸ ︷︷ ︸

1
E− 1

2M p⃗ ′2+iℏϵδ(p⃗
′−p⃗ ′′)

⟨p⃗ ′′|x⃗ ′⟩︸ ︷︷ ︸
1

(2πℏ)
3
2
e−

i
ℏ p⃗ ′′·x⃗ ′

dp⃗ ′dp⃗ ′′ = . . .

E ≡ (ℏk)2
2M

2Mϵ
ℏ ≡ ε p⃗ ′ ≡ ℏq⃗ polar coordinates of q⃗ with n⃗z ∝ (x⃗−x⃗ ′)

= 1
(2πℏ)3

∫
e
i
ℏ p⃗ ′·(x⃗−x⃗ ′)

E− 1
2M p⃗ ′2+iℏϵ dp⃗

′= 2M
ℏ2(2π)3

∫
eiq⃗·(x⃗−x⃗ ′)

k2−q2+iε dq⃗=
2M

ℏ2(2π)3
∞∫
0

2π∫
0

π∫
0

eiq|x⃗−x⃗ ′| cosϑ

k2−q2+iε q2sinϑdφdϑdq

= 2M
(2πℏ)2

∞∫
0

[
−eiq|x⃗−x⃗ ′| cosϑ

iq|x⃗−x⃗ ′|

]ϑ=π

ϑ=0

1
k2−q2+iεq

2dq = − 2M
(2πℏ)2

1
i|x⃗−x⃗ ′|

∞∫
0

e+iq|x⃗−x⃗ ′|−e−iq|x⃗−x⃗ ′|

q2−k2−iε q dq

Poles at q = ±
√
k2 + iε ≈ ±

(
k + i ε

2k

)
⇒ use the residuum theorem

= − 2M
(2πℏ)2

1
i|x⃗−x⃗ ′|

1
2

[ +∞∫

−∞

e+iq|x⃗−x⃗ ′|

q2−k2−iε q dq

︸ ︷︷ ︸
→2πi eik|x⃗−x⃗ ′|

2k k

−
+∞∫

−∞

e−iq|x⃗−x⃗ ′|

q2−k2−iε q dq

︸ ︷︷ ︸
→−2πi eik|x⃗−x⃗ ′|

2k k

]
ε→0−→ −2M

ℏ2
1
4π

eik|x⃗−x⃗ ′|

|x⃗− x⃗ ′|︸ ︷︷ ︸
=⟨x⃗|Ĝ+

0 (E)|x⃗ ′⟩

The free Green function ⟨x⃗|Ĝ+
0 (E)|x⃗ ′⟩≡G+

k (x⃗, x⃗
′)

in x-representation satisfies the following equation:
(∆ + k2)G+

k (x⃗, x⃗
′) = δ(x⃗− x⃗ ′)

LSI+ in x-representation:

ψ+

k⃗
(x⃗) = ϕk⃗(x⃗)−

2M
ℏ2

1
4π

∫
eik|x⃗−x⃗ ′|

|x⃗−x⃗ ′| V (x⃗ ′)ψ+

k⃗
(x⃗ ′) dx⃗ ′
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▶ Asymptotic wavefunction for a finite-range potential

Now we show that for finite-range potentials the solutions ψ+

k⃗
(x⃗) of the above

LSI+ equation automatically satisfies the asymptotic condition for the elastic
scattering, ψ+

k⃗
(x⃗) ∝ eik⃗·x⃗ + fk⃗(ϑ, φ)

eikr

r , where (ϑ, φ) are spherical angles with

respect to n⃗z =
k⃗
k . To this end, assume V (x⃗) ≈ 0 for |x⃗|>R and consider ψ+

k⃗
(x⃗)

for |x⃗| ≫ R ≳ |x⃗ ′|:

|x⃗−x⃗ ′| =
√
r2+r′2−2rr′ cosα

≈ r+ d
dr′

√
r2+r′2−2rr′ cosα

∣∣
r′=0

r′

= r−r′ cosα

⇒ eik|x⃗−x⃗ ′|

|x⃗−x⃗ ′| ≈ e−ikr′ cosα eikr

r

k⃗ ′ = k
x⃗

|x⃗|

scattering
direction

⇒ ψ+

k⃗
(x⃗) =

(2π)−
3
2 eik⃗·x⃗︷ ︸︸ ︷

ϕk⃗(x⃗)+

[
−2M

ℏ2
1
4π

(2π)
3
2 ⟨ϕk⃗′ |V̂ |ψ+

k⃗
⟩︷ ︸︸ ︷∫

e−ik⃗ ′·x⃗ ′
V (x⃗ ′)ψ+

k⃗
(x⃗ ′) dx⃗ ′

]

︸ ︷︷ ︸
(2π)−

3
2 fk⃗(k⃗

′)

eikr

r

LSI+ equation

⇒ explicit expression of the scattering amplitude from the exact solution ψ+

k⃗
(x⃗):

fk⃗(ϑ, φ) ≡ fk⃗(k⃗
′) = −2M

ℏ2

√
π
2

∫
e−ik⃗ ′·x⃗ ′

V (x⃗ ′)ψ+

k⃗
(x⃗ ′) dx⃗ ′ = −4π2M

ℏ2 ⟨ϕk⃗′|V̂ |ψ+

k⃗
⟩

▶ Born series

With the aid of the T -operator defined by V̂ |ψ+

k⃗
⟩ = T̂+(E)|ϕk⃗⟩ with E = (ℏk)2

2M
and using the above-derived iterative expression

T̂+(E) = V̂ + V̂ 1
E−Ĥ0+iℏϵ

V̂ + V̂ 1
E−Ĥ0+iℏϵ

V̂ 1
E−Ĥ0+iℏϵ

V̂ + · · · · · · ,
we obtain the so-called Born series of the scattering amplitude:

fk⃗(k⃗
′) = −4π2M

ℏ2 ⟨ϕk⃗′|T̂
+(E)|ϕk⃗⟩ = lim

m→∞

m∑
n=1

fnk⃗(k⃗
′)︸ ︷︷ ︸

f
(m)

k⃗
(k⃗ ′)

f1k⃗(k⃗
′) = −4π2M

ℏ2 ⟨ϕk⃗′|V̂ |ϕk⃗⟩
f2k⃗(k⃗

′) = −4π2M
ℏ2 ⟨ϕk⃗′|V̂

1
E−Ĥ0+iℏη

V̂ |ϕk⃗⟩
f3k⃗(k⃗

′) = −4π2M
ℏ2 ⟨ϕk⃗′|V̂

1
E−Ĥ0+iℏη

V̂ 1
E−Ĥ0+iℏη

V̂ |ϕk⃗⟩
· · · · · ·

Interpretation through
a sequence of free evolutions
and point interactions
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▶ Relation to non-stationary perturbation theory

We confine the system into a finite box of linear size L. A normalized plane

wave in the box is given by |ϕ̃k⃗⟩ ≡
1

L
3
2
eik⃗·x⃗ with k⃗ = 2π

L n⃗, where n⃗ =
(

nx
ny
nz

)

satisfies the quantization condition nx, ny, nz = 0, 1, 2, . . .

The |ϕ̃k⃗⟩ → |ϕ̃k⃗ ′⟩ transition rate can be obtained from the Fermi golden rule,
as well as from the corresponding differential cross section:

Rk⃗→k⃗′ =
2π
ℏ |⟨ϕ̃k⃗′|V̂ |ϕ̃k⃗⟩|

2 ϱf(E) = |⃗jin|
(
dσ
dΩ

)
k⃗
(k⃗ ′) dΩ

(a) |⟨ϕ̃k⃗′|V̂ |ϕ̃k⃗⟩|
2 = 1

L6

∣∣∣∫ ei(k⃗−k⃗ ′)·x⃗ ′
V (x⃗ ′) dx⃗ ′

∣∣∣
2

(b) ϱf(E) = dN
dE =

( L
2π)

3
k2 dk dΩ

ℏ2k
M dk

=
(
L
2π

)3 Mk
ℏ2 dΩ with E = (ℏk)2

2M

(c) |⃗jin| = ℏk
L3M

⇒
(
dσ
dΩ

)
k⃗
(k⃗ ′) =

(
4π2M
ℏ2

)2 ∣∣∣ 1
(2π)3

∫
ei(k⃗−k⃗ ′)·x⃗ ′

V (x⃗ ′) dx⃗ ′
∣∣∣
2

≡ |f (1)

k⃗
(k⃗ ′)|2

Therefore, we see that the nonstationary perturbation theory in the first order
yields the same expression as the first-order Born approximation.

▶ Convergence criteria

The Born series for scattering amplitude converges for finite-range potentials.
For infinite-range potentials, the series may converge if the potential decreases
“fast enough”. For a given potential V (x⃗) there exists a function of energy
λmax(E) (convergence radius) such that the Born series of a scaled potential
Vλ(x⃗) ≡ λV (x⃗) converges for λ ≤ λmax(E).

▶ First Born approximation for spherically symmetric potentials

For potentials depending just on r = |x⃗| the integration in each term of the
Born series is reduced. For the first term, in particular, we proceed as follows:

f
(1)

k⃗
(k⃗ ′) = −4π2M

ℏ2
1

(2π)3

∫
ei(k⃗−k⃗ ′)·x⃗ ′

V (|x⃗ ′|) dx⃗ ′ Fourier transform of V

transferred momentum ℏq⃗ = ℏ(k⃗ ′−k⃗)

q = |⃗k ′−k⃗| =
√
k′2 + k2 − 2k′k cosϑ

=
√
2k2(1− cosϑ) = 2k sin ϑ

2

We introduce a local coordinate system (x′, y′, z′) with z′ along q⃗ and then
spherical coordinates (r′, θ′, ϕ′):

f
(1)

k⃗
(k⃗ ′) = − M

2πℏ2
∞∫
0

π∫
0

2π∫
0

e−iqr′ cos θ′V (r′) r′2 sin θ′ dϕ′ dθ′ dr′ =
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−M
ℏ2

∞∫
0

[
e−iqr′ cos θ′

−iqr′

]π
0︸ ︷︷ ︸

− 2 sin qr′
qr′

V (r′) r′2dr′ ⇒ f
(1)

k⃗
(k⃗ ′)=

M
ℏ2k sin ϑ

2

∞∫

0

r′V (r′) sin
(
2kr′sin ϑ

2

)
dr′

We see that the scattering amplitude depends only on angle ϑ (not on φ),
which remains valid for all terms of the Born series. This can be seen directly
from the axial symmetry of the problem with an isotropic potential around the
incoming-particle direction.

▶ Yukawa scattering

Scattering by Yukawa potential V (r) = K
e−αr

r
with α > 0

f
(1)

k⃗
(k⃗ ′)= KM

ℏ2k sin ϑ
2︸ ︷︷ ︸

q/2

∞∫
0

e−αr′sin
(
2kr′ sin ϑ

2

)
︸ ︷︷ ︸

1
2i [e

+iqr′−e−iqr′ ]

dr′

= 2KM
ℏ2

1
2iq

+2iq

α2+q2︷ ︸︸ ︷[ ∞∫

0

e(−α+iq)r′dr′−
∞∫

0

e(−α−iq)r′dr′
]
= 2KM

ℏ2
1

α2+4k2 sin2 ϑ
2

⇒
(
dσ
dΩ

)(1)
k
(ϑ) =

(
2KM
ℏ2

)2 1[
α2 + 4k2 sin2 ϑ

2

]2

The α → 0 limit ⇒ Rutherford formula:
(
dσ
dΩ

)
p
(ϑ) =

(
M
2

q q′

4πϵ0

)2
1

p4 sin4 ϑ
2

This formula can be obtained classically (it does not contain ℏ). However,
Coulomb scattering cannot be described by the spherical-wave asymptotics
used here, as this asymptotics is applicable only for finite-range or quickly
decreasing potentials (cf. Sec. 13).

◀ Historical remark
1911: E.Rutherford derives classically the cross-section formula for Coulomb scat-
tering to describe the 1909 experiment by H.Geiger & E.Marsden
1926: M.Born describes the scattering processes within QM; he derives explicitly
the first approximation of a general scattering amplitude
1935: H.Yukawa introduces the potential for meson-mediated interaction of nucle-
ons; this potential is now used to describe screened Coulomb interactions

13. SCATTERING: PARTIAL WAVES

We turn now to another method of analyzing scattering processes. It relies on the
assumption of spherical symmetry of all terms of the total Hamiltonian. This
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allows one to express the cross section as a series of contributions associated with
orbital angular momentum quantum numbers l = 0, 1, 2, . . . The series is formally
infinite, but for finite-range potentials and a finite projectile energy E it is effectively
terminated above a certain maximal value l= lmax(E) corresponding to the maximal
orbital angular momentum for which the projectile passes through the interaction
region. So we again deal with a kind of expansion, but of a completely different
nature than the above perturbative expansion.

■ Elastic scattering via partial waves

The basic idea of the method is to express the scattered particle wavefunction
in terms of states with different conserved values (for spherically symmetric
potentials) of the orbital angular momentum.

▶Expansion of the asymptotic wavefunction ψk⃗(x⃗)≈
1

(2π)
3
2

[
eikz+fk(ϑ)

eikr

r

]

for a general isotropic potential V (r) in the orbital-momentum basis:

|klm⟩ ∝ Rkl(r)Ylm(ϑ, φ) with l,m ≡ conserved quantum numbers.

Since z is associated with the direction of the linear momentum of the incoming

particle, the angular-momentum projection to z is 0 ⇒ only m = 0 compo-
nents Yl0(ϑ, φ) ∝ Pl(cosϑ) [≡ Pl0(cosϑ)] contribute to the expansion:

(a) Expansion of the incoming plane wave into spherical waves:

eikz =
∞∑
l=0

(2l + 1)iljl(kr)Pl(cosϑ) ≈
∞∑
l=0

(2l + 1)e
+ikr−e−i(kr−lπ)

2ikr Pl(cosϑ)

where we used asymptotics of Bessel functions for r ≫ 1
k = ℏ

p = λ
2π :

jl(kr) ∼
sin(kr−lπ2 )

kr = e+i(kr−l π2 )−e−i(kr−l π2 )

2ikr

(b) Expansion of scattering amplitude: fk(ϑ) =
∞∑
l=0

(2l+1)Fl(k)Pl(cosϑ)

This is a general expansion of an arbi-
trary function of angle ϑ, the unknown
coefficients Fl(k) expressing the individual partial-wave amplitudes

The entire asymptotic wavefunction then reads as:

ψk⃗(x⃗) ≈
1

(2π)
3
2

∞∑
l=0

(2l + 1) 1
2ik

{
[1 + 2ikFl(k)]︸ ︷︷ ︸

Sl(k)

e+ikr

r
− e−i(kr−lπ)

r

}
Pl(cosϑ)

▶ S-matrix element

Parameter Sl(k) in the above expression is the diagonal element of the S-matrix
in the basis |+klm⟩ of outgoing spherical waves with given l, k. We derive
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a relation of Sl(k) to the S-matrix in the plane-wave basis. From Sec. 12 we
know: ⟨ΦE′n′|Ŝ|ΦEn⟩ = δ(E−E ′)

[
δnn′ − 2iπ ⟨ΦE′n′|T̂+(E)|ΦEn⟩

]

⇒ ⟨ϕk⃗′|Ŝ|ϕk⃗⟩ = δ(k⃗−k⃗′)− 2iπ M
ℏ2k δ(k−k′) ⟨ϕk⃗′|T̂

+(E)|ϕk⃗⟩︸ ︷︷ ︸
− ℏ2

4π2Mfk⃗(k⃗
′)cosϑ = k⃗′ ·⃗k

k′k

⇒ ⟨ϕk⃗′|Ŝ|ϕk⃗⟩ = δ(k⃗−k⃗′) + i
2πk δ(k−k′)

∑
l

(2l+1)
Sl(k)−1

2ik Pl(cosϑ)

︷ ︸︸ ︷
fk⃗(k⃗

′) =

= δ(k⃗−⃗k′)︸ ︷︷ ︸
1

2πk2
δ(k−k′)δ(cosϑ−1)

− 1
4πk2δ(k−k′)

∑
l
(2l+1)Pl(cosϑ)︸ ︷︷ ︸

2δ(cosϑ−1)

+ 1
4πk2δ(k−k′)

∑
l

(2l+1)Sl(k)Pl(cosϑ)

⇐ completeness of Legendre polyns.∑
l

(2l+1)Pl(x)Pl(y) = 2δ(x− y)
∞∫
0

π∫
0

2π∫
0

1
2πk2

δ(k−k′)δ(cosϑ−1)k2sinϑ dk dϑ dφ = 1

⟨ϕk⃗′|Ŝ|ϕk⃗⟩ = δ(k−k′) 1
4πk2

∑
l

(2l+1)Sl(k)Pl(cosϑ)
expansion of S-matrix
to Lagendre polynomials

▶ Equivalent parametrizations of the scattering amplitude

The continuity equation ⇒ incoming flux = outgoing flux (this is sometimes
called the unitarity condition) ⇒ coefficients for each l at e+ikr

r and e−ikr

r differ

just by a phase ⇒ |Sl(k)| = 1

1 + 2ikFl(k) = Sl(k) = e2iδl(k) ⇔ Fl(k) =
Sl(k)− 1

2ik
= eiδl(k)

sin δl(k)

k

δl(k) ≡ a relative phase shift of the
outgoing partial wave l

The above relations define alternative
(equivalent) parametrizations of the
scattering amplitude & elastic cross section
via quantities Fl(k) ←→ Sl(k) ←→ δl(k)

The scattering amplitude:

fk(ϑ)=
1

2ik

∞∑
l=0

(2l+1)[Sl(k)−1]Pl(cosϑ)=
1

k

∞∑
l=0

(2l+1) eiδl(k) sin δl(k)Pl(cosϑ)

▶ Differential cross section of elastic scattering = |fk(ϑ)|2(
dσ
dΩ

)
k
(ϑ) =

∑
l,l′
(2l+1)(2l+1)Fl(k)F

∗
l′ (k)Pl(cosϑ)Pl′(cosϑ)

= 1
4k2

∑
l,l′
(2l+1)(2l′+1)[Sl(k)−1][S∗

l′(k)−1]Pl(cosϑ)Pl′(cosϑ)

= 1
k2

∑
l,l′
(2l+1)(2l′+1) sin δl(k) sin δl′(k)e

i[δl(k)−δl′(k)]Pl(cosϑ)Pl′(cosϑ)
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▶ Integral cross section of elastic scattering

Integrating the differential cross section over the full space angle we obtain the
integral cross section:

σel(k) =
2π∫
0

π∫
0

|fk(ϑ)|2 sinϑ dφ dϑ

σel(k) = 2π
∑
l,l′
(2l+1)(2l′+1)Fl(k)F

∗
l (k)

2
2l+1δll′︷ ︸︸ ︷

π∫

0

Pl(cosϑ)Pl′(cosϑ) sinϑ dϑ︸ ︷︷ ︸
d(cosϑ)

σel(k)=4π
∞∑
l=0

(2l+1)|Fl(k)|2=
π

k2

∞∑
l=0

(2l+1)|Sl(k)−1|2= 4π

k2

∞∑
l=0

(2l+1) sin2δl(k)

σel(k) =
∞∑
l=0

σel
l (k) σel

l (k)=0 for [ Fl(k)=0 ⇔ sin δl(k)=0 ⇔ Sl(k)=1 ]

▶ Classical calculation via the impact factor

The above expressions of the integral cross sections can be interpreted in a clas-
sical language, making use of the so-called impact factor b defined as the trans-
verse projectile–target distance for z → −∞

Orbital momentum L︸︷︷︸√
ℏ2l(l+1)

= b p︸︷︷︸
ℏk

⇒ for given l we have: bl(k) ≈
√

l(l+1)

k

Estimated cross section of lth part. wave:
σel
l (k) = π(b2

l+ 1
2

−b2
l− 1

2

) = π
k2 (2l+1)

In the quantum calculation we obtained:

σel
l (k) =

π
k2 (2l+1)

∈[0,4]︷ ︸︸ ︷
4 sin2 δl(k)

The quantum factor 4 sin2 δl(k) expresses constructive/destructive interference
effects in each term σel

l (k)

▶ Estimate of maximal angular momentum

The classical impact-factor considerations make it possible to estimate the up-
per value of l where the cross-section series can be cut off. This value is obtained
from the maximal angular momentum for which the particle still hits the finite
spatial region of nonzero potential. For a potential satisfying V (r)≈0 for r>R

we expect σel
l (k) ≈ 0 for l>lmax(k) ≈ kR

In this way, all infinite sums become effectively finite sums:

∞∑
l=0

−→
lmax∑
l=0

▶ Determination of phase shifts from the actual solution

If we happen to know the actual unbound solution of the Schrödinger equation
for the given potential (with the given energy in the continuous spectrum),
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we can directly calculate the required phase shifts & amplitudes of individual
partial waves:

Radial Schrödinger equation d2ukl(r)
dr2 −

[
2M
ℏ2 V (r) + l(l+1)

r2

]
ukl(r) + k2ukl(r) = 0

Solution Rkl(r) =
ukl(r)

r outside the range of the potential (for r≥R):

= al jl(kr) + bl nl(kr) = c+l h+
l (kr) + c−l h−

l (kr)

jl(kr), nl(kr) ≡ Bessel, Neumann h±
l (kr) = jl(kr)± inl(kr) ≡ Hankel

functions with asymptotics: functions with asymptotics:
jl(kr) ≈ 1

kr sin
(
kr−lπ2

)
= 1

kr cos
[
kr−(l+1)π2

]
nl(kr) ≈ − 1

kr cos
(
kr−lπ2

)
= 1

kr sin
[
kr−(l+1)π2

]
h+
l (kr) ≈ 1

kre
+i[kr−(l+1)π2 ]

h−
l (kr) ≈ 1

kre
−i[kr−(l+1)π2 ]

The general form of r≥R wavefunction yielding ψkl(x⃗)=
1

(2π)3/2
eikz for V (r)=0:

ψkl(x⃗) =
1

(2π)
3
2

∞∑
l=0

(2l+1)il

Rkl(r)︷ ︸︸ ︷[
c+l h

+
l (kr) + c−l h

−
l (kr)

]
Pl(cosϑ)

≈ 1

(2π)
3
2

∞∑
l=0

(2l+1) 1
ik

[
c+l

e+ikr

r − c−l
e−i(kr−lπ)

r

]
Pl(cosϑ)

This is compared with the required asymptotics:

ψk⃗(x⃗) =
1

(2π)
3
2

∞∑
l=0

(2l+1) 1
2ik

[
e2iδl(k) e

+ikr

r − e−i(kr−lπ)

r

]
Pl(cosϑ)

⇒ r ≥ R solution of radial Schrödinger eq. expressed in terms of δl(k):

c+l =
e2iδl(k)

2 , c−l =
1
2 ⇒ Rkl(r) =

e2iδl(k)

2 [jl(kr)+inl(kr)]+
1
2 [jl(kr)−inl(kr)]

Rkl(r) = eiδl(k)
[
cos δl(k) jl(kr)− sin δl(k) nl(kr)

]

For kr ≫ l we get: Rkl(r) ≈ eiδl(k)

kr

[
cos δl(k) sin(kr−lπ2 )−sin δl(k) cos(kr−lπ2 )

]
=

eiδl(k)

kr sin
(
kr−lπ2+δl(k)

) r→∞
≈ Rkl(r)So δl(k) is really a phase shift of the

asymptotic partial wave with respect
to the V =0 solution, which has δl(k)=0 ∀l because nl(kr) is not in eikz.
Conclusion: If one writes the actual asymptotic solution of the radial Schrödin-
ger equation in the above form (using Bessel&Neumann or Hankel functions),
the phase shifts δl(k) for all partial waves are read out from that expression.

▶ Phase shifts for a sharp finite-range potential

The above-described general method yields explicit results for potentials that

vanish identically outside the range R:
V (r)

{
̸= 0 for r ≤ R (inside)
= 0 for r > R (outside)

We require continuous connection of “inside-outside” logarithmic derivative
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βkl(R) ≡ R d
dr lnRkl(r)

∣∣
r=R

= R
R′

kl(r)
Rkl(r)

∣∣∣
r=R

∀ l = 0, 1, 2 . . .

βkl(R)=kR
cos δl(k)

djl
dr (kR)−sin δl(k)

dnl
dr (kR)

cos δl(k) jl(kR)−sin δl(k)nl(kR) ⇔ tan δl(k)=
kR djl

dr (kR)−βkl(R) jl(kR)

kR dnl

dr (kR)−βkl(R)nl(kR)

Calculating the values of the logarithmic derivative βkl(R) from the inside so-
lution, we can determine all phase shifts δl(k) ⇒ solve the scattering problem.

▶ Hard-sphere scattering

V (r) =

{
∞ for r ≤ R
0 for r > R

Rkl(R) = eiδl(k)
[
cos δl(k) jl(kR)− sin δl(k) nl(kR)

]
= 0 ⇒ tan δl(k)=

jl(kR)

nl(kR)

l=0: j0(kR)= sin kR
kR , n0(kR)=−cos kR

kR ⇒ δ0(k) = −kR

(a) High-energy case (kR ≫ 1)

l ≪ kR ⇒ jl(kR) ≈ 1
kR sin(kR− lπ2 ), nl(kR) ≈ − 1

kR cos(kR− lπ2 )

⇒ tan δl(k) = − tan
(
kR− lπ2

)
⇒ the lth and (l+1)th phase shifts differ by π

2

⇒ their contrib. to σel is 4π
k2

[
(2l+1) sin2 δl(k)+(2l+3) cos2 δl(k)

]
≈ 4π

k2 (2l+2)

⇒ each l-term of the series contributes by ≈ 4π
k2

2l+2
2

l ≫ kR ⇒ jl(kR) ≈ (kR)l

(2l+1)!! , nl(kR) ≈ − (2l−1)!!
(kR)l+1

⇒ tan δl(k) ≈ − (kR)2l+1

(2l+1)!!(2l−1)!! ⇒ tan δl+1(k) ≈
(
kR
2l

)2
︸ ︷︷ ︸
≪1

tan δl(k) ⇒ decreasewith l

Assume lmax ≈ kR

σel(k) ≈ 4π
k2

lmax∑
l=0

(2l+1) sin2 δl(k) ≈ 4π
k2

≈ (kR)2

2︷ ︸︸ ︷
kR∑
l=0

2l+2
2 ≈ 2πR2 ≈ σel . . . 2× πR2

(b) Low-energy case (kR ≪ 1)

Only the l=0 term works: δ0(k) = −kR ≈ sin δ0(k)

σel(k) ≈ 4π
k2 sin

2 δ0(k) ≈ 4πR2 ≈ σel . . . 4× πR2

In no case the classical geometrical cross section σclas = πR2 was obtained.
The reason for low energy is a quantum interference phenomenon, but why is
it so for high energy, when one would expect the classical behavior?

▶ Shadow scattering

The answer to the above question concerning the geometric cross section in
high-E case: For σel=0 the wavefunction would be ψ(x⃗)∝eikz, which is nonzero
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everywhere, including the region behind the sphere, where we classically expect
a shadow (zero probability of finding the particle). Just to generate ψ(x⃗) = 0
in the shadow region behind the sphere, the cross section must be σshad≈ πR2.
The reflected part of ψ(x⃗) produces another contribution σrefl≈ πR2.
Together: σel = σshad+ σrefl ≈ 2πR2

Reflected & shadow parts identified in:

fk(ϑ) =
∞∑
l=0

(2l + 1) e2iδl(k)−1
2ik︸ ︷︷ ︸
Fl(k)

Pl(cosϑ) =

=

f refl
k (ϑ)︷ ︸︸ ︷

1
2ik

∞∑
l=0

(2l+1)e2iδl(k)Pl(cosϑ)

f shad
k (ϑ)︷ ︸︸ ︷

− 1
2ik

∞∑
l=0

(2l+1)Pl(cosϑ)

σrefl(k) =
�

|f refl
k (ϑ)|2 sinϑdφdϑ =

= 1
4k2

∑
l,l′
(2l+1)(2l′+1)ei[δl(k)−δl′(k)] 4π

2l+1δll′ =
π
k2

lmax∑
l=0

(2l+1) ≈ πR2

σshad(k) =
�

|f shad
k (ϑ)|2 sinϑdφdϑ= · · · · · · · · · · · · ≈ πR2

σinterf(k)=
�

2Re[f refl
k (ϑ)f shad∗

k (ϑ)] sinϑdφdϑ= · · ·= 2π
k2

lmax∑
l=0

(2l+1) cos[2δl(k)]≈0

▶ Coulomb scattering

Coulomb potential is a long-range one, hence the asymtotic solution of the
Schrödinger equation cannot be required in the above-applied familiar form.
A special treatment is needed. Here we just very briefly outline the method
of solution without performing all calculations (which are rather sophisticated).

We consider the repulsive Coulomb potential V (r)=+ q q′

4πϵ0
1
r with

{
q=Ze
q′=Z ′e

}
:

[
− ℏ2

2M∆+ q q′

4πϵ0
1
r −

(ℏk)2
2M

]
ψk(x⃗) = 0 ⇔

[
∆+ k2 − 2γk

r

]
ψk(x⃗) = 0

γ = q q′M
4πϵ0ℏ2k = e2

4πϵ0(ℏc)︸ ︷︷ ︸
α
.
= 1

137

cM
ℏk︸︷︷︸

( v
c)

−1

ZZ ′
[

d2

dr2 + k2 − 2γk
r − l(l+1)

r2

]
ukl(r) = 0

The Schrödinger equation is solved analytically in terms of hypergeometric
functions. This yields the following asymptotic solution:

ψk(x⃗)
r→∞∝ ei[kz−γ ln k(r−z)] + fk(ϑ)

ei(kr−γ ln 2kr)

r

∝ 1
2ik

∞∑
l=0

(2l + 1)Pl(cosϑ)
[
e2iδl(k) e

i(kr−γ ln 2kr)

r − e−i(kr−γ ln 2kr−lπ)

r

]

with known amplitude fk(ϑ) = −γ e
−i[γ ln(sin2 ϑ

2)−2δ0(k)]
2k sin2 ϑ

2

and phase shifts δl(k)

j⃗in ∝ − ℏγ
M

x
r(r−z)n⃗x − ℏγ

M
y

r(r−z)n⃗y +
(

ℏk
M − ℏγ

M
1
r

)
n⃗z

r→∞−→ ℏk
M n⃗z
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j⃗out ∝ |fk(ϑ)|2
r2

(
ℏk
M − ℏγ

M
1
r

)
n⃗r

r→∞−→ |fk(ϑ)|2 ℏk
Mr2 n⃗r

Differential cross section:(
dσ
dΩ

)
k
(ϑ) = |fk(ϑ)|2 =

∣∣∣∣1k
∞∑
l=0

(2l + 1)eiδl(k) sin δl(k)Pl(cosϑ)

∣∣∣∣
2

= α2ZZ ′

16

(ℏc
E

)2 1
sin4 ϑ

2

So the Rutherford formula is reproduced. Recall that this formula can be
obtained from classical mechanics and that we have “derived” it (in the 1stBorn
approx.) from the Yukawa scattering (Sec. 12). The fact that the correct cal-
culation with hypergeometric functions yields the same result can be seen as
a lucky coincidence. The situation is more difficult in case of a superposition
of the Coulomb potential with an additional (finite-range) potential (as, e.g.,in
elastic scattering of nuclei). Then the above modified asymptotics must be
used, in which the phase shifts δl(k) are to be determined numerically.

■ Inclusion of inelastic scattering

The method of partial waves makes it easy to include into the description the
presence of inelastic scattering. More precisely, the inelastic scattering is in-
cluded only through its influence on elastic scattering, the method providing
nothing more but just a convenient phenomenological parametrization. A mi-
croscopic description requires to keep under control all the segments of the
full Hilbert space where products of various inelastic channels appear, which is
a hard problem. Nevertheless, even with these limitations, the parametrization
provided by the partial-wave method has rather important consequences.

▶ Elastic scattering in presence of inelastic channels

The S-matrix element is no more a complex unity but satisfies: |Sl(k)| ∈ [0, 1]:

Sl(k) = ηl(k)︸︷︷︸
∈[0,1]

e2iδl(k) ⇒
Fl(k) =

Sl(k)−1
2ik

= 1
2k

{
ηl(k) sin 2δl(k) + i [1−ηl(k) cos 2δl(k)]

}

The scattering amplitude: fk(ϑ) =
∞∑
l=0

(2l+1)Fl(k)Pl(cosϑ)

The integral cross section of elastic scattering:

σel(k)=
π

k2

∞∑
l=0

(2l+1) |Sl(k)−1|2= π

k2

∞∑
l=0

(2l+1)

[
1+η2l (k)−2ηl(k) cos 2δl(k)

]

▶ Integral cross section of inelastic processes

The integral inelastic cross section can be calculated through the balance of the
overall incoming & outgoing flows derived from the asymptotic wavefunction:

ψk⃗(x⃗) ≈
1

(2π)
3
2

∞∑
l=0

(2l+1) 1
2ik

{
Sl(k)

e+ikr

r − e−i(kr−lπ)

r

}
Pl(cosϑ)
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The radial flow at point x⃗: j⃗r(x⃗) =
1
M Re


ψ∗
k⃗
(x⃗)


−iℏ ∂

∂r −
iℏ
r


  
p̂r rad.momentum

ψk⃗(x⃗)


n⃗r =

= 1
M

1
(2π)3 n⃗r


l,l′
(2l+1)(2l′+1)Pl(cosϑ)Pl′(cosϑ)×

×Re 1
−2ik


S∗
l (k)

e−ikr

r − e+i(kr−lπ)

r


ℏk
2ik


Sl(k)

e+ikr

r + e−i(kr−lπ)

r



= 1
M

1
(2π)3 n⃗r


l,l′
(2l+1)(2l′+1)Pl(cosϑ)Pl′(cosϑ)

ℏ
4kr2


|Sl(k)|2 − 1



The integral flow through a sphere with radius r (total rate of scattering events):

Jel(k) =
�

jr(r, ϑ, φ)r
2 sinϑdφdϑ = − 1

(2π)3
πℏ
Mk

∞
l=0

(2l+1)

1−|Sl(k)|2


≤ 0

The Jel(k) ≤ 0 value represents the part of the incoming flow which is not
compensated by the outgoing flow because of inelastic processes ⇒ the integral
cross section of inelastic process is:

σinel(k) =
Rinel(k)

jin(k)
=

−Jel(k)
1

(2π)3
ℏk
M

⇒ σinel(k) =
π

k2

∞
l=0

(2l+1)

1−|Sl(k)|2  

η2l (k)



Total cross section

σtot(k) = σel(k) + σinel(k) = π
k2

∞
l=0

(2l+1)

|Sl(k)−1|2 +


1− |Sl(k)|2



σtot(k) =
2π

k2

∞
l=0

(2l+1)

1− ReSl(k)  

ηl(k) cos 2δl(k)

Note that the above considerations
do not allow one to calculate the
differential cross section of inelastic
processes. For this task, the ηl(k) parameters alone are not sufficient.

▶ Relation between elastic and inelastic cross sections

Let us define variables




xl(k) ≡ σinel
l (k)

π
k2

(2l+1) = 1−η2l (k) ∈ [0, 1]

yl(k) ≡ σel
l (k)

π
k2

(2l+1) = 1+η2l (k)−2ηl(k) cos 2δl(k) ∈ [0, 4]

x

⇒ yl(k) = 2− xl(k)− 2

1− xl(k) cos 2δl(k)

Considering −1 ≤ cos 2δl(k) ≤ +1 we obtain:

2−xl(k)−2

1−xl(k)

≤ yl(k) ≤
2−xl(k)+2


1−xl(k)

This represents an important constraint
upon the possible values of elastic & inelastic
integral cross sections for a given partial wave.
In particular, we see that σinel

l (k)>0 implies
σel
l (k)>0. Even in case of the total absorption,
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ηl(k)=0, when σinel
l (k) is at its maximum, we obtain σel

l (k)=σinel
l (k), which is

a consequence of the shadow scattering (see above).

▶ Optical theorem

Statement: Imaginary part of the elastic forward scattering amplitude

∝ total cross section including all processes: Im f el
k (ϑ=0) = k

4πσ
tot(k)

Proof for isotropic potentials:

Imf el
k (ϑ=0) =

∞∑
l=0

(2l+1) ImFl(k)︸ ︷︷ ︸
1
2k [1−ηl(k) cos 2δl(k)]

1︷ ︸︸ ︷
Pl(1) =

1
2k

∞∑
l=0

(2l+1)
[
1−ηl(k) cos 2δl(k)︸ ︷︷ ︸

ReSl(k)

]

= k
4πσ

tot(k)

This relation is valid in the most general case, i.e., also for anisotropic poten-
tials (beyond the method of partial waves). For elastic scattering by a general
potential, it can be proven from the Lippmann-Schwinger equation that:

−4π2M
ℏ2 Im⟨ϕk⃗|T̂

+(E)|ϕk⃗⟩︸ ︷︷ ︸
Imfk⃗(k⃗)

= k
4π

(
4π2M
ℏ2

)2∫ |⟨ϕk⃗ ′|T̂+(E)|ϕk⃗⟩|
2 δ

(
k′−

√
2ME
ℏ2

)
k′

2
dk′dΩ′

︸ ︷︷ ︸
σel(k)

Elementary interpretation of the optical theorem for elastic scattering: The
asymptotic wavefunction ψk(x⃗)=eikz+fk(ϑ)

eikr

r is approximated for z≫x, y

using r=
√
x2+y2+z2 ≈ z+ x2+y2

2z ⇒ |ψk(x⃗)|2 ≈ 1 + 2
z Re

[
fk(ϑ)e

ik x2+y2

2z

]

Integration over a small distant rectangle ∆x×∆y at z=const. ≫ ∆x,∆y:

I ≡
�

∆x×∆y

|ψk(x⃗)|2dx dy ≈ ∆x∆y+ 2
z Refk(0)

+∆x
2∫

−∆x
2

eik
x2

2z dx

︸ ︷︷ ︸√
2π(− z

ik )

+
∆y
2∫

−∆y
2

eik
y2

2z dy

︸ ︷︷ ︸
dtto

≈ ∆x∆y+ 4π
k

−Imfk(0)︷ ︸︸ ︷
Re[ifk(0)]

R=jin(k)I ≡ the actual rate of par-

ticles passing through the rectangle

R0=jin(k)∆x∆y ≡ the free rate

R0 −R = jin(k)σ
tot(k) ⇒ optical theorem σtot(k) = 4π

k Imfk(0)

An intuitive analogue of the optical theorem can be formulated within the
(non)stationary perturbation theory: The amplitude of the initial unperturbed
state in the final state is given—through the normalization condition—by the
summed admixtures of all other unperturbed states in the final state.

▶ High-energy scattering on a black sphere

We assume
Sl = 0 for l ≤ lmax full absorption
Sl = 1 for l > lmax no scattering

with lmax ≈ kR ≫ 1
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Integral cross sections:

σinel(k) = π
k2

∞
l=0

(2l+1)[1−|Sl|2] = π
k2

lmax
l=0

(2l+1) = π
k2 (lmax+1)2 ≈ πR2

σtot(k) = 2π
k2

∞
l=0

(2l+1)[1−ReSl] =
2π
k2

lmax
l=0

(2l+1) = 2π
k2 (lmax+1)2 ≈ 2πR2

σel(k) = σtot(k)− σinel(k) ≈ πR2 shadow scattering

■ Low-energy & resonance scattering

We conclude this section by sketching two additional topics: The low-energy
scattering, which is a tool to determine basic properties of interaction, and
resonance scattering, which indicates the existence of metastable states. Both
these topic became much expanded in more advanced courses of QM.

▶ Low-energy limit of scattering amplitude

For k→ 0, only the l=0 partial wave is active, so in absence of inelastic scat-
tering there is just a single real parameter which determines the cross section:

a ≡ lim
k→0


− sin δ0(k)

k


scattering length ⇒




lim
k→0

σel(k) = lim
k→0

4π
k2 sin2 δ0(k)

σel(k→0) = 4πa2

The visual meaning of the scattering length is derived from the wavefunction
form at r > R:

Rk,l=0(r)=eiδ0(k)

cos δ0(k)

sin kr
kr  

j0(kr)−sin δ0(k)

− cos kr
kr  

n0(kr)

= eiδ0(k)

kr sin [kr+δ0(k)]

≂ eiδ0(k)

kr sin[k(r − a)] ≡ uk(r)
r

⇒ uk(r)

k→0

∝ (r − a) for r≥R

⇒ the tangent at r=R crosses zero
at r=a

The value of a indicates some basic properties of the potential, although the
information it gives is usually not unique:

0 < a < R
a ≲ R

−∞ < a < +∞
a < 0
R ≪ a




⇔





repulsive potential (convex → concave wf.)
strong repulsive potential(a = R for hard sphere)

attractive potential
shallow attractive potential
attractive potential with weakly bound state E ≲ 0

▶ Isolated resonance

Essential insight into the scattering theory can be gained via a complex ex-
tension of the S-matrix. Mathematical properties of analytic functions in the
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complex plane can then be used to disclose some general physical features of
scattering processes. Here we assume elastic scattering on an isotropic po-
tential, for which all information is contained in a set of S-matrix elements{
Sl(k)

}∞
l=0

. These elements are now considered to be complex functions of the
complex momentum variable k ∈ C. On the real-k axis, all Sl(k) should be
smooth functions, but in the complex plane they can have some poles. Let us
look what happens if such a pole is located near the real axis. We assume:

Sl(k) =
k − k∗R
k − kR

function satisfying |Sl(k)|=1 for k ∈ R with a simple pole

at k=kR given by (ℏkR)2
2M = E0 − i Γ

2 ≡ ER

kR =
√

2MER

ℏ2 =
√

2ME0

ℏ2

√
1− i Γ

2E0
≈

k0︷ ︸︸ ︷√
2ME0

ℏ2 −i

κ︷ ︸︸ ︷√
MΓ2

8ℏ2E0
for Γ≪E0

For complex energy the evolution is not unitary. The survival probability of
a state |ψR(0)⟩ with E=ER∈C exponentially decreases:

p0(t) = |⟨ψR(0)|ψR(t)⟩|2 =
∣∣e− i

ℏ

(
E0−i Γ

2

)
t
∣∣2 = e−

Γ
ℏ t = ⟨ψR(t)|ψR(t)⟩ norm

This corresponds to a quasistationary state with the mean lifetime τ = ℏ
Γ

for which the decay products go outside the initial Hilbert space H
Only the outgoing wave is present at k = kR since Sl(kR) = ∞ ⇒ scattering
wavefunction ψk(x⃗) ∝ e+ikRr

r ≈ e+ik0r

r e+κ r has modulus increasing with r

Approximation of the cross section for E−E0 ≪ E0:

σel
l (k) =

π
k2 (2l+1)

∣∣Sl(k)−1
∣∣2 = π

k2 (2l+1)
∣∣∣kR−k∗R
k−kR

∣∣∣
2

≈ π
k2 (2l+1)

4κ2

(k−k0)
2+κ2︷ ︸︸ ︷∣∣∣ −2iκ

(k−k0)+iκ

∣∣∣
2

=

4π
k2 (2l+1)

M
2ℏ2 (

Γ
2 )

2

2M
ℏ2 E0(

√
E−

√
E0)

2
+ M

2ℏ2 (
Γ
2 )

2 ≈ 4π
k2 (2l+1)

(Γ
2 )

2

(E−E0)2+(Γ
2 )

2

with (
√
E−

√
E0 )2 ≈ (E−E0)

2

4E0

Breit-Wigner resonance

σel
l (k) ≈

4πℏ2

2ME
(2l+1)

(
Γ
2

)2

(E − E0)2 +
(
Γ
2

)2

◀ Historical remark
1870-90’s: Lord Rayleigh develops the scattering theory for electromagnetic & sound
waves, deriving the “optical theorem” and elaborating the partial-wave expansion
1927: H. Faxen & J.Holtsmark apply the partial-wave expansion in QM
1928: G.Gamow applies the complex energy formalism to unstable systems
1929: G.Breit & E.Wigner describe resonant states via the B.-W. distribution
1939: N.Bohr, R. Peierls, G. Placzek apply the Rayleigh optical relation in QM
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14. BOSONIC & FERMIONIC SYSTEMS

It the following two sections, we will deal with systems consisting of a number
(fixed or variable) of mutually interacting particles. In the main focus will be the
systems of indistinguishable particles, either bosons or fermions. The concept of
indistinguishability and its various consequences were already discussed at several
places of this course, starting from Sec. 1b. Now we intend to formulate a general
language describing all non-relativistic many-particle systems like atoms, nuclei,
molecules, condensates etc.

In this section, we will introduce the principal mathematical gear of many-body
physics: the operators that can create or annihilate particles in a given state. These
operators make it possible to generate a basis of the whole Fock space and to ex-
press any physical operator in this space. Moreover, basic algebraic properties of
the creation/annihilation operators capture elegantly the difference between bosons
and fermions. As a by product, we will learn how to quantize the electromagnetic
field, preparing the ground for the relativistic theory of quantum fields (which is
unfortunately beyond the scope of this course).

■ Hilbert space of bosons & fermions

Let us first recall the relevant properties of bosonic and fermionic subspaces of
a general many-particle Hilbert space. We define a so-called representation of
occupation numbers in these subspaces, which is a natural starting point for
introduction of the creation/annihilation operators.

▶ Indistinguishable particles

Let us recall some facts from Sec. 1b. Hilbert space of N identical but distin-
guishable particles is H(N)=H1⊗H2⊗· · ·⊗HN , where all Hk are identical single-
particle spaces. If the particles are indistinguishable, we need to perform a pro-
jection to bosonic or fermionic subspaces H(N)

± ⊂H(N). It is expressed via sums

over particle permutations (1, 2, . . . N) → (kπ1 , k
π
2 , . . . k

π
N) π = 1, 2, . . . N !

bosons: P̂+ = 1
N !

N !∑
π=1

Êπ fermions: P̂− = 1
N !

N !∑
π=1

σπ︸︷︷︸
±1

permutation sign

Êπ

Factor 1
N ! ensures projector property P̂ 2

±= P̂±

▶ Bases in the bosonic & fermionic spaces

Separable (non-entangled) basis in H(N): |Φi1i2...iN ⟩ ≡ |ϕi1⟩1|ϕi2⟩2 . . . |ϕiN ⟩N
where |ϕi⟩k ≡ ith basis state in the kth single-particle space

Simplified notation: |Φi1i2...iN ⟩→ |Φ12...N⟩ ≡ |ϕ1⟩1|ϕ2⟩2 . . . |ϕN⟩N
{
with
|ϕk⟩k≡|ϕik⟩k

so |ϕk⟩k is any (not the kth) basis state of the kthparticle
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Action of permutation operators: Êπ|Φ12...N⟩ ≡ |ϕkπ1 ⟩1|ϕkπ2 ⟩2 . . . |ϕkπN
⟩N

Projections of the separable basis

|Φ12...N⟩


to H(N)

± ⇒

(a) basis in boson space: N+P̂+|Φ12...N⟩= N+

N !

N !
π=1

|ϕkπ1 ⟩1|ϕkπ2 ⟩2 . . . |ϕkπN
⟩N

(b) basis in fermion space: N−P̂−|Φ12...N⟩= N−
N !

N !
π=1

σπ|ϕkπ1 ⟩1|ϕkπ2 ⟩2 . . . |ϕkπN
⟩N

  

Det




|ϕ1⟩1 |ϕ1⟩2 ... |ϕ1⟩N
|ϕ2⟩1 |ϕ2⟩2 ... |ϕ2⟩N
...

...
|ϕN ⟩1 |ϕN ⟩2 ... |ϕN ⟩N


 Slater

determinant

antisymmetry of the determinant under
any exchange of columns or rows

Normalization coefficients N+ =


N !
n1!n2!n3! ...

N− =
√
N !

nk ≡ number of repetitions of the state |ϕk⟩ in the ensemble, i.e., number of
particles in the state |ϕk⟩ (bosons: nk=0,1,2,3. . . , fermions: nk=0,1)

⇒ n1 + n2 + n3 + · · · = N
Reasoning:
We first note that N−=N+ if nk ∈ {0, 1} ∀k (as follows from the Pauli principle
valid for fermions). So we only need to derive N+:
N+P̂+|Φ12...N⟩ ≡ N+

1
N ! ×


sum of N ! states, partly identical


=N+

n1!n2!n3! ...
N !  

n1!n2!n3! ...
N ! ⇒ N+=


N !

n1!n2!n3! ...

×

sum of N !

n1!n2!n3! ...
orthogonal terms



▶ Representation of occupation numbers

We introduce the following notation:

N±P̂±|Φ12...N⟩ ≡ |n1, n2, n3, · · · , nk, · · · ⟩±

with nk ≡


occupation number of the
basis state |ϕk⟩ (with k=1,2,3, ...∞)


=


0, 1, 2, 3 . . . for bosons
0, 1 for fermions

These vectors form a basis in the space of indistinguishable particles (bosons
or fermions) ≡ representation of occupation numbers

■ Bosonic & fermionic creation/annihilation operators

Creation and annihilation operators, respectively, increase and decrease the
number of particles in a given single-particle state by one, forming a system
of “ladder” operators in the Fock space. Their repeated application enables
one to generate any basis state in the occupation-number representation from
a unique state called vacuum. Mutual permutations of these operators obey
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simple commutation or anticommutation rules, depending on the bosonic or
fermionic nature of the particles involved.

▶ Definition of creation/annihilation operators

Action in the Fock space (Hilbert space with indefinite particle number N):

H± = H(0)
± ⊕H(1)

± ⊕H(2)
± ⊕ · · ·H(N−1)

± ⊕H(N)
± ⊕H(N+1)

± · · ·

Particle creation operators : H(N)
± → H(N+1)

±

Particle annihilation operators : H(N−1)
± ← H(N)

± and 0 ← H(0)
±

Creation operators

Bosons : b̂†k|n1, ..nk, ...⟩+ =
√
nk+1 |n1, ..(nk+1), ...⟩+

Fermions : â†k|n1, ..nk, ...⟩− =

{ 1︷ ︸︸ ︷√
nk+1 |n1, ..(nk+1), ...⟩− for nk = 0

0 for nk = 1

So b̂†k or â†k (unified notation ĉ†k) create 1 boson or fermion in state |ϕk⟩. For

fermions, if the state is already occupied (nk =1), the application of â†k yields
zero (which guarantees the satisfaction of Pauli principle).

Annihilation operators

Bosons : b̂k|n1, ..nk, ..⟩+ =
√
nk |n1, ..(nk−1), ...⟩+

Fermions : âk|n1, ..nk, ..⟩− =
√
nk |n1, ..(nk−1), ...⟩−

So b̂k or âk (unified notation ĉk) annihilate 1 boson or fermion in state |ϕk⟩.
Note that for nk=0 the application of ĉk yields zero.
Defined in this way, the annihilation operators are Hermitian conjugates of
creation operators:

+⟨n′
1, ..n

′
k, ..|b̂k|n1, ..nk, ..⟩+︸ ︷︷ ︸√

nk δn′1n1
··· δn′

k
(nk−1)···

= +⟨n1, ..nk, ..|b̂†k|n
′
1, ..n

′
k, ..⟩∗+︸ ︷︷ ︸√

n′
k+1 δn1n′1

··· δnk(n′k+1)···︷ ︸︸ ︷
−⟨n′

1, ..n
′
k, ..|âk|n1, ..nk, ..⟩− =

︷ ︸︸ ︷
−⟨n1, ..nk, ..|â†k|n

′
1, ..n

′
k, ..⟩∗−

Square-root coefficients included in the above definitions ensure simple algebraic
properties; see below and in Sec. 3b (the ladder operators and particularly the
phonon creation/annihilation operators for the harmonic oscillator).

▶ Commutation relations for boson operators

[b̂†k, b̂
†
l ] = 0 = [b̂k, b̂l] (order of creation/annihilation of 2 bosons is irrelevant)

Proof for k= l is trivial and for k ̸= l follows from:
b̂†kb̂

†
l |..nk..nl...⟩+ = b̂†l b̂

†
k|..nk..nl...⟩+ =

√
(nk+1)(nl+1) |..(nk+1)..(nl+1)...⟩+

The relation for annihilation operators obtained by the Hermitian conjugation.
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[b̂k, b̂
†
l ] = δkl (do not commute for k= l)

Proof for k= l:
�
b̂kb̂

†
k − b̂†kb̂k


|..nk...⟩+ =

1  �
(nk+1)2 −


n2
k


|..nk...⟩+

For k ̸= l: b̂kb̂
†
l |..nk..nl...⟩+= b̂†l b̂k|..nk..nl...⟩+=


nk(nl+1) |..(nk−1)..(nl+1)...⟩+

▶ Anticommutation relations for fermion operators

Fermionic relations expressed through anticommutators: {Â, B̂}≡ ÂB̂+B̂Â

Pauli principle ⇒ â†kâ
†
k|..nk...⟩− = 0 = âkâk|..nk...⟩−

⇒ â†kâ
†
k = 0 = âkâk ⇒ {â†k, â

†
k} = 0 = {âk, âk}

âkâ
†
k|..nk...⟩− =


0 for nk=1

|..nk...⟩− for nk=0 â†kâk|..nk...⟩− =


|..nk...⟩− for nk=1
0 for nk=0

⇒ (âkâ
†
k + â†kâk)  
{âk,â†k}

|..nk...⟩− = |..nk...⟩− ⇒ {âk, â†k} = Î

We require more general relations:

{â†k, â
†
l} = 0 = {âk, âl}

{âk, â†l} = δkl

The validity for k= l was just proven. For k ̸= l
these relations represent some satisfiable
requirements upon the phases, namely:

â†kâ
†
l |..

0
nk ..

0
nl ...⟩−=−â†l â

†
k |..

0
nk ..

0
nl ...⟩−

âkâ
†
l |.. nk

1

.. nl
0

...⟩−=−â†l âk |.. nk
1

.. nl
0

...⟩−

In this way, the fermionic creation/annihilation operators are fully analogous to
the bosonic ones except that the commutators are replaced by anticommutators.

▶ Particle number operators

Number of particles in the single-particle state |ϕk⟩:

bosons N̂k = b̂†kb̂k fermions N̂k = â†kâk

b̂†kb̂k |..nk...⟩+ =


n2
k

nk

|..nk...⟩+ â†kâk |..nk...⟩− =


n2
k

nk=0,1

|..nk...⟩−

⇒ total number of particles:

bosons N̂ =

k

b̂†kb̂k fermions N̂ =

k

â†kâk

We identify standard commutation
relations of ladder operators (Sec. 3b):





N̂k, b̂

†
l


= δklb̂

†
l


N̂k, b̂l


= −δklb̂l

N̂ , b̂†l


= +b̂†l


N̂ , b̂l


= −b̂l

N̂k, â
†
l


= δklâ

†
l


N̂k, âl


= −δklâl

N̂ , â†l


= +â†l


N̂ , âl


= −âl
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▶ Creation of basis states from the vacuum

Consecutive creation of individual particles into the occupied single-particle
states:

|n1, n2, n3...⟩± =

{
1√

n1!n2!n3!···
(b̂†1)

n1(b̂†2)
n2(b̂†3)

n3 · · · |0⟩ for bosons

(â†1)
n1(â†2)

n2(â†3)
n3 · · · |0⟩ for fermions

Here, |0⟩ represents the vacuum state, which is the only state forming the

subspace H(0)
± (no particle present). This state satisfies: b̂k|0⟩ = 0 = âk|0⟩

▶ Relation between spin and statistics

How to decide whether a given particle is a boson or a fermion? For the reasons
explained in Sec. 15, belonging to the boson or fermion family is referred to as
“statistics”. In relativistic quantum field theory it is possible to prove that all
elementary particles (which are excitations of some particular types of fields)
satisfy the following relation between spin and statistics:

Particles with s =half-integer are fermions. These are the electron, muon,
tauon, all neutrinos, and all quarks, i.e., all leptons & hadrons forming matter.
All these particles have s= 1

2 .

Particles with s =integer are bosons. These are the photon (s= 1), inter-
mediate W & Z bosons (s = 1), gluons (s = 1), and hopefully also the yet
undiscovered graviton (s=2 ?), i.e., the mediators of all fundamental interac-
tions. Also the Higgs boson, which plays a special role in the Standard Model,
is a boson with s=0.

How about composite particles formed by several elementary constituents? The
spin–statistics theorem holds even for such objects, but only in a limited sense.
Indeed: (a) An object composed of any number of bosons (integer-spin parti-
cles) has an integer spin and the bosonic character (a wavefunction of a pair
of such objects is symmetric under the exchange of objects). (b) An object
composed of an even number of fermions (half-integer-spin particles) has again
an integer spin and also the bosonic character (a two-object wavefunction is
exchange-symmetric due to even number of sign changes involved in the ex-
change of objects). (c) An object composed of an odd number of fermions has
a half-integer spin and the fermionic character (a two-object wavefunction is an-
tisymmetric under the exchange of objects due to odd number of sign changes).
However, the problem gets more complicated if checking (anti)commutation
relations of the corresponding creation/annihilation operators.

▶ Bifermions vs. bosons

Bifermion ≡ a pair of fermions. Example: meson (quark-antiquark). Any
bifermion must have an integer spin. Question: Is it a real boson?
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Exchange of 2 bifermions ⇒ 2× change of sign ⇒ boson-like behavior

However, consider the creation/annihilation operators of a general bifermion:

Â† =

k,l

αklâ
†
kâ

†
l

creation


 ⇔




Â =

k,l

α∗
klâlâk

annihilation

Antisymmetry : αkl = −αlk

Normalization :

k,l

|αkl|2 = 1
2

Normalization: 1 = ⟨0|ÂÂ†|0⟩ =

k,l


k′,l′

α∗
k′l′αkl⟨0|âl′âk′â†kâ

†
l |0⟩ = 2


k,l

|αkl|2

Commutator:

[Â, Â†] =

k,l


k′,l′

α∗
k′l′αkl[âl′âk′, â

†
kâ

†
l ] =


k,l


k′,l′

α∗
k′l′αkl

�
âl′âk′â

†
kâ

†
l −

rearrange to the formof the 1stterm  
â†kâ

†
l âl′âk′



=

k,l


k′,l′

α∗
k′l′αkl

�
−δkk′â

†
l âl′ + δkl′â

†
l âk′ + δlk′â

†
kâl′ − δll′â

†
kâk′ + δkk′δll′ − δkl′δlk′



= Î + 4

l,l′


k

α∗
l′kαkl


â†l âl′

  
∆̂

correction to the boson-type commutator

Its effect for a given many-body state |Ψ⟩
depends on the expectation value ⟨Ψ|∆̂|Ψ⟩.

Example:
Consider a set of fermionic states that appear
in pairs (k, k̄) ≡ (1, 1̄), (2, 2̄), ... (e.g., quark-
antiquark states in a meson, or time-reversal
conjugate states of electrons or nucleons in a superconductor or in a nucleus)
and define

2 bifermions





Â† = 1√
4nA


k∈SA

�
â†kâ

†
k̄
−â†

k̄
â†k


SA≡ subset of k-states
withnA members

B̂† = 1√
4nB


k∈SB

�
â†kâ

†
k̄
−â†

k̄
â†k


SB≡ subset of k-states
withnB members

We first assume that the subsets SA and SB do not overlap: SA ∩ SB = ∅
Then we can easily prove the bosonic commutation relations:

[Â†, B̂†] = [Â, B̂] = [Â, B̂†] = [Â†, B̂] = 0

However, we get:


Â, Â† = Î − 1

nA
N̂A

B̂, B̂† = Î − 1
nB
N̂B

with N̂•=

k∈S•

�
â†kâk+â†

k̄
âk̄


The last relations show limitations in the repeated creation of bifermions of
both A- and B-types. The numbers of these bifermions is limited by the Pauli
principle, i.e., by the capacity of the corresponding SA and SB fermionic state
subsets. Consider for instance the A-bifermion: If NA=0 (no particle in states
∈SA), we get [Â, Â†] = Î ⇒ [Â†Â, Â†] = +Â† ⇒ Â† behaves as a creation
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operator with respect to the “number operator” Â†Â. However, as the states
Â†|0⟩, (Â†)2|0⟩, (Â†)3|0⟩, ... yield NA = 2, 4, 6, ..., the repeated action of the
operator Â† gradually changes its character. Once the state subset SA is full,
NA=2nA, we get [Â, Â

†] = −Î ⇒ [Â†Â, Â†] = −Â† ⇒ Â† behaves effectively
as an annihilation operator with respect to Â†Â.

If the subsets SA and SB overlap SA ∩ SB ̸= ∅ (see the A’&B’ case in the above

figure), we still keep the bosonic commutation relations [Â†, B̂†]=[Â, B̂]=0, but
in addition to the above non-bosonic relations [Â, Â†]= Î− 1

nA
N̂A and

[B̂, B̂†]= Î− 1
nB
N̂B we also get [Â, B̂†]=[B̂, Â†]= 1√

nAnB
(nABÎ−N̂AB) with nAB≡

the number of k-states in the SA ∩ SB set and N̂AB=
∑

k∈SA∩SA

(â†kâk+â†
k̄
âk̄). So not

even a single pair of the A- and B-bifermions behaves as a pair of true bosons.

Conclusion: Bifermions may resemble bosons only if they do not overlap with
each other (i.e., if they do not share the same fermionic states) and if their
numbers are very low compared to the overall capacity of the corresponding
part of the fermionic Hilbert space.

▶ Transformations of creation/annihilation operators

Consider 2 single-particle bases:
{
|ϕj⟩

}
j

Û↔
{
|ϕ̃i⟩

}
i

⇔ |ϕ̃i⟩ =
∑
i′
⟨ϕi′|ϕ̃i⟩︸ ︷︷ ︸

Uii′

|ϕi′⟩

Û represents a unitary operator relating the two bases, which also constitutes
the transformation between boson & fermion creation/annihilation operators:

ˆ̃b†i ≡
∑
i′

⟨ϕi′|ϕ̃i⟩b̂†i′
ˆ̃bj≡

∑
j′

⟨ϕ̃j|ϕj′⟩b̂j′ ˆ̃a†i ≡
∑
i′

⟨ϕi′|ϕ̃i⟩â†i′ ˆ̃aj≡
∑
j′

⟨ϕ̃j|ϕj′⟩âj′

[
ˆ̃bj,

ˆ̃b†i

]
=
∑
j′,i′

⟨ϕ̃j|ϕj′⟩⟨ϕi′|ϕ̃i⟩

δi′j′︷ ︸︸ ︷[
b̂j′, b̂

†
i′

]
=δij

{
ˆ̃aj, ˆ̃a

†
i

}
=
∑
j′,i′

⟨ϕ̃j|ϕj′⟩⟨ϕi′|ϕ̃i⟩

δi′j′︷ ︸︸ ︷{
âj′, â

†
i′

}
=δij

⇒ commutation/anticommutation relations remain the same

▶ Second quantization

A transformation of creation/annihilation operators for general particles to the
coordinate & spin eigenbasis

{
|ϕ̃x⃗,ms

⟩
}

ˆ̃b†x⃗,ms
≡ ψ̂†

+(x⃗,ms) =
∑
i

ϕ∗
i (x⃗,ms)︷ ︸︸ ︷

⟨ϕi|ϕ̃x⃗,ms
⟩ b̂†i ˆ̃a†x⃗,ms

≡ ψ̂†
−(x⃗,ms) =

∑
i

ϕ∗
i (x⃗,ms)︷ ︸︸ ︷

⟨ϕi|ϕ̃x⃗,ms
⟩ â†i

ˆ̃bx⃗,ms
≡ ψ̂+(x⃗,ms) =

∑
j

⟨ϕ̃x⃗,ms
|ϕj⟩︸ ︷︷ ︸

ϕj(x⃗,ms)

b̂j ˆ̃ax⃗,ms
≡ ψ̂−(x⃗,ms) =

∑
j

⟨ϕ̃x⃗,ms
|ϕj⟩︸ ︷︷ ︸

ϕj(x⃗,ms)

âj
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The new single-particle basis is not discrete (countable) ⇒ commutation/ an-
ticommutation relations will contain the δ-function:

Commutation relations (bosons) Anticommutation relations (fermions)[
ψ̂†
+(x⃗,ms), ψ̂

†
+(x⃗

′,m′
s)
]

= 0 =
{
ψ̂†
−(x⃗,ms), ψ̂

†
−(x⃗

′,m′
s)
}

[
ψ̂+(x⃗,ms), ψ̂+(x⃗

′,m′
s)
]

= 0 =
{
ψ̂−(x⃗,ms), ψ̂−(x⃗

′,m′
s)
}

[
ψ̂+(x⃗,ms), ψ̂

†
+(x⃗

′,m′
s)
]

= δ(x⃗−x⃗′)δmsm′
s
=

{
ψ̂−(x⃗,ms), ψ̂

†
−(x⃗

′,m′
s)
}

Proof of the last line:[
ψ̂+(x⃗,ms), ψ̂

†
+(x⃗

′,m′
s)
]
=

∑
i,j

⟨ϕ̃x⃗,ms
|ϕj⟩⟨ϕi|ϕ̃x⃗ ′,m′

s
⟩

δij︷ ︸︸ ︷
[b̂j, b̂

†
i ] =

δ(x⃗−x⃗′)δmsm′
s︷ ︸︸ ︷

⟨ϕ̃x⃗,ms
|ϕ̃x⃗ ′,m′

s
⟩

{
ψ̂−(x⃗,ms), ψ̂

†
−(x⃗

′,m′
s)
}
=

∑
i,j

⟨ϕ̃x⃗,ms
|ϕj⟩⟨ϕi|ϕ̃x⃗ ′,m′

s
⟩ {âj, â†i}︸ ︷︷ ︸

δij

= ⟨ϕ̃x⃗,ms
|ϕ̃x⃗ ′,m′

s
⟩︸ ︷︷ ︸

δ(x⃗−x⃗′)δmsm′
s

Particle number operator: N̂± =
∑
ms

∫
ψ̂†
±(x⃗,ms)ψ̂±(x⃗,ms)︸ ︷︷ ︸

n̂±(x⃗,ms) particle density

dx⃗

The above procedure is often referred to as the “second quantization”, in anal-
ogy to the “first quantization”, in which physical quantities became operators.
In view of the above particle-number formula we can say that the second quan-

tization induces the transition: wavefunction ψ∗(x⃗,ms)
ψ(x⃗,ms)

}
→

{
ψ̂†
±(x⃗,ms)

ψ̂±(x⃗,ms)
operator

What used to be the single-particle probability density |ψ(x⃗,ms)|2 is now the
density of particles expressed by operator n̂±(x⃗,ms), and what used to be just
the normalization condition

∑
ms

∫
dx⃗ |ψ(x⃗,ms)|2=1 is now an operator expres-

sion of the total number of particles N̂±. The Hilbert space of interest is no
more that of a single particle, but the Fock space with any number of particles,
including zero. This is one of the entry points to the quantum field theory,
which treats all elementary particles as quantum excitations of some specific
fields. Let us stress that this is the only way how to marriage quantum theory
with special relativity, which allows to transform the rest mass to energy and
vice versa, and therefore cannot in general guarantee conservation of the num-
ber of particles. But we must keep this gate closed (however tempting it may
be) and continue with our tour of non-relativistic quantum problems.

■ Operators in bosonic & fermionic N -particle spaces

Creation/annihilation operators enable one to express any operator acting in
the whole Fock space. In particular, the operators that conserve the total num-
ber of particles (those keeping the subspaces H(N)

± invariant) can be written
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through products containing the same number of creation and annihilation op-
erators. This results in an important classification of such operators according
to the number of particles (n = 1, 2, 3 . . . ) they influence in a single action. We
talk about n-body operators, e.g., 1-body, 2-body or 3-body terms of a Hamil-
tonian describing independent motions and mutual interactions of particles in
a bound quantum system (an atom, nucleus or quantum dot).

▶ General operator expressed via creation/annihilation operators

Creation/annihilation operators of bosons or fermions
unified notation:

{
ĉ†k ≡ b̂†k or â†k
ĉk ≡ b̂k or âk

Consider operator Ô conserving the particle number ⇒ [Ô, N̂ ] = 0

Ô acts within any N -particle subspace H(N), where it can be expressed as:

Ô =
∑

i1,..iN

∑
i′1,..i

′
N

⟨ϕi1..ϕiN |Ô|ϕi′1
..ϕi′N

⟩|ϕi1..ϕiN ⟩⟨ϕi′1
..ϕi′N

|

Assume that the operator (observable) Ô is physical for indistinguishable par-

ticles ⇒ it acts inside H(N)
± ⇒ [Ô, P̂±] = 0

ÔP̂± = P̂±ÔP̂± =
∑

i1,..iN

∑
i′1,..i

′
N

⟨ϕi1..ϕiN |Ô|ϕi′1
..ϕi′N

⟩ P̂±|ϕi1..ϕiN ⟩︸ ︷︷ ︸√
n1!n2!..

N ! |n1,n2,..⟩

⟨ϕi′1
..ϕi′N

|P̂±︸ ︷︷ ︸
⟨n′

1,n
′
2,..|

√
n′1!n

′
2!..

N !

= 1
N !

∑
i1,..iN

∑
i′1,..i

′
N

⟨ϕi1..ϕiN |Ô|ϕi′1
..ϕi′N

⟩ ĉ†i1 ĉ
†
i2
..ĉ†iN |0⟩⟨0|︸ ︷︷ ︸

P̂ (0)

ĉi′N ..ĉi′2 ĉi′1

within the space H(N). . . . . . can be removed

P̂±ÔP̂± = 1
N !

∑
i1,...iN

∑
i′1,...i

′
N

⟨ϕi1..ϕiN |Ô|ϕi′1
..ϕi′N

⟩ ĉ†i1 ĉ
†
i2
..ĉ†iN ĉi′N ..ĉi′2 ĉi′1

This is the most general expression in the N -particle subspace of an operator re-
specting particle indistinguishability and conserving particle number. However,
as shown below, for some classes of operators this can be further simplified.

▶ One-body operators

Operator defined in theN=1 subspace through: (T̂ )k|ψ⟩k︸︷︷︸
particle
index

=
∑
ik

⟨ϕik|T̂ |ψ⟩|ϕik⟩k
Examples: the kinetic energy of a particle
and its potential energy in an external field

The action of T̂ is extended to all N > 1 subspaces via summation over all
particles:

Ô(1) =
N∑
k=1

(T̂ )k ≡
N∑
k=1

(
Î1 ⊗ · · · Îk−1 ⊗ T̂︸︷︷︸

kthplace

⊗Îk+1 · · · ⊗ ÎN
)
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The defining property of the 1-body operator in an N -particle subspace is
expressed as:

Ô(1) P̂±|ϕ1 · · ·ϕk · · ·ϕN⟩︸ ︷︷ ︸
1√
N !

ĉ†1···ĉ
†
k···ĉ

†
N |0⟩

=
N∑
k=1

∑
ik

⟨ϕik|T̂ |ϕk⟩ P̂±|ϕ1 · · ·ϕik · · ·ϕN⟩︸ ︷︷ ︸
1√
N !

ĉ†1···ĉ
†
ik
···ĉ†N |0⟩

We consider an operator defined as Ô(1) ≡
∑
i,i′
⟨ϕi|T̂ |ϕi′⟩ ĉ†i ĉi′ and show that it

satisfies the above property:

Note that: [Ô(1), ĉ†k] =
∑
i,i′
⟨ϕi|T̂ |ϕi′⟩

δi′k ĉ
†
i︷ ︸︸ ︷

[ĉ†i ĉi′, ĉ
†
k] =

∑
i

⟨ϕi|T̂ |ϕk⟩ĉ†i

Ô(1)ĉ†1..ĉ
†
k..ĉ

†
N |0⟩=

{(
[Ô(1), ĉ†1]︸ ︷︷ ︸∑

i1

⟨ϕi1
|T̂ |ϕ1⟩ĉ†i1

ĉ†2..ĉ
†
N

)
+ · · ·+

(
ĉ†1..ĉ

†
k−1 [Ô

(1), ĉ†k]︸ ︷︷ ︸∑
ik

⟨ϕik
|T̂ |ϕk⟩ĉ†ik

..ĉ†N
)

+ · · ·+
(
ĉ†1..ĉ

†
N−1

∑
iN

⟨ϕiN
|T̂ |ϕN ⟩ĉ†iN

︷ ︸︸ ︷
[Ô(1), ĉ†N ]

)}
|0⟩ =

N∑
k=1

∑
ik

⟨ϕik|T̂ |ϕk⟩ĉ†1..ĉ
†
ik
..ĉ†N |0⟩

The above defining property is verified, so the 1-body operator is given by:

Ô(1) ≡
∑
i,i′

⟨ϕi|T̂ |ϕi′⟩ ĉ†i ĉi′

Graphical representation of this expression:

▶ Two-body operators

Operator defined in the N=2
subspace through:

(V̂ )kl|ψ⟩kl︸︷︷︸
particle
indices

=
∑
ik,il

⟨ϕikϕil|V̂ |ψ⟩kl|ϕikϕil⟩kl

Example: an interaction energy of two particles. With respect to the exchange
symmetry we require: ⟨ϕiϕj|V̂ |ϕi′ϕj′⟩ = ⟨ϕjϕi|V̂ |ϕj′ϕi′⟩. The action of V̂ is
extended to all N>2 subspaces via summation over all particle pairs:

Ô(2) =
N∑
k=1

N∑
l=k+1

(V̂ )kl =
N∑

k
l>k

}
=1

Î1 ⊗ · · Îk−1 ⊗ Îk+1 ⊗ · · Îl−1 ⊗ Îl+1 ⊗ · · ÎN ⊗ (V̂ )kl

The defining property of the 2-body operator in an N subspace reads as:

Ô(2)ĉ†1..ĉ
†
k..ĉ

†
l ..ĉ

†
N |0⟩ =

N∑
k

l>k

}
=1

∑
ik,jl

⟨ϕikϕjl|V̂ |ϕkϕl⟩ ĉ†1..ĉ
†
ik
..ĉ†jl..ĉ

†
N |0⟩

We consider an operator defined as Ô(2) ≡ 1
2

∑
i,i′

∑
j,j′

⟨ϕiϕj|V̂ |ϕi′ϕj′⟩ ĉ†i ĉ
†
j ĉj′ ĉi′ and

show that it satisfies the above property:

First note that: [Ô(2), ĉ†k] =
1
2

∑
i,i′

∑
j,j′

⟨ϕiϕj|V̂ |ϕi′ϕj′⟩

δi′k ĉ
†
i ĉ

†
j ĉj′±δj′k ĉ

†
i ĉ

†
j ĉi′︷ ︸︸ ︷

[ĉ†i ĉ
†
j ĉj′ ĉi′, ĉ

†
k] =

= 1
2

∑
i,j,j′

⟨ϕiϕj|V̂ |ϕkϕj′⟩ĉ†i ĉ
†
j ĉj′+

1
2

∑
i,i′,j

⟨ϕjϕi|V̂ |ϕkϕi′⟩ĉ†j ĉ
†
i ĉi′ =

∑
i,j,l

⟨ϕiϕj|V̂ |ϕkϕl⟩ĉ†i ĉ
†
j ĉl
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Ô(2)ĉ†1..ĉ
†
k..ĉ

†
l ..ĉ

†
N |0⟩ =

{(
[Ô(2), ĉ†1]︸ ︷︷ ︸∑

i1,j1,l1

⟨ϕi1
ϕj1

|V̂ |ϕ1ϕl1
⟩ĉ†i1 ĉ

†
j1
ĉl1

ĉ†2..ĉ
†
N

)
+ · · ·+

(
ĉ†1..ĉ

†
k−1 [Ô

(2), ĉ†k]︸ ︷︷ ︸∑
ik,jk,lk

⟨ϕik
ϕjk

|V̂ |ϕkϕlk
⟩ĉ†ik ĉ

†
jk
ĉlk

..ĉ†N
)

+ · · ·+
(
ĉ†1..ĉ

†
N−1 [Ô(2), ĉ†N ]︸ ︷︷ ︸∑

iN ,jN ,lN

⟨ϕiN
ϕjN

|V̂ |ϕNϕlN
⟩ĉ†iN ĉ†jN

ĉlN

)}
|0⟩ =

N∑
k

l>k

}
=1

∑
ik,jl

⟨ϕikϕjl|V̂ |ϕkϕl⟩ ĉ†1..ĉ
†
ik
..ĉ†jl..ĉ

†
N |0⟩

The last equality results from the fact that ĉlk in the commutator expressions
can only annihilate a state already created (otherwise the result=0) ⇒
lk=(k+1) or (k+2) or . . . N . The pair ĉ†jk ĉlk commutes to the right to the posi-

tion of the ĉ†lk and the whole combination ĉ†jk ĉlk ĉ
†
lk
is replaced by ĉ†jk . The last

expression verifies the above property of 2-body operators.

So the 2-body operator is expressed by:

Ô(2) ≡ 1
2

∑
i,i′

∑
j,j′

⟨ϕiϕj|V̂ |ϕi′ϕj′⟩ ĉ†i ĉ
†
j ĉj′ ĉi′

Graphical representation of this expression:

▶ Higher-order operators

An analogous procedure can be applied (though with increasing intricacy) to
any n-body operator.

Example, three-body:
Ô(3) =

N∑
k=1

N∑
l=k+1

N∑
m=l+1

(Ŵ )klm

= 1
3!

∑
i,i′

∑
j,j′

∑
k,k′

⟨ϕiϕjϕk|Ŵ |ϕi′ϕj′ϕk′⟩ ĉ†i ĉ
†
j ĉ

†
kĉk′ ĉj′ ĉi′

Graphical representation
of 3- & n-body operators:

▶ Normal ordering of the products of creation/annihilation operators

Matrix elements of an n-body operator in the N -body space are expressed in
terms of the following vacuum expectation values:

⟨0| ĉj1 · · · ĉjN︸ ︷︷ ︸
N×

ĉ†k1 · · · ĉ
†
kn︸ ︷︷ ︸

n×

ĉl1 · · · ĉln︸ ︷︷ ︸
n×

ĉ†iN · · · ĉ†i1︸ ︷︷ ︸
N×

|0⟩

The product inside is standardly rewritten in the normal-ordered form:

: ĉ†i1 · · · ĉj1 · · · ĉ
†
ik
· · · ĉjl · · · ĉjm · · · ĉ†in︸ ︷︷ ︸

unsorted product of n × ĉ†• and m × ĉ◦

: = σ︸︷︷︸
±

ĉ†i1 · · · ĉ
†
ik
· · · ĉ†in︸ ︷︷ ︸

n × ĉ†•

ĉj1 · · · ĉjl · · · ĉjm︸ ︷︷ ︸
m × ĉ◦
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σ=


+1 bosons
±1=σπ fermions: sign of permut. (i1..j1..ik..jl..jm..in)→(i1..ik..inj1..jl..jm)

Examples:




: b̂ib̂
†
j : = b̂†j b̂i : âiâ

†
j : = −â†jâi

: b̂†i b̂j b̂
†
k : = b̂†i b̂

†
kb̂j : â†i âjâ

†
k : = −â†i â

†
kâj

= b̂†kb̂
†
i b̂j = +â†kâ

†
i âj

▶ Wick theorem

There exists a systematic way how a product of creation/annihilation operators
can be transformed into the normal-ordered form. It makes use of so-called
contraction, which for an operator product ÂB̂ is defined as the vacuum

expectation value ⟨ÂB̂⟩0 = ⟨0|ÂB̂|0⟩

Examples:





⟨b̂ib̂†j⟩0=δij=⟨âiâ†j⟩0
⟨b̂†j b̂i⟩0=0=⟨â†jâi⟩0
⟨b̂†j b̂

†
i⟩0=⟨b̂j b̂i⟩0=0=⟨âjâi⟩0=⟨â†jâ

†
i⟩0

Statement:

Product of creation & annihilation operators =


k=0,1,2,...

σ
±

(normal ordered product with k pairs removed) ≡: •k :
× (product of k contractions of the removed pairs) ≡ ck

The proof not given here, instead we give some examples

Examples : bosons| |fermions

b̂ib̂
†
j = : b̂ib̂

†
j :  

b̂†j b̂i

+ ⟨b̂ib̂†j⟩0  
δij

âiâ
†
j = : âiâ

†
j :  

−â†j âi

+ ⟨âiâ†j⟩0  
δij

b̂†i b̂j b̂kb̂
†
l = b̂†i b̂

†
l b̂j b̂k+δklb̂

†
i b̂j+δjlb̂

†
i b̂k â†i âjâkâ

†
l = â†i â

†
l âjâk+δklâ

†
i âj−δjlâ

†
i âk

General product :

ÂB̂ĈD̂= : ÂB̂ĈD̂ : + ⟨ÂB̂⟩0 : ĈD̂ : ÂB̂ĈD̂= : ÂB̂ĈD̂ : + ⟨ÂB̂⟩0 : ĈD̂ :

+⟨ÂĈ⟩0 : B̂D̂ : + ⟨ÂD̂⟩0 : B̂Ĉ : −⟨ÂĈ⟩0 : B̂D̂ : + ⟨ÂD̂⟩0 : B̂Ĉ :

+⟨B̂Ĉ⟩0 : ÂD̂ : + ⟨B̂D̂⟩0 : ÂĈ : +⟨B̂Ĉ⟩0 : ÂD̂ :− ⟨B̂D̂⟩0 : ÂĈ :

+⟨ĈD̂⟩0 : ÂB̂ : + ⟨ÂB̂⟩0⟨ĈD̂⟩0 +⟨ĈD̂⟩0 : ÂB̂ : + ⟨ÂB̂⟩0⟨ĈD̂⟩0
+⟨ÂĈ⟩0⟨B̂D̂⟩0 + ⟨ÂD̂⟩0⟨B̂Ĉ⟩0 −⟨ÂĈ⟩0⟨B̂D̂⟩0 + ⟨ÂD̂⟩0⟨B̂Ĉ⟩0

If the vacuum expectation value of an operator product is to be evaluated,
one makes use of the obvious fact that ⟨0| : •k : |0⟩ = 0 Only the terms
composed solely of contractions (if ̸=0) may contribute to the result.

▶ Two-state correlations

The N -body state |Ψ⟩ contains complete information on the system, including
information on statistical distributions and mutual correlations of all occupa-
tion numbers ni associated with single-particle states |ϕi⟩. For any |Ψ⟩, these
properties can be described by means of the following general quantities:
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(a) Average: ⟨ni⟩Ψ = ⟨Ψ|ĉ†i ĉi|Ψ⟩
(b) Dispersion: ⟨⟨n2

i ⟩⟩Ψ = ⟨n2
i ⟩Ψ − ⟨ni⟩2Ψ = ⟨Ψ|ĉ†i ĉiĉ

†
i ĉi|Ψ⟩︸ ︷︷ ︸︷ ︸︸ ︷

⟨Ψ|b̂†i b̂
†
i b̂ib̂i|Ψ⟩+⟨Ψ|b̂†i b̂i|Ψ⟩ (bosons)

⟨Ψ|â†i âi|Ψ⟩ (fermions)

−⟨Ψ|ĉ†i ĉi|Ψ⟩2

(c) Correlation between occupation
numbers of states |ϕi⟩, |ϕj⟩ (for i ̸= j):

⟨⟨ninj⟩⟩Ψ = ⟨ninj⟩Ψ − ⟨ni⟩Ψ⟨nj⟩Ψ︸ ︷︷ ︸〈
(ni−⟨ni⟩Ψ)(nj−⟨nj⟩Ψ)

〉
Ψ

= ⟨Ψ|ĉ†i ĉiĉ
†
j ĉj|Ψ⟩︸ ︷︷ ︸

⟨Ψ|ĉ†i ĉ
†
j ĉj ĉi|Ψ⟩

−⟨Ψ|ĉ†i ĉi|Ψ⟩⟨Ψ|ĉ†j ĉj|Ψ⟩

Normalized correlation coefficient: Cij(Ψ) ≡ ⟨⟨ninj⟩⟩Ψ√
⟨⟨n2

i ⟩⟩Ψ⟨⟨n2
j⟩⟩Ψ

∈ [−1,+1]

Cij(Ψ)=
{

+1 for perfect correlation
0 for null correlation
−1 for perfect anticorrelation

▶ Many-body Hamiltonian

General expression of a Hamiltonian with 1-body terms (kinetic energies of
individual particles + potential energies in an external potential field) and
2-particle interactions:

Ĥ =
∑
i,i′

εii′ ĉ
†
i ĉi′ +

1
2

∑
i,i′

j,j′

νiji′j′ ĉ
†
i ĉ

†
j ĉj′ ĉi′

where εii′ = ⟨ϕi|T̂ |ϕi′⟩ and νiji′j′ = ⟨ϕiϕj|V̂ |ϕi′ϕj′⟩ are matrix elements in the
space of distinguishable particles. The 3-particle and higher interactions can
also be included by the respective n-body expressions.

▶ Coordinate form of Hamiltonian

If the many-body Hamiltonian is expressed in terms of coordinates ˆ⃗xk and
spin projections ŝzk of individual particles (k=1,...N), it is useful to utilize the
coordinate form of creation & annihilation operators.

Ĥ =
N∑
k=1

(T̂ )k︷ ︸︸ ︷(
− ℏ2

2M∆k

)

︸ ︷︷ ︸
kinetic term Ô

(1)
kin

+
N∑
k=1

(Û)k︷ ︸︸ ︷
U(ˆ⃗xk, ŝzk)

︸ ︷︷ ︸
external potential Ô

(1)
pot

+
N∑

k
l>k

}
=1

(V̂ )kl︷ ︸︸ ︷
V (ˆ⃗xk, ŝzk; ˆ⃗xl, ŝzl)

︸ ︷︷ ︸
interaction Ô

(2)
int

Ô
(1)
kin + Ô

(1)
pot =

∑
i,i′
⟨ϕi|(T̂+Û)|ϕi′⟩ĉ†i ĉi′

=
∑
i,i′

{∑
ms

∫
ϕ∗
i (x⃗,ms)

[
− ℏ2

2M∆+ U(x⃗,ms)
]
ϕi′(x⃗,ms)dx⃗

}
ĉ†i ĉi′

=
∑
ms

∫ [∑
i

ϕ∗
i (x⃗,ms)ĉ

†
i

]

︸ ︷︷ ︸
ψ̂†
±(x⃗,ms)

[
− ℏ2

2M∆+ U(x⃗,ms)

] [∑
i′

ϕi′(x⃗,ms)ĉi′

]

︸ ︷︷ ︸
ψ̂±(x⃗,ms)

dx⃗
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Ô
(2)
int =

1
2

∑
i,i′,j,j′

⟨ϕiϕj|V̂ |ϕi′ϕj′⟩ĉ†i ĉ
†
j ĉj′ ĉi′ =

1
2×

∑
i,i′

j,j′

{∑
ms

m′
s

�

ϕ∗
i (x⃗,ms)ϕ

∗
j(x⃗

′,m′
s)V (x⃗,ms; x⃗,

′m′
s)ϕi′(x⃗,ms)ϕj′(x⃗

′,m′
s)dx⃗dx⃗

′
}
ĉ†i ĉ

†
j ĉj′ ĉi′

= 1
2

∑
ms

m′
s

�

ψ̂†
±(x⃗,ms)ψ̂

†
±(x⃗

′,m′
s)V (x⃗,ms; x⃗

′,m′
s)ψ̂±(x⃗

′,m′
s)ψ̂±(x⃗,ms)dx⃗dx⃗

′

The final expression is of the field-theory type:

Ĥ=
∑
ms

∫
ψ̂†
±(x⃗,ms)

[
− ℏ2

2M∆+ U(x⃗,ms)
]
ψ̂±(x⃗,ms) dx⃗

+ 1
2

∑
ms

m′
s

�

ψ̂†
±(x⃗,ms)ψ̂

†
±(x⃗

′,m′
s)V (x⃗,ms; x⃗

′,m′
s)ψ̂±(x⃗

′,m′
s)ψ̂±(x⃗,ms) dx⃗ dx⃗

′

■ Quantization of electromagnetic field

The above-described formalism of the second quantization will now be applied
in a concrete task to quantize the electromagnetic field. We know that elec-
tromagnetic quanta—the photons—have spin s=1, so they are bosons. The
quantized elmg. field enables one to describe all processes connected with the
electromagnetic interaction of matter, including, e.g., spontaneous decays of
many-body systems accompanied by the emission of photons.

▶ Photon creation/annihilation operators

The general solution of the wave equation ∇⃗2A⃗− 1
c2

∂2A⃗
∂t2 = 0 for the elmg. vector

potential A⃗(x⃗, t) in vacuum (c= 1√
ϵ0µ0

) is a superposition of planar waves:

A⃗(x⃗, t) =
∑
ν=±

∫
NV k

{
αk⃗ν︸︷︷︸
→ b̂k⃗ν

e⃗k⃗νe
+i(k⃗·x⃗−ωkt) + α∗

k⃗ν︸︷︷︸
→ b̂†

k⃗ν

e⃗ ∗
k⃗ν
e−i(k⃗·x⃗−ωkt)

}
dk⃗

with ωk = c|⃗k| and:
(a) NV k ≡ a scaling factor for each mode which will be determined later

(b) e⃗k⃗± = ∓ 1√
2

[
e⃗k⃗x ± ie⃗k⃗y

]
≡ circular polarization vectors composed of
unit vectors of linear polarization satisfying

the Coulomb gauge condition: e⃗k⃗x ·k⃗ = 0 = e⃗k⃗y ·k⃗ ⇒ e⃗ ∗
k⃗ν

· e⃗k⃗ν′ = δνν′

(c) αk⃗ν ≡ arbitrary coefficients

Field quantization:

The field function A⃗(x⃗, t) ∈ R3 becomes a quantum observable

described by a selfadjoint vector operator
ˆ⃗
A(x⃗, t)=

ˆ⃗
A†(x⃗, t) ⇒

αk⃗ν → b̂k⃗ν
α∗
k⃗ν

→ b̂†
k⃗νWe work in the Heisenberg picture ⇒ ˆ⃗

A is time-dependent.
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Operators b̂†
k⃗ν

and b̂k⃗ν, respectively, create and annihilate

photons with momentum p⃗γ=ℏk⃗ and spin projection
sk⃗=νℏ=±ℏ to the flight direction k⃗/k:

b̂†
k⃗ν
|0⟩γ = |⃗kν⟩γ

b̂k⃗ν |⃗kν⟩γ = |0⟩γ

The reasoning of this statement follows from evaluation of the total field energy:

▶ Energy of the electromagnetic field

Classical expression for energy: E = 1
2

∫
V

[
ϵ0|

−∂A⃗
∂t︷ ︸︸ ︷

E⃗(x⃗, t) |2 + µ−1
0 |

∇⃗×A⃗︷ ︸︸ ︷
B⃗(x⃗, t) |2

]
dx⃗

− ∂
∂tA⃗=

∑
ν=±

∫
NV k

{
iαk⃗νωke⃗k⃗νe

+i(k⃗·x⃗−ωkt) − iα∗
k⃗ν
ωke⃗

∗
k⃗ν
e−i(k⃗·x⃗−ωkt)

}
dk⃗

c[∇⃗×A⃗]=
∑
ν=±

∫
NV k

{
iαk⃗ν

iνωke⃗k⃗ν︷ ︸︸ ︷
[ck⃗×e⃗k⃗ν] e

+i(k⃗·x⃗−ωkt) − iα∗
k⃗ν

−iνωke⃗
∗
k⃗ν︷ ︸︸ ︷

[ck⃗×e⃗ ∗
k⃗ν
] e−i(k⃗·x⃗−ωkt)

}
dk⃗

For V →∞ the spatial integration yields:
∫
V

ei(k⃗±k⃗ ′)·x⃗dx⃗ ≈ V δk⃗,∓k⃗ ′

The resulting expression for energy: E = V ϵ0
∑
ν

∫
(NV kωk)

2
(
α∗
k⃗ν
αk⃗ν+αk⃗να

∗
k⃗ν

)
dk⃗

This after the quantization, with the choice of NV k =
√

ℏ
2V ϵ0ωk

, leads to:

Ê =
∑
ν=±

∫
ℏωk

(
b̂†
k⃗ν
b̂k⃗ν +

1
2

)
dk⃗

Hamiltonian of a system of independent
harmonic oscillators, each of them
associated with a single field mode k⃗ν

So the free electromagnetic field is equivalent to an infinite (continuous)
system of independent (uncoupled) harmonic oscillators! Photons with
a given momentum ℏk⃗ and polarization ν are quanta (“phonons”) of the oscil-
lator associated with the corresponding mode.

Note: The energy term associated with zero-point motion yields diverging con-
tribution and must be removed (this is a mere shift of the energy axis).

▶ Photon emission & absorption

In Sec. 11, we outlined the theory of transitions stimulated by classical elmg.
waves in systems of charged particles. Now this theory can be extended to
describe interactions of matter with general, also non-classical field states.

Example: Any field state |Ψγ⟩ with a definite photon number Nγ is non-
classical. Indeed, any such state yields vanishing averages of field intensities:

⟨Ψγ|
ˆ⃗
E(x⃗, t)|Ψγ⟩ = 0 = ⟨Ψγ|

ˆ⃗
B(x⃗, t)|Ψγ⟩ (both

ˆ⃗
E &

ˆ⃗
B are composed of terms

containing a single operator b̂†
k⃗ν

or b̂k⃗ν ⇒ change of Nγ on one side of the scalar
product). Hovever, the dispersions of the field intensities in |Ψγ⟩ are nonzero.

In particular, such general theory applies to the processes of single-photon
absorption and spontaneous single-photon emission.

Consider a system composed of N particles with charges qk and masses Mk.
The matter-field interaction Hamiltonian (cf. Sec. 11):
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Ĥ ′(t)=−
N∑
k=1

qk
Mk

[ ˆ⃗
A(ˆ⃗xk, t) · ˆ⃗pk

] where
ˆ⃗
A(ˆ⃗xk, t) is taken from the above general

expression with the

{
αk⃗ν → b̂k⃗ν
α∗
k⃗ν
→ b̂†

k⃗ν

}
substitutions

The Hilbert space is H=Ha ⊗Hγ. The atom/nucleus space Ha is spanned by

energy eigenstates |E0i⟩a. The full Fock space of photons Hγ =
⊕∞

Nγ=1H
(Nγ)
γ

can be reduced (for the single-photon processes) just to the segmentH(0)
γ ⊕H(1)

γ

spanned by vectors |0⟩γ and {|⃗kν⟩γ}. Transition probabilities for photon ab-
sorptions & emissions are calculated with the aid of the Fermi golden rule:

Process Initial state |ψ0i⟩ Final state |ψ0j⟩ Active term in Ĥ ′(t)

emission |E0i⟩a|0⟩γ −→ |E0j⟩a|⃗kν⟩γ one with b̂†
k⃗ν

absorption |E0i⟩a|⃗kν⟩γ −→ |E0j⟩a|0⟩γ one with b̂k⃗ν
From this point on, the calculation of transition amplitudes is rather analogous
to that presented in Sec. 11 (using either just the dipole approximation or the
whole multipole expansion). For spontaneous emissions, the density of final
states must include also the state density ϱγ(Eγ) of the emitted photon. This
is calculated as the energy derivative of the number of elmg.modes in a box of
volume V →∞ (cf. Sec. 12). Details can be found in many textbooks.

◀ Historical remark
1927: Paul Dirac shows the equivalence of an ensemble of non-interacting bosons
with indefinite particle number (elmg. field) with a system of harmonic oscillators
(the use of occupation-number representation & creation/annihilation operators)
1928: Pascual Jordan & Eugene Wigner generalize Dirac’s results to fermions (the
use of anticommutators) & ensembles of interacting particles
1932: Vladimir Fock introduces the Hilbert space for q. fields/ many-body systems
1939,40: Markus Fierz and Wolfgang Pauli formulate the spin-statistics theorem
1950: G.-C.Wick provides a method for evaluating products of creat./annih. opers.

15. MANY-BODY TECHNIQUES

We are ready now to apply the above-derived general formalism in some sophis-
ticated approximation methods, which are extremely useful for the description of
various quantum many-body systems—atomic nuclei, atoms, molecules, molecular
aggregates and nanoscale metal clusters, quantum dots etc..

■ Fermionic mean field & Hartree-Fock method

All elementary constituents (bosonic and/or fermionic particles) of a typical
bound many-body system interact with each other. This usually makes the
exact solution of such systems very difficult, practically intractable. However,



250

this difficult problem can be often effectively approximated—at least as far as
the system’s ground-state properties are considered—by solving a much simpler
problem of individual particles moving in a single-particle mean field. For any
selected particle of the system, the mean field expresses the influence of all the
other particles averaged over their quantum-mechanical distribution in space.
We first treat the essence of the mean-field method in systems composed of
fermions, e.g., in electron shells of atoms or in atomic nuclei.

▶ Hartree-Fock ansatz for the ground-state wavefunction

Fermionic Hamiltonian with
one + two body terms written

in an arbitrary basis:

Ĥ =
∑
k,k′

εkk′â
†
kâk′ +

1
2

∑
k,k′

l,l′

νklk′l′â
†
kâ

†
l âl′âk′

The ground state of an N -particle system
is searched as the Slater-determinant
type of the
wavefunction |ΨHF⟩ = â†N · · · â†2â

†
1|0⟩

where â†N , . . . , â
†
2, â

†
1 create some ortho-

normal single-particle states interpreted
as the lowest eigenstates of an unknown
one-body Hamiltonian = mean field
⇒ the ground state can be seen as the “Fermi sea”
(N lowest levels of the mean-field Hamiltonian occupied, higher levels empty)

▶ Variation of the HF state
The unknown mean-field states |ϕi⟩ = â†i |0⟩ entering into |ΨHF⟩ will be deter-
mined by the stationary variational method:
Infinitesimal unitary variation |ϕi⟩ → |ϕi⟩+ |δϕi⟩

|ϕi⟩ →
∑
j

uij|ϕj⟩

︸ ︷︷ ︸
eiϵ̂|ϕi⟩

≈ |ϕi⟩+ i
∑
j

ϵij|ϕj⟩

︸ ︷︷ ︸
|δϕi⟩

⇒ â†i → â†i + i
∑
j

ϵijâ
†
j

︸ ︷︷ ︸
δâ†i

ϵij = ϵ∗ji

|ΨHF⟩ = â†N · · · â†2â
†
1|0⟩ →

(
â†N+δâ†N

)
· · ·

(
â†2+δâ†2

)(
â†1+δâ†1

)
|0⟩

≈ |ΨHF⟩+ ( δâ†N︸︷︷︸
i
∑
j

ϵNj â
†
j

· · · â†2â
†
1)|0⟩+ · · · · · ·+ (â†N · · · δâ†2︸︷︷︸

i
∑
j

ϵ2j â
†
j

â†1)|0⟩+ (â†N · · · â†2 δâ†1︸︷︷︸
i
∑
j

ϵ1j â
†
j

)|0⟩

Ket variation: Bra variation (independent coefficients ϵ′ij=ϵ′∗ji):

|ΨHF⟩ → |ΨHF⟩+i

N∑
i=1

∞∑
j=N+1

ϵijâ
†
jâi|ΨHF⟩

︸ ︷︷ ︸
|δΨHF⟩

⟨Ψ′
HF| → ⟨ΨHF|−i

N∑
i=1

∞∑
j=N+1

ϵ′ji⟨ΨHF|â†i âj
︸ ︷︷ ︸

⟨δΨ′
HF|
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▶ Variational condition

The condition for |ΨHF⟩ reads as follows:

⟨ΨHF|Ĥ|δΨHF⟩+⟨δΨ′
HF|Ĥ|ΨHF⟩=i

∑
i≤N

∑
j>N

⟨ΨHF|ϵijĤâ†jâi−ϵ′jiâ
†
i âjĤ|ΨHF⟩

!
=0 ∀

{
ϵij
ϵ′ji

⇒ ⟨ΨHF|Ĥâ†jâi|ΨHF⟩
!
= 0 ∀

{
i≤N
j>N

Assuming without loss of generality that Ĥ=
∑
k,k′

εkk′â
†
kâk′+

1
2

∑
k,k′,l,l′

νklk′l′â
†
kâ

†
l âl′âk′

is written in terms of the creation&annihilation operators of the states involved
in the desired state |ΨHF⟩ we get:

〈
ΨHF

∣∣∣∣
(∑

k,k′

εkk′â
†
kâk′ +

1
2

∑
k,k′

l,l′

νklk′l′â
†
kâ

†
l âl′âk′

)
â†jâi

∣∣∣∣ΨHF

〉
= 0 ∀

{
i ≤ N
j > N

Evaluation of both terms: anticommutation of â†j or âi to the leftmost position
(the resulting matrix element =0 since j>N and i≤N)

(a) One-body term:
∑
k,k′

εkk′⟨ΨHF|â†kâk′â
†
jâi|ΨHF⟩ =

=
∑
k,k′

εkk′

(
⟨ΨHF|â†jâ

†
kâk′âi|ΨHF⟩︸ ︷︷ ︸
0

+δjk′ ⟨ΨHF|â†kâi|ΨHF⟩︸ ︷︷ ︸
⟨ΨHF|âiâ†k|ΨHF⟩+δik⟨ΨHF|ΨHF⟩

)
=

∑
k,k′

εkk′δjk′δik = εij

(b) Two-body term: 1
2

∑
k,k′

l,l′

νklk′l′⟨ΨHF|â†kâ
†
l âl′âk′â

†
jâi|ΨHF⟩ =

= 1
2

∑
k,k′

l,l′

νklk′l′

[
δjk′δik ⟨ΨHF|â†l âl′|ΨHF⟩︸ ︷︷ ︸

δll′ for l≤N
0 for l,l′>N

+δjl′δil ⟨ΨHF|â†kâk′|ΨHF⟩︸ ︷︷ ︸
δkk′ for k≤N
0 for k,k′>N

−δjk′δil

δkl′ for k≤N
0 for k,k′>N︷ ︸︸ ︷

⟨ΨHF|â†kâl′|ΨHF⟩−δjl′δik

δlk′ for l≤N
0 for l,l′>N︷ ︸︸ ︷

⟨ΨHF|â†l âk′|ΨHF⟩
]
=

= 1
2

[ ∑
k≤N

(νikjk+νkikj)︸ ︷︷ ︸
2νkikj

−
∑
k≤N

(νikkj+νkijk)︸ ︷︷ ︸
2νikkj

]
=

∑
k≤N

(νkikj − νikkj)

Together: εij +
∑
k≤N

(νkikj − νikkj) = 0 ∀
{

i ≤ N
j > N

This represents a coupled set of conditions for the Hamiltonian matrix elements
in the HF basis which must be satisfied to minimize the energy functional

▶ Mean-field equation

We know that εij ≡ ⟨ϕi|T̂ |ϕj⟩. The above set of equations can be formally
solved by introducing another one-body operator V̂HF, which is defined through
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its matrix elements in the HF basis as follows: ⟨ϕi|V̂HF|ϕj⟩≡
∑
k≤N

(νkikj−νikkj)

It represents the Hartree-Fock mean field

⇒ The above variational condition reads as: ⟨ϕi|(T̂ + V̂HF)|ϕj⟩ = 0 for
{

i≤N
j>N

This can be replaced by a stronger condition that (T̂ + V̂HF) is diagonal in the
basis {|ϕn⟩}, i.e: (

T̂ + V̂HF

)
|ϕn⟩ = εn|ϕn⟩ one-body eigenvalue equation

So the state |ΨHF⟩, which approximates the exact many-body ground state, is
determined through eigensolutions of a one-body problem! However, the mean
field V̂HF contained in this one-body problem is expressed vis the eigensolutions
that we want to determine:

V̂HF|ϕn⟩=
∑
m
⟨ϕm|V̂HF|ϕn⟩|ϕm⟩=

∑
m

[
∑
k≤N

(
⟨ϕkϕm|V̂ |ϕkϕn⟩−⟨ϕmϕk|V̂ |ϕkϕn⟩

)]
|ϕm⟩

⇒ selfconsistent problem
The solution can be searched in an iterative procedure: an initial “randomly
selected” basis {|ϕ(0)

n ⟩} ⇒ 0thorder mean field V̂
(0)
HF ⇒ new basis {|ϕ(1)

n ⟩} ⇒
1storder mean field V̂

(1)
HF ⇒ new basis {|ϕ(2)

n ⟩} ⇒ 2ndorder mean field V̂
(2)
HF ⇒ .....

One may hope in a fast convergence (facilitated by a good choice of {|ϕ(0)
n ⟩}).

▶ Coordinate representation of the mean field

Meaning of the above-defined mean field operator becomes more intuitive in the
coordinate representation. The action of V̂HF on the HF single-particle basis
read as: V̂HF ϕn(x⃗, µ) =∑

m

[ ∑
k≤N

∑
µ1µ2

�

ϕ∗
k(x⃗1, µ1)ϕ

∗
m(x⃗2, µ2)

two-body interaction︷ ︸︸ ︷
V (x⃗1, x⃗2) ϕk(x⃗1, µ1)ϕn(x⃗2, µ2)dx⃗1dx⃗2

]
ϕm(x⃗, µ)

−
∑
m

[ ∑
k≤N

∑
µ1µ2

�

ϕ∗
m(x⃗1, µ1)ϕ

∗
k(x⃗2, µ2)V (x⃗1, x⃗2)ϕk(x⃗1, µ1)ϕn(x⃗2, µ2)dx⃗1dx⃗2

]
ϕm(x⃗, µ)

Using
∑
m
ϕ∗
m(x⃗•, µ•)ϕm(x⃗, µ) = δ(x⃗•−x⃗)δµ•µ (with •=1,2) we obtain:

V̂HF ϕn(x⃗, µ)=

[∫ ∑
k≤N

∑
µ1

|ϕk(x⃗1, µ1)|2V (x⃗1, x⃗)dx⃗1

]

︸ ︷︷ ︸
VHF(x⃗) local potential

ϕn(x⃗, µ) +

+

nonlocal potential
∫ ∑

µ2

WHF(x⃗,µ,x⃗2,µ2)ϕn(x⃗2,µ2)dx⃗2

︷ ︸︸ ︷∫ ∑
µ2

[∑
k≤N

ϕ∗
k(x⃗2, µ2)V (x⃗, x⃗2)ϕk(x⃗, µ)

]

︸ ︷︷ ︸
WHF(x⃗,µ,x⃗2,µ2) transformation kernel

ϕn(x⃗2, µ2)dx⃗2

The local mean-field
potential VHF(x⃗) is given by
averaging of the two-body potential V (x⃗1, x⃗) at position x⃗ over a cloud of all
constituent particles with spatial density ϱ(x⃗1)=

∑
k≤N

∑
µ1

|ϕk(x⃗1, µ1)|2.

The nonlocal, so-called exchange term with the kernel WHF(x⃗, µ, x⃗2, µ2) re-
sults from the antisymmetrization of two-body wavefunctions.
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▶ Ground-state energy

From the HF wavefunction obtained from a converged mean-field procedure we
estimate the ground-state energy as:

E0 ≈ ⟨ΨHF|Ĥ|ΨHF⟩ = · · · · · · =
∑
k≤N

εkk +
1
2

∑
k≤N

∑
l≤N

(νklkl − νlkkl)

However, summation of single-particle energies of the occupied mean-field states
yields a different value:∑

k≤N

εk =
∑
k≤N

⟨ϕk|(T̂ + V̂HF)|ϕk⟩ =
∑
k≤N

εkk +
∑
k≤N

∑
l≤N

(νklkl − νlkkl)

Comparison of the above expressions: E0 ≈
∑
k≤N

[
εk − 1

2

∑
l≤N

(νklkl − νlkkl)

︸ ︷︷ ︸
⟨ϕk|V̂HF|ϕk⟩

]

The correction ∆εk = 1
2⟨ϕk|V̂HF|ϕk⟩ of energy εk, present in the last formula,

compensates the double counting of particle interaction energies (e.g., the sum
ε1+ ε2 contains all interaction between particles 1 ↔ k and 2 ↔ k, so the term
1 ↔ 2 = 2 ↔ 1 is counted twice)

◀ Historical remark
1927: D.R.Hartree introduces a self-consistent method to solve many-body Sch. eq.
1930: V. Fock and J.C. Slater modify the Hartree method to respect antisymmetry
1935: D.R.Hartree reformulates the method in a way suitable for computations

■ Bosonic condensates & Hartree-Bose method

The Hartree-Fock method has its bosonic counterpart, called after Hartree and
Bose. It relies on the same principle, but is much simpler technically since
bosons do not obey the Pauli exclusion law. So in the mean-field approximation,
the ground state is formed by all constituent bosons sitting in the same state.

▶ Bosonic condensate

Bosonic Hamiltonian with
one + two body terms:

Ĥ =
∑
k,k′

εkk′ b̂
†
kb̂k′ +

1
2

∑
k,k′

l,l′

νklk′l′ b̂
†
kb̂

†
l b̂l′ b̂k′

Ground state of the N -particle system searched in the form of the condensate

type of wavefunction: |ΨHB⟩ = 1√
N !
(B̂†)N |0⟩

with B̂† ≡
∑
k

βkb̂
†
k creating the boson into

a general single-particle state |ψB⟩ =
∑
k

βk|ϕk⟩

with unknown coefficients subject to normalization:
∑
k

|βk|2 = 1
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▶ Energy functional

To perform the variational procedure, we need to express the energy functional
⟨ΨHB|Ĥ|ΨHB⟩ as a function of coefficients {βk}. First we evaluate commutators:

[b̂k, B̂
†]  

Ĉ1

= βk

[b̂k, (B̂
†)N ]  

ĈN

=[b̂k, B̂
†]  

βk

(B̂†)N−1+B̂† [b̂k, (B̂
†)N−1]  

ĈN−1




⇒


b̂k, (B̂

†)N

=Nβk(B̂

†)N−1
(B̂)N , b̂†k


=Nβ∗

k(B̂)N−1

From these relations we calculate the following averages:

⟨ΨHB|b̂†kb̂k′|ΨHB⟩= 1
N !⟨0|(B̂)N b̂†kb̂k′(B̂

†)N |0⟩=β∗
kβk′

N2

N ! ⟨0|(B̂)N−1(B̂†)N−1|0⟩
= Nβ∗

kβk′⟨ΨHB|b̂†kb̂
†
l b̂l′ b̂k′|ΨHB⟩= 1

N !⟨0|(B̂)N b̂†kb̂
†
l b̂l′ b̂k′(B̂

†)N |0⟩
= β∗

kβk′
N2

N ! ⟨0|(B̂)N−1b̂†l b̂l′(B̂
†)N−1|0⟩ = N(N−1)β∗

kβ
∗
l βk′βl′

The energy average (energy functional) in the space of condensate states:

⟨ΨHB|Ĥ|ΨHB⟩ = N

k,k′

εkk′β
∗
kβk′ +

N(N−1)
2


k,k′

l,l′

νklk′l′β
∗
kβ

∗
l βk′βl′ ≡ E({βk})

To find parameters {βk} of the condensate state, the function E({βk}) must be
minimized, respecting the normalization condition


k

|βk|2 = 1.

Alternatively, one can skip the normalization
constraint and minimize the expression: Ẽ({β}) = ⟨ΨHB|Ĥ|ΨHB⟩

⟨ΨHB|ΨHB⟩

◀ Historical remark
1924-5: A. Einsten & S.N.Bose predict that systems of bosons at T→ 0 form a con-
densate state with unusual properties (the first laboratory preparation in 1995)
1938: F. London relates boson condensation to superfluidity of some liquids

■ Pairing & BCS method

The Hartree-Fock method does not work well for the fermionic systems whose
valence shell (or valence band) of single-particle states is filled up approximately
to the middle. Indeed, the existence of a number of partly occupied valence
orbits with nearly degenerate spectrum makes the HF method unstable (it has
many almost equivalent solutions). In this situation, an attractive short-range
type of interaction produces a new effect beyond the mean field—pairing of
particles in conjugate states related by the time reversal. It turns out that
at low temperatures, the systems with pairing exhibit superconductivity,
a phenomenon partly analogous to the superfluidity of some Bose systems.
The basic many-body theory which takes the fermionic pairing into account is
abbreviated after its inventors Bardeen, Cooper, and Schrieffer.
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▶ Pairing interaction

Consider a short-range (approximately contact) interaction given by:

V (x⃗1−x⃗2)≈−V0 δ(x⃗1−x⃗2)
Matrix element ⟨ϕiϕj|V̂ |ϕi′ϕj′⟩ ≈

−V0


µ1,µ2

�

ϕ∗
i (x⃗1, µ1)ϕ

∗
j(x⃗2, µ2)δ(x⃗1−x⃗2)ϕi′(x⃗1, µ1)ϕj′(x⃗2, µ2) dx⃗1dx⃗2

= −V0

 
µ1

ϕ∗
i (x⃗, µ1)ϕi′(x⃗, µ1)


µ2

ϕ∗
j(x⃗, µ2)ϕj′(x⃗, µ2)


dx⃗

Assuming that:

ϕi(x⃗, µ)=ϕ∗
j(x⃗,−µ)≡T̂ ϕj(x⃗, µ)

ϕi′(x⃗, µ)=ϕ∗
j′(x⃗,−µ)≡T̂ ϕj′(x⃗, µ)


⇒




⟨ϕiϕj|V̂ |ϕi′ϕj′⟩ ≈
−V0

 
µ
ϕ∗
i (x⃗, µ)ϕi′(x⃗, µ)

2dx⃗
we get large attractive interaction

We may approximate this situation by assuming that V̂ acts only between pairs

of states |ϕk⟩
â†k|0⟩

↔ |ϕk̄⟩
â†
k̄
|0⟩

≡T̂ |ϕk⟩ related by the time reversal transformation T̂

Examples of such states are:

|+p⃗, ↑⟩ ↔ |−p⃗, ↓⟩ quasimomentum-spin electron states inmetals
|n, l, j,+mj⟩ ↔ |n, l, j,−mj⟩ angular-momentumnucleon states in nuclei

▶ Simplified Hamiltonian

For fermionic systems possessing the time-reversal symmetry the so-called
Kramers theorem asserts that the Hamiltonian eigenstates |Ei⟩ and T̂ |Ei⟩
with half-integer total angular momentum are orthogonal and have the same
energy. This must hold also for the one-body mean-field Hamiltonian given
by ĤMF= T̂+V̂HF=


k εk(â

†
kâk+â†

k̄
âk̄). To this Hamiltonian we now add the

pairing interaction V̂pair. The above approximation
yields a so-called monopole pairing interaction:

V̂pair ≈ −G

k,l

′ â†
k̄
â†kâlâl̄

G ≡ pairing interaction strength
k,l

′ ≡ sum over the states close to the Fermi energy εF: |εk−εF|<S

(with εF taken now as the energy of the highest occupied orbital in |ΨHB⟩)
This interaction can be expressed with the aid of

the following bifermion operators: V̂pair ≈ −Gn P̂ †P̂

P̂ † ≡ 1√
n


k

′ â†
k̄
â†k P̂ ≡ 1√

n


l

′ âlâl̄ where n ≡ number of levels εk in the

|εk−εF|<S interval around εF

If the k, k̄ states correspond to |n, l, j,±mj⟩, the P̂ † operator creates a pair with
zero total angular momentum (hence the term “monopole”)

Boson-like commutator (see Sec. 14):

P̂ , P̂ †=1− 1

n


k

′�â†kâk+â†
k̄
âk̄


  
N̂k∈[0,2]

∈ [−1,+1]

The full Hamiltonian then reads as follows:
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Ĥ =
∑
k

εk(â
†
kâk + â†

k̄
âk̄)

︸ ︷︷ ︸
T̂+V̂HF

−G
∑
k,l

′ â†
k̄
â†kâlâl̄

︸ ︷︷ ︸
V̂pair

=
∑
k

εkn̂k −Gn P̂ †P̂

▶ The BCS approach

Splitting of the full Hamiltonian into

{
Ĥ0 = T̂+V̂HF+V̂ ′

pair (the main part)

V̂ ′′
pair (the rest)

Ĥ =

Ĥ0︷ ︸︸ ︷
E0 +

∑
k

εk(â
†
kâk + â†

k̄
âk̄)

︸ ︷︷ ︸
T̂+V̂HF

−∆
∑
k

′ (â†
k̄
â†k + âkâk̄)

︸ ︷︷ ︸
V̂ ′
pair

[Ĥ,N̂]=0

[Ĥ0,N̂] ̸=0̸=[V̂ ′′
pair,N̂]

V̂ ′′
pair︷ ︸︸ ︷

+∆
∑
k

′ (â†
k̄
â†k + âkâk̄)−G

∑
k,l

′ â†
k̄
â†kâlâl̄ − E0

Here, ∆ is a so far undetermined parameter called pairing gap (see below). It
is believed that V̂ ′

pair included in Ĥ0 represents “a larger part” of the full pairing

interaction V̂pair, while the rest V̂ ′′
pair is “small”.

The subsequent procedure consists of 2 steps:
(1) The ground state of Ĥ0 found analytically ⇒ wavefunction |ΨBCS(∆)⟩
(2) |ΨBCS(∆)⟩ is used as the ansatz wavefunction for the variational procedure
using the full Hamiltonian ⇒ minimization of E(∆) = ⟨ΨBCS(∆)|Ĥ|ΨBCS(∆)⟩
determines the value of parameter ∆.

The idea behind:

P̂ †P̂ =

small contribution → 0︷ ︸︸ ︷[
P̂ †−⟨P̂ †⟩Ψ

][
P̂−⟨P̂ ⟩Ψ

]
+

the main part → V̂ ′
pair︷ ︸︸ ︷

⟨P̂ ⟩ΨP̂ † + ⟨P̂ †⟩ΨP̂ −
const. → E0︷ ︸︸ ︷
⟨P̂ †⟩Ψ⟨P̂ ⟩Ψ

The gap can be identified with: G
√
n⟨P̂ †⟩Ψ = G

√
n⟨P̂ ⟩Ψ ≈ ∆

▶ Bogolyubov transformation (a toy form)

Spin states

{
|↑⟩ ≡ â†↑|0⟩
|↓⟩ ≡ â†↓|0⟩

quadraticHamiltonian

ĥ0 = ε0 + ε
(
â†↑â↑ + â†↓â↓

)
+ δâ↓â↑ + δâ†↑â

†
↓

Eigenproblem of ĥ0 in the 3D Hilbert space (spanned by states |Na⟩ with par-
ticle numbers Na=0,1,2) can be solved analytically via Bogolyubov transform.:

â↑, â
†
↑

â↓, â
†
↓

}
→

{
α̂↑ = uâ↑ + vâ†↓ α̂†

↑ = uâ†↑ + vâ↓
α̂↓ = uâ↓ − vâ†↑ α̂†

↓ = uâ†↓ − vâ↑

u, v ∈ R
u2+v2=1

particles quasiparticles
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Quasiparticles are fermions (the transformation is “canonical”):

{α̂↑, α̂↑}={α̂†
↑, α̂

†
↑}={α̂↓, α̂↓}={α̂†

↓, α̂
†
↓}={α̂↑, α̂↓}={α̂†

↑, α̂
†
↓}=0

{α̂↑, α̂
†
↓}={α̂↓, α̂

†
↑}=0 {α̂↑, α̂

†
↑}={α̂↓, α̂

†
↓}=u2+v2=1

Coefficients u, v are determined by the required form of Hamiltonian after the

transformation, which is: ĥ0 → ĥ′
0 = e0 + e (α̂†

↑α̂↑ + α̂†
↓α̂↓)︸ ︷︷ ︸

N̂α

This Hamiltonian is solvable: eigensolutions identified with the states having
fixed numbers of quasiparticles: |Nα⟩ ≡ |0α⟩, |1α⟩, |2α⟩
The ground state is the quasiparticle vacuum: |ψ0⟩ ≡ |0α⟩
Amplitudes u, v & constants e, e0 (together 4 real variables) obtained from the
condition ĥ′

0 = ĥ0, yielding together with the normalization constraint 4 real
equations:

ĥ′
0 =

=ε0︷ ︸︸ ︷
e0 + 2ev2+

=ε︷ ︸︸ ︷
e
(
u2−v2

)
(â†↑â↑ + â†↓â↓) +

=δ︷︸︸︷
euv â↓â↑ +

=δ︷︸︸︷
euv â†↑â

†
↓ = ĥ0

▶ Solving the main part of the pairing Hamiltonian

The part Ĥ0 of the total pairing Hamiltonian is quadratic ⇒ solvable

Bogolyubov transformation (the full form):

α̂k=ukâk+vkâ
†
k̄

α̂†
k=ukâ

†
k+vkâk̄

α̂k̄=ukâk̄−vkâ
†
k α̂†

k̄
=ukâ

†
k̄
− vkâk

âk=ukα̂k−vkα̂
†
k̄

â†k=ukα̂
†
k−vkα̂k̄

âk̄=ukα̂k̄+vkα̂
†
k â†

k̄
=ukα̂

†
k̄
+vkα̂k

uk, vk ∈ R
u2k+v2k=1

{α̂k,α̂l}=0={α̂†
k,α̂

†
l } {α̂k,α̂

†
l }=δkl

{α̂k̄,α̂l̄}=0={α̂†
k̄
,α̂†

l̄
} {α̂k̄,α̂

†
l̄
}=δkl

{α̂k,α̂l̄}=0={α̂†
k,α̂

†
l̄
} {α̂k,α̂

†
l̄
}=0={α̂k̄,α̂

†
l }

Remarks:
(a) We assume (uk, vk) = (1, 0) for levels “far from” the Fermi level: |εk−εF|>S
(b) Instead of Ĥ0 we consider Ĥ0 = Ĥ0−µN̂ , where µ will become a Lagrange
multiplier for fixing the average particle number (⇒ chemical potential)
The required form of Ĥ0 expressed through the quasiparticles reads as:

Ĥ ′
0 = 2

∑
k

[
(εk−µ)v2k−∆ukvk

]

︸ ︷︷ ︸
E0

+
(∑

k

[
2(εk−µ)ukvk −∆(u2k−v2k)

]
︸ ︷︷ ︸

0

α̂†
k̄
α̂k

+H.c.
)
+
∑
k

ek︷ ︸︸ ︷[
(εk−µ)(u2k−v2k) + 2∆ukvk

]
N̂k︷ ︸︸ ︷(

α̂†
kα̂k + α̂†

k̄
α̂k̄

)

Solution of the diagonalization condition:

2(εk−µ)ukvk −∆(u2k−v2k) = 0 ⇒ 2(εk−µ)uk
√

1− u2k = ∆(2u2k−1) ⇒
4
[
∆2+(εk−µ)2

]
u4k−4

[
∆2+(εk−µ)2

]
u2k+∆2=0

ek =
√

∆2 + (εk − µ)2 u2k=
1
2

[
1+ εk−µ√

∆2+(εk−µ)2

]
v2k=

1
2

[
1− εk−µ√

∆2+(εk−µ)2

]
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▶ Ground-state wavefunction

The ground state of Ĥ ′
0 ≡ vacuum of quasiparticles (⇒ Nk =0). Written

in terms of creation/annihilation operators of the original particles and their
vacuum, this state has the following form:

|ΨBCS⟩ =
∏
k

(
uk + vkâ

†
k̄
â†k

)
|0⟩

Proof:

α̂l|ΨBCS⟩ =

α̂l︷ ︸︸ ︷(
ulâl+vlâ

†
l̄

)∏
k

β̂k︷ ︸︸ ︷(
uk + vkâ

†
k̄
â†k

)
|0⟩ =

{[
α̂l,

∏
k

β̂k
]
+
(∏

k

β̂k
)
α̂l

}
|0⟩ =

{
ulvl

[
âl, â

†
l̄
â†l
]

︸ ︷︷ ︸
−â†

l̄

∏
k ̸=l

(
uk+vkâ

†
k̄
â†k

)
+
∏
k ̸=l

(
uk+vkâ

†
k̄
â†k

)(
ul+vlâ

†
l̄
â†l

)(
ulâl+vlâ

†
l̄

)}
|0⟩

︸ ︷︷ ︸
+ulvlâ

†
l̄
|0⟩

⇒ α̂l|ΨBCS⟩ = 0 similarly: α̂l̄|ΨBCS⟩ = 0

The solution |ΨBCS⟩ approximates the superconducting state at T = 0

▶ Interpretation

(a) |ΨBCS⟩ is a state with undetermined particle number

(b) The average ⟨N⟩BCS =
∑
k

⟨ΨBCS|
(
â†kâk + â†

k̄
âk̄
)

︸ ︷︷ ︸
n̂k

|ΨBCS⟩
!
= N fixed by µ

(c) The dispersion ⟨⟨N 2⟩⟩BCS = ⟨N2⟩BCS − ⟨N⟩2BCS is beyond the control (for
small systems like nuclei this is a drawback)

(d) uk and vk represent probability
amplitudes for the pair of states
|ϕk⟩, |ϕk̄⟩ being empty and occupied:

pempty
k = |uk|2 and poccupk = |vk|2

(e) The occupation probability |vk|2
as a function of εk is smeared
around the value µ. The smearing
width ∼ ∆. For ∆=0 we get:

|vk|2=1−|uk|2 =
{

1 for εk≤µ
0 for εk>µ

⇒ µ ≡ εF

(f) Excited states (with n̂k ≥ 1) have energies

Eexc ≥ Min{ek} ≥ ∆ ⇒ energy gap above

the ground state in the spectrum is a typical
signature of pairing and one of the origins of
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the superconducting behavior (the friction is suppressed due to the difficulty
to excite the system)

▶ Determination of the gap

(a) Variational approach: E′(∆) = ⟨ΨBCS(∆)|(Ĥ−µN̂)|ΨBCS(∆)⟩ =

⟨ΨBCS|Ĥ0|ΨBCS⟩+∆
∑
k

′⟨ΨBCS|(â†k̄â
†
k+âkâk̄)|ΨBCS⟩

︸ ︷︷ ︸
2
∑
k

′ (εk−µ)vk(∆)2

−G ⟨ΨBCS|
∑
k,l

′ â†
k̄
â†kâlâl̄|ΨBCS⟩

︸ ︷︷ ︸[∑
k

′uk(∆)vk(∆)

]2

Minimization of E′(∆): ∂
∂∆

{
2
∑
k

′ (εk − µ)vk(∆)2 −G
[∑

k

′uk(∆)vk(∆)
]2}

= 0

(b) Derivation from expectation values of pair operators P̂ or P̂ †:

∆ = G
√
n⟨ΨBCS(∆)|P̂ |ΨBCS(∆)⟩ =

= G⟨0|
∏
k′
(uk′ + vk′âk′âk̄′)

(∑
l

′
âlâl̄

)∏
k

(uk + vkâ
†
k̄
â†k)

︸ ︷︷ ︸∑
l

′
vl (1−n̂l)︸ ︷︷ ︸

1

∏
k ̸=l

(uk+vkâ
†
k̄
â†k)

|0⟩ = G
∑
l

′
ul(∆)vl(∆)

︸ ︷︷ ︸
G
2

∑
l

′
√
1− (εl−µ)2

∆2+(εl−µ)2

Both derivations equivalent ⇒ gap equation: ∆

(
1− G

2

∑
k

′ 1√
∆2+(εk−µ)2

)
= 0

⇒ ∃ a critical value Gc of pairing strength: 2
Gc

=
∑
k

′ 1
|εk−µ|

⇒ Solutions:

(1) G ≤ Gc : ∆ = 0 (normal solution)
(2) G > Gc :

2
G =

∑
k

′ 1√
∆2+(εk−µ)2

⇒ ∆ ̸= 0 (superconducting solution)

◀ Historical remark
1947: N.Bogolyubov introduces the transformation to quasiparticles
1957: J. Bardeen, L.N.Cooper & J.R. Schrieffer formulate the BCS method

■ Quantum gases

At last we turn to systems of non-interacting indistinguishable particles, bosons
or fermions, at nonzero temperature. Generalizing the concept of the canonical
ensemble (see Sec. 6a), we will point out some crucial differences in thermody-
namic properties of Bose and Fermi gases. We will evaluate partition functions
of these gases and show how these can be used to calculate various thermody-
namic properties and also the energy level densities of these many-body systems.
The level density of the Fermi gas will be actually derived and discussed.
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▶ Grand-canonical ensemble

Consider a gas of indistinguishable particles at temperature T=(kβ)−1 (with
k≡Boltzmann constant and β≡ inverse temperature) in volume V . Assuming
an exchange of both energy & particles between the system and a bath, we
cannot fix either the total energy E or the actual number of particles N in the
system, but only their averages ⟨E⟩ and ⟨N⟩. The density operator describing
the most probable state of the system follows from the maximum entropy
principle. The resulting grand-canonical ensemble generalizes the canonical
ensemble (Sec. 6a) by taking into account also the effects of particle exchange.

Hamiltonian Ĥ commutes with the particle-number operator N̂ . For each par-
ticle number N , the system has a discrete energy spectrum {ENi}. The equi-
librium density operator ρ̂ is diagonal in the common eigenbasis of Ĥ, N̂ ⇒
diagonal matrix elements (probabilities) ρ(N,ENi) ≡ ρNi

Constraints induced by the normalization and fixed averages:
∞∑

N=0

∞∑
i=1

ρNi = 1
∞∑

N=0

∞∑
i=1

ρNiN = ⟨N⟩
∞∑

N=0

∞∑
i=1

ρNiENi = ⟨E⟩

Entropy S = −k
∑
N,i

ρNi ln ρNi to be maximized with the above constraints:

f = −
∑
N,i

ρNi ln ρNi + (α+1)
∑
N,i

ρNi − β
∑
N,i

ρNiENi + γ
∑
N,i

ρNiN

∂f
∂ρNi

=− ln ρNi−1+(α+1)−βENi+γN = 0 ⇒ ln ρNi=α−βENi+γN

This leads to the grand-canonical form of the density operator, which de-
scribes an equilibrium state of a many-particle system exchanging energy &
particles with the environment:

ρNi=
1

Z(β, µ)
e−β

(
ENi−µN

)
where

µ = γ
β chemical potential

Z(β, µ)=
∑
N,i

e−β(ENi−µN)

partition function

▶ Thermodynamic quantities derived from the partition function

(a) Energy & particle number averages:

⟨E⟩β,µ︸ ︷︷ ︸
≡⟨E⟩T,µ

=
∑
N,i

ρN,iENi=
1

Z(β,µ)

∑
N,i

ENi e
−β(ENi−µN)=− 1

Z(β,µ)
∂Z(β,µ)

∂β =− ∂
∂β lnZ(β, µ)

⟨N⟩β,µ︸ ︷︷ ︸
≡⟨N⟩T,µ

=
∑
N,i

ρN,iN= 1
Z(β,µ)

∑
N,i

N e−β(ENi−µN)= 1
βZ(β,µ)

∂Z(β,µ)
∂µ =+ 1

β
∂
∂µ lnZ(β, µ)

Energy & particle number (b) variances:
⟨⟨E2⟩⟩β,µ︸ ︷︷ ︸
≡⟨⟨E2⟩⟩T,µ

= + ∂2

∂β2 lnZ(β, µ)

specific heat cV (T, µ)≡ ∂
∂T ⟨E⟩T,µ= 1

kT 2 ⟨⟨E2⟩⟩T,µ (Sec. 6a)
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⟨⟨N 2⟩⟩β,µ  
≡⟨⟨N2⟩⟩T,µ

=⟨N2⟩β,µ  
1
Z

∂2

β2∂µ2
Z

−⟨N⟩2β,µ = 1
β2

Z(β,µ) ∂2

∂µ2
Z(β,µ)−


∂
∂µZ(β,µ)

2
Z(β,µ)2 = + 1

β2
∂2

∂µ2 lnZ(β, µ)

∂
∂µ⟨N⟩T,µ = 1

kT ⟨⟨N
2⟩⟩T,µ

▶ Partition function of the Bose gas

Bose gas is an ensemble of non-interacting bosons. We assume single-particle
states with discrete energies {εk} and occupation numbers nik=0, 1, 2, 3, . . .

Index i specifies the state with the total energy: ENi =
∞
k=1

nikεk

The total number of particles is: N =
∞
k=1

nik

⇒ partition function:

Z(β, µ) =

N


i

e−β(ENi−µN) =

sumover all sets of occupation numbers
{nik}

e
−β
�

k

nikεk−µ

k

nik


=


k

∞
nik=0

e−β
�
nikεk−µnik



  
1

1−e−β(εk−µ)

lnZ(β, µ) = −

k

ln

1− e−β(εk−µ)



For the Bose gas in a finite volume V the sum goes
over the elementary phase-space cells, so we change
the sum into an integral via the substitutions:




εk → p2

2M
k

→ 4πV
(2πℏ)3

∞
0

p2dp

▶ Partition function of the Fermi gas

Fermi gas is ensemble of non-interacting fermions. We assume discrete
single-particle energies {εk} and Pauli-restricted occupation numbers nik=0, 1

for states with total energyENi =
∞
k=1

nikεk and total particle numberN =
∞
k=1

nik

⇒ partition function:

Z(β, µ) =

N


i

e−β(ENi−µN) =

sumover all sets of occupation numbers
{nik}

e
−β
�

k

nikεk−µ

k

nik


=


k


nik=0,1

e−β
�
nikεk−µnik



  
1+e−β(εk−µ)

lnZ(β, µ) = +

k

ln

1 + e−β(εk−µ)



For the Fermi gas in a finite volume V the sum is replaced by the same phase-
space integral as for bosons.

▶ Distributions of occupation numbers

Average total particle number:

⟨N⟩β,µ = 1
β

∂
∂µ lnZ(β, µ) =






k

e−β(εk−µ)

1−e−β(εk−µ) =

k

1
e+β(εk−µ)−1

Bose gas


k

e−β(εk−µ)

1+e−β(εk−µ) =

k

1
e+β(εk−µ)+1

Fermi gas
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From the expression ⟨N⟩β,µ=
∑
k

⟨nk⟩β,µ using the average occupation numbers

⟨nk⟩β,µ we get:

⟨nk⟩β,µ =

{
1

e+β(εk−µ)−1
Bose−Einstein statistics

1
e+β(εk−µ)+1

Fermi−Dirac statistics

Chemical potential µ is
determined from a fixed
average ⟨N⟩β,µ of the
total number of paricles.

For bosons we require:

µ ≤ ε1 (the lowest

single-particle energy)

For fermions we identify:

µ ≡ εF Fermi energy

β1 > β2 > β3

▶ Level density as the Laplace inversion of the partition function

The density of energy levels ENi for a fixed particle numberN on the continuous
energy axis E is defined as: ϱ(N,E)=

∑
i

δ(E−ENi)

In analogy, the level density in the plane
(particle number) × (energy) is defined
using a continuous particle-number variable N̄ :

ϱ(N̄ , E) =
∑
N

∑
i

δ(N̄−N)δ(E−ENi)

⇒
N+ϵ∫
N−ϵ

ϱ(N̄ , E)dN̄ = ϱ(N,E)

The grand-canonical partition function and the level density are tightly con-
nected:

Z(β, µ) =
∑
N

∑
i

e−β(ENi−µN) =
�

ϱ(N̄ , E) e−β(E−µN̄)dN̄ dE

partition function 2D Laplace transform. of state density

ϱ(N̄ , E) =
(

1
2πi

)2 +i∞
�

−i∞
Z(β, µ) e+β(E−µN̄)β dµ dβ

=
(

1
2πi

)2 +i∞
�

−i∞
elnZ(β,µ)+β(E−µN̄)β dµ dβ

state density inverse 2D Laplace transform. of partition function
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⇒ The grand-canonical partition function of a many-body system enables one
to calculate the density of energy eigenstates for each particle number.

▶ The saddle-point approximation

To perform the exact Laplace inversion of the partition function is a difficult
task even for system as simple as the Bose or Fermi gases. The commonly
used method is the saddle-point approximation. We first introduce it for the
canonical partition function Z(β) =

∑
i e

−βEi =
∫
dE ϱ(E)e−βE, for which the

Laplace inversion reads: ϱ(E)= 1
2πi

β0+i∞∫
β0−i∞

dβ Z(β)e+βE= 1
2πi

β0+i∞∫
β0−i∞

dβ Z(β)elnZ(β)+βE

where β0∈ R is an adjustable constant. The complexified variable β we denote

as β = x+iy and β0≡x0, so: ϱ(E) = 1
2πi

+∞∫
−∞

i dy elnZ(x0+iy)+(x0+iy)E

The function f(x, y) = lnZ(x+ iy)+ (x+ iy)E in the exponent is generally
a fast-varying complex function, so the contributions of the whole exponential
have a tendency to cancel each other. Only in a vicinity of a stationary point
(x0, y0) satisfying

∂f
∂x |(x0,y0)=

∂f
∂y |(x0,y0)=0 the contributions add coherently. We

find a stationary point on the real axis, (x0, y0)=(x0, 0), and associate it with

the value β0. So we can write: ϱ(E) ≈ 1
2π

+∞∫
−∞

dy e
lnZ(x0+i0)+x0E+ 1

2
∂2 lnZ
∂y2

|x0+i0 y
2

We know that ∂2

∂x2Re lnZ+
∂2

∂y2Re lnZ=0 (Cauchy-Riemann condition) and also
∂2

∂x2Re lnZ|x0+i0= ⟨⟨E2⟩⟩β0
≥0. Hence the real part of the quadratic term in the

exponential of the above formula is (semi)negative and we can use the familiar
Gauss integral, arriving at:

ϱ(E) ≈ 1
2π e

lnZ(β0)+β0E
√

2π∣∣ ∂2

∂y2
lnZ(β0)

∣∣Note that the energy dependence
is hidden also in x0=β0=β0(E).

The Laplace inversion of the grand-canonical partition function is evaluated
in a similar way (not reviewed here), resulting in an analogous formula:

ϱ(N̄ , E) ≈ 1
(2π)2 e

lnZ(β0,γ0)+β0E−γ0N
√

(2π)2∣∣DetF (β0,γ0)
∣∣

where we use the Hessian

F (β, γ)=

(
∂2 lnZ
∂β2

,∂
2 lnZ
∂β∂γ

∂2 lnZ
∂γ∂β ,∂

2 lnZ
∂γ2

)

▶ Level density of the Fermi gas

We express the above-derived Fermi-gas partition function as

lnZ(β, µ) =
∑
k

ln
[
1 + e−β(εk−εF)

]
=

∞∫
0

dε g(ε)︸︷︷︸∑
k

δ(ε−εk)

ln
[
1 + e−β(ε−εF)

]

single-particle level density

=
εF∫
0

dε g(ε) ln
[
1+e−β(ε−εF)

]
+

+∞∫
εF

dε g(ε) ln
[
1+e−β(ε−εF)

]
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The first term can be written as:

−β
εF
0

dε g(ε)(ε−εF) +
εF
0

dε g(ε)

ln

eβ(ε−εF)[1+e−β(ε−εF)]


  
ln

1+e+β(ε−εF)


So we have:

lnZ(β, µ)=−β
εF
0

dεg(ε)(ε−εF)+
εF

0

dεg(ε)ln

1+e+β(ε−εF)


+

+∞

εF

dεg(ε)ln

1+e−β(ε−εF)



  
+∞
0

dx[g(εF−x)+g(εF+x)] ln[1+e−βx]≈ 2g(εF)
+∞
0

dx ln[1+e−βx]

  
π2
12β

We obtain an approximation:

lnZ(β, µ) ≈ −β

εF

0

dε g(ε)(ε−εF) +
π2

6β
g(εF) = −β

γ/β
0

dε g(ε)(ε− γ
β ) +

π2

6β g(
γ
β )

This can be used in the above saddle-point formula of the grand-canonical
Laplace inverse. First we evaluate all the needed derivatives:

∂
∂β lnZ(β,

γ
β ) ≈ −

γ/β
0

dε g(ε)(ε− γ
β )− β

γ/β
0

dε g(ε) γ
β2 − π2

6β2 g(
γ
β )−

≈0 (see below)  
π2

6β g
′(γβ )

γ
β2

≈ −
γ/β
0

dε g(ε)ε− π2

6β2 g(
γ
β )

∂
∂γ lnZ(β,

γ
β ) ≈ β

γ/β
0

dε g(ε) 1β +

≈0 (see below)  
π2

6β g
′(γβ )

1
β ≈

γ/β
0

dε g(ε)

∂2

∂β2 lnZ(β,
γ
β ) ≈

γ
β2g(

γ
β )

γ
β + π2

3β3 g(
γ
β ) +

≈0 (see below)  
π2

6β2 g
′(γβ )

γ
β2 ≈

�
γ2

β3 +
π2

3β3


g(γβ )

∂2

∂γ2 lnZ(β,
γ
β ) ≈ 1

β g(
γ
β )

∂2

∂β∂γ lnZ(β,
γ
β ) =

∂2

∂γ∂β lnZ(β, µ) ≈ − γ
β2 g(

γ
β )

⇒ the Hessian determinant: DetF (β, γ) ≈ π2

3β4 g(
γ
β )

2

⇒ determination of the stationary point (β0, γ0):
∂
∂γ


lnZ(β, γβ )+βE−γN


(β0,γ0)

=0 ⇒ −N+
γ0/β0
0

dε g(ε)
  

num.of particles with ε∈[0, γ0β0 ]

=0 ⇒ γ0=β0εF

∂
∂β


lnZ(β, γβ )+βE−γN


(β0,γ0)

=0 ⇒ E−
εF
0
dε g(ε)ε

  
E0≡ the ground-state energy

− π2

6β2 g(εF) ⇒ β0 =


π2

6 g(εF)

E−E0

The above-assumed neglect of terms with g′(ε)≡ d
dεg(ε) is based on a required

condition 1
β0
g′(εF) ≪ g(εF) which can be expected to hold for N ≫ 1.

Putting all partial results together, we arrive at the final expression:

ϱ(N̄ , E) ≈ e
2


π2

6 g(εF)(E − E0)

√
48(E − E0)

Bethe formula





where the dependence
on N̄ is hidden

in εF ≡ εF(N̄)
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This formula is very close to the one used to approximate the density of discrete
energy spectra of atomic nuclei. However, the nuclear Bethe formula is slightly
different as it follows from a two-component Fermi gas, composed of N neutrons
and Z protons. Deviations from the nuclear Bethe formula are of course due
to mutual interactions of nucleons, so the formula can only be used with some
phenological corrections (e.g., the inclusion of the pairing gap).

▶ Bethe and Ramanujan-Hardy formulas

In the number theory, the so-called Ramanujan-Hardy formula estimates the
number of partitions p(n) of an integer n to smaller positive integers.
For instance, p(4)=5 since 4 = 3+1 = 2+2 = 2+1+1 = 1+1+1+1.

The Ramanujan-Hardy formula holds for n ≫ 1
and reads as follows: p(n) =

e2
√

π2

6 n

√
48nThis is equivalent to the Bethe formula:

Assume that the single-particle
levels εk near the Fermi energy
εF are approximately equidistant,
the gap between levels being
given by ∆ε= 1

g(εF)
. Excitations

of the whole system above its
ground state are created by
lifting individual particles above
the Fermi energy. For excited
states involving only single-
particle excitations in a vicinity
of the Fermi energy, the total
excitation energy is given by E − E0 = n∆ε, where the integer n is the number
of energy gaps crossed by one or more fermions. The number of partitions
p(n) coincides with the number of ways in which a given total excitation n∆ε
can be decomposed to different single-particle excitations, so it determines the
degeneracy d of the given excited level. The total level density is therefore given
by:

ϱ(E) =
p(n=

E−E0
∆ε )

∆ε = g(εF)
e2
√

π2
6 g(εF)(E−E0)√

48 g(εF)(E−E0)
= Bethe formula

◀ Historical remark
1878: J.W.Gibbs introduces the notion of statistical ensembles
1918: S. Ramanujan & G.H.Hardy derive the asymptotic partition-number formula
1924-5: S. Bose & A.Einstein derive the statistical distribution for bosons
1926: E. Fermi and P.Dirac derive the statistical distribution for fermions
1937: H.Bethe presents the Fermi-gas level-density formula and applies it to nuclei
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CONCLUDING WORDS

It’s time to close. There is no doubt that we could continue for long, gathering more
and more results and explanations. So this is really a random place to stop. But,
at the same time, perhaps it is not so bad place as the last example gives us a very
important lesson on physics in general, which we may see as a kind of climax. It
shows that physics is like a garden where the paths do not diverge but converge.
Taking any of the many different paths, one may reach the same point with the
same result. Physics, unlike many other human endeavors, is consistent.

In 2025, when I am writing these lines, quantum physics is celebrating its 100th
birthday. Indeed, the first proper form of quantum theory, the so-called matrix
mechanics, was created by Werner Heisenberg in 1925 on the North-Sea island Hel-
goland. What have we learned in the first century of studying matter at the sub-
atomic level? First of all, we have learned that the world down there—even though
everything around us grows out of it— is completely different from the world of our
common experience. People are still quite confused when they try to define what the
word “reality” actually means in the quantum realm. We have nevertheless found
that the elusive quantum world is governed by rather simple laws, which are for-
mulated in an elegant, though highly abstract mathematical language. Perhaps the
most surprising finding is that despite its apparent strangeness, we can understand
this language perfectly. The fact that behind the physical phenomena around us
there is a beautiful and still comprehensible for us mathematical order is probably
the most amazing message that science brings.

The first quantum century also taught us a more practical lesson. We have
learned that understanding quantum processes can multiply our technological pos-
sibilities. Quantum physics turned out essential in the development of tools such as
the transistor, laser, superconductor, electron microscope, atomic clock and others.
But now it seems that a new era of quantum technologies is downing. Quantum
physics promises to produce new materials with incredible properties, to construct
measuring devices with extremely high sensitivity, and to establish quantum infor-
mation procedures transcending classical limitations. All of this can be of crucial
importance in solving the challenging problems facing humanity. I hope that some
of you, the readers of this book, will actively participate in this ongoing adventure.
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