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Preface to the first edition

This book was conceived as a collection of notes to my two-semester lecture on
quantum mechanics for third-year students of physics at the Faculty of Mathematics
and Physics of the Charles University in Prague. It was created in 2011-12.

At first, I just wanted to write down the most important facts, formulas and
derivations in a compact form. The information flew in a succinct, “staccato” style,
organized in larger and smaller bits (the B and » items), rarely interrupted by
wordy explanations. I enjoyed the thick, homogeneous mathematical form of the
notes. Calculations, calculations, calculations. .. I thought of a horrified historian or
sociologist who finds no oasis of words. This is how we, tough guys, speak!

However, I discovered that the dense form of the notes was hardly digestible even
for tough guys. I had to add some words. To create a “storyteller” who wraps the
bare formulas into some minimal amount of phrases. His voice, though still rather
laconic, may help to provide the proper motivation and clarify the relevant context.
I also formed a system of specific “environments” to facilitate the navigation. In
particular: Among crowds of calculations there appears a hierarchy of highlighted

formulas:*
important ‘ essential 1

Assumptions or foundational concepts, irreducible to other statements/concepts,
appear in boxes:! Answer to ultimate question of life, universe & everything = 42

Here and there come some historical notes:* < 2013: Condensed Course issued
Handmade schemes (drawn on a whiteboard) illustrate some basic notions.

In this way, the notes have turned into a more serious thing. They almost became
a textbook! The one distinguished from many others by expanded mathematical
derivations (they are mostly given really step by step) and reduced verbal stuffing
(just necessary comments in between calculations). This makes the book particularly
well suited for conservation purposes—acquired knowledge needs to be stored in a
condensed, dense enough form, having a compact, nearly tabular structure.

However, as follows from what has been said, this book cannot be considered a
standard textbook. It may hardly be read with ease and fluency of some more epic
treatises. One rather needs to proceed cautiously as a detective, who has to precisely
fix all objects on the stage (all symbols, relations etc.) before making any small step
forward. This book can be used as a teaching tool, but preferably together with an

*Such formulas are highly recommended to memorize! Although all students of physics & mathematics seem to
share a deep contempt for any kind of memorization, I have to stress that all results cannot be rederived in reasonable
time limits. There is no escape from saving the key formulas to the memory and using them as quickly reachable
starting points for further calculations.

THowever, these assumptions do not constitute a closed system of axioms in the strict mathematical sense.

T believe that knowledge of history is an important part of understanding. The concepts do not levitate in vacuum
but grow from the roots formed by concrete circumstances of their creation. If overlooking these roots, one may
misunderstand the concepts.
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oral course or a more talkative textbook on quantum mechanics. Below I list some
of my favorite candidates for additional guiding texts [1-10].

I have to stress that the notes cover only some parts of non-relativistic quan-
tum mechanics. The selection of topics is partly fixed by the settled presentation
of the field, and partly results from my personal orientation. The strategy is to
introduce the complete general formalism along with its exemplary applications to
simple systems (this takes approx. one semester) and then (in the second semester)
to proceed to some more specialized problems. Relativistic quantum mechanics is
totally absent here; it is postponed as a prelude for the quantum field theory course.

Quantum mechanics is a complex subject. It obligates one to have the skills of a
mathematician as well as the thinking of a philosopher. Indeed, the mathematical
basis of quantum physics is rather abstract and it is not obvious how to connect it
with the observed “reality”. No physical theory but quantum mechanics needs such
a sophisticated PR department. We will touch the interpretation issues here, but
only very slightly. Those who want to cultivate their opinion (but not to disappear
from the intelligible world) are forwarded to the classic [11]. The life saving trick in
this terra incognita is to tune mind to the joy of thinking rather than to the demand
of final answers. The concluding part of the theory may still be missing.

Before we start I should not forget to thank all the brave testers—the first men,
mostly students, who have been subject to the influence of this book at its various
stages of preparation. They were clever enough to discover a lot of mistakes. Be
sure that the remaining mistakes are due to their generous decision to leave some

fish for the successors.
In Prague, January 2013

Comments on the second edition

Welcome to the new edition of the Condensed course.

While using the first edition for more than a decade of my teaching, I found many
items that needed to be fixed, many explanations that should be improved, and many
topics that would be worth adding. I have tried to make these important changes
in this new edition. In particular, I have made most of the explanations a bit more
wordy, I have added several new themes, I have drawn many new figures, I have
partly rearranged the content and created a detailed index, and I have corrected
numerous misprints.

I hope that the new edition will be much more user-friendly and also more com-
plete than the first one. Though the telegraphic style is deliberately preserved to
keep all explications condensed, the book is more viable for all readers, including
those with limited initial knowledge. Extensions and new topics make the book
more robust, providing necessary initial knowledge for most of the main presently
active directions of nonrelativistic quantum theory. I believe that the Condensed
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course in the present form offers a balanced concise introduction to the traditional
topics, related to the general formalism and natural quantum systems, as well as to
modern topics, focused on artificial quantum systems and quantum information.
And the last but not least: I pay off my big debt from the first edition by adding

the following “essential historical remark”:

<« Essential historical remark ®

1902: Jara Cimrman anticipates quantum uncertainty by studying his rat trap bait-

box mechanism & answering naughty teenager’s questions of E. Schrodinger

In Prague, August 2025

Recommended textbooks:
:1- J.J. Sakurai, Modern Quantum Mechanics (Addison-Wesley, 1985, 1994)
:2: J.J. Sakurai, J.J. Napolitano, Modern Quantum Mechanics (Addison-Wesley, 2011)
* (a modified edition of [1])
G. Auletta, M. Fortunato, G. Parisi, Quantum Mechanics (Cambridge University Press, 2009)
L.E. Ballantine, Quantum Mechanics. A Modern Development (World Scientific, Singapore, 1998)
A. Peres, Quantum Theory: Concepts and Methods (Kluwer, 1995)
A.Bohm, Quantum Mechanics: Foundations and Applications (Springer, 1979, 1993)
W. Greiner, Quantum Mechanics: An Introduction (Springer, 1989)
W. Greiner, Quantum Mechanics: Special Chapters (Springer, 1998)
W. Greiner, B Miiller, Quantum Mechanics: Symmetries (Springer, 1989)
E. Merzbacher, Quantum Mechanics (Wiley, 1998)
V. Zelevinsky, Quantum Physics, Volume 1 & 2 (Wiley-VCH, 2011)
10} A. Messiah, Quantum Mechanics (Dover, 1999)
(living classic, first published in 1958)

EENENENED)

Cou mw

Further reading:
[11} J.S. Bell, Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, 1987)
(a collection on brilliant essays on the interpretation of quantum theory)
[12] R.Omnés, The Interpretation of Quantum Mechanics (Princeton University Press, 1994)
(a more systematic treatment of the interpretation questions)
[13] T. Lancaster, S.J. Blundell, Quantum Field Theory for a Gifted Amateur (Oxford Univ. Press, 2014)
(a readable introduction to the world behind nonrelativistic QM)
[14] D. Griffiths, Introduction to Elementary Particles (Wiley-VCH, 2008)
(an accessible overview of the standard model of fundamental particles and interactions)
[15] C. Gardiner, P.Zoller The quantum world of ultracold atoms and light
Book I: Foundations of quantum optics (Imperial College Press, 2014)
Book II: The physics of quantum-optical devices (Imperial College Press, 2015)
Book IIT: Ultra-cold atoms (World Scientific, 2017)
(an introduction to controllable quantum systems)
[16] A.Pais, Inward Bound of Matter and Forces in the Physical World (Clarendon Press, 1986)
(an exciting treatise on the history of the physics of microworld)
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Rough guide to notation (no notation is perfect!)

aly)+BJY")

{l00)}i2%, day

), (@], (')

[9ll=/ (@l)y=1/N

H,H, H

52, £2(R3), cd
Span{[¢1)...[¢n) }

IH(N) H(N)

H1®Hs, ® Hi, H1DHo, 'EB Hi

011, 1835 =lb1i)11d, )2
V(@) = (@), 9(B) = (B1)
Y(Fms) = ()

V(.. Ey)

ja), [a®) |a;), |al™)

I, |EM), |E)

1), 14)

lim), |sms), jm;)

Ry(r) = uni(r)/r, Rig(r)

jlnfnmmz (Jrj2jm|jimajama)
[nids [0 (V)

|0>7 ‘n17n27“'>
[Uhr), [PuB), [¥rCs)

Hilbert spaces, vectors & wavefunctions, scalar products
superposition = linear combination of state vectors (a, 8 €C)
general set of basis vectors in Hilbert space H, dimension of H

ket & bra forms of state vectors, scalar product

norm of vector = 1/normalization coefficient

Gelfand’s hierarchy of spaces (rigged Hilbert space)

specific separable or finite Hilbert spaces

linear space spanned by the given vectors

N-particle Hilbert space, its exchange symmetric/antisym.subspaces
direct product & sum of Hilbert spaces

general factorized state vector, factorized basis in H; ® Ho
wavefunction of spinless particle in coordinate & momentum repres.
single-particle wavefunction in single/multicomponent forms
N-particle wavefunction with &, = (Z;,m;)

eigenvector of operator A with eigenvalue a or a; (degeneracy index k)
eigenvectors of Hamiltonian (discrete or continuous energy)

up & down projection states of spin s:%

states with orbital, spin & total ang. momentum [, s & j, projection ms
radial wavefunction (n=princ.q.num.,/=orb.ang.mom., k=|wave vec.|)
Clebsch-Gordan coefficient for the coupling of 2 angular momenta
nth-order perturbation correction & approx. of ith energy eigenstate
vacuum state, basis states of ’H(iN) in occupation-number repres.
Hartree-Fock/Bose & BCS approx. of many-body ground state

Rﬁ¢:RR7
P, T
Gi, Cg

R(apy)

Operators: observables, transformations & evolution
linear operator, its Hermitian conjugate & inverse

matrix element of operator 0

norm & definition domain of operator

general Hermitian & unitary operator, identity operator (in space H)
Schrodinger, Heisenberg, Dirac representations of observable

operator expressing time derivative of observable

tensor product of operators acting in H; ® Ha

full spectrum of observable A, its discrete & continuous parts
projector to a general subspace Ho C H, projector to HSEN)
projectors to discrete & continuous eigenvalue subspaces

gradient & Laplace operator (if not an interval or gap)

coordinate operator, canonical & mechanical momentum operator
Hamiltonian, its kinetic & potential terms, Hamiltonian perturbation

orbital, spin & total angular momentum operators

spherical components of f, shift operators for |jm) eigenstates
the triplet of Pauli matrices

operators of electric & magnetic dipole moments

annih. & creation operator of boson, fermion or gen.particle in state |¢y)
total number of particles & number of particles in basis state |¢y)
n-body operator

space translation or general eigenstate shift operator |0) — |o+Ao)
rotation operator in M (axis,angle) & rot.matrix in 3D (Euler angles)
space inversion operator (parity) & time reversal operator

generator & Casimir operator of a group G




evolution operator for times tg LN t1

retarded & advanced Green operators, propagator

energy image of Green operators, T-operator in scattering theory
S-matrix elements

time ordering of operator product

tensor coupling of spherical tensor operators AZ\A , Bﬁ‘;
commutator & anticommutator of operators

Poisson bracket of classical observables

trace of operator/matrix, partial trace over Hy in H; ®%Ha, determinant

Statistics, probabilities & densities

amplitude to identify [1)) with |1)') or to measure value x of an observable
probability to identify |1)) with |¢/') or with an arbitrary state from Ho C H
probability to measure values z of some observables in state |¢)

survival amplitude & probability of ¢=0 initial state at time ¢

conditional probability of a given b (depending on parameter c)

|:) L |¢;) transition amplitude, probability & rate, rate of event X
average value of observable A in [1), average of a for a fixed parameter ¢
variance of the distribution py(a) (squared uncertainty of observable A)
single-particle probability density & flow at point #, time ¢

general density operator, density operator of a subsystem (partial trace)
Wigner quasiprobability distribution in phase space for a given p
classical probability distribution in phase space

level density, density of final states, particle density at &€= (&, my)

C, e, €p, (X

Ac, Ac, AB, AB, aB
k, w

M, M, q

E, E;, En;, E™())
Eks T
V,A E B
5, 0%, o,
LB, FpRh), 10
Fy(k), Si(k), &i(k), m(k)
R, liax

Sp
Z(B), Z(B, 1) .
S[Z(t)], S(Z,t), L(Z,T)

inel tot

);

Physical constants & parameters, various physical quantities
reduced & unreduced Planck constant

speed of light, elementary charge, vacuum permitivity, fine-structure const.
reduced & unreduced Compton & de Broglie wavelengths, Bohr radius
wavevector, angular frequency

particle mass, two-particle reduced mass, particle charge

continuous & discrete energy, its n™order perturb.correction & approximation
energies & occupation numbers of single-particle states

scalar & vector electromagnetic potentials, el. intensity & mag. induction
differential cross section, integral elastic, inelastic & total cross sections
scattering amplitude, its n*™order Born correction & approximation

partial wave amplitude, S-matrix, phase shift & inelastic suppression factor
range of potential, maximal orbital angular momentum

von Neumann entropy of density operator p

(grand)canonical partition function (= inverse temp., ;1= chem. pot.)
classical action (functional & function forms), Lagrangian

iy, hiF (k)

L(p), Hu()
le (cos),Ym (19 ®)

Dl (aBy)=D], (R)
§(z), dc(x), O(x)
0ij, Eijk

(1,2,3)=(z,y,2)

S [(fie,y,m2)

7, ()

Xt X Hiep AX(0)}eec
Min, Max, Sup{X;};

iff, Lhs., r.hs

Special functions & miscellaneous mathematical symbols
Bessel, Neumann & Hankel functions

associated or generalized Laguerre polynomials & Hermite polynomials
associated Legendre polynomial, spherical harmonics (¢, =sph.angles)
Wigner matrix/function (Euler angles of rotation matrix)

Dirac d-function, imperfect § functions, step function

Kronecker & Levi-Civita symbols

indices of Cartesian components

Cartesian

unit vector, {gherical

} orthonormal coordinate vectors
discrete/continuous set of objects

minimum, maximum, supremum of a set of numbers

“if and only if”, the left- / right-hand side (of an equation)




6
Distant outline of quantum physics

Historical origins: Quantum mechanics was born in the 1900s in analyses of (i)
electromagnetic radiation emitted by matter in thermal equilibrium and (ii) specific
heats of solids at low absolute temperatures. A few years later, the discovery of
the structure of atom implied a more fundamental problem: (iii) the question of
stability of matter. A solution of all these problems was found in a modification of
the laws of classical (Newtonian) physics by assuming some particular rules of quan-
tization for certain physical quantities like energy. These principles (which invited
the word “quantum”) moreover explained an older mystery of discrete spectra of
light radiated by single elements. However, it turned out that a much more radical
modification of the physics paradigm was needed. The consistent theory of quan-
tum phenomena was build in the piece by piece manner during the 1920s and 1930s.
This development explains why quantum theory (in contrast to Einstein’s relativity)
carries traces of rather different approaches and ways of thinking. Discussions on
the interpretation of quantum theory continue up to the present days.
Probabilistic character: Quantum physics is ultimately indeterministic. It does
not generally predict precise outcomes of individual experiments but only proba-
bilities of various alternative results. It is the only theory in which randomness
represents a really fundamental concept (its use in the classical context is just a tool
to overcome a lack of information). Quantum physics may be considered as a simul-
taneous description of multiple alternatives of physical reality with no possibility to
predict which of the alternatives will be finally actualized for a particular observer.
Linearity: Underlying the dynamics of quantum probabilities, there is a rather sim-
ple linear theory which makes use of so-called quantum amplitudes. An amplitude
a=|ale’” of a certain physical event is a number inside the unit circle of the C plane
such that the probability of the event is p = |a|?>. Though the observable output
(probability p) is contained only in |a|, the phase angle ¢ is irreducible. Manifesta-
tion of linearity is twofold: (i) If a given system can be prepared in two particular
initial states, denoted as [i1) and [i9) (generalization to more states is obvious),
quantum theory requires that it can also be prepared in a state aq|yy) + aslts),
which corresponds to a linear combination (quantum superposition) of the above
two states with arbitrary complex coefficients a; and ay. The meaning of quantum
superpositions is highly counterintuitive —e.g., they may represent states in which
a particle simultaneously takes several positions. (ii) If the quantum amplitudes of
a given measurement outcome for the two initial states are a; and as, the corre-
sponding amplitude for the above superposition is a = N (aja;+asay), where the
normalization coefficient N' € R ensures that an integral of p=|a|? over all possible
outcomes is equal to 1. Linearity of amplitudes implies nonlinearity of probabilities,
which is the key for explanation of various quantum interference effects.
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Complementarity: In quantum theory, all conceivable quantities that can be mea-
sured on a given system are sorted according to their mutual compatibility. Any
observable is compatible only with a subset of the remaining observables and incom-
patible with the others. Any set of compatible observables can be simultaneously
known with certainty, but this knowledge excludes a precise determination of any
incompatible observable. Joint probabilities of simultaneous measurement outcomes
can be consistently determined only for sets of compatible observables; for sets of
incompatible observables they depend on details of the measurement procedure.
Nonseparability: Evolution of a given quantum system S often includes interac-
tion with an external environment and/or other degrees of freedom E. Linearity of
quantum theory leads to creation of superpositions of the composite system S+ E
that have a form ), a;[1;)s|vi)g. Here [1;)s and |)})g are mutually correlated states
of S and E, joint into a separable state |1;)s|¢))g of the S+ E system, and «; are
some coefficients. The whole superposition (unlike its individual terms) cannot in
general be factorized to a single product of S and E states. Hence in these so-called
entangled states the subsystems S and E are not separable. An ensemble of interact-
ing quantum subsystems can become a strongly holistic object in which correlations
between distant parts are stronger than allowed in classical physics.

Quantum measurement: The entanglement process takes place also during the
act of a general measurement. Unfactorizable superpositions resulting from this
process correlate various states of the measuring apparatus (different measurement
outputs) with the associated states of the measured system. Identifying the actual
reality with only a single output, we select only a part of the superposition. This is
often treated as an irreducible influence of quantum measurement (or of an observer,
who may be considered as the “selector” of reality) on the measured object.

Links to other branches of physics: Quantum physics is a continuation of clas-
sical physics to the world of small objects and/or tiny actions. It is treated in two
parts: the nonrelativistic and relativistic quantum theory. Since the combination
of relativistic and quantum laws implies new phenomena, the general formalism of
quantum theory is first applied to nonrelativistic mechanics, which is sufficient in
the description of a large class of objects. The same formalism is subsequently re-
called in the context of special relativity, leading to the quantum field theory, which
provides so far the deepest description of elementary particles of matter and their
mutual interactions. Unification of quantum theory with general relativity (the-
ory of gravity) is not available yet. Quantum theory is a basis for great majority
of contemporary “applied” physics, like molecular, atomic, nuclear and subnuclear
physics, condensed matter and solid-state physics, optics, astrophysics etc. Recently,
some particular applications of quantum laws gave rise to a special branch of physics
called “quantum information”.
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INTRODUCTION

Before sailing out, we encourage the crew to get ready for adventures. Quantum
mechanics deals with phenomena, which are rather unusual from the viewpoint of
our common macroscopic experience. Description of these phenomena makes us
sacrifice some principles which we used to consider self-evident.

B Quantum level

Quantum theory describes objects on the atomic and subatomic scales, but also
larger objects if they are observed with an extremely high resolution.

» Planck constant
The domain of applicability of quantum mechanics is determined by constant

hi=1.05-10%J.5s = 0.66 eV-fs‘ which defines a quantum unit of action

» Phenomena whose actions are on/below the scale of i belong to the quantum
jurisdiction. However, even phenomena with larger absolute actions can get
to the quantum domain if the difference of actions between distinguishable
alternatives reaches the i scale. Consider two trajectories qi(t) & qo(t) in the
configuration space of the system (q is a multidimensional vector of generalized
coordinates depending on time t) which, in the given experimental situation,
are on the limit of mutual distinguishability (so these and similar trajectories
can still be experimentally distinguished from each other, but the trajectories
which are closer than these cannot). The classical action of each trajectory
is S[qe(t)]. The difference AS = [S[qi(t)] —S[q2(t)]| determines whether the
situation can be described in the classical or quantum way:

Classical mechanics . . . AS>h
Quantum mechanics } applies if the difference satisfies AS<H
In particular, if the minimum of the
action functional S expressed on the
level of resolution AS ~ h extends
across several distinguishable trajectories,
all these trajectories must be somehow
taken into account simultaneously. classicall indistinguishable
Quantum description is then unavoidable. LN Y

<« Historical remark

1900: Max Planck introduced A along with the quanta of electromagnetic radiation
to explain the blackbody radiation law

1905: Albert Einstein confirmed elmag. quanta in the explanation of photoeffect
1913: Niels Bohr introduces a quantum model of atoms ( “old quantum mechanics”)
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B Double-slit experiment

According to Richard Feynman and many others, this is the most crucial quan-
tum experiment that allows one to realize how unusual the quantum world is.
There exist numerous variations and improvements of this experiment.

» Arrangement

Components: Emitter E which emits particles (in the one by one mode), the
plate with open slits A and B, the screen S where positions of arriving particles

are detected (dots) Both particle trajectories ' (t) and ()

from the emitter (Zg) to the screen (¥s)
A minimize the action functional S[Z(t)].
Suppose |Sy — Sp| S h

S @ @

» Regimes and results of measurements

- @

(a) Interference setup: position of the particle is measured only at the screen
= individual particle hits are randomly scattered within strips that form a
wave-like interference pattern

(b) Which-path setup: prior the screen measurement, the particle position
is measured—either explicitly (with the results observed), or implicitly (results
hidden)—immediately after the slits = individual particle hits at the screen
cumulate straight behind the slits, no interference behavior is observed
Delayed choice: The choice of setup (a)/(b) is made after the particle passed
the slits. The outcome is the same as if the decision was made before.
Quantum eraser: The unobserved which-path information from setup (b) is
erased before the particle hits the screen. The interference pattern appears.

» Some conceptual implications

Indeterminism: It is not possible to predict the positions of individual particle
hits, but only their overall distribution. Quantum physics invites randomness
and probabilistic description into the fundamental theory.

Particle-wave duality: Particles show either wave or corpuscular proper-
ties, in accord with the specific experimental arrangement. In particular, the
existence of the which-path information invariably leads to the corpuscular be-
havior, while its actual nonexistence implies a wave-like behavior.
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Contextuality etc.: The actual result of a physical observation depends on
a wider “context” of the process investigated. The observed “reality” emerges
only during the act of observation. And many more sentences like these.

<« Historical remark

1805 (approx.): Thomas Young performed double-slit experiment with light
1927: C. Davisson & L. Germer demonstrate interference of electrons on crystals
1961: first double-slit experiment with massive particles (electrons)

1970’s: double-slit experiments with individual electrons

1990’s-present: progress in realizations of which-path setup & delayed-choice exp.

B Wavefunction and superposition principle

To explain the outcome of the interference setup of the double-slit experi-
ment (interference pattern formed by individual dots), we will assume that
the undisturbed particle inside the interferometer represents a wave-like object
comprising a variety of potential particle localizations and that the position
measurement on the screen makes one of these potential localizations actual.

» Concept of wavefunction

Quantum physics deals not with one, but with several alternative versions
of reality—with many potential outcomes of any conceivable measurement
performed on a given system. Complete determination of the physical state
of the system must somehow include all these alternatives and to quantify
their probabilities. If variable x denotes possible outcomes of a complete set
of measurements (specifying all degrees of freedom of a given system), the
quantum state of the system is determined by a complex wavefunction ¢ (x):

L 11l _~
NIV,
Squared modulus | |[¢(z)[*= probability
(or density of probability for x continuous) for finding the alternative x.
Although the detectable probabilities are given by |¢(x)|? € R, their amplitudes
Y(x) € C|play a substantial role in the quantum description of reality!

of probability (or density of amplitude
of probability if x is continuous) for
finding the particular alternative x.

Wavefunction value |¢(x) = amplitude |

The wavefunction evolves in time ¢, so: ¥ (x) — ¥ (z,t)

» Wavefunction of a single structureless particle: [¢(Z,t) = \/p(Z, 1) (@)
where ¥ = alternative positions of the particle in the real 3D space

|¢)(Z,t)|? = p(Z,t) > 0 is the probability density to detect the particle at posi-
tion 7. Normalization: [ p(Z,t)dZ = 1 Vt. Phase ¢(Z,t) € R has no “classical”
interpretation, but plays an important role in interference phenomena
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» Superposition of wavefunctions

The outcome of the interference setup depends on the fact that waves can be
summed up. Consider two normalizable wavefunctions ¥ (Z,t) and ¥g(7,1):

[ [al?dZ < oo, [ [¢p|*dT < 0o = /!aszvLﬁz/)B!Qd:E’ <oo|Va,B€C

= any linear combination of normalizable wavefunctions is a normalizable wave-
function = these functions form a linear vector space £2(R?)

» Interference phenomenon

Probability density for a superposition of waves is not the sum of densities
for individual waves. Choose arbitrary a = |a|e’? and 8 = |3|e™?* such that
[ atpa+Bp|” di = 1 with both 4 and g normalized ([ |¢a|* dZ = 1)

2
= ||owpa +8v8|" = |awal® + |ByYsl® + 2|aByais| cos(pa+pa—wB—9s)
—_— —— ~—— ~ — %)

PaA+AB |a|2pa 18208 interference terms

» Description of the interference setup in the double-slit experiment

Despite generally delocalized nature of wave-
functions we assume an approximate assign- A
ment of times: at ¢t ~ ty the particle passes |lp|2
the double-slit plate and at t ~ ¢; it reaches

the detection screen. At the plate we have

(T, 1) = adp(F—Ta) + Pop(¥—1p)

with 04(Z—7Z,) denoting the wavefunction B
localized at the respective slit (6,=0 away

from it) and «, 5 some coefficients depending on the emitted state and experi-

mental details. If 1o (%, At) is the wavefunction developed in time At = ¢;—1
from 6,(Z—7,), the wavefunction on the screen reads as:

1/)(57151) %al/fA(f» At)—i—ﬁwB(fa At) = p(f) ~ |a¢A(f7 At) +6¢B<f7 At)|2
Thus the probability distribution on the screen shows the interference pattern.

» Dirac delta function (mathematical intermezzo)

To deal with arbitrary wavefunctions, it is convenient to introduce a generalized
function (more precisely, a so-called distribution) describing a perfectly local-
ized particle. Consider first the 1D case. In a vague sense, the d-function can
be seen as a “limit” of a series of ordinary functions whose support contracts
to a single point but the integral remains constant, equal to unity:

i(x) = ll_r)% de() Support [6(z)] = {x=0} and _29:5(90) de =1




13
For instance, we can choose the following sequences:

(a) Oc(x) E{ + for we[-5.+5]

0 otherwise

(‘n)
V/-\
R)

(b) 0c(z) = %euﬁ (Cauchy or Breit-Wigner form)

(c) 0c(z) = \/217?6_;7 (Gaussian form)

s _ 1sinfwel) _ 1 e gz g (Fourier transform
(d) 0e(w) = ™ N g,ﬁf_l € adl of unity)

In 3D space: de(a—7") §(Z—7)

A A

O (@1 =)0y (wa— )00y (w3 —ay) =3 B(ay—))8 (o —ah) 0 (ws— )

Defining property of d-function
in terms of distribution theory: / J(Z)(

» Delocalized wavefunctions
Any wavefunction can be expressed as: [¢(Z,t) = /w(f’, t)o(Z—2")dz’

General state given by a wavefunction ¢ (¥,t) = superposition of localized
states §(¥—2") with coefficients equal to the respective values (%', t)
However, note that §(7—7') ¢ £2(R?) (it is not even a function). This an-
ticipates problems with incorporating some physically plausible states (like the
localized states in coordinate or momentum space) into the mathematical for-
malism of quantum theory

<« Historical remark

1800-10: Thomas Young formulates the superposition principle for waves
1924: Louis de Broglie introduces the concept of particle wavefunction
1926: Erwin Schrodinger formulates wave mechanics

1926: Max Born provides the probabilistic interpretation of wavefunction
1926-32: John von Neumann formulates QM through linear vector spaces
1927-30: Paul Dirac includes into the formulation the J-function

B Quantum measurement

To explain the which-path version of the double-slit experiment, we assume that
the measurement has a dramatic effect on a quantum system: “reduction” or
“collapse” of its wavefunction to the single alternative that was observed.

» Change of wavefunction in measurement
Example: position measurement detecting the particle (in time ty) within the

box (2 + §, 25 & ¢, 25+ $) = the wavefunction changes as:

(T, ty) delocalized reduction, W(Z, to+dt) o< 0(Z—2")p(Z,ty) localized
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In an ideal (¢ — 0) measurement

that detects the particle at 2" O)UCX> reduction
—

w(f; t) reduction 5(5_(?/) /\
After the position measurement, the X \\-/ X %

wavefunction evolves from a localized one detection intervdl

» Description of the which-path setup in the double-slit experiment

At the double-slit plate: |1/)|2
(T, ty) =~ ada(Z — Zp) + Bop(ZF — Tp) Al
After which-path measurement (6t < At): >
-  J 6A(Z—Ta) probability ~|a|?
(T, to + 0t) = { 5/;(5—52) Erobabilit§ ~| 82
At the screen:
|

— | ¥va(ZAt) probability ~|a|?
U(Tto + Al) = { Up(,At) probability ~|j|2 B

= | p(%) = |aa(Z, At)|* + | Bapp(Z, At)|?| probability distribution on the screen
So the interference pattern is destroyed! This is a direct consequence of the

wavefunction collapse caused by the which-path measurement.

Note: Disappearance of the interference pattern can be also induced by the
presence of an additional quantum system (an “atom”) that interacts with the
particle inside the two-slit device so that it records the which-path information—
without any observer actually reading it! The composite particle-atom system
is described by an extended wavefunction with both particle & atom degrees of
freedom. The measurement-like effect then follows from a continuous, collapse-
free evolution of the extended wavefunction reflecting the particle-atom inter-
action. The collapse assumption is nevertheless useful if we want to describe
the measured system autonomously, irrespective of the “measuring agents”.

» Summing amplitudes versus summing probabilities: For a general
branching processes with disjunct alternative paths A & B (real or symbolic),
the probability to pass the branching while the path is not ezplicitly measured
depends on whether the paths can/cannot, in principle, be distinguished:

For indistinguishable paths we sum amplitudes:

= interference effects occur in p = |al?

For distinguishable paths we sum probabilities: [p o< pa + pB
= interference effects do not occur

» Quantum logic: An attempt was made to assign the strange properties
of the quantum world to a non-classical underlying logic. In the double-slit
experiment it can be introduced via the following “propositions”:
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A, B = passage through slit AB S = detection at given place of screen
Different outcomes of interference & which-path setups indicate that:

(AVB)AS #(AANS)V(BAS)| (where V="*or” and A = “and”)

TV . . . .
interference setup which—path setup = violation of a common IOglC ax10111

<« Historical remark

1924-35: Bohr (Copenhagen) versus Einstein debate. Niels Bohr defends a “subjec-
tive” approach (with the observer playing a role in the “creation” of reality)

1927: the first explicit note of wavefunction collapse by Werner Heisenberg

1932: inclusion of collapse into the mathematical formulation of QM by John von
Neumann (discussions about its physical meaning continue up to now)

1936: Garrett Birkhoff and J. von Neumann formally introduce quantum logic

la. SPACE OF QUANTUM STATES

Quantum theory has rather sophisticated formalism based on the mathematics ma-
tured at the beginning of the 20th century. Its interpretation in terms of “common
sense” becomes a nontrivial issue rising questions about the link of physical theory
to reality. The problem starts already on the deepest level—with the definition of
states of quantum systems, i.e., sets of attributes sufficient for a unique description
of the system’s evolution. While the mathematical representation of states in classi-
cal physics is rather intuitive and comprehensible (using the notion of phase space),
quantum physics resorts to much more abstract ideas.

Roughly the first half of this book attempts to give a complete overview of the
quantum formalism. The chapters that contain letter “a” in the numbering outline,
step by step, the basic elements of the mathematical description. The chapters with
letter “b” give some simple concrete examples (mostly in single-particle systems) of
the respective ideas. To keep immediate link between the Geist and Substanz, we
present the “a” and “b” chapters in an alternating, entangled way.

B Hilbert space

To capture the quantum uncertainty, i.e., the possibility of different outcomes of
various measurements performed on systems in the same state, we will assume
that distinct states of the system are not always perfectly distinguishable. The
states may show some “overlaps”, which allow one to identify a given state with
another state—e.g., the state of a particle described by a delocalized wavefunc-
tion () with a state localized at a single place #’. This means that the states
are not represented by isolated points a la points in the classical phase space.
Instead, they can be associated with vectors in linear vector spaces. If two
vectors are not perpendicular to each other, they have a common component
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whose size sets limits to their mutual

distinguishability.

» State of a physical system

The state represents a complete set

of parameters characterizing a physical

system in the sense of an autonomous

determinism: The knowledge of state at phase %
a single time (t=0) suffices to determine space

the state at any time in past or future (¢ Z0). Let |¢)) denote a mathematical
entity describing an arbitrary physical state of a given quantum system (short-
cut: |¢) = “a state”). Let H be a system-specific space containing all such
entities (state space). We make our first fundamental assumption:

The space of states H of an arbitrary quantum system is a Hilbert space,
in which individual states are represented by rays of vectors.

The Hilbert space is defined by the following 3 requirements:

» Requirement 1: The space H supports the superposition principle

V1), ’;/)’%Gei’é } - “¢> = altn) + Blgs) € 7_[‘ superp051t1(|)1/1;11>o£ns§1t;;§
= H is a complex vector space
Why we need superpositions: To describe the single-particle interference in the
double-slit experiment (Intro.), we must add the waves from both slits.

» Requirement 2: The space H supports a scalar product |(¢]is) € C

Properties: (¥1[12) = (Ua]th1)*, (Y1|atbe+B13) = a(ihi|1) +B{Y1]3), (¥|v) >0

Normalization of state vectors: Real number | ||¢||=+/(¢]1) > 0] is a norm
of [1). Scaling of state vectors, i.e. multiplication [¢) =a]i) by any constant
a € C, does not change their physical content (so both [¢/'), [1)) describe the same
state). Hence any state vector can be scaled so that it becomes normalized:

(lhy=1|. In QM we use normalized vectors, but this cannot be set as a

constraint in ‘H because of the superposition principle (if linearly combining
two normalized states, the resulting superposition is generally not normalized).

Distance of 2 vectors: d?(¢1,12) = |[th1—tbo||* = (¥1]th1)+(¥a|tha) —2Re (b1 [1h2)

Schwarz inequality for normalized vectors: |[(11]1ho)|? < (1]1h1) (halths) = 1
——

Why we need scalar product: 1 L

Results of quantum measurements are generally indeterministic (described in
the probabilistic way, see Intro.& Sec.2a.). A single measurement does not
allow one to uniquely determine the state. The possibility to identify state |1)
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with [¢1) or vice versa in an “optimal” single measurement is determined by

the overlap of the corresponding vectors. For ||¢1||=]||v2||=1 we have:
& 8 (1) = Walt) peu) = (a0l
amphtude prob;gility

Number ay, (1) € C satistying |ay, (¢1)| €0, 1]
represents amplitude for finding |¢) in [is)

The corresponding probability p,, (1) € [0, 1]

Consequence: is obtained by squaring the amplitude’s modulus

‘States |11),]102) are perfectly distinguishable iff orthogonal: (v |1)9) = O‘

» Requirement 3: # is complete, i.e. V converging sequence (in the Cauchy
sense with distance d) of vectors {|1;)}; the limit lim; . [10;) = |1s) € H. This
shall avoid problems with missing limits (unfortunately, it does not apply to
the §-function, see Intro., as the “convergence” to § is not of the Cauchy type).
» Separable Hilbert spaces

H is separable if it has a countable (possibly finite) set of basis vectors

We can choose an orthonormal basis {|¢;)}%%, satisfying |(@;]6;) = 0

The number of basis vectors dy is called dimension of H

= Each state [1)) can be expressed as a unique 0
complex superposition of basis vectors:

Normalization: e 5 1) = ; i) |4
() =3 204 a; Toion = Z v |? = =

1=1j= =1
Applicability: Systems with finite numbers of particles, systems with finite
numbers of degrees of freedom (possibly selected subsets of degrees of freedom)

Isomorphism of separable Hilbert spaces

Any separable H with an infinite basis set is isomorphic with the space £?
gé < 00

formed by infinite “columns” of complex numbers K

satisfying Z |y
Mapping H — ¢?: Expansion coefficients (¢;]1) of a chosen vector |¢> €eHina
given basis {|¢;)}; are associated with the numbers a; defining the vector € (2

ao+bay
Superpositions a|i)+b|Y’) mapped onto: | aoztba

Scalar product represented by: (¥[y) = Za ; = (aja5,) (%)
» Nonseparable Hilbert spaces :

‘H is nonseparable if it has no countable basis. This applies in systems with
unbounded particle numbers, quantum fields, continuum...
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<« Historical remark

1900-10: David Hilbert (with E.Schmidt) introduces the oco-dimensional space of
square-integrable functions and elaborates the theory of such spaces

1927: John von Neumann (working under Hilbert) introduces abstract Hilbert spaces
into QM (1932: book Mathematische Grundlagen der Quantenmechanik)

B Rigged Hilbert space

Although the standard Hilbert space is sufficient for consistent formulation of
QM, we will see soon that its suitable extension is very helpful.

» Hierarchy of spaces based on H = £2

H is a space of sequences {;}32, =) satisfying >~ |a;]?™ < oo for m=0,1,2....

These form a dense subset of ¢2 !

H (conjugate space to ) is a space of sequences {a}}3¢, =) satisfying
(YY) < oo for any |1p) € H. This set contains £? as a subset.

(W)=Y ardl <oo = Y |af]*sh < oo = [af|* may polynomially diverge
i i
In general, the smaller is A, the larger is H

H and H are linear vector spaces,

but not Hilbert spaces: M}i;

H is not complete
H does not have scalar product ie 3@

» Gelfand triple |H C H C H

This “sandwich” of spaces is sometimes called the “rigged Hilbert space”, indi-
cating that only such an extended structure allows one to “safely sail the sea” of
quantum physics. It turns out that solutions of some basic quantum problems
is out of H but belongs to the larger space H, while the definition domain of
some quantum operators is not H but rather its subspace H (see Secs. 2a & 2b).

B Dirac notation

Physicists are proud to master a symbolic technique that makes some involved
mathematical reductions much easier to follow. Although the “bra-ket” formal-
ism is not always fully rigorous, it is extremely efficient especially when dealing
with the action of linear operators in Hilbert spaces.

» Kets and bras
For any vector |¢)) € H, called ket, there exists a linear functional Fy, = (¢],
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called bra, such that the value assigned by Fy, to |¢) € H

is | Fy(¢) = (¢|¢) | (the words following from “bra-c-ket”)

The bras also satisfy the superposition principle:

athi|+ 8| = (a1 + 57 |
and the spaces of kets & bras are isomorphic. N
Matrix forms: (Y| = (at.05.) <a2> = |¢)

» Linear operators

Linear operators play a very important role in QM. They will be subject to
systematic study from Sec. 2a. Here we just introduce basic notions.

Linear operator |O[gh) = [¢')| is a mapping H — H of the Hilbert space to itself
satisfying the linearity condition: |O(al|ty)+B]s)) = a@|¢1)+ﬁ0|w2)

= O is completely defined V1a its action on any basis: {|¢;)}%, 9 (| o,

= O |v) = Z<¢z\¢> O|¢z> Z OV (ilwy = | . & 16564
i= O = i ()
iolole) R Z el 16292516

Any expression of the form |¢/)(¢| is a linear operator: |¢> (p|)|9').

Any linear operator O can be expressed as a sum over terms oc ;) {(¢i| contain-
ing vectors of the same basis. This is achieved via the identity (unit) operator:

> {160} 2 {1600} o
Z; |¢:){(#i| = I|| = unit operator = \O/: ZZ <;5J|ngbZ |) (il

or ==l G 6160=0,

. 011 Opg ...
Matrix form O= (O; 022 )

general linear operator:

» Projectors

Projection operators (projectors) are linear operators satisfying
(i.e., repeated projection is redundant)

Let {]qbi)}fol = orthonormal basis of a subspace Ho C H. We have (¢;|¢;) = 0;;

is a projector to Hy:

do
= ;wmi! ]W){ =0 for [¢) LHo

€ H, otherwise

Completeness relation: the projector
to the whole H is the identity operator

(see above): Py — % 6:) (| =1
i=1
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Probability to identify [¢) with any state from the subspace Hy:

In generalization of the above formula py () = [(¥o]e)|* = (Y1) (¥o|h), the
overall probability to (incorrectly)
assoclate a given state €H with

an arbitrar;{state | é@o is given by: pu(Ho) = (Wil = Z (gl
Matrix form of projector operators
In an orthonormal basis {|¢;) }7%, of H containing as a subset the basis {Ios, ) }do i
of Hy (with ¢; = indices of the H basis vectors in the H basis), the projector is
expressed as a diagonal matrix with dy units and (dy—dy) zeros on the diagonal:

Xy 0 .. . .. .
150 _ 0 X with X, = 1 for Z < {2'172.2, .. ,Z.do}
L 0 for i & {i1,i2,...,14,}

« Historical remark

1930: Paul Dirac writes the book The Principles of Quantum Mechanics, which
provides a more intuitive (compared to von Neumann) path to quantum theory,
using non-normalizable vectors and J-function (bra-kets in 3rd edition 1947)
1950-60’s: .M. Gelfand & N.Y. Vilenkin introduce rigged Hilbert spaces, putting
Dirac’s approach on more rigorous grounds. Systematic use in QM since 1966 (by
A.Bohm et al.) but up to now rather scarce

B Summing Hilbert spaces

One can combine one or more Hilbert spaces in the style of summation. The
resulting space then contains the summed spaces as ordinary subspaces.

» Direct sum
Let {|¢1;)}%, be an orthonormal basis of H; and {|¢2j>}‘7-l2:1 one of Hy

Direct sum space ’H:Hl & ”Hz‘ has the “summed”basis ||®y;) = { ﬁ;; g l,z ;

Hence Hi @ H2 consists of all normalizable linear combinations of the basis
vectors |®y;) formed by a unification of the basis vectors of H; and Hs.

Dimension: ‘d%@% =d; + dg‘ Orthonormality of basis: (®p;|Ppir) = SgrrOiir

» State decomposition

d; do
Any vector |V) =",  ayi|Pri) € H can be B A A
written as |U) = |¢hy)+ [12) with |1) € Hy ) = Za1z|¢1z> +ZOZ2J|¢2]>

-1 -1
(k=1,2) —_—
Projectors to the subspaces H;, [W1)=PUTIERL  [ihy)=P,|T) €My

B %@” D) Dy = orthogonality : P1P2 P2P1 =0
= BT completeness : Pi+P= ]H

Sealar product: [(U[¥)5 = (D1]04)7, + (Ga/th)m, | where {

|¢k>=1:3k"1’>
) = P[P’
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» Finite-dimensional matrix representation:

’¢1>:<afd>"%>:<a;d> ooy = |

» Multiple sums of Hilbert spaces: |H = lél Hy o2ty

» The use in QM: H; C H can be associated with subspaces corresponding
to various values a; of an observable A (states |¢)) € Hj yield output aj with
certainty; see Sec. 2a). Subspaces in the direct sum can also collect vectors with
different symmetry properties (e.g., subspaces of even and odd wavefunctions).

B Multiplying Hilbert spaces
Hilbert spaces can also be combined in the style of multiplication. This com-
monly happens in composite quantum systems that consist of two or more
subsystems (several particles or distinct subsets of degrees of freedom). The
multiplication is a rather interesting operation since it allows one to create so
called entangled quantum states which have no analogue in the classical world.

» Direct (tensor) product
Let {|q51l> | be an orthonormal basis of H; and {|gzbgj>}] , one of Hy

Tensor product space ’"H:Hl ® 7—[2‘ has the product basis ||®;;) = |¢1;)|p2;)

This means that H; ® Ho consists of all normalizable linear combinations of
the basis vectors |®;;) formed by direct products of H; and H, basis vectors.
Note that non-product bases of H; ® Ho can also be constructed.

Dimension: ‘d%@% =d - dQ‘ Orthonormality of basis: (®;;|®jrj) = 0id;;

» Factorized states

[UV1) =", | d1i) €H
[1h2) =2, Bjlba;) €Ho

h A factorized state allows one to
|We) = Y1) ® [1ihg) = Z Z azﬁj |<I>U uniquely identify the associated state
(o1 |22 =1 =1 vectors of individual subsystems

Scalar product for factorized states: (Wg Wl )y = (V1|¢])n, - (V2| U5)n,
» Entangled states

For any pair of states { } there exists the product state

The possibility to express coefficients 7;; of a general superposition Zij Vi | Pis)
in the above factorized form (v;; = a;03;) is rather scarce. Almost all states in
H, ® Ho are unfactorizable, so called entangled states:

h An entangled state does not have
Z Z ’ng D) # [¥i)1|vha)e any associated state vectors

i=1 j=1 #azﬂj of individual subsystems
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» Multiple products of Hilbert spaces: ||H = & Hj

More and less precise notations:
Hi 2 [¢) = [¢)r | and k;@l%k > [Y1)1®[¥2)2... @|Un)n = [P1)1|U2)2-|Vn)n

» The use in QM

Hilbert space H of a composite system is the ® product of partial spaces Hy,
The multiplied spaces Hj can be associated with the spaces corresponding to
different parts of the system (e.g. different particles) or to different dynamical
variables (e.g., spatial and spin degrees of freedom). Entangled state vectors
correspond to mon-classical situations in which only the whole system and not
its individual parts are attributed by a pure quantum-mechanical state (the
subsystems are in so called mixed states, see Sec. 6a). Entanglement represents
a genuinely quantum correlation of the system’s parts.

<« Historical remark
1935: A. Einstein, B. Podolsky & N. Rosen use an entangled state to claim that QM is
incomplete. E.Schrodinger analyzes such states and coins the term “entanglement”

1b. EXAMPLES OF QUANTUM HILBERT SPACES

In the following, we describe specific state spaces for particles with spin 0 and %,
and the spaces assigned to collections of such particles. We meet another essentially
quantum phenomenon: indistinguishability of particles. And we introduce the space
of qubits—the playground of quantum information technologies.

B Single structureless and spinless particle
Particles with no internal degrees of freedom are described by ordinary scalar
wavefunctions (cf. Intro.).
» Wavefunction (%) = 1) € [|H = L*(R?)

Hilbert space of square-
integrable functions

(Whrlipn) = / G Eal@) dF| = [ 7(7)bo(5) | Det L=

Cartesian & curv1hnear coordinates

dy  scalar product

Expansion of ¢(Z) in a discrete basis of orthonormal functions {¢;(Z)}.2,

= isomorphism of £?(R3) with ¢?
Normalization: (|¢)= [ |¢(Z)|*di=1

Probabilistic interpretation:

14(Z)])? = p(Z) is the probability density for
finding the particle at position . This follows
from the association of the state |Z’) of the
particle at a single sharp position Z’ with the

dx
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Dirac o-function 6(Z—2") (see — O — —
Sec.0). Hence the amplitude ay(Z) = (Z'|¢p) = [ 6(£—2")p(Z)dT=2(Z")

& probability densities read: pu(Z') =lay (") =y (Z")]P=p(Z)

Probability expressions for other observables will be treated in Secs. 2a & 2b.

» Rigged Hilbert space of wavefunctions
There is a problem that localized states |¥') = §(Z—2') as well as other im-

portant states (like plane waves eFZ gee Sec. 2b) are not in L*(R?) (they are
not quadratically integrable). The rescue comes with the introduction of a
convenient Gelfand triple H C H C H of spaces. In the 1D case, we define:

H = dense subset of functions: +fw|¢(x)]2(1 + |z|)"dx < 0o for m =0,1,2,...
H = functions satisfying +foo W*Jflw <oV eH

Then H includes also poly;logmially diverging functions, plane waves, d-functions
An alternative mathematically consistent approach (see Sec.2a) is to consider

only imperfectly localized states, like those within interval ;€ [} —%, zj+5]
around 7' represented by wavefucntions 6z(7—7') € L3(R?).

<« Historical remark
1926: Erwin Schrodiger formulates QM in terms of wavefunction and Max Born
develops its probabilistic interpretation

B Single structureless particle with spin 3 1

Electrons have spm =. The spin is a genuinely quantum feature of a particle,
which (even for pomt like elementary particles) is understood as an intrinsic
unstoppable rotation. The general theory of angular momentum in QM will be
developed in Secs. 3b & 4b, here we just introduce spinor wavefunctions as the
simplest two-component generalization of scalar wavefunctions.

» Spin = intrinsic angular momentum of a particle
The lowest nonzero spin is s —% having only 2 possible projections (spin states)
==+sh in an arb1trar11y chosen spatial direction e (conventionally ¢ = z):

= [D=(1)=]a) general state
[ D=(1)=Ix2) }:> %) = an| ) +aal $)=(61)
» Spin Hilbert space: with (¢[1)") = (atas) (3;;) = aja) + ol

Normalization: o "+ as|" =1 bu(D)=la(DP=|(F [¢)]?=ou
Probability to find the spin up/down: pe(d)=lay(L) 2= [¥))?=|asl?

spin up S, = +b
spin down s,=—

DO SN0 | S

For probabilities of spin projections in an arbitrary direction see Sec. 2b.

Note: General spin s =0, 3,1,3,2,... has (2s + 1) spin projections s, = —sf,

(—=s+1)h, ..., (+s—1)h, +sh to any direction, so H=C?**! (see Sec. 3b).
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» Both spatial and spin degrees of freedom
= direct product of spatial and spin Hilbert spaces:

Basis vectors: |®;;) = |¢:)|x;), Where {|#;)}22, is an arbitrary basis in £*(R?)
Generalstate expansion: [¢) = 3~ 3= a|6)]x) = 3= [0 (@) 11261 (2)] 1]
-1

H = L(R?) ® C?

i=1j=
= (o7 fod Zaﬂ@ ?) wT(l’) = = :
= (ai) ¢i(2) = > aini(@) ) T (wi(f)) = () = (%, m, )| spinor
i=1 7 N~
+]
Spinor is a two-component wavefunction equivalent
to a wavefunction with a continuous variable Z and (/2
a discrete two-valued variable mg (the spin projection x
to z-direction). Note that transformation properties X

of spinors under spatial rotations are different from P,

ordinary vectors (they will be derived in Sec. 4b).

Simplified notation: | (#,m,) = &| with | [ d§ = %, [ dF|

> Scalar product  (Y[¢) =325 afiaqy (dildn) (xilxg) = 22 agjai;
NSRRI =

ij iy’ > ij
can be expressed as: 5 y 8

Wl = [ (@wi@) (35 ) da= 3 [ (@ ma)e (7, m,)di = fw (€)d
1

Mg

Normalization: f 19y (2)|2dT + [ | (F)[?dT =

Probability density for particle at given position and spin:
pu(@) =|ay@D[=[@ 1) =| fow-20) (17 ) 4| = [vr(@)] = [w(@+H)]
po(@1)=[a@D[=[(@ )= | fose-2) (11(3)) 2= [hu @ = [0 @)

» Coordinate-spin entanglement: Almost all spinor states are entangled.
A factorized state has a special structure ¥ (Z) =¢(Z) (a1 | T+as| 1)) =9(Z) (a})

» Application in a which-path version of the double-slit experiment
Consider a modification of the double-slit experiment (see Intro.) such that

(@) 4
)
(@) 4
)

both slits are equipped with spin polarizers: {

A polarizes electron in direction T
B polarizes electron in direction |
= paths through slits A & B are distinguishable
The electron’s state inside the interferometer is T
$(T)=aa ()] 1) +Byn(T)] 1), where ¢a, vp are o ‘
spatial wavefunctions for particles propagating
from the respective slit and «, 5 some coefficients. l l,
Probability density to detect the electron at place
i reads py (%) = (1| Ps|), where Py = |Z 1)(Z 1 |+|# 1)(Z | | is the projector to
the subspace of H (more precisely H) spanned by vectors |Z)| 1) and |Z)| J):
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po@) = BO 1 e oA@ 1 va@ 0

(@ oAl T +6- Tul®) W | 1) (o @) 111 1)+ alvm) TF | D)+

(o @al@) {1 | §)+6" (WolZ) (b | ) (@ @va) (| 1) +6 (@lvs) (4| 1)
AR oal@ 0 G

= |aa(Z)|?*+|Bvs(Z)|* = no interference appears (the same holds if paths
A & B are recorded by two perpendicular states of any spectator system)

« Historical remark

1922: O.Stern & W. Gerlach observe the first indication of spin

1924: Wolfgang Pauli introduces “two-valued quantum degree of freedom” and for-
mulates the exclusion principle (see below), in 1927 he introduces spinors

1925: R. Kronig and G. Uhlenbeck & S. Goudsmit provide an interpretation of spin
in terms of intrinsic rotation (refused at that time)

B Two or more distinguishable structureless particles with spin %
We are ready to construct state spaces for collections of particles. At first we
assume that the particles are of different types—distinguishable. We assume N
particles with spm , but the same procedure can be applied regardless of spin.
» Hi, Ho, ... Hy= Hilbert spaces of individual particles: H; = L*(R3) @ C?

0 Wavefunction of a general state |¥) € HW)
=M@ SHN|| (T, my, do,ma, ... En,my)= (€..&x|T)
— - —— N —_—

Scalar product: (V|V') = & & En ag(€;...€n)
zz ff \I’*(fl, ml...fN, mN)\I/’(:fl, ml'--fNa mN)dfl“'di N—particle
o [ [ € E) V(€1 £y )€, dEy amplitude

» Multidimensional entanglement: Almost all states exhibit all kinds of
entanglement (coordinate-coordinate, spin-spin, and coordinate-spin) of differ-
ent particles and coordinate-spin entanglement of identical particles

» Probability expressions

Wavefunction ¥(&;...€ ) lives in the multidimensional configuration space con-
taining generalized coordinates &; = (¥;, m;) of all particles. It contains complete
information on mutual correlations between particles and allows one to extract
any kind of probability distribution in the generalized coordinate space:

(a) Joint probability density to find particles # (1,2...N) at (&;,&,...&x)

po(€y .. Ex) = |au(€r . €)= (W€, Ex) (€1 Ex|W) = [U(E, ... Ey)[
Normalization: [ ... [py(&,..&y) d&...déy =1

(b) Integrated probability pg(X) of a property defined by (&;...&y) € X,
where X is a certain domain in the multidimensional configuration space:

X) = [ xx(&1. &x)pu(&y.. Ex) dE,...dEy  where XX:{gﬁgi AP




26

Example: property X identified with the subset of the config. space in which
particle #1 is localized in a state between |€) and |€+d€). Probability py(X)=

pu(§;=&)d§, where the density: py(€;=§) = upﬁ/(&&, En)dEsy...dE

N—1
(c) Single-particle probability density to find any of the N particles at &
P / /m 6101 8 €irinb) €1y

Normalization f p\p(ﬁ) d& =1. This density is determined from the expression
Npq,(é)dé':zgzo npy(n, €, d&) = oy (€)d€, where py(n, &, d€) is the integrated
probability for finding any n < N particles in states between |£) and |£4d€).
So oy (€)= Npy (&) normalized as [ py(€) dé=N is an average particle con-
centration (not accounting for particle identity) at generalized coordinate &.

B Two indistinguishable particles

In quantum physics, if some particles are really the same, we cannot define any
kind of their individuality. In particular, we cannot assign to these particles any
intrinsic names/numbers as there exists no property that would enable us to
recognize whether a given particle is “Fred” or “Bruno”. Consider two electrons
localized at distinct places A and B. We can name them “the electron at place
A” and “the electron at place B”; these are two distinguished single-particle
states. However, it is impossible to say whether the present electron at place
A is the same electron as the one observed at place A some time ago.

» The Hilbert space of two indistinguishable particles is constructed from the
Hilbert space H® = H, @ Ha 3 |¥) =T (&, &,) of two formally distinguishable
(though physically identical) particles #1 & #2. We introduce in this space the

particle exchange operator: |E_,W¥(£,,&,) = U(&,,&,)| E2_,=I

E1—, exchanges states of particles #1& #2 in the expansion of |¥) in any
factorized basis: |¥) = Za,ﬂqﬁ) |pj)e = E1—9|V) = Za,3|¢]) |di)o

» For indistinguishable partlcles we require that the exchange affects only the
overall phase of the state since it is physically irrelevant, so Ej_o|¥) = ¢/#|0)
with ¢ €R, and that two subsequent exchanges yield the original state: e?¥ = 1

N ©=0 U(E, &) = +V(&, &) | symmetric for bosons
=7 || U(&,&) = —¥(&,, &) || antisymmetric for fermions

The two possibilities of phase ¢ define two fundamental types of elementary par-
ticles in nature: bosons (with exchange-symmetric wave functions) and fermions
(with exchange-antisymmetric wave functions). It turns out (proof given only
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in the relativistic QM) that particles with spin % (or spins %, g) are fermions,
while those with no spin (spin 0 or spins 1,2...) are bosons.

» Any two-body wavefunction can be uniquely decomposed into the symmetric
& antisymmetric parts that belong to distinct subspaces of H(%):

V(&) = \% [W(&),&)+T (&, 51)l+§ [W(&),&,)—T(&,, 51)1

P (e, > e, Py = [I+E) )]
R N PLV(€.6,) P_W(&;.85) * 2 1=2
P, and P_ are projectors to the symmetric and antisymmetric subspaces
. . . @
Po+P =1 = |[HO=4Pen? &

%(Z) 98(2)
General form of decomposition for |W) =3 a;j[¢)1]¢;)o: " -
PelW) = aijz[loilog)e £ [o)1l¢i)e]

ij

» Pauli principle: || P_[¢))1]ih)s = 0]| (states [¢))1])s are L to subspace 7-[(,2))

= Two (or more) fermions cannot occur in the same single-particle state. Each
single-particle state can be occupied at most by one fermion. This has tremen-
dous consequences for the structure of matter! Without Pauli principle, the
world would be a boring place (probably with no bored creature present).

» Interference effects caused by indistinguishability

Two distinguishable particles in a factorized state: W(&;,&y) = 11(&;)12(&,)
Joint probability density: po(€1,€) = p1(&)pa(€y) _
Single-particle prob.density: py(&) = 3 [p1(€) + pa(&)] = no interference
Here p;(&;) =py, (&) =1:i(&;)]? is prob.density associated with particle #i=1,2

Two indistinguishable particles: PoW (&, &,) o [t (&)t (€y) b1 (€5)1o(€))]
Joint:  py (&, &r) o P1(&1)p2(&2)+p1(82)p2(&1) £2Re[th1(§1)15(€1)Y7 (€2)12(E5)]
Single-particle:  py(&) o< p1(§)+p2(€) £ 2Re [(th1|2)¥7 (§)1h2()]

The state ﬁi\lf(ﬁl, &,) is entangled and this

immediate consequence of particle indistin- Py (x)

guishability creates interference effects in

both probability densities py (&, &s) & pu(§).

However, the interference is significant only

if the states 11(&) & 15(€) have a sufficient X
overlap. No interference effects are observed

e.g. for very distant particles or for particles with opposite spins (= entangle-
ment of electrons in different galaxies, for instance, is practically unmeasurable).

B Many indistinguishable particles

It is straightforward (but more laborious) to generalize the above results to N >2
indistinguishable particles. In short, particle permutations are decomposed into
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pairwise exchanges and the states of identical bosons (fermions) are identified
with symmetric (antisymmetric) subspaces with respect to these exchanges. A
general theory of bosonic & fermionic systems will be elaborated in Sec. 14.

» N distinguishable particles: W(&;,...&y) = |V) € HWY) = @ H,
Factorized basis: |¢;)1|diy)2 .- |Gin) N = |Pijiy.in) With iy =1,2,3, ...

» Particle exchanges and permutations
Exchange operators Permutation operators

Eret| @iy ipivin) = 1Piyivinin) En|Pisiy.in) = |@ik¥ikg...z’k%>

Permutation (kT, k3, ...k}) is an arbitrary reordering of the original sequence
(1,2,...N). Index m=1,...N! is the permutation identifier and number k7 €
{1,2,..., N} stands for the ith term of the mth reordered sequence. For exam-
ple (1,2,3) — (1,2,3),(3,1,2),(2,3,1),(1,3,2),(3,2,1),(2,1,3) for N=3. Any
permutation é’w can be written as a product of exchanges Ek:l. The factoriza-
tion of a given &, is not unique, but all factorizations have either even or odd
number of exchanges. This defines even & odd permutations.

+ for even permutation AW

P tati . = .
ermutation sign o. { — for odd permutation

» Hilbert space decomposition

N)

H =H Y o oY)

The dots represent subspaces with mixed symmetries, while ”HSFN) and H are
fully symmetric and antisymmetric subspaces satisfying:

W) = +]) | VW) € HY, & W) = o W) | W] 0) € 7

N! !
~ 1 4 - 1 4
PJ(FN) = i E Ex PEN) = N E foprom projectors to HSFN) & H(_N)
: =1 ’ =1

A sketch of proof: The fact that P.|U) € ”H,i follows from the closure rela-
tions of permutations (i) for any two permutations 7, 7’ we have &&= Eﬂ :
where 7 denotes another permutation satisfying o,» = TxOw, (ii) if {E N
represents a complete set of permutatlons so does {5 Ex } —, for any ﬁxed
é}r. In this way we can show that & P |\If> |\If> and &, PV |\If>

]\IJ) Relations (i) and (ii) also imply that Zﬂ Sl = NI, En
and Zﬂ Do 02Ex0 & =N\ Do o &, which prove that (PiN))Q :]SiN).

H™) for bosons
Hilbert space for N identical particles is HZFN

b ) for fermions
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]ADJ(FN)+]5£N) # I for N > 2: the rest of the space contains mixed symmetry
subspaces (corresponding e.g. to mixtures of several types of identical particles)

» Expression of a basis in the fermionic space:

[¢1)1 [P1)2 o [O1)N
1 [p2)1 |d2)2 .. |P2)n

P [gn)1ldn)a . 1) x| = 557 Det

~ - a1 [6n)2 - 16NN
[ P12, N)

Slater
determinant

Normalization: The above projected state is not normalized. For the normal-
ization coefficient we calculate <p£N)<I>12__N|p£N)<I>12__N>:<<I>12_.N|(PEN))QCDH__M
:<q)12“_NIPEN)(I)QWN>:1/N! (the 2nd eq. follows from the hermiticity of pro-
jectors, see Sec.2a, the last from the fact that any nontrivial permutation of
|61)1---|0oN) N, where all |¢1)s are mutually different, yields zero overlap with the

original state) = the normalized state reads v/ N! ]ADEN)|cI>12mN> = \/LNf'Det (...)

Notes: (a) Analogous expression for bosons can be formally written with “Det”
replaced by a symbol denoting the exchange-symmetric sum of permutations.
(b) Slater-determinant or analogous symmetrized states originate from factor-
1zed states in the space of distinguishable particles. They carry just a minimal
unavoidable entanglement caused by indistinguishability of particles. These
states form a basis in HY or HSFN), so a general N-body fermionic or bosonic
state can be expressed as a superposition of these basis states.

<« Historical remark

1924: S.N. Bose derives Planck blackbody law from indistinguishability of photons
1924: Wolfgang Pauli formulates the exclusion principle to explain periodic table
1926: Werner Heisenberg and Paul Dirac relate Pauli principle to antisymmetric
wavefunctions and Bose-Einstein statistics to symmetric wavefunctions. Dirac and
Enrico Fermi derive statistical law for “fermions”

1927: D. Hartree & V. Fock derive approximation for atomic N-electron wavefunc-
tions, in 1929 J. Slater facilitates the description by using the determinant

1939-50: M. Fierz, W.Pauli, J.Schwinger provide proofs (within the relativistic
quantum theory) of the general theorem relating the “type of statistics” to spin

B Systems with unbounded number of particles

We come to many-particle systems in which the particle number is not fixed.
One can think of an exchange of particles with a bath. More fundamentally, if
the special relativity is applied to processes involving elementary particles, the
number of particles (the sum of their rest masses) is not conserved. Particles
can be repeatedly created and annihilated, conserving only the total energy
< mass of the system. It turns out that considering no upper bound on the
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particle number we leave the safe harbor of separable Hilbert spaces and face the
limitless ocean of continuum. This is a transition to the field theory. Work with
the Fock space within the nonrelativistic QM will be practiced in Secs. 14 & 15.

» Fock space
Sum of spaces for all particle numbers N =0,1,2,3,...

= 74(0) 1) (2) ... N @ ......
H=H", & H, & H, ® H,' ©

vacunm 1 particle

state |0) 2 particles N particles

This applies for distinguishable/indistinguishable
particles of the same type:

HSFN) indistinguishable bosons
MY = ) indistinguishable fermions
HW)  distinguishable particles

» Separability versus non-separability
In nonrelativistic QM it is assumed that the actual number
of particles N is unlimited but finite. The set of basis vectors
subject to this constraint is countable and such Fock space is separable.
However, the closure of the Fock space including ’HEOO) is non-separable. Rea-
soning: basis states |®;,. ) = |di)1|0i,)2..... for N=oo are specified by an in-
finite number of integer indices i1, 79, .... identifying basis states of individual
particles. This set is uncountable in analogy to real numbers (infinite sequences
of digits; see Cantor’s “diagonal slash” argument).

<« Historical remark
1932: Vladimir Fock introduced the space for indefinite particle number
1958: Paul Dirac relates the Fock space to field quantization & continuum problems

B Artificial systems (qubits...)

Since recently, various artificial quantum systems are assembled in the labo-
ratory to be harnessed in potential applications of quantum information tech-
nologies (Sec.9). Such systems (formed by ensembles of trapped atoms, nuclear
spins, superconducting circuits etc.) are designed so that they allow for con-
trolled manipulations and show minimal sensitivity to external perturbations.
The specific physical content of individual states is not essential (this being just
an “engineering” issue) and the only focus is set to the mathematical properties
of complex superpositions of arbitrary basis states in the finite Hilbert space.

» Qubit: any system with the 2-dimensional Hilbert space can be
considered as a quantum analog of classical bit. The basis of H (formed by two
selected states of the underlying system) is denoted as {|0), |1)}.
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General normalized
states of the qubit
are mapped to the

irrel. global phase ©
TP (Pr0) o B
|9) =p|0) + 1) = €™ (cos 2|0) + €' %) sin 2|1))

unit sphere (points with spherical angles 9, ), where classical logical states
correspond to the north (|0)) and south (|1)) poles.

» Qudit: a generalization to any higher dimension d (e.g., qutrit for d =3
etc.). Hilbert space H = C? = Span{|0), |1),...,|d—1)}. A general normalized
state [1)) = i;(l) aj|k) is determined (up to the global phase) by 2(d—1) real
parameters (e.g., by d—1 hyperspherical angles and d—1 relative phase angles).

» System of N qubits (Hilbert space of a quantum computer)

N1

(1,1,0..1) B 5
H= ®H = Span{\ll 1la)2. .- [In) N }(11,12, An)=(00,..0) — Span{|x>}x:0
=1 |2) d=2N

Factorized basis vectors built from states |I;); = |0); or |1); can be enumerated
by 2 =0, ...,2Y —1 so that [;l5...Ly is the binary representation of x.

oN_q General state of the system describes a quantum register
|0) = Z o | that can carry integers x € {0,1,...,2Y —1} as well as all
=0 their superpositions with any coefficients «, € C.
Although the initial state |¥g) of various !

N
v L (10Y;+1);
computational procedures is factorized, [%o)= \/TN Z =)= 1131 V2 (02i+1):)
the space ‘H supports all kinds of bi- & multi-partite entanglement. Splitting the
whole register to 2 subregisters A and B with n and N —n qubits, respectively,

N N—n
®z 1H - Span{|$>A}x 0> ®i:n+1 Hl - Span{|x> }3/ =0 1’
7—[ Ha ® Hp, we can express gn_19N-n_1
a general state € H in the form Z Z Q| 2)A|2)VB| Q€ C,
It is almost always entangled! =0 a'=0

The space H can be decomposed to subspaces with various exchange sym-
metries of individual qubit states. Consider concrete splitting s to 2 sub-
registers with n and N —n qubits (e.g., s = {1,3,4}{2,5} for N =5) and de-
fine the subspace H\™™ such that Eij|W) = £|T) for any |¥) € H | with

+ fori,j in the same subregister, . .
{ " fori.] in different subregisters, Let (N, n) is the number such (nonequivalent) sub-
(N)n)
S

spaces. It can be shown that H = @nN:[Nm @ H

<« Historical remark

1980’s: P. Benioff, R. Feynman, D. Deutsch and others pioneer the idea of using
controllable quantum systems for simulation and computation purposses
1995-present: construction of increasingly complex controllable quantum devices
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2a. REPRESENTATION OF QUANTUM OBSERVABLES

The Hilbert space and its scalar product allowed us to calculate probabilities for
mistaking a given state vector |1) with another state vector |¢'). However, we do
not know how to assign the vectors |¢), |¢)... to actual states of the system. This
unavoidably requires definition of real observable quantities (shortly observables)
that determine the system’s actual properties. Hence our next task is to introduce
observables into the Hilbert space structure.

In classical mechanics, observables were just ordinary functions in the phase
space. In quantum mechanics, the thing is more complicated since many observables
yield discrete values and results of measurements are generally indeterministic. We
seek for an elegant mathematical tool capable to cope with these properties.

B Operators associated with observables

Consider an arbitrary observable denoted as A. Associated with each state
|1)) € H there must be a probability distribution p,(a) characterizing all possible
measurement outputs {a} of A on this state. A suitable path to obtain such a
distribution proceeds via the association of each quantity A with an operator
A, which represents a specific mapping H — H (see Sec. la). We first present
a plausible (but not unique) motivation for launching out in this direction and
then briefly outline some rudiments of the operator theory.

» Moments of statistical distribution
The probability distribution py(a) of all possible measurement outcomes a

of observable A in state [¢)) can be characterized by statistical moments:
n=1: (A)y average (expectation) value

<An>¢ = fan p1/1(a) da n=2: <(A—(A)w)2>¢:(A2)w—<A>12p variance (dispersion)

The knowledge of all moments (A'),, (A%)y, (A%)y, (A%)p, ..o 777
under some conditions uniquely determines the whole distribution py(a).

» Calculation of moments via operators
Consider an operator A|y)) = |Ay) = [¢/)e H. Integer powers of this operator
can be calculated in a straightforward way: A”[¢) @ é ) =|Amp)eH.
This motivates us to set the following postulate: n times
Any physical observable A is associated with a linear Hermitian operator
A acting on the Hilbert space H of states. Statistical n ~n
o C|[(AYy = (W]A™)
moments of the distribution p,(a) are calculated as:

Requirement 1: linearity - - -
Because all QM is linear! A(a|¢1>+ﬁ\¢2>) = a A1) +BAYs)

A= ﬁ; j;z matrix representation of lin. operators with arbitrary
=\ . basis {|¢;)} = matr. elements A;; = (¢;|A¢;) (see Sec. 1a)
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Requirement 2: Hermiticity || (11| Ath) = (At |h) || = (1o Agpy)*

Hermiticity is sufficient (though not necessary) condition for
the statistical moments being real numbers (as needed)

(Y|A™) € R

= the matrices associated with A satisfy: | A;; = A7, for i#j and A; € R

» Some mathematical definitions
Definition domain: Operator A is defined for |¢)) € Def(A) C H

N

For physics purposes it often suffices if Def(A) = a dense subset H C H

Operator norm: ||A|> = Sup {—%i}i@ }weéi'(;)igged Hilbert space, Sec. 1a)

||A|| < co for bounded operators, ||A|| = co for unbounded operators

Hermitian adjoint operator AT is an operator satisfying the condition:

(1] Adp) = (ATay[aho) | = (1] Aoy )* {Vlwz>6Def(4) A

V|11 )€Def(AT)DDef(A)

At— ﬁ% ﬁ%; T\ AT matrix representation of Hermitian adjoint operator
a - (= transpose & complex conjugate matrix)

Adjoint of a product: (fh/lg)T = A;AI and similarly for multiple products

(1] Ay Agihy) = (Aluy | Ag) = (A Alop [1)0)
Symmetric, selfadjoint vs. Hermitian operators

All these operators satisfy the following condition: 121| W) = AT| b)
but for different domains of vectors [))

~ ~

Symmetric operator: [1)) € Def(A) CDef(Af)C
C

H
Selfadjoint operator: [i) € Def(A)=Def(A")CH
Hermitian operator: |¢) € Def(A) :Def(/ﬁ) =H
These definitions are equivalent in finite-dimensional spaces
but not in oo-dim.spaces. Nevertheless, most textbooks including this one
make use of the term “Hermitian operator” regardless of the definition domain.
» Function of operator
Physical observables are often defined as functions of other observables.
We first define a function of operator for functions of £( A) _ Z £ Ak
k

the form f(z)=Y_ fi 2", i.e. expressible as Taylor series:
J

A more general definition will be given below fr e R= f( A) Hermitian

» Tensor products of operators
We will need to use operators in product spaces. Here are some constructions:

A A = /‘
Let {41 on %1} be operators defined by basis actions {41|¢h> B |¢}Z> } Then:
Ay on Ho As| o)) = ’¢2j>
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(a) Operator A=A @ Ayl on H=H; @ Hs |®,;) |27;)
. A 1 1o RN
is defined by: Aly) = A[3- vij |61i)ld2;)] = 32 77 6130 [0;)
17] 17-]

(b) Possible extension of A;, A, AP A @ I,=A, | I, =unit op.inH,

. . 1
to H="H; ® H, is obtained from: Agext) — I, ® Ay = A, I, =unit op.inHy

Similarly for multiple products ‘? H;

B Eigenvalues and eigenvectors of Hermitian operators

The key characteristic of any operator in the Hilbert space is its spectrum
of eigenvalues and the set of the corresponding eigenvectors. Not only these
eigensolutions constitute a subject of an involved mathematical theory, they
also play the most essential role in the formulation of quantum mechanics.

» “Dispersion-free” states and possible measurement outcomes

Consider state [1,) in which observable A yields py(a)
a “sharp” value, i.e. a single possible output a 1
with probability py(a) = 1. Hence the average

(A)y, =a and variance | {A%)y, =(A%)y, —(4)7, | =0 a
$¢a|A2wa2_§wa|Awa>i = <¢a|\A2_2aA+a2j, |%ha) = <(A—@f)1/fa|(/1—af)%> =0

(A)yq (4)%, =a? (A—al)?
= (A-aD)n) =0 = [Aliu) =afin)| = {1V 2 Bemeor
For A = Al the cigenvalues a = (a|Ala) € R
These considerations lead to a plausible determination of the set S (/1) of possi-
ble measurement outcomes of observable A «+ A. We assume that each possible
outcome is associated with a state in which it is measured with certainty, hence

A

V a € S(A) there 3 dispersion-free state |1),). This leads to the postulate:

S(A) = { possible measurement outcomes of A } = { eigenvalues of A}

} of operator A

Below we will use a “stammering” notation with |¢,)=|a), so: ||Ala) = ala)

» Orthogonality of eigenvectors with different eigenvalues

A‘a> =ala) = <CL/|A|CL> = ald|a) (valid for Hermitian operators)
Ald') = da') = (alAld) = a_(ald') } = 0=(a—da')(a'|a) = ||(a'|a) =0
(@|A|a)* @ (aay #0

= Different dispersion-free states (i.e., eigenstates with different eigenvalues)

» Degeneracy are perfectly distinguishable

A single eigenvalue a of A may have more than one linearly independent eigen-
vectors {|a; k) }7_,. Due to linearity of A, any superposition of {|a; k) }}_, is also



35

an eigenvector with the same eigenvalue: A O aklas k) = ad ) aplas k).
Hence all eigenvectors with the same eigenvalue a form a degeneracy sub-
space H, whose dimension |dy, =d, < d;{‘ is the maximal number of linearly

independent eigenvectors, i.e. the maximal size nmyax of the set {|a; k) }}_,. One

can choose in H,, an orthonormal basis {|a*))}9  satistying | (a*)]a)) = 6,

» Eigensolutions for finite dimension

Ala)=ala) & (A—al)|a)=0 = Det(A —al) =0
—_——
For dy < oo the middle relation represents P4la)

a finite set of linear equations with r.h.s.=0.
Its solution exists iff a is a root
of the characteristic polynomial Pz (a)

Au—a Alg
PA(a):Det< Az Ap—a )

of order dy. The eq. Pj(a)=0 has
n € {1,2, ..., dy} solutions {a;}_,
all a; € R (from Hermiticity of A).

a

The corresponding eigenvectors |a;)
satisfy (A —a;l)|a;) =0, which for an expansion |a;) =) mi|¢y) in arbitrary
basis {|¢n) }7% | vields a linear set of equations

AH—U,’L' A12 [e5T]
for coefficients {a,,;}. It can be solved due to ( Az Az )(‘”) =0
the the nullity of its determinant. 5 :

Theorem: For any Hermitian operator Ain H, there exists dy orthonormal
eigenvectors (irrespectively of the number 1 <n <dy of eigenvalues).

Sketch of proof: For any matrix A of dim. dy, the fundamental theorem of alge-
bra guarantees the existence of at least one eigenvalue a and the corresponding
eigenvector |a). The eigenvector can be normalized to (a|a) =1 since A|a) =ala)
= A(ala)) =a(ala)) Yoe C. Consider the orthogonal complement H* of |a),
which is a (dy—1) dimensional subspace of H such that (a|y)) =0V o) € H*.
From Hermiticity of 4 we get: <a\/hp> = a{aly), so H* is invariant under the
action of A. Hence the same procedure can be repeated for H*, finding a new
normalized eigenvector |a’) € H*. The theorem is then proven by induction.

= If the number of eigenvalues n < dy, some of them must be degenerate.
Dimensions of the degeneracy subspaces satisfy: |> " | d,, = dy

» Completeness for finite dimension

Given any Hermitian operator A in H of dimension dy < o0, one can introduce
an orthonormal basis of H formed by eigenvectors of A:
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Detailed notation: = oMy ei i "
etalled notation: f|q,) = |a,; ') eigenvector for nondeg. eigenvalue a;
(¢ runs over different

. . k aq . .
eigenvalues, k over dif- {|a£ )>} eigenvectors for degenerate eigenvalue a;

. . ) :
ferent eigenvectors in "=1 (selected orthonormal basis of H,.)
a single deg. subspace) i

i=1
Simplified notation: {aj}?zl — {laj) ?21 = {eigenvalues, some of them

maybe equal } +— {the corresponding eigenvectors, all orthonormal }

Orthonormality condition: T P
Ky, (k
(0" a/) =0uibn {aglap) =8| | 4 G i
. ®y B — f = Nl
The completeness relation reads: |a;")a; | = I = |a;)(a;]
i=1 k=1 j=1

» Diagonal representation (diagonalization)

Similarity transformation of any Hermitian matrix A with matrix o
U build from eigenvector components: |a;)=> " | pmildm) = (%‘)

A 7t
i 0 Adias A

P
% - ~" -~ * * < |
~ ~ a
a aj ady .. 1
ﬁu ﬁu an |[ oz | .. L BV 12l
22 — -a * * a
¥ . . . 0 2 Qg Qg (az]

la1)  la2)

» Example: general 2 x 2 Hermitian matrix A= (ﬁg ﬁg) has 1 or 2 eigen-
values, but always 2 orthonorm. eigenvectors:
Characteristic polynomial: P ;(a) = (A1 —a)(An—a)—|A|?
= a? — (A +Ag)a + (A Ay —|Apl?)
Roots = cigenvalues: ay = 4tz 4 \/(%)2 + |Ap|?
= degeneracy a,=a_ iff Aj1=A and A;5=0

A1 —Agp A A22 Aol A
Eigenvector eq.: : ;\/( ) Fldul s Alz — (a1i> =0
Al ) 11$\/< Uo222) A2 f\ Q2+
Rows of this matrix are dependent, so the solution is determined by any of the
two egs., e.g. the first one: [AH;AZ?:F\/(A“ A”) +| Ao |? ]Oéli—f—AuOéQi =0
It can be checked that (a_|a;) = (ai030) (ayt) =0
1

Q4
Counterexample: non-Hermitian matrix A= (§1) has only 1 eigenvector:
Characteristic polynomial: P;(a) = (1—a)*> = root: a=1
Eigenvector eq.:  (J{)(ai) =0 = single normalized eigenvector (a})=(})

» Quantization: Already at this stage we can conclude that discrete character
of the observable values of some quantities A is a consequence of the assump-
tion that the observable values coincide with the eigenvalues aq,as, ... of the
corresponding operator A. However, the full picture cannot be drawn without
considering operators in infinite-dimensional spaces.
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» Eigensolutions for infinite dimension

For dy = oo, the expression Det(A—al) has no sense. To find solutions of
the eigenvector equation (A—al)|a) = 0 is much more difficult in this case. In
general, an co-dimensional operator A may have both discrete & continuous
spectrum of eigenvalues. Moreover, eigenvalues from the continuous spectrum
have no eigenvectors € H. Note that a rigorous analysis of these issues goes
beyond our present level of advancement. We will just indicate two alternative
mathematical treatments: one by von Neumann, who stays within the standard
Hilbert space as he allows only finite intervals of continuous eigenvalues, and
one initiated by Dirac, who steps out towards the rigged Hilbert space by taking
into account single eigenvalues of continuous quantities.

Example of co-dim. operator with discrete spectrum:

orthonormal
(0] 00 00 [1] = _
0 01] 00 V2 elgenvectors
A—| o Lrof oo +5 - _ d;
= 0 0o [02 = ) 2 ], 7 , ... = { corresponding
0 00 |20 0 +3 to eigenvalues
: : . 0,£1,+£2, ...

~

The spectrum S(A) =Z={...,—2,—1,0,+1,+2, ...}
The corresponding eigenvectors |a;) € H = (?

Example of co-dim. operator with continuous spectrum:

0 o 0 o0 .. elgenvlecii)or Oeql(l)atlon.
—a .
R 0 0 0 1 a1 0 0 as
_ 0 1 —a 1 0 [e%:] _
A=1] o 0 0 = 0 0 1 a1 g | =
0 o [1]o [1] o ;
: c. c. ~ : ~\~ : : — v
‘ ‘ ‘ A-al )
For a finite dimension p—— single recursive eq.
. a1 F+az=as —
dy = d the above eigen- aotog=aos ‘OéZ—1+Oél+1 —aal‘

. astas=aoy B —
vector equation leads to . = ¢ valid for [=1,2,....,d
the following set of equations: | as_2tas=aas with boundary

Qg-1=aaq

conditions: ag=ay11=0
Solution for d < oo: Starting from =1, the above set of equations yields: as=
a, az=(a*-1), ay=(a*-2a), ... However, the last pair of equations will not be
satisfied for all values of a. It can be shown that |(a|A|a)| < 2(ala) V|a) € (2.
Hence the solution exists only for some discrete values a; € [—2,4+2] (see the
figure) and the corresponding eigenvectors |a;) are trivially normalizable.

Solution for d = oo: In this case, the problem with the last pair of equations
does not take place, so the solution exists for all a € (—o0, +00). However, the
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eigenvectors obtained in this
way are not normalizable, i.e.,
la) ¢ H = (2. Tt can be shown
that |a) ¢ H = (2 for |a| >2,
so |a) is out of even the upper
space in the Gelfand triple.
On the other hand, for |a|< 2
we find |a) € (2.

Sketch of proof: We can solve
the above recursive equation
a;—1+ay1 =aaq; by the ansatz
a;=r!, which leads to the condition
r'=1(1—ar+7r?)= 0. This yields 2 possible solutions:

r=%4.,/(%)>~1=r.. The boundary condition ap=0 implies a;=(r!, —r’).
For |a|<2 we have r-€C. One can find ¥€(0,27) such that §=cos?) and
ri=cosV + isiny=e*". Hence a;=sin(l1), which means that the components
are bounded and oscillate with I and the resulting vector |a) € 2. In contrast,
for |a| >0 we have ry € R with . >1 and r_ <1, so |oy| diverges exponentially
with [, which means that |a) ¢ 2.

Conclusion: Eigensolutions € H are declared to be generalized eigenvectors of
an oo-dimensional operator A, while those ¢ H are not considered as eigenvec-
tors in any sense. Therefore, the above operator A for d=o00 has a continuous

A

spectrum S(A) = [—2, +2].

» Spectrum of a general operator in infinite dimension

d=10 20 30 40 50 60 70 80 90 100
S A R R

A general Hermitian operator A can combine both discrete and continuous

spectra:|| S(A) = D(A) U C(A
(4) = D) U C) o )
spectrum discrete part continuous part C ( >
Eigenvalues a; € D(A) have eigenvectors |a§k)> cH o+

where k€{1,2,...d,,} is a discrete degeneracy index

~

Eigenvalues a € C(A) have eigenvectors ||a®¥) e H| > H 02)@‘)

where k € D, is a { géf;itlfoﬂizl""d“) } degeneracy index

The discrete part of the spectrum fulfills the standard eigenvector relations:
d,,

Orthonormality: (al(,k )\agk)>:5i/i5krk Projectors: P, =) ]al(-k)><agk)]
k=1

The continuous part of spectrum needs special treatment of eigenvector issues.
This requires rather involved mathematics, of which we present only a rough
outline.
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» Dirac’s approach to the continuous spectrum

An explicit use is made of the extended space H in the Gelfand triple
H D H D H which contains all discrete & continuous eigenvectors. The formal
spectral decomposition of Ain H is analogous to that for a discrete spectrum,
which alows us to hide (ignore) most of the mathematical subtleties.

The scalar product is not defined in H, nevertheless we introduce the following
“orthonormality” conditions valid in the sense of distribution theory:

<a’(k/) ‘a(k)> :5(a'—a)5k/k (K’ ,k discrete)

/ k . .
(@) = 5 — a)5(F k) (koo (0 106" 1 =0 mormalization

' to d-function

These relations guarantee consistency of the expansion of a general lv) € H in

the “eigenbasis” of A. We have: [¥) = > {a; (k) |@/1 ]a +fz W) laV) da

(discrete k, 1 considered) and substitution of the same expression for  yields:

v= 3 (@™al) (@l ) |al +zf da(al”[)]a™y+

5 ,5,%,

k) ' revious
+/ Z (a”|a") (a0 ]y)|a) da-+ ] %: ") (@) ]a®) dada’ = { Deiie
0 d(a—a’)oyy

Projectors to eigenspaces of continuous eigenvalues:

I, = S~ a®) (a®)| = projector to the degeneracy { da

i >~ (discrete deg.index)
k€Dq subspace of eigenvalue a, where ) =

k=1
LeD | dk (continuous deg.index)
@ D

Completeness & orthogonality relations are jointly expressed as follows:

dai Paipaj - 6szaz
S o a) + / 3 1) (@) da = Iy| 11,1 = 6(a—a) T,
i k=1 k€D, P 1,=0
aiED(A) Z '

i i,

» Von Neumann’s approach to the continuous spectrum

It works in the standard Hilbert space H which excludes eigenvectors for
individual eigenvalues a GC(A), but includes subspaces H(y ) CH correspond-
ing to any interval (a/,a”) of eigenvalues a € S(A) in the sense that probability
distributions py(a) vanish outside (a', a”) for any state 1) € H ()

Let IQI(a/ﬂ//) be projector to H(y 47, where the interval (¢, a”) may generally
overlap with both D(A) and C (A). This projector must naturally satisfy the
interval splitting condition: II(y gm=I1(y o)+ gy for any a’ < a” < a"”
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Define a “cummulative” projector to
a subspace with a<a': ﬂ(—oo,a) = fI(a')

Schematic illustration:

Due to the splitting condition, a projector
to an infinitesimal eigenvalue interval reads:

ﬂ(a’ a'+da) =TI(d' +da)—TI(d') = if[(a)|a_a/da
Note: in the Dirac language these expressmns o o e

ould read 4 —_—
" @iy Ty~ [Tada 3" C(R)

Completeness relation in Von Neumann’s language is expressed as:

R ] where use is made of Stieltjes method of integration:
dll(a) =1 . .
Ja@ =t ) aot) = = lim 3 f(@)lorran) (o)

operator
measure

S(A)

» Spectral decomposition of operator

The above completeness relations lead to the expression of any Hermitian op-
erator A and its Taylor-expanded functions f(A) =) f,A" in terms of the
eigenvalues and projectors to the corresponding eigenspaces:

For discrete spectrum: A= Z azP f(A Z f(a;) Py,
Proof:
! (k) k in n k k An nr
[0)=33 (@ )a") = A"p)=3d Z ) al0) = A=Y arp,
i k=1 1 k=1 U’ i

For general (combined) spectrum: Fos S fa A= Z&fﬂp‘“

~ ~ ~ ~ f(ai)

A = > aiPy+ [ all,da = [ adlI(a)

D(4) C(A) S(4) )
f(A ) > fla; Paﬂ‘ [ fla Hada = [ f(a)dIl(a)
D(4) C(A) S(A)

» This allows us to redefine the operator function f (A)A even for functions
which are not determined by the Taylor series, ie for f(A) # >, fnA". Let
Def [ f (a)] be the definition domain of function f(a). Then:

ZfazPal—F/f( )11, da /f ) dII(a

DANDel[f(@)] ¢ 4)Def[f(a)] A)nDef[f

The definition domain Def[f(A)] of the operator function defined in this way is
the subspace of H spanned by all eigenvectors whose eigenvalues a € Def[f(a)]
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> Eigenvalue expression of operator norm: I|A[|2 = Sup {lal? }aes ()
Bounded (unbounded) operator A < bounded (unbounded) spectrum S(A)

B Probability distribution for measurement outcomes

The spectral decomposition of operator A associated with observable A and the
initial postulate on the statistical moments (A"), = (1| A™p) (for normalized
states) enables us to finally deduce the desired probability distribution py(a)
for possible outcomes a of measurement A on state [)).

» Moments of the probability distribution for observable A in state [¢):

> ai pulas)  + [ a" pyla)da of the i moment
D(4) C(A)

<An>w = " expression from
Z ¢|Paz + f a" 1/)|Ha1/) da = <¢|A 'g[)> dthe spectral
D(A) C(A) ecomposition

By comparing both lines in this formula we see that the corresponding expres-
sions py(a;) < (Y| Py,1) and py(a) < (P|I1,¢)) must be equal. Therefore we
arrive at the following crucial conclusion:

» Probabilities of measurement outcomes as vector overlaps

Given a state [¢)) satisfying (¢[1)) =1 and an observable expressed by operator
A= ZD alP + fc’( A a1l, da, the probabilities of measurement outcomes are:

d,,
Discrete case: py(a;) = WPy = 3 |(a§k)|zp)|2
k=1
Continuous case: py(a)da = (|00) da = [(a® )2 da || =(p|dTL(a)i)

keD,

Note that the resulting formula for the probability p,(a;) or probability density
py(a) can be used as an alternative (equivalent) postulate of QM instead of
that for (A"), (see above).
For a nondegenerate eigenvalue a with eigenvector |a) we can say that:
{(aly)) = amplitude
|{aly))|* = probability

<« Historical remark

1900-10: David Hilbert studies spectral properties of integral operators

1924: D. Hilbert and R. Courant publish the book Methoden der mathematischen
Physik containing methods that later became relevant in QM

1925: Werner Heisenberg (and M. Born & P. Jordan) formulate “matrix mechanics”,
introducing the concept of matrix operators to QM (although in a different sense)
1926: Erwin Schrodinger in his wave mechanics makes use of operators associated
with observables, he shows the equivalence with matrix mechanics

} to measure a on [1)) < to associate |1) with |a)
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1926-32: John von Neumann unifies Schrodinger’s and Heisenberg’s approaches us-
ing self-adjoint operators acting on a general Hilbert space, with M. Stone they work
out the theory of such operators

1927-30: Paul Dirac develops “symbolic” formalism transcending ordinary Hilbert
space, this is formalized in the 1950’s in terms of rigged Hilbert spaces

2b. EXAMPLES OF QUANTUM OBSERVABLES

The formalism developed in the previous section is now ready to bear fruit. We will
introduce the operators mostly associated with observables characterizing a single
particle. At the end we also mention some simple many-body systems.

B Spin-1 operators

Spin operators are the clearest examples of quantum observables since they
work in the best of all possible Hilbert spaces—that with dimension 2. The
same operators (but no more with the physical meaning of spin) can be used
in the Hilbert space of a qubit (Sec. 1b).

» Operators of spin components along z,y, z axes in H = C?

A h A h - X h . .
Sgg:i(gi(l)) Syzﬁ(fi ol) 52:5((1)71) Pauli matrices
Oy iy 0.

Together with the unit matrix [ = (39) the Pauli matrices 6,,0d,,6, form a
complete set of Hermitian operators in H = C? (any A is their lin. combination).

» Projection to general direction 7i = (sin v cos ¢, sin ¥ sin ¢, cos )

Observable with operator: i*=1 ny ns
O, 7. q hiz. 3y —h Ne  Me—ify \ _ h cos? e ¥ sind
Sp=mn-5= 2(n U> 2 <”z+my —n ) T2 <e+i“° sind  —cos? >

» Eigenvalues of spin projection S

Det h Ny—A  Ngp—iny -0 )\2 -1 . +%
2

ng+ing —(n+A

» Eigenvectors of spin projection S

Eigenequation ( " "“_m”> (37) == (%) has oo solutions.

Ng+iny, —n,

For n, # +1 (otherwise solutions known) we get ay = ”;; gy B,

—ip 9
0= (7T or et

which yields normalized eigenvectors

sin

satisfying the orthogonality relation _/—ciosind o
{a|ta) = ( */3*)(a+)—0 Hﬁ)—( cos ? ) for s; = —5
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Projectors to eigenspaces: -

cos® 5 %sinﬂ f . h
o or Sj=-+35

. 29
Piﬁ _ (c;i) (al ﬁl) _ 5— sind Sm,i,
sin? ’9 —&5—sind h
-4 €+ ¥ 9 for Sﬁ = _5
n -5 smq? cos® ¥
ﬂz_l
2
n
2N
f
1 fo<-. 7
2
1
I 2
Z| (o
W
Z
For an unnormalized eigenvector || 17) = z| 1) + |1), 2z = —% = e " cot 3

the point z € C represents the stereographic projection of Vector , hence any
general superposition [¢) = «|1) + 5||) corresponds to a state | Tn) of spin
pointing in the direction 7 obtained from z = «//5 by the inverse projection.

B Coordinate & momentum

The most important observables in classical mechanics (such that all the other
observables are made of them) are the coordinates and momenta. Unfortu-
nately, these are precisely the observables whose QM operators make troubles.

» Coordinate & momentum eigenfunctions

We use the Hilbert space H = £2(R?) and the rigged Hilbert space H ¢ H C H
with # = differentiable functions (C*) L (D)) 171500 S 1T for
any n,m > 0 (Schwartz space of “test functions” for tempered distributions).

Postulate: Eigenstates of position & momentum = d-function & plane wave

g

BT
‘@ 27rh (2rh)32 e h

(P1]p2) = 6(p1—p2)
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These functions € H are not normalizable (so ¢ L£2(R?)), but we require at
least the above “normalization” to the d-function.

» Operators of coordinate components

Notation: ¥ = (z,y, z) = (21, 2, T3) F0(7) = 20 (T)
Action of operator z; = multiplication by variable x;: _ =
. [2:4](Z) ¥'(7)
Def(z;) :=H

Hermiticity: [ 11 (@)*[xit2(Z)]dT = [[w)1(Z)]) o (Z)dT

Eigenstates §(7—7") € H satisfy 2;0(7—7") = 2.6(7—7) = contlnuous spectrum

€
» Operators of momentum components x ( o0 +OO)

Notation: p'= (ps, py,p2) = (pr,02,03) P (F) = —ihlah(T)
Action of operator p; prop. to the derivative in x;: :
. — [ (Z) V'(Z)
This means |p = —ihV Def(p;) :=H
Hermiticity: [v1()"[~ihG2(2)]dF = [[—ihGE(B)]"o(@)dT + [11(F) ol @)

- — . - 0
Eigenstates e77/" € H satisfy —ih%e”"‘”/ h = p,e’P7/" = continuous spectrum
B pi € (—00, +00)
Since | = hik = 2’Th 1| with k= wavevector, 7= unit vector (flight direction),

A\p = 210 = h
B P P

we reproduce the old de Broglie relation for the wavelength:

<« Historical remark

1924: Louis de Broglie associates plane waves with moving particles

1926: Erwin Schrodinger applies operators within the wave mechanics

1927: Wolfgang Pauli introduces spin matrices

1930: Paul Dirac introduces explicit momentum and position operators
1940’s-60’s: Rigorous mathematical treatment in terms of the distribution theory
(L. Schwartz et al.) and rigged Hilbert spaces (I. Gelfand et al.)

B Hamiltonian of a structureless particle

The incorrigible enfants terribles—the coordinate and momentum operators—
give birth to a respected (although not always well-behaved) operator named
Hamiltonian. This is a crucial operator in quantum theory as it represents the
total energy of the system (here mostly a single nonrelativistic particle with no
internal structure) and generates its quantum evolution (see Sec. ba).

» Operator of total energy H = Hamiltonian of the system

Eigenequation || H|E) = E|E)|| stationary Schrédinger equation

Solutions of this equation yield measurable energies of the system.
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» Hamiltonian of free particle (no external field) with mass M

1 (ﬁ f;} = _n <V : V) operator of kinetic energy

_ 2 | o2
X A=g5+ 97 T oz Laplace operator

Eigenequation (A+ 22E)¢ (%) =0 Solutions L
~ for £ > 0 physical: ¢ o< e ¢ "o
for E <0 nonphysical: 1 oc e**7 ¢ 7{

Continuous spectrum F € [0, +00) infinitely degenerate (except E=0)

(hk)?
2N

» Hamiltonian of massive particle in scalar potential field

tk2=+(k?+k3+k2)

Eigenstates: |E;) = eihd = |7 = hk) with eigenvalues E = Ep =

o

Potential energy of the particle in an external field = V()

& 1 (A :> V(A) K2 AL V(@ Stationary Schrodinger eq.
- P+ VE) =-—oA+V(E 2 . )
2M —~~ 2M [—Q%A—FV(x)—E]w(x):O
Kinetic potential energy

» Bound and unbound states of particle in potential

Eigensolutions of the Schrodinger equation with potential may be of two types:
Bound states (correspond to motions of the particle in a bounded spatial
domain with lower potential energy) = discrete spectrum, normalizable wave-
function ¥ (7) € H = L*(R?)

Unbound states (correspond to unbounded particle motions across the whole
space) = continuous spectrum, non-normalizable wavefunction 1 (Z) € H

Consider potentials V(&) of two types: ”%//
(a) Potential wells of a general shape / I
Such potentials support the existence of //4
bound states of the particle inside the well l

Define values: sph.coord.

Vi = lim Min{V/( 79,2 )},

Viin = Min{V () }2

The spectrum of such f{ consists of two parts:
discrete part D(H) (bound states): E; € (Vinin, Vasymp)
continuous part C(H) (unbound states): E € (Visymp, +00)

Reasoning: In the asymptotic domain r — oo for (¥, ¢) = (g, @) corresponding
to the minimal V' (Z) the Schrodinger equation [—%A%—(Vasymp—E)] ¥ = 0 yields

2M (Vasymp—E)7T

asymptotic solutions ¥(r, ¥y, @) ~ e h , which are normalizable

for E' < Visymp and unnormalizable for £ > Vigmp.
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(b) Periodic potentials of a general shape (solids, crystals):

The limit Vigymp does not exist. The whole spectrum is continuous and has
a band structure (alternating zones of allowed and forbidden values of FE).
The eigenfunctions are not normalizable and all correspond to unbound states.
Note that proofs of these statements are not presented here (but see Sec. 4b).

» Nonanalytic potentials: conditions upon eigenfunctions

From the stationary Schrodinger equation it follows that:
<V oV aw) ’ continuous < <¢ g—w oy iy 3n+2¢>
: . . N TAEE

8_.1‘Z~7 . W . 8%,, s W, W continuous

r=

i
If V(Z)|z=g is discontinuous (the potential has a finite jump at ¥ = @), then

both 1, %‘ must be continuous as 5_¢(f)
Bi(@)le—a = T | = g (@)
. . e e | =3 = = Oz
well as the logarithmic derivative: W(x) | 9 Peg
Ir=a
Example: 1D potential well of a finite range = € [x1, 9]
We assume an arbitrary potential satisfying 4
=0 forz<xz & x> 29

V ’ -

(x){<0forx1§x§x2, N ¥ >

such that at both edges x1 and x5
V() has discontinuities (finite jumps)

Eigenfunctions for bound (£ < 0) and unbound (E > 0) states read as

T < I T < x < X9 To <X
E <0 A16+k$ +A»z€>kf Bl¢1($)E+B2¢2(l‘)E W—F 026—kx

E > 0| Ay cos(kx)+ Ay sin(kx) | By (x) g+ Bae(x) g | Cy cos(kx)+Cy sin(kx)

where {¢1(x)g, ¥o(z)p} are 2 independent eigensolutions inside the well,

k=2 Qé”E, and {A1, Ay, By, By, C1,Cy} are coefficients to be determined.

FE < 0: (2matching conditions at x1 )+ (2 match.conds.at x2)+(1 norm.condition)

= cannot be solved with 4 free parameters VE = discrete F spectrum

E > 0: (2matching conditions at 1)+ (2 matching conditions at )

= can be solved with 6 free parameters VE = continuous F spectrum

For infinite jump of V(Z)|z—z only ¥(Z)|z—z must be continuous

B Hamiltonian with a separable potential

We look now at the special case of potential that has a trivial separated form
V(%) = Vi(x1) + Va(z2) + Va(x3) | with each Vi(z), k = 1,2,3, being an arbi-
trary 1D potential in coordinate zj. There are just a few (two?) practical
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examples of such trivially separable potentials, but the analysis will help us to
understand a rather important technique: separation of variables in differential
equations in more general cases.
» Form of solution Hr

Let us solve 3 x 1D equation 2@\1 2 T Vk(xk)} Ui, (x) = By (x;)

The solution of the 3D problem can then be written as:

[H1+H2+H3] th ($1)¢12 (302)%3 (.%3) (E11+E +E13) ¢Zl (xl)"vblz (w2)¢13($3)

H %11213( ) E111213 1!)111213( )

1D eigenfunctions { vy, (z) = ‘wik>}ik:1 , = basis in Hilbert space Hy
{i, (1) Wiy ()i, (w3) = Wi, ) big)|big) }, _y, = basis in H =H1 @ Ha @ Hy
» Examples

1 1 = or zp<(a = g %
(a) Particle in a box | V(%) = %Ofoth:rfv(isgbk% h=1231 Yoy -
, 2 %
So V('CC) = ‘/(alsbl)(xl) + ‘/v(a27bz)<x2) + ‘/(a:57b:s)(x3)7 e
where each Vg, 4,)(21) is a 1D infinite square well ; 0 -
potential, for which the 1D problen12has solutions A 5 4 g
R R X
(2]1\1192 + Vak br) ) |7/)nk> - (\/ﬁLknkJ |¢nk>7 nk:L 2, 3, L~
Hk E,,

with eigenvectors |y, ) = ¥, (z)) o sin [”L” (x— ak)], where L, = by —ay,

The solution of the whole 3D problem reads as:

[Hl + H2 + H3] |¢711>|¢712>|¢713> = ;r]@ [(%)2 + (2_2)2 + (%)Qllwmﬂwnzﬂwnsz

IA{ ‘wn1n277,3> E”l"’:Z”B |wnln2n3>
Equilateral case: Ly =L = Eynn, — |En = 2(5{32 (n? + n3 +n3) ];' div
—_——
G 3
N 4 g
Various choices of (ny,ng, n3) yield the following values 14 6
of N and the corresponding degeneracy dimensions dy: Do

Consequence: The ground-state energy Egsocﬁ grows with volume V', which
implies “Schrodinger pressure” against any decrease of V' (increase of par-
ticle containment). This is closely related to the uncertainty relations (see
Sec.3a) and has crucial consequences (together with the Pauli principle) for
the collapse of dying stars to red giants, neutron stars or black holes (though
one would need relativistic equations for a qualitative analysis).

(b) Harmonic oscillator V(Z) = Ag(wlxl_f_wﬁz_‘_w%xg)
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The 1D problems have solutions

~ Muw? .
(et + 25832) o) = o ) o) v
Hi En,

with np = 0,1,2,3,... The eigenfunctions obtained
from the differential form of the Schrodinger equation

: 1 [ Mwy,
are |¢m€> = ¢nk (SEk) XX e—éi/Qan (Sk) g?lr:g(r:?féﬁg

where H,(¢) = 4 ¢~ 7%| ) are Hermite polynomials

_ ar
=4
The 3D case:
lHl +H2+H3l |¢n1 >|wn2>|¢n3>j:ﬁ [wl (nl "‘%) +CU2<712 +%) +ws (n3 "‘%)} lwnl >|¢n2>|wn3>j
H ‘w711n2n3> En:r;ng |wn1n2n,3>
[sotropic case: wr =w = Ep pn, — | En=hw(ni+ng+ng —|—g) N dx
i 3
Various choices of (ny,ng,n3) yield N =0,1,2,3,4,... and 25
the corresponding degeneracy dimensions dy = w: :

Alternative method of solution:
Hamiltonian of each 1D oscillator can be expressed as || Hj = hwk(bLbk +%)
"~

(78

7T Ty, i Dk 7 Ty, Dk
where b, = —1 b= +1
k \/2h/ka V2hMwy’ k \/Qh/ka V2hMuwy,

are ladder operators, whose algebraic properties (see Secs.3b & 14) ensure
that the operator n; has eigenvalues ny = 0,1,2,.... The operators IA)L and Bk,
respectively, are interpreted as creation and annihilation operators of the (kth)
oscillator excitaton quantum (so called phonon) and the operator n; has the
meaning of the number of these quanta. This procedure has a crucial impor-
tance for quantization of physical fields, such as the electromagnetic field, in
the relativistic formulation of the quantum theory (Sec. 14).

B Orbital angular momentum

Before we continue with other Hamiltonians and potentials in the 3D space,
it is useful to construct operators of angular momentum associated with the
orbital motions of any particle.

» Operators of orbital ang. momentum are analogous to classical expressions:

Tl

components || L; = €;j1 Dk & vector =T X p=—ih [f X V]

Hermiticity: LZT = gijkﬁzzﬁ} = €iPrTj = €ijkT;Pr = L; (since j # k)



» Expression in spherical coordinates

N7

Transformation of wavefunctions: ¢(z,y, z) — ¥(r, 9, ) Ml
Unit vectors in coordinate directions:

Ty sind cos p sinsing cosv Ty —

Ty = | cosvcose cosvsinp —sindd Ty ’O'\ Ny

Tl —sinp cos 0 i,

Ty sin¥ cos ¢ cosd cosp —sin g i,

Ty = | sindsing cosdsing cose iy

7, cos v —sinv 0 Ty ﬁ/

Orthogonal matrix = [ inverse = transpose |

/

Vector of orbital angular momentum expressed in spherical coordinates:

[ — —ihlrit. x (2 47,10 17 L1 0 i 71, =0
L = —ih [\rnn X <n7’ or + Lrr) + Mo rsing 899) Ty X9 =Ti,
F o 4 g iy X7 p=—Tly
L = —ih [7@ 8879 ﬁ’ﬂqirlm %] acts only on the angular part of ¥ (r, 9, ¢)

Y(r,9,0) = R(r) Q0, )

» Angular-momentum component along the z-axis

= we consider factorized wavefunctions

~
- A

= i, L = Lzz—ih%

n, = cosv 1, — sinv 1y

]?igenvalue equation allows for further factorization:
LZ Q(ﬁa gp) = ZZQ(ﬁa 90)
——
f@)g(e)

—ih%g(gﬁ) = [.g(p) with condition g(p+271) = g(¢)

with m = 0,41, 42, 43,... and|g,,(p) = ™
Additional condition I? < L? = (see below and in Sec. 3b)

From the symmetry argument, the same form of eigenvalues must be valid for

= [, =mh

any component of E, but as we will see in Sec.3b, the system cannot be in
a simultaneous eigenstate of all angular-momentum components.

» Squared orbital angular momentum

The size of the angular-momentum vector is determined by the square:

| N S S SN I P R S
L"=L-L|j=—h [n99819 nﬁ51n198g0:| |:nW8§ nﬁsinﬂ&p] o
- B2y 0.z 90 _ 5 0 > 1 0 _ = 1 0 z 0 = 1 0 = 1 0
= =7 |Tip55 - Tipgs — Tpgg MWandae ~ "Wimda,  Meas T W o, nﬁsmﬂ@}
w—/ ~ v ~ —~ J N\ ~ J
92 0 il 1
09? T 19% sin? 9 0p?
— _p2| 0% 0 19 72 _ _p2|_1L 0 9 19
= —h |:8192—|—C0t19819 —I—szﬁaw} = ||L* = —h {sinﬁaﬁSlnﬁ8ﬂ+51n2ﬁ8<p2]
N———

19 90
sind 09 V99
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» Eigenequation IAJQQAm(b‘, ©) = N (9, 0)
solved with a factorized function — Qy, (9, ) = fan () ™
. m2 2 subst. m2
(ot sin = 3 | Fan(9) =0 22 [ (1) fe— 4| fon(6) =

The solution known in the form (for derivation see elsewhere):

m dl+m

Fran(€) = Pin(€) oc (1 —€2)% qer (8 — 1) associated Legendre polynomial

[=0,1,2...
: 2 2 : ) Ly
Eigenvalues [|A° = [(I + 1)h° with { m = 1, (—1+1)...0. .. (+I—1), +
Eigenfunctions
Qo (Y, ) = Nim, Pim(cos®d) €™ = Y;,,(9, )|l spherical harmonics
normalization
Relation between [ and m quantum numbers
is represented by the following diagram: T
A
Note: The existence of simultaneous IS
eigenstates of L? and L. is not |
2

accidental. It follows from the fact
that both operators commute, see

Sec. 3b, where also the selection S lo S
rules for m and [ are derived. O+ *2 45 i

B Hamiltonian with isotropic (spherically symmetric) potential

Equipped with the angular momentum operators, we can return to the Hamil-
tonian of a single structureless nonrelativistic particle moving in a spherically
symmetric potential field |V (Z) = V/(r)| This is a rather important situation in
general since nature likes rotational invariance. Besides the general discussion
we will briefly report three well known examples, including the famous solution
of the hydrogen atom, which was at the very beginning of quantum theory.

» Hamiltonian in spherical coordinates

T K2 _ 1 —h? 8 fEQ
H = _2A1A+V( ) — oM L2 87 + 2%11179679 Slnﬁ@l? + 2 sin 1984;7 } +V( )

b7 =272
This can be decomposed into three parts:
H= LAQ g V(r) with ||p, = —ifhi (2 + 1)
o 2M 2 M2 ~—— br = or r
\\’—/ potential dial t
_radial _orbital energy radial momentum
kin.energy kin.energy
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The radial momentum operator has spherical waves as its eigenfunctions (see
below) and in this sense it differs from any Cartesian component of momentum
(with planar waves as eigenfunctions). The decomposition of the kitetic energy
into the radial and angular (orbital) components has a clear physical meaning.

» Separation of variables

The isotropic form of the Hamiltonian Ynim (1,9, ) = Rui(r) Yim (9, )
enables one to separate radial and angular U (1)
variables through the wavefunction ansatz: "

L?Yin (9, ) = W11 + 1)Yin (9, )

The equation for R, reads: [— 2@5[ Ldp2d h;lﬁjl) + V(r)|Ru(r) = EyRy(r)

R: d®  RA(+1
—5oE + \2](\4——::2) + V(T), un(r) = Epyuy(r)|| radial Schrédinger eq.
Var (1)

The centrifugal term (the first term in the effective potential Ve(f?) describes
rotational kinetic energy of the particle with orbital q. number [ at distance r.

» Unbound-state asymptotics (eigenfunctions of radial momentum)

For V(r) == 0 we write down an E > 0 asymptotic radial solution for [ = 0:

spherical wave (for r > 0): B
. iprr/h iprr/h R T) X

r Ty
» Bound state near the origin

= plane wave of u(r)

r

From the normalization we know that wu(r)r? 2% 0 and we further assume
that V (r)u(r)r? %0 (the potential is not too crazy for » — 0). Then the

approximate r — 0 equation jrg WH) (r) oc
0
k(k_l) = l(l+1) = k= {fer(%lonphysical) = Unl(T)erO ~ TlJrl = > 0
Why the k& = —I solution is nonphysical? Because for [ > 0 it is not normaliz-

able, while for [ = 0 the action of A on R(r) oc r~* would yield a singularity
o d(r), which is not supposed to be involved in V().

o —Vp<0 for r<R
V(T) _ 0 for r>R

» Example: (a) finite spherical square well

Radial equation: [d—2 oy 2]\1(E7V)}Unl(7”) =0 with V' = { 7(‘)/0

dr? r2 h?

Discrete spectrum E,, € (—Vj,0), continuous spectrum E € (0, +00)

9M (E+ Vo) k:W{>O for £ >0 r—>pz{m forr < R

= h h =ix for £ <0 kr forr >R
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The eigenfunctions in a general case can expressed through Bessel & Neu-

mann functions, or alternatively through Hankel functions:

Bessel Ji(p) <pso '

Neumann — n(p) ,-0 p

, Hankel i (p) = Jilp) +inu(p) oro0
functions hl—(p) = 71(p) —ini(p) oo "

Normalizable bound states (£ < 0): o) { Aji(kr) for r < R
the r = 0 and » — oo conditions ni\T") = T
restrict the solution to the form B Reh, (izer) forr >R
Constants A, B and energy levels E,,; are obtained { Li(kR)  LReh{V(ixR) }

—(I+1)

cilp—1m/2)

i
*z(pp Im/2)

from numerical solution of a pair of equations Jz(fiR) - Reh+ i%R)

K2+ 2 2‘}

» Example: (b) isotropic harmonic oscillator (revisited) |V (r) = MT°’27'2

From the previous treatment we know: Ex = hw(N + %), where N = nj+natng

The solution in spherical coordinates: | R,;(§) o {lLlH/Q(fQ) with £ = %r

Lé(p) = p‘aepdd—pi,;(p”a ”) generalized Laguerre polynomial

Relation between quantum numbers from both solutions: | N+1 =2n, + 1+ 1

with n, =0,1,2,... radial quantum number |1.23..
= number of nodes of R, (r)
» Example: (c) attractive Coulomb field V(r) = B
This also describes electron in the hydrogen atom: K = 4:50 :
Discrete spectrum F£,, < 0, continuous spectrum £ > 0
Determination of the discrete spectrum: Using p= SAQE‘T, A= %II(EQI we look

for solutions of the radial equation [j—;—l(lp%l)%—%}u(p)zo with the required
boundary conditions in the form u(p)=p""te™/2p(p), where p(p)=> 7", crp"
k A

with some coefficients c¢;. The resulting condition ¢, = Cr:

Eri2) (k1) 105 1)
(= cx ~ 4 for large k = exponential growth of p(p) for large p) yields a
normalizable solution iff ¢, =0 for k > kya. The value ky.x =n,., which is the

degree of the polynomial p(p), i.e., the ’///
number of nodes of u(p), is given by i“
ny+l+1-=A=0. Son,+l+1=7% 1] Voc—l
MK? 1 n o=n,+1+1 "
= |B, = ———
2R n? =1,2,3,..

with the principal quantum number n deri-
ved from the radial and orbital quantum
numbers n,=0,1,2,... and [=0,1,2, ...



23

n—1
Degeneracy dimension of level n is given by { ljfb):l_l("jrll) } =d, =Y (201+1) =n?
’ 1=0

Ru(p) o ple P22 (p)|  with L(p) = dd'—;_,,-epdd—’;i(pie_p)

Hydrogen atom: associated Laguerre polynomial

Defining the Compton wavelength Ac forelectronand | Xo = Mic = 386 fm

introducing the dimensionless fine-structure constant | o = : 62h = %
TEGNC

a = V(Xq)/Mc?, we express the hydrogen energies as -

E, = —%M02a2i (the ground state has F; =—13.6 V). The above dimension-

n2

2
nap

Ac

(0%

less length reads p =

r, where |ag = = 0.053 nm is the Bohr radius.

» Graphical expression of oscillator and hydrogen selection rules for quantum
numbers

N e FO
~ - <X =

A
3
2
1
Q

-

« Historical remark

1913-24: Development of atomic physics in terms of “old quantum mechanics”
1926: Erwin Schrodinger presents 4 papers introducing the wavefunction and ex-
plaining the energy quantization in terms of an eigenvalue problem, with solutions
for Coulomb and harmonic potentials obtained via the orbital angular momentum
1928-30: Application to molecules and solids; L.Pauling explains chemical bond,
P.M. Morse describes vibrations of diatomic molecules (Morse potential), F. Bloch
and L. Brillouin analyze eigenstates in periodic potentials

1929: First numerical algorithm for solving the eigenvalue problem

1932-49: Early development of quantum theory of atomic nuclei: two-nucleon po-
tential (H. Yukawa), shell model (D.Ivanenko, M. Goeppert-Mayer, J.H.D. Jensen)

B Hamiltonian of a spin—% particle in static electromagnetic field

We now look at the Hamiltonian of an structureless, electron-like particle mov-
ing in general (but static) electric and magnetic fields. The interaction now in-
cludes not only the electric charge of the particle, but also its magnetic dipole
moment. This is a very important case, in atomic physics and beyond. We
will also discuss the invariance of the Schrodinger equation under the gauge
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transformation—the concept that in a generalized form plays an essential role
in the present theory of all particle interactions.

» We assume a charged particle with a nonzero magnetic dipole moment and all
other static electromagnetic moments equal zero. In analogy with the classical
expression, the quantum Hamiltonian reads as:

N - a2 R — _ . || ¢ = particle charge
H= ﬁ [ﬁ_ qA(f)] +qV (%) — ji- B(Z) [i = particle magnetic dipole moment
V(#) = scalar potential

B(#) = Vx A(Z) = magnetic induction, A(#) = vector potential
E(Z) = —VV(&)— 2 A(Z) = electric intensity of a stationary elmg. field

0

» Magnetic dipole moment operator ,[I is proportional to the operator
of the particle spin. We suppose particles with spin %, specifically electrons,

protons and neutrons:
g=2 electron

& 2 R = gyromagnetic ratio<{ ¢=5.5856 proton
L=gp (18) =g % (16) =8y & {9—3 8263 neutron

3 2
__ eh|_f Boh M,
1= 517 ={ Baobr 1 magneton for M = { M, }

The ratio g = % is dimensionless, its value for a structureless Spin—§ parti-
1

cle being predicted by the relativistic Dirac theory to g = 2. The proton and
neutron values of g reflect the internal quark structure. Small quantum-field

corrections exist also for structureless particles like electrons or muons.

1>

» Evaluation of the kinetic term (mind that pand A(Z)= A do not commute):
[p—qA} = p? —q[p A—I—A p}+q2A2 h2A+th[(§ )+2ff§} +q2A?
—h2A

+th[V-A+A-V]

» Pauli equation (the stationary version)

Eigenequation Htp = F1p with spinor (&) = <ng§;> yields

ihg Niq B. B,—iB,

i (V- A) o+ FHA- Vo) + gV (.25, %)

=0in Lorentz calibration e A2 ah 1 /—; — B
+orr A — 9373 (0 B)y = Ey

» Special case: homogeneous magnetic field
B(#) = (0,0, B) can be obtained from A(Z) = B(—y, +x,0) satisfying VA=

The second term of the above eqtiation, ’f?(A V¢) = gﬁ th { yax + xaﬁ} 1,b
corresponds to the energy F'=—B - fioy, of the orbital h N

_ N
2M

Lz

magnetic dipole with moment ﬁorb 2qM hL in mag. field B.
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The Pauli equation reads as:

h? B (71 Q on 2 2 _
~BA tqv —gm(LergSZ)/ + LB 24y ¢ = B

g electrostat. . . 1 2
tralﬁ%ﬁggnal energy mag. moment interaction 2 Muwi
energy =Zeeman splitting h ~~ Z

kinetic energy of precession ~ 0

The last expression (arising from the oc A2 term) represents the kinetic energy
of the precesional motion of the magnetic dipole in the field B with the Larmor
frequency wy, = %. For electron in hydrogen wy, < womita for B < 10° T. So
this term can be neglected unless the field is extremely large.

» Invariance under gauge transformations

The effect of classical electromagnetic field is invariant under the gauge transfor-

mations generated by f(Z, t): A A=A-Vf| VeV =V+ 2f
NG

These transformations do not change E and B , but =0 in stac. case

they do change the Pauli equation! Does quantum physics depend on A instead
of the “physical fields” E and B? The complete answer is not quite straightfor-
ward, but for the time being it is enough to show that the gauge transformation
of A in the Pauli equation is always compensated by a local phase transforma-
tion of the wavefunction. This means that the gauge transformation does not
alter energies and spatial probability
densities corresponding to individual Y (T) — YP'(T) = ¢(f)e_i%f (@)
eigenstates of the Hamiltonian.
Direct verification: (—ihV —gA")%p’ = (—ihﬁ—qff’)(—ihﬁ—qﬁf’)e_i%ftb =
(—ih¥ — gAY~ b (—ih¥ — g A)p = e~ b (—ih¥ — g A)2ep

Therefore: Hap = Ep = HY = Ey' = [T, m,)|2 = [/ (7, m,) |2
However, as discussed in Sec. 8, not all mystery is gone.

<« Historical remark

1927: Wolfgang Pauli writes down the spinor equation for particle in mag.field
1928: Hermann Weyl shows that gauge transformations in QM are related to local
phase changes of the wavefunction

B Hamiltonians of simple coupled systems
At last, we give a few elementary examples of many-body Hamiltonians. Please
note that the list of diverse important Hamiltonians is practically endless.
» Many-electron atom
Atom with Z electrons (coordinates () and Laplacians A®, i =1,..., Z) and
a point-like nucleus with charge Ze. Nonrelativistic Hamiltonian describing
only electric effects (neglecting effects of the magnetic moments):
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Y Ze? & 2 1< 1
H= oM Lz_;  dreg L_Zl \fl 47T6() 2 12—1 |20 —
i#]
The solution of H|¥) = E|T) is an atisymmetrized many-body wavefunction
x PEZ)\I/(f(l),m(l), 29 m9)y e ’H(_Z), with m) denoting electron spin

projections (arbitrary for the present spin-independent H ). However, because
of an exponential increase of the dimension of a suitably truncated Hilbert
space, the numerical solution is practically impossible even for medium Z and
efficient approximation methods are needed.

» Interacting spin (qubit) systems: Ising model
Consider a system composed of N qubits (Spm—— particles with frozen spatial
degrees of freedom, i = 1,..., V). The Hamiltonian can read as:

. e N A0 e;f@--@f@&ﬁ”@f@m@f
H:§Z >0 el ={

=1 i=1 jeS§;

—£ ¥ Ie-elesolo-eles! olo-ol
(i)

where ¢ sets the single-qubit energies (==45) o .
and k quantifies two-qubit interactions. It is
assumed that the ¢th qubit interacts with n
qubits contained in a set S;. We can think

of the qubits as arranged to a lattice with

S; coinciding with a certain neighborhood 1 @
of qubit ¢ (for a finite lattice we may consider
periodic boundary conditions). This Hamil- ¢ ¢ o * ¢

tonian may describe a lattice of interacting magnetic dipoles in an external
magnetic field or a system of interacting qubits. For some particular arrange-
ments, an analytic solution is known, but in majority of cases a numerical
diagonalization of H in the d = 2V Hilbert space is necessary. The model is
known for its phase transitions.

» Qubits interacting with an oscillator: Rabi and Dicke models
Consider a system composed of (1) 1D harmonic oscillator with the single-
quantum energy hw =eq, descrlbed by dimensionless coordinate & momentum

A

operators x = \/W & p=—7—— \/W (it can be a quantized one-mode field), and
1w

(2) set of N qubits (two-level atoms, 3-spins etc.). A possible Hamiltonian is:

&l

»
iM-

N
~ R R £ (i R
Hzgl(p2+x2)—|—§2 ;ag)——

22 .2 ~ ~ A
_ {ElpJer@I-‘rEzI@Sz

v

The model is solved numerically in a truncated d = oo Hilbert space. For
N — oo (this requires the \/LN scaling of the interaction term) the ground state
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shows a nonanalytic change from “normal” to “superradiant” phase at some
critical coupling k. The N =1 case is sometimes called the Rabi model.

<« Historical remark

1925: E. Ising solves the 1D spin model with nearest-neighbor interactions

1944: L. Onsager solves of the 2D square-lattice spin model with e=0

1954: R. Dicke presents his schematic model of coherent atom-field interaction
since 2010: experimental realizations of the Dicke model and its quantum effects

3a.COMPATIBLE AND INCOMPATIBLE OBSERVABLES

Operators, in contrast to ordinary numbers and functions used in classical physics,
have one revolutionary property: they may not be commuting. The product AB
does not have to be the same operator as BA. This property turns out to be of
essential importance for physics. For instance, we will see that it is responsible for
the key feature of the quantum world: uncertainty.
We introduce the commutator of operators,
[A,B|= AB-BA| - {2, 14084

and rise the relative classification of observables:
(1) compatible observables A, B with [4, B] =0,
(2) incompatible observables A, B with [A, B] # 0.

Komu tator,
tomu kator !

B Compatible observables

We first explore the case when AB = BA. We show that such commuting
operators A and B can be diagonalized simultaneously, i.e., can be associated
with a common set of eigenvectors. A maximal set of commuting operators
selects a unique basis in the Hilbert space and in this way creates a particular
representation of all physical state vectors and observables—operators.

> [121, B] =0 = eigenspaces of B are invariant under the action of A and
vice versa:  Bly) =bl¢) = B(AlY)) = ABlY) =b(Al|Y)) = Al|Y)is
eigenvector of B with eigenvalue b |¢) ")

» Commuting operators have a complete set of common eigenvectors
Intuitively, this is obvious from the invariance of the eigenspaces H, of A under
the action of B. The subspace H, can therefore be considered as the Hilbert
space where operator B finds eigenvectors [b).

A more rigorous proof: Let {|al(k))}”C and {|b§-l))}j7l be orthonormal eigenbases
of A and B , respectively (with ,7 enumerating the respective eigenvalues a;
and b;, and k, j the basis vectors in degeneracy subspaces)
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Unique expansion: ]agk)) = Z az(fl)\bgl)> = ]1/)§?>, where: B\@fo)) :bj|¢g-€)>
J o J

, ~(k) R

Eigenstate condition reads as: [45) wi{' ) where: B|¢ > bjhpi(j]?))
(A—ail)|a”) = 0= > (A-a, Dy

]g/;z(jk)> with different j orthogonal 2 the condition satisfied iff W;(k)> =0Vj

(from invariance of H;,j under A)

= WL ’ > is a simultaneous elgenvector of A and B (elgenvalues a; and b;)

The same procedure repeated V |a £ ) = the resulting set {|1/J )}Z ik of snnulta—
neous eigenvectors is complete since it allows one to expand the basis {|a >}Z k
= There exists a simultaneous orthonormal

cigenbasis {|a;b;*)}; ;1 of both A and B, ﬁ

where *) enumerates the states with the same

combination of eigenvalues a; and b;. In this
sense, the observables A and B are compatible.

» |[AB]=0 & [B,B]=0 Vij b’

That means: Operators commute iff all their eigenspace projectors commute.

< follows from spectral decompositions: A = Z alfj and B = Z bjpb].

= follows from P, = 3> 3 |a;by ™) (a;by*)], Pb -2 z |aib; ><ai,b.<l>|
S%i J GS k 7 GS b
{Sfj } = the set of eigenvalues { % /' } contained in the eigenspace of {}' }
Po Py, = 32 3 Jaiby ™) {aib, k)!az"b ) (aib; V| = 2 jaib; ) {aib; | = By, P,
ikl
8100100

K J]

» Complete set of commuting operators (of compatible observables)

The above conclusions concerning 2 commuting operators can be generalized
to an arbitrary number n of mutually commuting operators:

n=3: operators A, B, C satisfying [A, B]=[A, C]=|[B, ] =0 = 3 simultancous

orthonormal eigenbasis {\aibjck(l»}i,j,k’l such that g \aibjck(l)> = g] } |aibjc;€(l))
...and analogously for n >3 L C “

A set of mutually commuting operators /1, B , C...is complete if eigenvalues
a;, bj, cg... uniquely determine a single eigenvector |a;b;c...) (no ) needed)
—_—

Consider X such that [X, A] = [X,B] = [X,(] = --- = 0. Then we know that
Xlaibjcy...) = xla;bjcy...) and the eigenvalue x is determined by a;, b;, cx, ...

= 2= f(a,b,c,...) = X =3 flaibj,cr)Pupyer.. = |X =f(AB,C,..)

ai,bj,ck...
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= alternative definition of the complete set: Any X commuting with all op-
erators from a complete set is a function of these operators.

The number n of operators in a complete set is usually identified with the num-
ber f of quantum degrees of freedom. Examples: Spinless and structureless
particle in 3D has f = 3 = we need 3 commuting operators, e.g. {Z1, &2, 3}, to
uniquely determine a basis in H. Structureless particle with spin % has f =4,
the complete set being, e.g., {1, T2, T3, Sz} N = 2 structureless particles with
spin % have f =8, and so on. Note: the number f is fixed only within a cer-
tain algebra of pre-selected operators (otherwise any basis in H can always be
considered as the eigenbasis of a single nondegenerate operator).

» Combining complete sets in a product spaces
Consider a composite system with Hilbert space H = Hi ® Hs
{Ah By, (.. . } = complete set in H; {flg, By, Cs ... } = complete set in Hs

M1 ng

= {{henmen@en. ) {iemiem.iet). }}

[

TV
ni+nsg

: S o = complete set in H = H1 ® Ho
(X1 ®1,1®Y]=0|VXy,Ys (the same eigenvalues as the original sets)

= the total number of degrees of freedom: f = fi; + fo

B Incompatible observables

We turn to the case AB #* BA. Such observables show mutual incompatibility:
they both cannot simultaneously take exact values in any state. An increasing
precision of the determination of observable A reduces the precision for observ-
able B and vice versa. This is the celebrated quantum uncertainty relation.

» |I[A, B] = iC|| + 0 with for A=Al and B= B!

» Uncertainty relation

A2 (AN2] (B2, —(B)2] > L (| Clp)2 The right-hand side, which is
\K >wv< >w]/ \K >wv< >w]/ — M the lower bound of the product
(42)y (B2)w )

of dispersions, depends on |¢).

Proof:
(A%~ (A22] = (WI[A— () 20) = (le)  with ) = [A—(4),]] )
(B*)y—(B)i] = W[[B—(B)yI]*l¥) = (x|x) with [x) —(B)y][¥)

[
[ 2
(AN (B = (lod(xIx) = (el)” = |(WI[A—(A)I][B—(B)yI]lv)| =

~
~

A—
B—
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(OIABI0) ~ (A)o 8| = 1 425410)-+ (0] 2554 )~ ) B0y
~ 2 i A
> HIC1)? = [3(C)] -

This means that non-commuting operators /1, B
cannot be diagonalized simultaneously. The more

precisely we know one of the observables, the less
precisely we can know the other.

B Analogy with Poisson brackets

Although incompatible observables (with non-commuting operators) are gen-
uinely quantum invention, there exists a surprising parallel of this behavior in
classical mechanics. It is based on algebraic properties of Poisson brackets. The
following paragraph may alter our perspective on quantum physics: Perhaps it
is not as alien as it seemed to be, perhaps it results from a specific generaliza-
tion of the mathematics involved already in the classical description. We will
partially return to these issues in Sec. 8.

» Some properties of commutators

For arbitrary operators A,E,C’, fl/, ... and complex constants a,b,c,d,... we
can easily prove the following relations:

[AA",B|=A]A", B|+[A,B] A’
[A,BB|=B[A,B'|+[A,B|B

[aA+a’ A’ Bl=a[A,B]+d'[A",B] s .
(b) Sums AbBAY B]—b{A Bl+¥ A5 (d) Jacobiidentity

(a) Basic [4,B]=—[B,A] [daf]=0  (c)Products

[A,[B,CY)+[B,[C, Al +]C,[A,B]]=0

» Poisson bracket for classical observables A and B in f degrees of freedom:
We have A = A(py...ps, q1...qf) and B = B(p;...ps, ¢1...q5) and define

f
{A,B} = Z <%3_B _ 8_B%> Note: alternative definition with p; <+¢; would
— udpi 9u0pi )| ield the opposite sign of the Poisson bracket

Properties of Poisson brackets are analogous to those of commutators:

' _ ale (AN BY=A{A' B} +{A,B} A’
(a) BaSIC {A’B} {B’A}’ {A’ } 0 (C) PrOdUCtS {ABB,}:B{A,BI}+{A,B}B/

(b) Sums f{j’é;ﬁf%:g{{jg}}:;&ﬁ}} (d) Jacobi ident. {4,{B.CH+{B{C,A}}-+{C,{4,B}}1=0
» Geometrical meaning of Poisson bracket

—(_94 _0A L 04 94 (9B 9B 9B 9B\  ordinary scalar
{A,B}_( ooy apfa+aql7~-+aqf> (aql,...aqf,apl,...apf> y

.~ ~ product of two

2 f-dim vectors

J2y VoA vector L to gradient VB gradient in the phase space

Joy = <+01f _gf> is the symplectic matriz in dim. 2f (I; = unit matrix in dim. f)
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{A, AV =0 < (Jo;VasA) L (VasA)
—_— =

one of the tangent normal vector
vectorsto A=const to A=const

B=const

{A, B}=0 < (JoyVaysA) L (VasB)
—_— =

atangent vector normal vector
to A=const to B=const

{A,B}#£0 & (IyVayA) £ (VarB)

{A,B} =0 = hypersurfaces A=const & B=const locally coincide

= {A,B} #0 = hypersurfaces A=const & B=const locally deviate

The geometric view of Poisson brackets has consequences for classical statisti-
cal physics, when one deals with statistical ensembles of systems in different
classical states, i.e., delocalized probability distributions in the phase space
(q1---qf,p1--.pf) = (q p) instead of single points in that space. In such a statis-
tical ensemble, any physical quantity A does not in general take a single value a,
but shows a certain statistical distribution of possible a’s. Assume a statistical
ensemble with the phase-space probability distribution p(q, p) spread to various
directions around a point (g, p,) in the phase space. From the above geomet-
rical considerations it follows that, in this ensemble, the quantities A and B
cannot both take sharp values if {A, B} #0 at the point (g, py). This can be
considered as a classical analog of quantum uncertainty, though no relations
for the lower bounds of the uncertainty exist in the classical case.

» Dirac quantization assumption

The importance of Poisson brackets for quantum theory is codified by this
essential postulate: Consider arbitrary observables A, B and C' expressed by
classical phase-space functions A(q,p), B(q,p) and C(q,p) and by quantum
operators A, B and C respectively. These entities must satisfy the following
relation between the Poisson brackets and the corresponding commutators:

{A,B} =C (classical) = [A,B]=ihC (quantum)
Note that the <= implication does not in general hold as some quantum systems
(e.g., spin—— particles) have no classical counterparts.
B Equivalent representations of quantum mechanics

A fascinating feature of physical description is that it can be cast in infinitely
many equivalent ways. In other words, there exists a multitude of mathematical
representations yielding the same observable output. In classical mechanics,
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this feature is anchored in the concept of canonical transformations. In quantum
mechanics, the equivalent descriptions follow from the use of various Hilbert-
space bases, which may be generated by alternative complete sets of observables.

» Discrete representations
Any complete set of commuting operators {fl E .} with discrete spectra
generates a countable orthonormal basis {|i)}%*, of 7-[

State vectors are then represented by C™ “columns” Z i) |
and operators by dy X dy complex matrices ( 17) =
(both finite & infinite cases included):

Py
)= Bl = 5 |l = (w)
") =Al) Ay
> 1) ) = zzwﬁmm R (zg):(ﬁ;ﬁgz )(ﬁ)
Z ’ _2A13¢7 : : 5

» Continuous representatlons

For a complete set {121, B,... } with continuous spectra there exists a continuous
“orthonormal basis” {|z)},ep € H (with D being some relevant domain of

generally a multidimensional variable z). [ |y (e|de = jﬁ
State vectors are then represented by wavefunctions veb )
and operators by kernels of integral transformations: (z|2') = 6(zx—2')
=[ |x)(z|¥) do=[ {x|®)) |x) dz = ||¥) =¥(=)
/ = A ,I (T A(I,I/) .T,
|V =Alp) ¢'(2) U(x) P(a')

A —~ =
Jdz |z)(z|) = [dx [da' |z) (x| Al2") {z'[¢)
= |l = / Al syl !

» Mixed representations

A complete set {A, B , ...+ with mixed discrete and continuous spectra gener-
ates a combined dis.-cont. “orthonormal basis” S [ 62, ol do = I
{l7,2)} iep, € H (with D;, D, some domains). 2 i, x) (1, | dr = Iz

z€D, . N s o
State vectors are represented (finite/infinite) (i, 2|, 2") = diwd(a — ')

“columns” of wavefunction components and operators

by kernes of matrix—integral transformations: ()
|¢> < () )

=Y [dxli,z) (i x|¢> =
1€D; D,
wl(ﬂﬂ)
A b (x Aij(w,a’) (!
") =Aly) G ()

Zfda:h x)(i a:|¢’ ZZfdmfdm’h o) (i, x| Alj, ') (G, ')
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1 () Aq(z,a") Arp(z,a’) .. Pa(a')
= ¥5(2) :/ Az (2,2") Azo(2,2") Va(2') | da!
« Historical remark

1925-26: M. Born, W. Heisenberg, P. Jordan write commutation relations between
various observables (matrix mechanics) and introduce the concept of compatibility
1927: P. Jordan, P. Dirac attempt to introduce canonical transformations to QM
1927: John von Neumann formulates the concept of complete sets of observables
and associates “canonical transformations” with different choices of this set

1927: Werner Heisenberg writes down the AxzAp uncertainty relation

1928: E.H. Kennard and H. Weyl derive the uncertainty relation from the commu-
tator, generalization V incompatible observables by H.P. Robertson in 1929

1930: P. Dirac relates commutators to Poisson brackets (= canonical quantization)

3b. EXAMPLES OF OBSERVABLE SETS

We now apply the results of the previous section to the single-particle operators in-
troduced in Sec. 2.b. In particular, the algebra of coordinate and momentum opera-
tors and that of angular momentum operators will be investigated. Representations
of the single-particle Hilbert space will be built using these operators.

B Coordinate & momentum

Coordinate and momentum operators satisfy the commonly known commuta-
tion relation—a twin of the canonical Poisson bracket of classical mechanics. It
leads to the familiar form of the uncertainty relation but also to the problems
of 7 and ]AT in the ordinary Hilbert space (see Sec.2.a). The 7 & ]% operators
allow one to assemble a plethora of composite operators, including the oscillator
ladder operators whose action depends on some specific commutation relations.

» Canonical commutation relations

From the known form of the coordinate & momentum operators we immediately
get the corresponding commutators:

consistent with Poisson brackets: {zi,z;} ={pi,p;} =0, {zi,pj}=06i;
These relations define general canonically conjugate quantities
Note: The same commutation relations can also be satisfied with:

T, = pi = —ih% + f(2) where f(Z) is any differentiable function.
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» Heisenberg uncertainty relation

From the general form <<A2>>w<<32>>1/) > 1<C’)12p we
obtain: (7)), (p2)y > 1 (0| Aoyl [0)* =163

(Az;)? (Ap;)? C
Hence for any state |¢)) we can write: ||Az;Ap; > 5

» Some general consequences
(a) Operators &; and p; cannot be represented in H of a finite dimension d.

To show this, we introduce the trace of an operator:

TA= 3" (@ldlo) ZZ (@ | Ala) = diay

arbltrary basis i

The independence on the choice of basis: Okj
— . .
Z<¢’|A|¢>/> = Z<¢ |67) (05 Al o) (Dr]¢)) = X]; (Drl1105) (@il Alor) = 22(05]Al95)
1,7,k 75 J

Another property:

Te(AB) = Y (il ABJoi)=3 (il Al¢;) (0] Bloi)=2_ (5| Bloi) (0| Al ;) = Tr(BA)
1 1,] )

For coordinate and momentum operators represented in a finite dimension d,

this relation yields a contradiction: Tr[z;, p;| = 0 # Tr(ihl,) = ihd

However, there exist various d=o0 discrete representations of  and p, e.g., the

one obtained in the basis of 1D harmonic oscillator:

0v10 0 0 .. 0 —iv1I 0 0 0
VI 0 V2 0 0 W1 0 —iv2 0 0
F=4/L] 0ov20 V3 0 p= % 0 W2 0 —iv3 0

Me N g 0 V3o va 0 0 W3 0 —ivi
(b) Eigenvectors of #; and p; are out of H (more precisely: # within H).

Assume coordinate eigenstate |x;) € H satisfying (x;|z;) =1. From the r.h.s. of
the commutation relation we get: (x;|[Z;, pi]|x;) = ih. But we simultaneously
have (x;|[Z;, pi]|x:) = xi(xi|pi| i) — 2 (x| pi|z;) = 0, which is a contradiction.

» Oscillator and general ladder operators

We return to the 1D harmonic oscillator: H = 2Mp + M“’ Me”32 Using dimen-
. . A 1 A _
sionless coordinate x = %/Mwa: and momentum p = %A — —=——p with the commu

A A

tation relation [&,p] = 4] we express the dimensionless Hamiltonian H = %H ;

i
2

H=x*+p*= (x —ip) (X +ip) —i (Xp — p%) = 13“3—!—%
—_—— —

bt b [%,p]
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The b and b' operators satisfy the mutual commutation relation |[b,b] = I
We also get: | [H,b7] = +b7, [H,0] = —b.

Let |n) be an eigenstate of H with eigenvalue |E, = n+% , where n is

yet an unknown eigenvalue of b'b. So we have H|n) = E,|n) and:

Enq1
A oA 44 24 —N— . N
H bT| ) = (b H+of )|n) = (E,+1) bT|n) bT|n> = cT(n)|n—|—1>
BO (n) = (b B—b ) [n) = (Bu—1) b b Iny — N
In) = ( ) In) = ( ) b |n) | b|n) =c/(n)ln—1)
En-1 with ¢4(n), ¢, (n) € R some
1 normalization constants

——~
cr(n)? (n+1|n+1) = (n|bbf|n) = (n|plb+1|n) =n+1 = cr(n)=+vn+1
ci(n)? (n—1n—1)= (n|btb|n) =n = c(n)=+/n

1(n)? J )=(n|b'bln) = ((n)=vn
Since we know that E, > 0, there must exist a value n,;, such that I;|nmm) =0
and from the above ¢| we get i = 0. So the 1D oscillator spectrum E,, = n+%
is given by values n =0,1,2,3,...

The harmonic oscillator ladder operators bt and b represent a special case of
more general ladder (shift) operators: R

A7l — all
If A is a Hermitian operator and Tx satisfies: [A7 A] - +ATA A EAE%

then: N R A, TA = _ATA without loss

Aja) = ala) = { A(T}la)) = (a+2)(T}]a)) s oheeneraliy
A(Tala)) = (a=2)(Tala) A

So the Hermitian conjugate operator 7\ and Tx shift eigenstates of A by values

+A and —A, respectively:

Thla)=ci(a)la+A) with cr(a)=1/(a|TaAT]|a)
Tala)=cy(a)la—A) with ¢ (a)=1/{(a|TiTxla)

» Canonical & mechanical momentum of particle in elmg. field
Classical Hamiltonian H = 51 [F—qA(Z))+¢V(Z) with ]5' = canonical momentum
Mechanical momentum 7 defined through velocity: & = %Ff = o [P — qA(Z)]

a,_/
In QM, the operators of canonical & mechanical momenta 7

can be expressed as: & |7 = —ihV — q/f(f)‘

While the canonical momenta have canonical commutation relations, the com-
mutators of mechanical momenta depend on the magnetic field:

A oA A A ~ 7 T A T a . 0A; OA:
[mﬂj] = [pnpj] —q| i,Aj] - Q[Aiapj] + q2 [AzwAj] = thg (mij - ax?)
5 =

52]kBk
[7t;, Tj] = ihq €, Br(Z) || = incompatible velocity components for B0
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B Coordinate & momentum representations

Although coordinate and momentum operators are not entirely free of troubles
(the corresponding eigenstates dwelling somewhere outside the ordinary Hilbert
space), the most familiar representations of quantum mechanics are based on
these operators. For the sake of simplicity, we restrict ourselves to the 1D case.

» Coordinate representation in 1D

The state vector |¢) = [dx (z[¢))|z) described by wavefunction ||¢(z) = (z|¢)

Scalar product: (Y[¢') = [da (Yla){z|y') = [dzp(z)* /()
Position operator: #(x) = 2 (x)

Momentum operator: pip(z) = —ih-Ly)(z)

expressions
used so far

Strictly, all these relations (as well as those below) should be restricted only to
|v)) € H (a dense subset of H)

» Momentum representation in 1D

The state vector [¢)) = [dp (p|t))|p) described by wavefunction ||¢)(p) = (p[t)

One gets expressions analogous (complementary) to the z-representation:

Scalar product: (¢|¢') = [dp (¢|p){p|¢") fdp?/) ¥ (p)

Momentum operator: p(p) = (plp|y)) = p(p|e)) = |p¥(p) =p¥(p)
Position ope?‘ator: 2 (p) = (p|lz|Y) = IMM d.p/d:i@up)z
e ps(a—a) Qﬂﬁe*’p"f Xor) @) e F
—[f B @Rl @D G0 dedtdyf = 4 [ 2P J() dedp
=i f e da () dp — ihL(p) = |id(p) = +ihLy(p)
2o/ —p)

» Links between x & p-representations: Fourier transformation

Relations between eigenstates: coordinate rep. | momentum rep.
| d(z—1') \/ﬁ e
) | et 3(p—p')
Relations between gener%rl Ogtates: +00
i) = | (pla) () de = | [ v(e)de = (o)
ﬁe—i% ¥(z) —00
+00 i E &
(o) = [ glp) (ply) dp = — [ "% p(p)dp = (2)
R (D) —0

2mh
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In the 3D case, the above expressions must be modified by the following sub-

TSN 1 1 dv — di >,
stitutions: T @) dp — dp pr—p-x

» Gaussian wavepackets

These represent a family of well behaved wavefunctions (€ H) suitable for
the description of particles partially localized in both coordinate & momentum
spaces. They are defined as states whose probability density p(p) = |z;(p)|2 in
momentum space has the Gaussian form with average py and width o,. The
corresponding probability distribution p(z) = |¢(x)|? in the coordinate space is
also a Gaussian whose width o, is connected to o, via the uncertainty relation.

- - og? Tl
b(p) = ﬁe 4op normalization: [ [¢(p)|*dp =1
ek —00

Coordinate representation:

. +0o0 o 1 +0o0 4Pz > fppoﬂ?QQ b2
= — +7Tj = h 4o} = T
Y(z) NG [ e U(p) dp (Sroh20)} / Q,L/dp C o] €
—00 p —00 2
_ 1 2 POy iz, PO
C 2P +(2o'%+ 7P 102 — ap*+bp+c

2
-y Lnr
Gt et =9()
x

with o, satisfying |00, = &

= Heisenberg relation minimized

A ‘/sz\(@ lz -

.

S
Xeo 7

o U
oV

<« Historical remark

1926: M. Born, W. Heisenberg, P. Jordan derive commutation relations for position
& momentum and for the components of angular momentum

1927-8: H. Weyl analyzes algebraic properties of position & momentum operators
1930: Paul Dirac introduces position & momentum representations and elaborates
a method of solving some eigenproblems with the aid of ladder operators

1931: M. Stone & J.von Neumann prove unitary equivalence of representations con-
serving the canonical commutation relation
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B Angular momentum operators

Let us analyze commutation relations of angular-momentum operators. In fact,
it is these relations what allows us to recognize that a given set of operators
(like Pauli matrices) represents an angular momentum. In other words: what
commutes like angular momentum 4s angular momentum.

> Components of spin 3 1

[Sz7Sy]— [az Gyl= az—zﬁS

[Sy,S} 4 [ay,az 22 az—th = [SZ, Sj] = ihEiijk or [&L,&J] = 27:5ijk&k

[5.,5,]= 4[O'Z 6a)= 21 Uy—zﬁS

Uncertainty relation (S2))y((S; ﬁz (S.)2

= [(A8,)4(AS,), > %|<sz> )| <E>

This is an example of state-dependent uncertainty

relation. For [¢) = a| 1)+4| |) (with |a*+|8]*=1)
2

we get: (AS:L')UJ(AS:U)MJ > 5 ’2 |6|2|

For |3|?= 1 there is no lower bound of uncertainty

for the = & y components. This is because in that case the spin lies in the xy

plane (see Sec.2b), so one of the components may be sharp (dispersion equal
to zero) while the dispersion of the other component must be finite.

0 T

2

» Components of orbital angular momentum

{[LI,LZA (0P — 2Py 2De—5pe)=[0D=2Pa )+ 2Py ip: ] =ih(EDy —Pa)= ihiz}
=

[f/i, ZJ] = ih€ijkizk

Ly, La)=[2po—2ps 2Dy~ 3pa)=[2Pa 2Dy )+ 2Pz §pu ) =i(§p~ 2Py )=ih Lo
[Lz7Lm]:[i'ﬁy_gﬁzyypz_zpy] [lpy,ypz}"‘[ypxzzpy] Zh(zpz_lpz) Z4hLy

Poisson brackets {L;, L;} = €5 Ly

» Components of total (orbital+spin) angular momentum

A

N—— N——
£2(R3) c2 J.
f_/%

[ii, Sj] =(0|= [£1®j; f@gj] = [jz, jj] = [il, ﬁj]Jr[S"i, S']] = ihﬁijk (ik + Sk)

» Components and square of general angular momentum

We consider a general system with unspecified Hilbert space H. Operators
{J;}2_, corresponding to components of the system’s angular momentum must

satisfy commutation relations ||[J;, J;] = ihejjiJi || These components are in-

compatible, yielding e.g. this uncertainty relation: |(AJ,)u(AJy)y > 2(J.)y)|
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However, we construct a compatible observable:

3
IV

i=1
The ang. momentum square J? (its size) commutes with all components J;:

[ j ] jj [ji,jj]+[ji,jj] jj :ihéijk(j Ak;+Jk;J) 0= [j“jQ]
S~ Y~

ZﬁEUka iﬁEiijk

Kw

JiJ; = 6,;J;J;  squared angular momentum

(summation convention is used on the r.h.s.)

Kw
Kn

= J%can be diagonalized simultaneously with any component J;

The conventional pair of compatible ang. momentum observables: J 2 Js=J,

» Simultaneous eigenfunctions of J2 & J, for a single particle
L2R(r)Yim (9, ) = (I + 1)1 R(r) Y (9, ¢)
Lz R(T)}/lm(ﬁ7 90) =mh R(T)Yzm(ﬁy 90)
[=0,1,2,..., m=—l,(=l+1),...,(+l-1),+l.
Spinl: S?=L[62 + 62+ 57| = ¢ RI

pin 5 11 %z y \f_J 4

Orbital momentum:

N~
I 1 sGHD=ss+)
SQ(%‘>=%(%+1)712(%} V(5) e
S.(8)=+3h(8), S.(3)=-38(3) Va,geC

)
1
So the spinors (%) :{ gy;gm Eg’ Z; E Y g } are simultaneous eigenvectors of ope-

rators {IA}Q,IA/,Z,SQ,S’Z] with these eigenvalues: [hQZ(l—l—l),hm, hi(5+1), £

General spin: These considerations can be extended to particles with arbi-
trary spins, both bosons & fermions (the theory will be gradually elaborated
below in this Sec. and in Sec. 4b). The spin size is determined by quantum num-

395
ber 2,1,2,2,2,...

and we set 52=s(s+1)h2] in the spin Hilbert space

Hepim=C?*1 = C?,C3,C*,.... The spin projection operator S. has eigenvalues
hm, which take 2s+1 Values given by mg = —s, (—s+1),...,(+s—1),+s; this
operator can be represented by a diagonal matrix. 0 0

R Ay e Qg ~ B
§2 ( : ) _ S(S—I—l)h2 ( : ) v ( 5 ) € O+ S. a’l‘ﬂs = mgsh O‘r‘ns
oy g oy 0 O
(é) (g> (8)
o) \§ 0

In Sec.4b, we will describe how s is related to rotational transformations of
wavefunctions and give another representation of s=1 states.

simultaneous eigenvectors
of S? and S.
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Note: Although spin represents a kind of “internal rotation” of a particle, it
cannot be interpreted as a classical-like rotational motion of a massive “corpus-
cle”. To explain in this way the spin size S ~ sh would require a diameter of

the particle R 2 A—f}(, which is too large (for electron > 10% larger than nuclei).

» Angular-momentum ladder operators

From the above commutation relations we derive ladder operators which help to
derive the most relevant properties of general angular momentum observables.

Let |jm,...) = |ym) stand for the angular . . :
) = ) : Pjm) = R+ 1)l m)

momentum eigenvectors (we skip the other PN ,
Js|gm) = hm|jm)

quantum numbers “...")

We introduce operators Jo=Ji i, satisfying Jh = J;

[J2,J.] =0 = J. do not affect j

[Js, Jo] = [Js, Ji] i [Js, Jo] = ih(Jo Fiy) = £h(J; £iJ;) =  general

ladder-operator relations

iheg1aJa ihesay i {

o . Jy
AT |=+ATx , 5 A
LLTA:ATAA } are satisfied: |[|[Js3, J&| = £hJs

Hence we get: ji|jm> = \/{jm|j1ji|jm>|j(mj:1)) iy
a a R i A R R . —~— . .
J:':J:t:<J1:Fijg>(J1:|:iJ2):J12+J22:|:i [Jl, JQ]:JQ_ngthg

Jiljm) = h/j(i+1)—m(m=E1) [j(m*1))

» Possible values of 3 and m quantum numbers

From the finite value of J? in state |7m) we expect that any projection of J is
bounded, so there must be some limiting values myi, & M., such that

J_|jmmax) = 0 L Mmax =17 || as follows from the above relation
S wi : . .
<]+|jmmin> =0 Mmin = —J] Ji|j(m:ij>>:0

We can also use positive definiteness of operator j12+j22 =J 2—j32 , that is

(J2+ J3)jm) = B[i(j+1)—mjm) = —/G(G+1) <m < +/G(G+1),

and solve:

A

j—i-j— ‘jmmin> =0= J—j+ ‘jmmax>
L LY
J2— J2+hJ; J2—J2—hJs I
j(]+1 ) —mfmn—i—mmin — 0 == J(]+1)_m12ndx ~Mmax = t%ijfgﬁ%\;zlrﬁ:j

Therefore, the action of J. on [jm) proceeds according to the scheme:

X X J . J Jj . 7 . -
0 5 lig) = 17 (Mt 1)) = oo = ) L ) a

—J —j+1 +j-1 +i
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L] 294

This chain is closed #ff || =0,3,1,5,2,3,...

= general angular momen-

tum can have only an integer or half-integer squared-size quantum number.
The half-integer values appear only in connection with the spin of fermionic
particles, including the size of the total angular momentum of a system that
contains such particles.

B Addition of two angular momenta

Consider an angular momentum vector which is a sum of two partial angu-
lar momenta (like the total angular momentum obtained from spin and or-
bital momenta of a single particle). The system can be characterized by the
eigenvectors of both partial angular momenta, as well as by the eigenvectors
of the total angular momentum. In general, we consider a product Hilbert
space H = H @ H? with spaces HM) and H? associated, respectively, with
two different sets of angular momentum operators f( ) and J®. Individual
components satisfy commutation relations [JA,];(m), j] | = iheijibmndy 7™ where
m,n = 1,2. Below we again consider only the angular-momentum quantum
numbers j and m and skip the remaining quantum numbers, which depend on
the system of interest and can be easily included in the description.

» Uncoupled angular-momentum basis

First, we consider a trivial complete set of commuting operators formed by
the square and z-component of both partial angular momenta. This yields
a factorized (unenangled) basis in the full space H:

{j(m, jél), J@2 j?EQ)} = complete set I = {|j1m1>|j2m2>} = basis I
e

7111 jama)

» Coupled angular-momentum basis

Second, we construct a complete set of commuting operators which includes
summed (total) angular momentum operators. This set generates a coupled
(entangled) basis in H:

Total angular-momentum J = ﬂ1)+ﬂ2) Ji=JP i@+ 0 g j®
71 g 7(2) .
N ~ ,mg]kjk m ,_‘/]i_\ standard commuta-
i g =g, g ] +[JP ] iheg (J+ j]?)) tion relations
ST B [Jz J(I)Z] [J J(I)Z] [j27j(1)]
= [J 7Jg] —v= { [, z)z] [I,J(2>] but [JAZJZQ)] #0

{j(1)2’j(2)2’j27j3

——

= complete set I = {\jljgjm>} = basis II
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» Possible values of total angular momentum

The allowed values of j obtained partly

from dimension considerations: basis I
has dimension ‘d = (2j1+1)(2j2+1)‘

and the same d is required for basis II.
This helps to determine the bounds for

. States N ,
the size quantum number of the total A

angular momentum j € [jmin, jmax):

S 2(1 S . . 5 . s
(a> JS - J:)E ) + J?E = Mmax = Mmaxl T Mmax2 = J1 +]2 = ’]max = Ji +]2‘

(b) The determination of minimal j from the dimension criterion:
Number of states for j = { e Jmax 18 ds> = [ (Jmax+1)*] > d, with the

geeennn

surplus: ds —d=|(j1+j2+1)*] = (271 +1)(2j2a+1) = (j1 —J2)*] > 0
Number of states for j =jum, - - -, jmax 15 d=| (Jmax +1)?] = [j2:.]

» Transformation between bases I and I1 = || Jmin = [j1 — J2|
+h +ie Clebsch-Gordan (CG)
|j1j2jm) = Z Z ]lmme |71m1) | jame) coefficients
mp=—j1 mo=—Ja C]m
Jimy jams
m # mi+msy or im _0 = (Jimijame|jm)
J & lj1—Jzl, ji+Je] Jumagama = (jimujoma|jijzjm)

Note: The symbol com i jama (alternative notations used in the literature given
above) looks a bit too “indexy”, but it is easy to get used to it. Just remember
that the lower 4 indices specify the two partial angular momenta and the 2
upper indices denote the resulting total angular momentum.

» Some properties of Clebsch-Gordan coefficients

(a)|CI™ € R| (by convention)

Jimajama

(b) From reality we get: (jimyjama|jijajm) = (jijajm|jimijams), hence:

Jitjz

|j1ma)]jama) = E g 1m1j2m2|j1j2jm> inverse relation
J=lj1—jga| m==3

(c) Multiply » |j1jegm) = >_ C’Jl’;'w2m2|]1m1>|j2m2)
(rged'm/|= 32 Oy, G| (G2ms | B

mh,mb

Jm _ 5 . .
= E lemme Jlml jamg = 0;j0mm:| orthogonality relation I

mi,Mma2
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(d) Multiply » jima)|jame) = - CIm o maliLdagm)
(Grmal (Gamal = 32 C5 0,y (1720 | g
m/
= Z C’jﬂlmmijzme = Omym!,Omymy, | Orthogonality relation II
im

The following relations we give here without the proofs:

(e) CIm = (=R exchange of indices I
+ Special case: ijlmmml_ 0 for (j—27j;)=o0dd

‘ ey 2541 via(— L
(£) Ci g, = (5)7™ M%Cﬁ;l?zin) exchange of indices II
(8) ler?nlj2m2_ wcjjl( 7,21)32( ) sign inversion
+ Special case: CY" < 0j0= 0 for (j—j1—ja)=0dd

» 3j symbols

ition: gigo gz ) = (LTS ~s(—ma)
Definition: (m1 g ms) - 2t lemlj2m2

These coefficients represent just a more symmetric form of CG coefficients:

] PR . +1 for even permutation
J1 J2 J3 — Jk JiJ — L
(ml ma ms) =€ (mk my ngn) with € = { (—)71192%33 for odd permutation

( J1 J2 J3 ) — (_)j1+j2+j3< i J2 Js )
my M Mg —mq —ma —m3

» Construction of Clebsch-Gordan coefficients
The CG coefficients can be calculated with the aid of the angular momentum

ladder operators, which in the H") @ H® space have the form J, = ji1)+ji2) =

jil)@)f @) 4 7@ ®J 7® The calculation proceeds as follows:

Telpjagm) = @ IP 410 JZ) S Ol i) )

WIGTD-mmEDjpi(ml)) =

hY Vi) —ma(my £0)C | (my 1)) | amo)
)—

miy,Mma
+ kY i+l m2(m2i1)051m1j2m2|]1m1)|j2(mgil)>

my,ma

Multiply by (jim}[(joms| =
VIGFD=m{mEDC) ) =N/ R G D =mi (muE DL St P

mi,ma

+Z \/]2 .]2 + 1 _m2 (m2 +1 ) ijfzhhmz 5m/1 m15m’2 (motl)
my,ms
After " }»—>{ m. substitution we obtain the following recursive relation

gemd) [ g )ma (ma ) ~jm J2(Gatl)=ma (moFl) ~jm
lem112m2— \/ JGH)=m(me) le mﬁl)szj—\/ J(HL)-m(metl) lemlh(mﬁl) =

_ Al )m () J2 JZ‘H)—mZ mﬁl )
Jlml]2m2 ) (mF) Jl mﬁl J2m2 G m (L) jimaja(maFl)
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This relation enables one to construct the CG coefficients using the fact that

. . . . . N N . /'Illax :t. 'InaX
|J1d2Jmax (FJmax)) = |1 (£1)|j2 (£72)) = le(ﬁ:;l);‘g(j:)jg) =1

m m Mo

» Example: coupling two spins %

|

J1=7J2= 5 = Jmax = L, Jmin =0

From [1311) = [35)1]53)2 V211410) 3(=3)h 13(=3))
’ ‘ 5(1 5(2
we calculate: J_|3211) = ( £)|%%)1) 13300 + 3001 ( £)|%%>2)
S0 = D[+ -
Then |;31(=1)) = [5(=3)1l3(=3))
and |$500) is obtained from orthogonality to [3310)
= [1300) = \%%(—%)) |33)9 — ] D1l3(=1%))2 (up to phase convention)
1(41) 1 1(-1)
2<:2>l<+l> == C%(——) -3
So we obtain the following CG coefficients: Clbied =vi= Clabicd
COO —1 _ COO
Using a simplified notation: bepiey V2 by
|ﬁ11> = [thl): 1
5310) = ZliM2+ ZIMild)2 ¢ triplet
|%1%11(—1)> = Nl
|3500) = sl —5lthll)e  singlet

We will remember that the triplet is formed by three states which are all sym-
metric under the exchange of spins, while the unique singlet state is anti-
symmetric under the exchange of spins. As particles with spin % are fermions,
whose overall wave function must be antisymmetric under the particle exchange,
the above spin-exchange relations impose opposite coordinate-exchange rela-
tions for the spatial wavefunction.

B Addition of three and more angular momenta

Coupling of k > 2 angular momenta is not just an academic issue. Already
the system of two particles with spins and mutual orbital momentum leads to

the k = 3 problem J=804 82 4 [ Thek>?2 coupling is trickier than the
k = 2 case as the summed angular momentum operators J? and J; must be
supplemented by (2k — 2) additional commuting operators to form a complete
set. While for k=2, as seen above, the two additional operators are just
the JM2 and J©@2 squares, for k > 2 one has to find more than k£ additional
operators—hence the squares of partial momenta do not suffice. It turns out
that the choice of these extra operators is not unique...
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» k = 3: total & paired angular momenta
The triple product of Hilbert spaces, in which the three partial ang. momenta
live, and the standard commutation relations for these partial momenta:
— 1) (2) (3)
H=H ' QHZOH )

with Jo  Jo  J® [, M) = b8

Total angular momentum: J = J( )+J( )+f(3) R K R
Paired angular momenta: J(”l) = J( )+J(l) = j(lz), j(13), J(23)
[j(nl)7 j(n/l’)] Zh&]k(énn“] —|— 5 J )

i J
Compatibility:
[Jz ](1)2] [J ](1)2] []2 J(QJ)Q] [J ](25)2] [j27j§1)] [j27j:§23)]
72, Js)=0= {[ﬂ i i iy [f”é”]}#o#{[f%fém]
[Jz ](3)2] [] J(3)2] []2 ](12)2] [] ](12)2] [j27j§3)] [j27j§12)]

» k = 3: different coupling schemes
Several complete sets of commuting operators & associated bases:

jar, %51), Jjer, jg), Jjorz, jgf?') = |jimi)|joma)|jsms) ... basis I

J(1)27 J(2)27 J(3)27 J(23)27 ‘]2> J3 = |j1j2j3j23jm> basis 11

JW2J@2 J@2  JA32 J2 J. = |j1j2735137m) ... basis III

JW2 J@2 @2 Ja22 g2 J. = |j1j2555127m) basis IV
Generation of the coupled bases (ILIILIV) from the uncoupled one (I):

|j1j2j3j23jm> = Z j1m1j2377123|]1m1> Z C;;;?;im3|]2m2>|j3m3>

my,Ma3 ma,ms3
m 2319, . . .o II
- m mzm Clem1]23m23CJ]2$n2j§m3|Jlm1>|]2m2>|j3m3>
m23

Relation between coupled bases: --similarly IIT & IV

[Juagsdosgm) = (=)0 S0 /(2o 1) 212+ 1) { 27292 } |jragagiagm)

J12

» General k 6 symbol
The way how to obtain coupling jo? j@% j@F j@? je? e jm?
schemes for higher £ is analogous e e o o o o o
and can be captured graphically.
Here is an example of a specific . jan? o j2o? & 67?2
coupling of k = 7 angular momenta J
with 14 commuting operators: 5

: . o [ ’ 2
An important case is the k = 4 jaszo® @ Js7
coupling of orbital & spin angular momenta o 2

»J3

E 2 & S S for 2 particles in a central field.
Two physmally meamngful coupling schemes with the respective commut-
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ing operator sets are as follows:

j(l)Q j(2)2
(a) J-J coupling {L 2 [22 )2 §(2)2 (E +5MWy2, (E +5@)y 202, J3)
(b) L-S coupling {L )2 122 512 §(2)2 (I::( —|—IA/ )2,(§ G ) J2, Jg}
i ;

« Historical remark

1866: A.Clebsch & P. Gordan introduce CG coefficients for spherical harmonics
1925: Discussions about the physical interpretation of electron spin

1925: H.N. Russel and F.A. Saunders outline the L-S coupling scheme

1930: P. Dirac presents the algebraic treatment of angular momentum operators
1940-42: E. Wigner & G. Racah analyze general coupling of >2 angular momenta

B Complete sets of commuting operators for a structureless particle

Below we give several examples of the complete set of observables characterizing
a single spinless particle in 3D. This system has f=3 classical degrees of free-
dom, and also its quantum state is determined by eigenvalues of 3 commuting
operators. These operators can be chosen in different ways, forming possible
continuous, discrete and mixed representations of the problem. A nonzero spin
of the particle extends this set by additional commuting operators.

2, &3)

Eigenbasis | ®#(7) = 5(5—5’) with (D | o) = 6(7 —2")

General wavefunction: (%) = [d&(7) Pz (7)

8)

» Cartesian coordinates & = (&1,

Note: the physical dlmenswn of &z () is [length] ~3 because it represents an

amplitude density in a joint space ¥ x 2’ (while a normal wavefunction is an
amplitude density only in 7)

» Cartesian momenta p = (P1, D2, D3)

(F=7")-&

Eigenbasis | ®;(7) = WeT with (9;|Pp) = o h) /eipg dr¥=46(p—p’)

- —
General wavefunction: (%) = [dp'y(p) P(7) (2mh)26(5—p")

Note: the phasical dimension of ®5(Z) is [length] 2 [momentum] 2 because it
represents an amplitude density in a joint space ¥ X p

» Radial momentum and orbital angular momentum (p,, j—/z, f/z)

Eigenbasis | ®,, i (Z) :W EITT Yim (9, )| with (), 1| P /l'm’>f (P ) o1 Sy
R]Jr( ) rl oo(, ; (Pr rp ) 27
h —[ff Vi (9,9)

General wavefunction: ¥(Z) = Y [dp, . im®Pp,1m(T) Y, (0,0) sin 9 do) d(,,} 2dr
lm
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» Isotropic Hamiltonian and orbital ang. momentum (ﬁrot, L2 f/z)

Instead of radial momentum of the last example we can use a Hamiltonian
H,.; corresponding to a spherically symmetric infinite potential well V(r) (an
isotropic harmonic oscillator, Coulomb potential, an infinite square well etc.)
with a discrete infinite spectrum of bound states enumerated by n = 1,2, ...

Eigenbasis (I)nlm(f) = Rnl(T) Yzm(ﬁ, (,0) with <(I)nlm|q) "m I> = Opn' 011 Orpum
——

1 2 d? +1 .
“Uny (1) [_WW_F 2]5[ . ) +V | uy=E uy

General wavefunction: (%) = > aumPpim (%)

n,l,m
» Harmonic oscillator Hamiltonian components (H;y, H,, H3)

EigenbaSiS ‘ (I)mnzng (f> - wnl (xl)'Lan ($2>¢7L3 (373) ‘ <q)n1n2n3 |(I)n’1n’2ng>: 5n1n’1 5n2n’2 5TL3TL,3 )
where ¢y, (z;,) for k=1,2,3 is the egenstate of Hj with energy E,,=hwy;(np+3).

Infinitely many other complete sets can be found. The complete set is enriched
if the particle has spin with arbitrary nonzero size quantum number s. This
yields the following types of complete sets:

» Sets containing spin projection (Al, Ag, Ag, 5'2, S’z)

Here (1211, A, 1213) stands for any of the above complete sets of a spinless particle.
The squared spin operator is trivial, S2= h%s (s 4+ 1)1, so there is effectively
just one additional commuting operator, the spin projection S, with quantum

number my=—s, ..., +s. This means that the Hilbert space is expanded (2s+1)
times relative to the spinless case.

» Sets containing total angular momentum (Amt, 12,82, j2, jz)
Here A, is an operator invariant under rotations (isotropic Hamiltonian, radial

momentum etc.) and J?,.J. correspond to J = L+S. The cigenvalues of J2 are
h%j(j+1) with [I—s| < j <l+s (so j is integer or half-integer for s integer or
half-integer, respectively), and the eigenvalues of J, are m; J==0y .+

4a. REPRESENTATION OF PHYSICAL
TRANSFORMATIONS

To represent physical observables is not the only role of operators in quantum
theory. A specific type of operators, namely the unitary ones, is used to express
various kinds of transformations that lead to equivalent descriptions of the same
physics. These transformations are applied when switching from one representa-
tion to another, or when expressing the action of symmetry operations, such as
translations or rotations, on the system.
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B Unitary operators

At first, we explore basic mathematical properties of unitary operators. In a
separable Hilbert space, these operators can be introduced as transformations
between different orthonormal bases.

» Transformations between orthonormal bases

Basis I: {|i)}i = {|1),[2),...}  (ilj) = &,
Basis T1: {[i)}; = {1}, [2), ...} (]} =
|i"y = Uli) where U = >~ [¢')(i] is an unitary operator: Ut = Yol = U

» 3 equivalent definitions of unitary operators

(1) U transforms an orthonormal basis LA
to another orthonormal basis: | U8 = {1}
(2) U is invertible such that:
(3) U conserves all scalar products: (Uth1|Unhs) = (h1|1hs)

» Eigenvalues & eigenvectors of unitary operators

Eigenvalues of U lie on a unit circle in C and eigenvectors

corresponding to different eigenvalues are orthogonal: Imuw
Consider Ulu) =ulu) < (u|U" = (u|u* o

T _ * *__ _ i
= (u UTAU|u) = wu* (ulu) = w=1= $) Rew

i 1

saiadW; / / /" /

= (u|UU |v/) = vu*(ulv’y = w'u’ =1or (ulu')=0
ei(¢/—0)

= for ¢/ # ¢(mod27): || {ulu') =0

» Spectral decomposition U= E e ]5@ with ]5@]5% = 5ijp¢>i
- v ~~~
7

M
v (k) /, (k)
%: | )il | = degeneracy index

» Expression via exponential of a Hermitian operator

0 = eié with G =G and eX

(0.9]
Z )]g—f exponential of an operator defined
k=0 through the Taylor series of e”

A m A LA A
(a) exponential = unitary: UT = 3 (_f)k = G =1

k=0
(b) exponential < unitary: YU=Y" e/ P, define éEZ ¢iPy | =Gt = U=ci¢
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» Example: U = (9})
1

Eigenvalues wu;=1=¢e¢ and uy=-1=c¢e¢
Eigenvectors |+ 1) = \/Li (1)and |—1)= \% (1) (orthonormal)
G =0+ 1) (H+m =1 (=1] = § (11 51) with (4] =2t (H ) for k=1

» Commutation relation for exponentials
eXeV = eV = XY for [X,Y] =0, eXe¥ #* e X #* XY for [X,Y]#0
Baker-Campbell-Hausdorff (BCH) formula (one of its forms):

4 R A3 (R XA (R X XA+ XA 1

??‘

[X’A} 2 [X’A] 3

. . 00 .
This means that e*e’ = (e + > 4 [X, ey] e, or in another form:

)
eXe¥ = o7 with Z=X+Y +3[X,V]+5([X, Y/] v, X} )— [Y,[XY] ]+
0

o XY = XY EXY]

Special case: [)2', [X,Y]] = [Y, [X,Y]] - .=

B Unitary transformations as “quantum canonical transformations”

Unitary operators materialize transitions between alternative QM represen-
tations, defined by distinct bases in the system’s Hilbert space (see Sec.3a).
They also express transformations between state vectors of the same system as
seen from various reference frames, differing, e.g., by translations, rotations, or
Galilean boosts. Physical descriptions in all these representations or reference
frames must be fully equivalent. In this sense, the unitary transformations are
analogues of classical canonical transformations.

» Diagonalization of an operator

The transformation from a general basis {|i)}; to an eigenbasis {]agk))}j,k of

any Hermitian operator A is of course a unitary transformation. We assume
for a moment a nondegenerate spectrum {a; }; of A. The degenerate case would
be expressed analogously but in a clumsier notation.

Uiy Upg ... A A U1*1 U;l a 0 .. = T X
Uz Usa Ay Ago Uy, Us, — 0 ap = Adiag — A UT

D N " g Ui
i A f Aging ;|
v " eigenvectors ||a;) = (Ui2>




80

» Link between equivalent representations

Postulate: Various representations of quantum state vectors & operators
are equivalent ¢ff they are connected by a unitary transformation

We assume a general transformation of bases {|i)}; = {|¢"}};. This implies:

Transformation of vectors: [y = Ulap)
|¢>:Z a;li) — |¢/>:Z ali’)
Transformation of operators: A =UAU'|| =UAU!

A=YwP, — A=XaqUPR,U =3 aU|a;){a;|U"

Interpretation of the operator relation through
the identity A'|¢) = U(A [¢) ), with A’[¢)
v
U)o
defined via the “detour path” UAU |y’

A

(see the sketch where the target space of U
is formally denoted as H')

<« Historical remark

1897-1906: Independent derivations of the Baker-Campbell-Hausdorff formula
1900-10: David Hilbert elaborates the theory of (unitary) operators in H

1927-32: Unitary operators and representation theory appear in the mathematical
formulation of QM (P. Dirac, J.von Neumann)

B Symmetry in quantum mechanics

It is often repeated that symmetry represents the most powerful concept in
physics. The famous Weyl’s definition “A thing is symmetrical if there is some-
thing you can do to it so that after you have finished doing it it looks the same as
before” can be always applied (in fact, this is Feynman’s informal transcription
of Weyl’s original formulation). For us, the thing means either a given physical
system (its most essential attributes) or a general form of its quantum descrip-
tion. To do something to it then means to look at the system from another
reference frame or through a different representation.

» Active and passive transformations

Let us consider two frameworks S and S’, which correspond to alternative refer-
ence frames (coordinate systems) or alternative ways of description (represen-
tations). Transformations between these frames can be realized in the “active”
or “passive” way:
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Active transformation:

Operators A unchanged Q S Q'
State vectors transformed |ib) — [¢') = Ult))

Example: an atom that has moved from the Earth to

Mars is watched from the same motionless reference frame

Passive transformation:
State vectors |¢)) unchanged S Q S
Operators transformed A A =UAU?

Example: a motionless atom is watched from

a reference frame that has been moved from the Earth to Mars

» Symmetry in a wider sense (sensu lato)

The simultaneous active and passive transformation (“a moved atom observed
from a moved frame”) yields identity. More precisely, a simultaneous trans-
formation of state vectors [1) — |[¢/') = U[¢)) and operators A — A’ = UAU'
preserves the structure and all predictions of quantum theory:

(Y1lg) = <U¢1|U¢2> = <¢1‘\UT[A],|¢2> = (Y1]|12) ...scalar products
) s S
(@'|A'j") = (i |UTUA U0 |5) = (i|Al5) ...matrix elements
Alq} = ala) = UAU!Ula) = aU] ) N ...eigenvalues
b3 PO i<

— —
(A" B|=A'B'—B'A'=UAUTUBU'—~UBUTUAUt=U|[A, BJU' ...commutators
= ’QMS, = QMS‘ The QM description is the same for both S & S’. This only

means that quantum theory by its very nature includes the notion of symmetry.

» Symmetry in a narrower sense (sensu stricto)

This kind of symmetry concerns specific systems rather than the whole theory.
We say that a particular system is invariant under the S— S’ transformation

ioff its Hamiltonian does not change under that transformation: H =H

This is because for any system the Hamiltonian represents the most important
physical operator (describing also the dynamics, see Sec. 5a).

H=UHU'=H = UH=HU = ||[[H,U]=0 < [H,G]=0| (with U=¢)

This has strong consequences:

(a) degeneracy of energy levels: H|ip) = El¢) = |H(U[Y)) = BE(U))
= if Ul)) # ), the level E is degenerate

(b) conservation laws (the existence of integrals of motions, see Sec. 5a)
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B One flight over the group theory

Unitary transformations describing symmetries of physical systems do most
typically come in some specific sets, which are called groups. A clear example
can be the infinite group of rotations by different angles around various axes.
Group theory represents a superb case of “the unreasonable effectiveness of
mathematics in the natural sciences” (as pointed out by E. Wigner). Initiated
as a purely theoretical discipline, it grew into one of the most commonly applied
branches of mathematics today. Here we just summarize (from a bird’s eye
view) the very basic concepts that are of immediate importance for QM.

» Basic definitions

Group G is a set of elements {g} which is closed with respect to a binary opera-

tion o (group multiplication) | g1, g2 € G = (g1 © g2) € G |satisfying the following
. ~

properties:

(1) (9192)93 = 91(g293) associativity

(2)decG: ge=eg=gVg€G unit element

B)VgeGIgl: ggl=glg=ec inverse elements

Note: Commutativity is not required! If it is also satisfied, so if g1g2 = gog1
Y 91,92 € G, the group is called Abelian.

=9192

» Unitary representation of group G

A N N A N

Mapping to unitary operators: |g — Uy, |gig2 — Uy U, = U Uy

Group properties naturally satisfied: (UoU))" = U710y = (U,0U1)7!  closure
(1) (Ugﬁg)Ul = Ug(UQUl) associativity

(2) e — I=1I"=T1"1 unit element

(3) U = ed = U1 = ¢4 inverse elements

Hilbert space H where operators Ug act = carrier space of G

Since QM works with H, it provides a direct physical “arena” for group theory.

Invariant subspace: a subspace Hg CH is invariant under G if U,|y) € Hg

YU,eG and ¥ |¢) € Hg .

1
0 |€ HE;) 0 block diagonal
Matrix representation: U, = | o . o structure of all

Any iravariant subspace Hg) and the corresponding submatrices of group oper-
ators U, can serve as a complete representation of G.

Irreducible representation (irrep) of group G: representation for which
there are no invariant subspaces Hg C H.
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» Finite (discrete) groups

Groups with a finite (or at least discrete) number of elements (describe, e.g.,
spatial symmetries of crystals or reflection transformations): G ={9gi}ien

Example: cyclic group |2, = {P, I }| with I = unit operator and P = gen-

eralized parity transformation satisfying P = P~!= Pf (= pP2=] ) that
can represent the spatial inversion, 2-particle exchange, particle-antiparticle or
particle-hole transformation etc.

» Continuous (Lie) groups

Groups with elements parametrized by a n-dimensional real vector s = the
group elements (e.g., spatial translations) form a continuum: ‘Q = {9(5) }sern

The group operations between various pairs of elements and the inversion of
various single elements define some R” xR"” — R" and R" — R" functions:

9(31)9(52)=g(53) =
g(3) " =9E) =

Unitary representation of a given Lie group is a mapping to a continuous family

—

3= f(51,52)  If both functions f & h are fully
"= N(3) differentiable, then G is a Lie group

I By

»

of unitary operators acting in a suitable Hilbert space: ||g(5) — U(3)

» One-parameter Lie group |G = {U(s)}ser

. U0)=1I choice of origin =1
Requirements: ¢ L A~
U(s+ds)=U(s)U(ds) local additivity < f(s,ds)=s+ 2L ds
; T (d d*U
00 = T+ (&) + 1) 1 (4) 0
~ ~ ~ 2 7y ds -
U(S)U(S)T:I+[(%)OvL(%)O}s—Fl...]ﬁ—l—... = '%G—G’T
J ~ |, - wit =
" AU\ _ 1e Uls+ds)=U(s) _ 7 dar\ . A
= condition (E)s = dlslgloT =U(s) <E>0 =iU(s)G

U(s) = e'% || is the most general solution, where G = generator of G

= the group is Abelian: U(s)U(s2) = U(s1+s2) = U(s2)U(s1)

» Multiparameter Lie group ‘Q = {U(3)}serr n > 2‘

U(§') _ ezG-s = e k=1 * kwithG = {Gk:€ <ags(k)>a

S=

n
} = set of generators
0J k=1

# 1] ¢’“st in the non-Abelian case: (Gr, Gl # 0
k=1 . R . . .
U(s1)U(52) # U(51+352) # U(52)U(51)
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toggan
1,170

/\

» Algebra of generators

Products of infinitesimal unitary transformations U (65) form again some in-
finitesimal unitary transformations (closure property of G). This turns out
to imply that the generators must form a closed set (so called algebra) with
respect to commutation relations. We show this by the following product of
4 infinitesimal transformations:

RN (AT (RN (2 i : ~
U)'U(e )V UG)UE) = @ with |01 ~ )~ Spni€mdn
R ~ for €, 5—0
(I —iGy0; — 1GiGyéi6y) I +iGoy [y
x (I —iGjej — G Gieiej) 4 >
(I + Zdek — ‘Gka’dk(Sk’)
0 ([ + ZGgel §G1Gl’€l€l’)j I’If,/”")
LN ;’rzfldofd“) . 0 (6) ">
I+ (GG, . GnG) €mbn = I + iSmnGiendy >
(GG
[ G = S| e

So instead of studying the infinite set U () € G, we can focus on the finite alge-
bra of generators {éz‘}?:p whose structure constants characterize the group G.
However, in some cases, the generator algebra alone does not distinguish some
subtle differences between groups, see the O(n) and SO(n) examples below.

» Invariant (Casimir) operator
An operator Cg = C(G ) associated with group G such that |[Cg, Gi] = 0| Vi

Eigenspaces of Cg within the space H are invariant under the action of all
generators {G;} = these subspaces often carry irreducible representations of G

» Examples: orthogonal and unitary groups in finite dimensions

Unitary group U(d): group of unitary matrices U of dimension d

100..0 010..0 0—i0..0
Ithas 0000 1000 i 00..0
= G o000 0000 0000
Hermitian i= 1 . N EEERTH I S IEIECETPRN [ N IEEEE
generators: N000.. 0 . N000.. 0 Noo0o0..0 )

v~

= 2 iag dd=1) o
1= 1, 2, ceey d d diagonal (2 D) offdiag. real 7‘1('12*1) offdiag. imaginary
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Casimir operator must be proportional to the unit A 1 d

matrix . There are two independent ways how to = Z Gi=

build such an operator from the generators, which -

yields linear and quadratic invariants CM and C®: Z G2 (2d— 1)
In fact, 3 independent quadratic invariants exist with 4 running

separately over the diagonal, offdiagonal real and offdiagonal imaginary generators.

Spec1al unitary group SU(d) subgroup of U(d) including unitary matrices
U of dlmensmn d with Det U=1 (property conserved in multiplications)

From Det ed = e™4 it follows that SU(d) has generators: d(d—1) of
them coincide with the offdiagonal generators of U(d) and the remaining d—1
ones with independent traceless linear combinations G/ of the diagonal U(n)

generators, e.g. G’ =G, ——I for i=1,..,d—1. Only quadratm (& h1gher)
Casimir operators: C’SU ; 1GQ (2d NI, C’ Z G+ 21 G’G’j o1
i=d+ i,]

Special orthogonal group SO(d): subgroup of SU(d) 1nclud1ng orthogonal
matrices O of dimension d with Det O=1 (conserved in multiplications)

Because of reality of O, the generators coincide with the [n = %d(d—l) imag-

inary offdiagonal generators of U(d), which automatically leads to the unit
d?

. . . .. . AR A2
determinant. Unique quadratic Casimir invariant: C’SO( D= Z G;=
(d+1)

+1

Orthogonal group O(d): subgroup of U(d) including orthogonal matrices O
of dimension d with Det O = £1. This group is richer than SO(d) (containing
it as a subgroup), but has the same set of generators. It arises from SO(d)
by adding a single orthogonal matrix (or a discrete set) whose action on any
O e SO(d) yields matrices with determinant = —1. It can be, e. g any of the

1 =1,...,d operators ¢imGi The quadratic Casimir invariant: C’ C’é%)( d)

<« Historical remark

1830 (approx.): dawn of the group theory (the name given by E. Galois)

1873: Sophus Lie introduces continuous groups (later work of W. Killing, E. Cartan)
1928-32: M.H. Stone and J.von Neumann obtain QM-related results on Lie groups
1928: Hermann Weyl: Gruppentheorie und Quantenmechanik—book placing the
group theory to the foundations of QM

1927-37: Eugene Wigner elaborates group techniques in the classification of atomic
and later nuclear spectra; the 1931 book Group Theory and Its Application to the
Quantum Mechanics of Atomic Spectra

1929: Hans Bethe applies point groups in polyatomic molecules

1931: Hendrik Casimir introduces the invariant operator

1940’s-50’s: Giulio Racah refines group methods in the theory of complex spectra
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4b. EXAMPLES OF SYMMETRY TRANFORMATIONS

We will now describe basic spatial and spatio-temporal transformations of non-
relativistic quantum systems. We will see that quantum operators of elementary
physical observables can be naturally introduced as generators of the corresponding
Lie groups. This may tempt us to think about quantum Hilbert spaces and sets of
observables in terms of representations of the fundamental symmetries of nature,
seeking the origin of quantum uncertainty relations in the non-Abelian character
of the corresponding groups. We will also introduce a very powerful calculus of
spherical tensors that have specific transformation properties under spatial rotations.

B Space translation

We start with the most trivial transformations, namely translations in the coor-
dinate space. These form an Abelian group generated by momentum operators.
We will also shortly visit crystals with their band energy spectra.

» Coordinate translation operator S

We consider a translation of the coordinate system
by a fixed vector d. From the analogy with classical
relation ' = & — @ we require that the unitary ope-

-
N G
rator Tz that describes the translation must satisfy /

A A A

the following relation: R T = i—al

= commutation relations [Z;, T 7 = aﬂ}
AT A
coincide with the relations of general shift operators { [ATA=+ATS
[ATa]=—ATa

I e L

a

~

= 3| =27 = #(TeD) = (vi4a)(T5T) = |Ts|@) = |7+a)

proportionality coefficient (fﬂi{ "oz =1

. . - transformation
= <x’Ta ¢> = <T(Y_1x|¢> - <x_a|¢> - ¢(x—a) = T@"@b(ﬂf) of wavefunctions

» Generators of translations along coordinate axes

Translation @ = ari; along j=1,2,3 axes: [, Taﬁj] = (5ijCLTaﬁj

Infinitesimal translations: T((;a)ﬁj ~ [ +iGi(0a) = |[25,Gy] = —idy;l

This is essentially the commutation relation of the momentum operator and we
i.e., generators of translations are proportional
to momentum component operators

A

can set: Ly = —

pj

St

~ ~

[éi, é]] =0 = Abelian group [G,,ﬁj] =0 = ﬁjﬁT({l = }%
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» Finite translations in any direction

Finite translation along the j™axis is obtained by repetitions of many small

N A . n .ap
translations: 7,5 = lim <I — %pﬁ) =e '
n—oo

Finite translation along a general direction: Ti=e "

Direct verification for the wavefunction transformation:
o0

T(7) = > (= - V)kp(7) = ¢(F—a)

» Translation for many-particle systems

The spatial translation operator for N > 2 systems is generated by the total
A N

2, . A LGB N .

momentum operator P = Z pr = Tz=e'n = ak
. k=1 k=1
= (Ta@)(fl, C ,I_"N) = \I/(fl—(z, . ,fN—oY)

—

Translation does not affect the spin variables (if any) of individual particles.

» Translational invariance sensu stricto

A system is invariant under spatial translations iff [T w H | = 0. This means
that the Hamiltonian must commute with all the generators — the components

of the (total) momentum operator P.

For N =1 particle this means that H = H (}%,S ) = Hamiltonian does not
depend on spatial coordinates, only on momentum and spin components

For N >2 particles: || H = H ({ﬁk}, {(Zp—11}, {gk}) = Hamiltonian depends

- ~ 2 . .
only on relative coordinates, for instance: H =) ﬁﬁk +> V({{Z—7})
F k>l

» Discrete translations (invariance of a crystal lattice)

We consider the simplest cubic crystal lattice whose elementary cell has sides

—

L = (L, Ly, L.). The Hamiltonian of a single particle moving in such an infinite
periodic structure is symmetric (sensu stricto) under a discrete set of translation

transformations Tﬁﬁ — ¢~"F" with translation vectors di = (ngLy,nyLy,n.L,) =
7+ L, where n; = 0,41, 42,... It can be the Hamiltonian of the standard form
H= 2’)—; + V(&) with a periodic potential V().

Symmetry: [T, H] =0 = Ty and H have a common set of eigenfunctions

A general eigenfunction has the form: ||¢(7) = u(Z) ¢'*|| Bloch theorem

8l

Here u(Z) is any L-periodic function, u(Z + @) = u(7)

and II is a vector called quasimomentum



88

T h(7) = e T u(@)e'T = u(T-dz)e T = e u(@)e T = ¢ T ()

. eigenvalue
In this form of 1 (Z) we search for the eigenfunctions of H.

Assume the 1D case of a particle in potential V(z) with period L:

Hy(z) = Bp(z) = [gr(—ihl+ )’ 4+ V(z) - Elu(z) =0
This equation solved for a fixed I and = € [0, L] with the boundary condition
u(0) = u(L) gives a discrete energy spectrum E = Ei(II) with £ = 1,2, .

The quasimomentum II can be

restricted to the ﬁrst Brillouin

zone with II € [—Z +71] For

HenY—HinWNmmn:Lzm

the transformation u(zx) — 7
thatl%(ﬂ) Ep(TT+n2). The _
picture for II € (—oo, +00) can %//
look e.g. like the one on the right. =1 //

We obtain a band spectrum 2
of energies. The dependence 372 141 42 43

. L
&ﬂDmmk:“#%H:LZm mh/
(the black curves), called the dispersion relation, represents is an analog of
the trival free-particle quadratic dispersion relation E(p)=; Mp

« Historical remark
1928: Felix Bloch develops the theory of electrons in crystal lattices; the underlying
mathematics was previously studied by G. W. Hill (1877) and G. Floquet (1883)

B Space rotation

We come to another kind of fundamental spatial transformations, namely the
rotations. It turns out that generators of the rotation group coincide with
components of the total angular momentum, which makes the group non-
Abelian. While the orbital angular momentum generates rotations of scalar
single-particle wavefunctions, rotations of more complicated wavefunctions, like
vectors or spinors, require an additional angular momentum of the particle —
the spin. We will therefore complete the theory of spin by defining its trans-
formation properties under rotations. We will also introduce quantities called
spherical tensors, whose specific transformation properties will allow us to de-
velop a powerful tensor calculus with far reaching consequences.

» Coordinate transformation 3X?;n ;‘gﬁ?}fi(’“

=/

Rotation about axis 7 by angle ¢ in ordinary space expressed by: |7 = R%; T




89

Note: we assume (consistently with translations) that matrix Ry, represents
passive rotation of the coordinate frame, so coordinates transform by its inverse.

Radius conserved = orthogonality: R&RM =I= >, rijric = i

L1 [ coso sing 0) 1 ( 0 10) y Any finite rotation is
Ris= (%w cos¢ = Ry g~ 1+ 000 0¢ expressed via generators
iGs of infinitesimal rotations:
1 cos¢ 0 —sing -1 00 -1 —
ﬁxd):(.o 1 0 ) = Rﬁ15¢~1+<000>5¢ 1 i@
y sing 0 cos¢ y 10 0 > Rﬁ¢_e
iGo
R (tl) cogzb sh?(b) = R: I+<8 8 ?)&b
N = b - ~ )
(22 0 —sin¢ cos ¢ 09 0-10 Lé/l e X
iG
1 J

Commutators of the generator matrices:
[Gi, Gj] = i&ijka
These are essentially the commutation relations
of angular-momentum components.

Hence for the operator Rﬁ¢ and generators Gi
of rotations in quantum Hilbert spaces we assume:

Postulate: Generators of rotation of an arbitrary quantum system

%x operators of the total angular momentum components

~

» Quantum rotation operator Rﬁaﬁ = e_i(é'ﬁ)q5 with ||G = %j

This assumption holds for all systems, i.e. N-particle systems (with N =
1,2,3,...) as well as systems of a non-particle nature, with J expressing the
total angular momentum of the system, e.g., the summed orbital and spin angu-
lar momentum of all particles. Thus the form of angular momentum operators
fully defines the system’s transformation properties under rotations. Below we

ill work within the Hilbert space of a single particle, so: 2 505
WO P sep G=YL+3)

» Transformation of coordinates & momenta
(a) rotation around z:
it = Rﬁz¢jiR%1¢ - e*”?(LBJrSS)(/)/'E 2 \€+"7(L3+53)¢>/hj/ — e—iL:@/ﬁjieHL:@/h

e—iL3¢/he—iS30/h e+iS30/hetilge/h

Infinitesimal rotation:

A PR V2 . S F1+E200

P~ (1 . %Lg&b) & (I + %L35¢> ~ g — 1 L] 0 = { b0
T~ &3

The same for momentum: —ih(8iz81~di12) 5

R . A /s A R oA P1+p20¢

pl~ (I _ %Lgdgb) Bi (1 ¥ %Lg(sgzﬁ) ~pi— L Ly, pi] 06 = {ﬁz-plaas
~—— b3

+ih(8;1p2—0i2P1)



(b) general rotation:

50 B o -1 5 SR 5 A -1 5
\x/:R%xRﬁ(b— Rz, © p =Ry PR =R, o P
}/1 r11 12 T T
) ra1 T25 T23 @ =35 .
ah T31 T32 733 jj = Tlgy = Rn¢Rn¢l’ * this form of the
defining relation will be useful below

» Transformation of angular momentum

~ ~ j1+j25¢
(a) z-rotation: J; ~ (I — 1J35¢> (I + % J35<;5> J; ;i [J3, Z] 0p = {Lg}&b
v J3

ihé";ij i

R.,J S = :RJS [= Rﬁq;

(b) general rotation: ||J' = ngJRﬁd)

» Action on wavefunctions (coordinate & momentum representation)
(AQEH)(?)( o|7)) ¢|>A|¢>
Rt @) = R | _ [ Ren® = e
* above (P1Rigt) = (R, p1v) Rigih(p) = ¥(Rg,p)

» Transformation of scalar wavefunction v (7)

A scalar wavefunction was used above to describe a spinless quantum particle.
It is a 1-component function assigning to each point of space a single complex
number which is invariant under all spatial transformations. Only the argument
of ¢(Z) is affected by the transformation:

Ragth(%) = yRj7)|| = J=L = spin0
——

b "

Example: @ (T) ~ [f — (5613(2, 17231, ) 5¢] P(7) =

e—il3dp/h

¥ (7)
» Transformation of vector wavefunction (%) = <w2(:3))
¥3(7)

Now we assume that a given quantum particle is described by a 3-component
wavefunction which transforms under rotations like a vector function. Besides
the argument 7, also the direction of the vector 1 is affected by the rotation.
The defining transformation property reads as:

a . 711 T12 T13 (3 1 _E 1=

Ripp(Z) = (:g; 22 rgg)n ) (33) (R ) || = e "7 “p(R) )
N——— / _“’/

Rﬁ¢ERﬁ¢ w .
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- 5 0
Generators of R;L;: S1=h <8

0
0
+i 0
R 1 (7) A , V1 (%)
Example (z-rotation):  Rj,se (wim) R [I - ( - 8) (5(4 =i TR <d]z(f)>
0
0
1

e—ilS3+L3lop/h 1 t(Sd)
o [

SP+S34+53 =s(s+1) R = [s=1
hDet(S;—A) =0 = A==41,0 = |s; = { 0 = spin 1

So, 3-component wavefuctions ¥ (&) with vector transformation properties de-
scribe particles with spin 1. We now find the link of Cartesian components
i (Z) with =1,2,3 to the probability amplitudes v, () for individual spin
projections my,=0, +1 to the z-axis direction:

Eigenvectors of S3: &1 = \% <:0}> & = (§> £ = \/Li (ﬂ)
Y41 (D) 41+0(F)o+1p—1(F)E-1

L (Z) J5[-1(2)— 911 ()] by (7) — 51 (@) —ip2 (7))
( (f)> = *%W 1(Z)+1 41 ()] ( o (T) ): h3(Z)
3(7) bo(7) Y1 (T) + 75 [¥1(2) +ita (7))
» Transformation of spinor wavefunction ¥ (7) = (:ﬂmi) spin 3

At last we come to the spin—§ wavefunction introduced in Sec. 1b. We know that
in this case the components 14(Z) and | (Z) express directly the amplitudes of
finding the 1 and | spin z-projections of the particle at the position . But how
the spinor wavefunction (%) transforms under rotations? Because in this case
the spin matrices are known to be the Pauli matrices, the spinor transformation

can be easily determined from N ) ) N )
(T e —l3) 1S —lg
We now find the unknown Riagh(7) = \_j,ip/(R"¢x) M(wa)
2 X 2 matrix Sjy: ¥’ Y’
& _;8i = o\Fa o . 5o ; _
Sis =€ wb:l;)%(_%) (¢-m)F=... with (¢ -7)" = {f;n for h=cven
. 3 3 3 3 R
(G-m)2= n,,;njﬁﬁj:% > ning (Gi0+0;0;) +5 Z nin;(6,6,—0,0;) = Zn?l
hi=l hi=l T ij=1 . =l
0 1
(o' 5 1 (i) s ; O\ (5. 7 — &
=2 k(%) T+ & (%) @) = |[(cos§)I—i(sin§) (5 7) = Sy
k=0,2/4,... k=135,
cou & Cisin ® spinor transformation
2 2

= |Sien = — Sﬁ(47r) =4/ Special case: Sy = (ew/z 0 )

0 etio/2
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Only now the definition of spinor is complete. It does not mean just any
two-component wavefunction. The spinor is an object which transforms under
rotations in the specific way given above. Note the surprising property of
spinors that only rotations by 720°, and not those by 360°, yield identity!

<« Historical remark
1913: Elie Cartan discovered complex “tensors” with spinor transform. properties
1927: Wolfgang Pauli introduces spinors to QM

» Rotational invariance sensu stricto
Hamiltonian H satisfying [ﬁ fl)mz)] 0 for any 77, ¢ must satlsfy [H J; ;] =0 Vi.
For a single-particle Hamiltonian of the form H = T +V this means that

the potential is isotropic: V=V (r). An N-particle Hamiltonian with N > 1
may depend only on rotational 1nvar1ants such as: xk xl, pk pl, xk pl,

|.CCk—{171| = \/(xk—xl) (xk—xl), Sk Sl, xk S[ pk Sl etc. (k}, Z:1, PN N)
In combination with the symmetry under translations this reduces to combina-

tions containing scalar products of quantities (:%k—%l), ﬁk and gk
Both rotational and translational symmetries sensu stricto are strictly required
when dealing with Hamiltonians describing fundamental physics!

B Irreducible representations of the rotation group

Since the square J? of the total angular momentum commutes with all its com-
ponents J;, the subspaces of the entire Hilbert space H spanned by the total
angular-momentum eigenvectors |ajm) with any fixed j (and @ standing for
arbitrary remaining quantum numbers) are invariant under the action of all
rotation operators Rﬁd). In these subspaces, the rotations are described by a hi-
erarchy of Wigner matrices, which for each j form an irreducible representation
of the rotation group. Quantum theory thus provides a fundamental platform
for the realization of this group.

» Factorization of rotation operators

Any rotation expressed by a 3D matrix R can be equivalently characterized
by axis n and angle ¢ of the rotation or by 3 Euler angles «, 3,v. Quantum
rotation operator in ‘H will be now interchangeably denoted by symbols Rr =
Ry = R(aB). —
Rotation around 77 by ¢: operator RR = ]:Zﬁd) = e_%(‘]'ﬁw #+ RZ}?y}?x
Expression of a general rotation via Euler angles: 3 successive rotations

(1) around 7, by o

(2) around 7, = Rj o7, by 3 =

(3) around 7}, = Ry pii, by 7

R(apy ,

=
N\
=)
=
=u)
Q\
=
=
=
n
£
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Using identities
{ R (y)=Ry (B) () R (59) }

Ry/w):éz(a)z%y(ﬁ)éfl(a)
ie., e.g., Ry(B)R.(a)=R.(a)R,(B),
as shown on the right:
we obtain a factorized
formula in the fixed

v,.—.
/“\’n.o\entica]

V4

X

Z
(O
coordinate system zyz:

R(aBy) = R.(a)Ry(B)R.(7)

» Wigner matrices

Based on the above formulas, we can evaluate the form of the rotation operators
in the space spanned by angular-momentum eigenvectors |jm).

Rlapy)lim) =3 G'm'|R(aBy)lim) li'm') = 3 Div(@B7) lim)

5! .
j'm/ 850 m,m(ag»y) m’ ngner matrix

af |, (i¢)=D’ , (R)  matrix of |dimension 2j+1
m 'm f)/ m m m'm J

d‘:‘n’nl(ﬁ)
= (jm!|Ro() Ry (B)R.(7)|jm) = e et (G| R, (B)|jm)
Wigner matrices (D-functions) form
an irrep of the rotational group for
any fixed value |j = 0, ;, 1, g, 2, 2,3

(a) identity ¢ = 0, (b) inverse ¢ = —¢, ﬁ\

(d) group = matrix multiplications
Din m(RQRl) ZDm m”(RQ)Dj " (Rl)

» Transformation of general-spin
wavefucntion The (2s+1)-component
wavefunction 4 (Z) = {, (Z) },};’~_, of a particle with an arbitrary spin s in the

Sz representation ) DLR) .. D .(R) o (RA1E)
is transformed by means i _ _ ‘ i )

of the Wigner matrices: V() D:_,(R) DZ";S)(;S)(R) b J(R-17)
» Clebsch-Gordan series for Wigner matrices

Rotation operators in the Hilbert space of coupled angular momenta:
H= Hi ® Ho (aBy) = Ri(aBy) @ Ro(afy)

irrepj;  irrep jo
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Operator R can be expressed in both (a) separable basis |jim1)|jamsa) = |j1mijams)
and (b) coupled basis |1 jajm):

(magemal Rljim jamb) = (ima | Ra|jim}) (jama| Raljamb)

v~

j2 //m/

m2m2 1m1]2m/
\

C]'rn Dj1 ’ 5 DJ ! D

71'”1/2"’2 mlml

= 32 3 Uvmagamaljrjajm) (JuszIRUmJ 'm"y (Grjog'm!| jum; jamb)

Jm j'm/
' JitJ2 '
J1 } : § : cim Jm J
= l)mlm’1 (R) l)QO2 Jimy jams ]1m1]2m2 Dmm’(R)
J=lji— 72\ =—J

This relation determines the decomposition of the reducible product repre-
sentation of the rotation group (given by coupling of the j; & j, irreps) into
a direct sum of irreducible representations:

Div@ D2 = Dlii—d2l gy ... ... @ DUiti2)

B Spherical tensor operators

We are ready now to understand and appreciate the introduction of spherical
tensors, i.e., objects (in our case operators) which transform according to a
single irreducible representation of the rotation group. Spherical tensors have
some favorable properties that make them mathematically more convenient
than the familiar Cartesian tensors.

» Cartesian tensors < Cartesian transformations under rotations

n''rank tensor: Ty bk = E R, 1R lek/ oo Ty
S~~~ SN -
n_indices VK. * Cartesian rot.matrlces

irj k=123
Representation of the rotation group on Cartesian tensors is reducible

EX&IIIplEI 2nd rank tensor scalar antisymmetric tensor  traceless symmetric tensor
N

T T o 1 T N
Tij = 3T T bij + 5[T0; — Tyl +5[T55 + Tyl — 3T b
Each part of the decomposition constitutes an irrep of the rotation group

» Irreducible (spherical) tensors

These tensor quantities are transformed by irreducible Wigner matrices:

AP rank spherical tensor A" rank spherical tensor operator
NA A A Ho A Pl _ A P
Ty => D),R)T) ReT) Rg' =) D), R)T)
W W

An alternative (equivalent) definition of spherical tensor operators is given by
the commutation relations of Tﬁ\ with angular momentum operators. These
relations can be obtained by considering an infinitesimal rotation:
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5}]? 5}%71 DQ,&E(SR)

= (RS T + (T n)5¢] S O 1] — £(T - 8)06) w) T
. T

= [T a1 = Au|<J~n>|Au>T,>

= [L,Tj] = h;ﬂ? [ji,jﬂ = A/ AA+1)—p (Mil)TMﬂ

These commutation relations are actually much simpler to check than the trans-
formation formulas with Wigner matrices.

» Examples: First & second rank tensors
(1) A=1 tensor (vector): ,
Cartesian vector operator V= (‘71, Vg, Vg,) = ]A%R‘A/y;l%fl = > R;Z.,lf/i/

Inﬁnitesimal rotation around axis 7 (sum. convention used): =
— 5¢[Jk7 ]nk—VJrcSqﬁskank = [jk,f/l] = Z‘hé‘kijf/]’
Spherlcal components of the vector operator:
Vj}l = - \/L? (Vi +iVh) sajzlszylspherlfzal :c(jnsor commut. relations
oo Jg,vo] = |1, V4] =0
VI = +5(Vi—iVh) TV ] V2RV, [ji, Vol] — V2RV,

Note: This reminds us the relations between (1,9, 3) and (_1, %0, 1¥41)
components of a vector wavefunction 9 (spin-1 particle). The 4 terms differ
because 1) transforms as Ry (R™17) and not as R™14p.

(2) A=2 tensor (relations without proofs):

7?11 7:112 1?13 . ) . R .
Ty Ths Tos | satisfying T;;=T}j; and . T;;=0
T‘Sl 7132 T‘BB

Cartesian tensor operator
Tij = (

Spherical components

Ty = —\/g(fn + Tho) = \/%TSZ%
T2 = F(I5 £ i) = F(Tistilss) A A )
T2, = 5(T1 — Ty £ 2iT) || = Ti+5TssEiT10 = —Thy—5T53%iT1,

» Coupling of spherical tensors
Let flf& and Bﬁ; be spherical tensors of ranks A\; and \g. Then

T/;\ E Cif#IAQﬂQAAIBAQ = [AM x B)‘Q]l); is spherical tensor of rank A
H1spi2
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Proof: DY ANy D B Nl A X
~ 0/\(;\ ~ 1 MZ/ Mlﬂl Ml MZ/ M2M2 H2 ; ,ZHC)\lullz\z,uéc)‘ll‘l)‘yQ w p!
R Tv“ R 1 2 W,
)\,u AAI > 7f,/\ > )\2 > 7?_ )\/L )\1 )\2 )\1 )\2
Z ALpi1 A2 ptz R AMR R BHQR o Z Z C’/\1M1)\2H2 ulmDuzuzA B
1,42 M17N2u17u2
/\, " N p, N\ A Ao
_Z Zﬁ ,Z z :CALUJ)\QMQ )\Mtl/\zuzc/\lul)vuzD //AMBNQ
1SR -
Nl H2 P T;\/
What a beatiful s }: ! i\ A A A
at a beatifu _ 1 2 __
flyspeckful derivation! - Z D i C/\1M1)\2M2AM1B L Z Du MTM
I /
N17/J/2

Conclusion: coupling of spherical tensors creates other spherical tensors with
ranks given by the usual angular-momentum coupling relations.

Special case: scalar coupling

scalar product

(A BN =%, ) ANBA = | = (- Al B
\V/

V2Ar1 TR of tensor operators
n
e R
(A*-B*)

» Properties of matrix elements of spherical tensors

If spherical tensor operators are written in the angular-momentum eigenbasis,
the corresponding matrix elements exhibit interesting properties: many of them
vanishe, the remaining ones satisfy some simple relations. The rules behind this
behavior come from the coupling of angular momenta.

{lajm)} = angular-momentum basis with a denoting other quant. numbers
(a'j'm/ |T:|ajm> = matrix elements of a general spherical tensor
Application of the definition properties of spherical tensors:
(a) (a'j'm’| [js,T,A] T |ajm)=h[(m'=m) —p)] ('j'm'|T}}|ajm)
=0 =0 20
(b) (') [ B2 = b/ XA+ —p(uD) Ty [am) = 0
7
= VI = (' F 1 (' F )| TRlajm)

~ViG+D)=m(mE1){dj'm! [T aj(m+1))

= VAOHD) —p(uE 1) (| T |ajm)

= m+u=m'

= (dj'(m'F1)|T}|ajm) =

(41 (L . a . AL .
s (! | T aj (m+1)) + |/ et (0! | T agjm)

The last relation is compared with the above-derived Juma ka
recursive relation for the Clebsch-Gordan coefficients ]Q,Zfz ~ jg’nﬂl/

with substitutions (see the r.h.s.) after which it reads: + — F
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C] (mFl) J (L m(mtl C] 'm!

AL g'm’
jmAp T 3 (L) =m/ (m/L) g (L) A + C

J'(J ’+1)~m’ m¥1 JmA(petl)
Indeed, with mapping (a’j’'m/ |ATj|ajm> chjnﬁ\u both relations are the same.
= matrix elements (a'j'm/|T}|ajm) for fixed j, ,j' can be constructed from

the same recursive relations as Clebsch-Gordan coefficients ijw

= (dj’ m’|T/;\\ajm) CJ]T,TM This is the content of the following theorem:

» Wigner-Eckart theorem | (d/j'm/|T}|ajm) = (a'j'||T*||aj) j”r&#
———

reduced
matrix element

The meaning:
(a) The dependence on m,m’, u is just that of the CG coefficient.

(b) The dependence on j,j’, A is involved in both the CG coefficient and the
quantity (a'j’|[|T*||aj), called the reduced matrix element. It can be understood
as a proportionality constant (for fixed m,m’, ) which cannot be determined
from the algebraic properties of angular-momentum operators, but needs to be
evaluated for each particular case.

(¢) Overall, the theorem implies selection rules for tensor operators:

. ./ . other equivalent forms
|.] _/\’ S J S (] +)\) of the triangle inequality
=m " =Al<i<(+A)
m4p=m L o
A li—3'1<A<(+5")

(i im0 = {

These rules are essential e.g. for electromagnetic transitions between discrete
energy eigenstates of various bound systems (atoms, nuclei...). Quantum ampli-
tude of such a transition (per time unit) between states |ajm) and |a'j'm') for
multipolarity A (total angular momentum of the absorbed or emitted photon)
is given by a matrix element of the above type. So, e.g., a j A 4" transition
requires 7, j', A satisfying the triangle inequality.

<« Historical remark

1927: E. Wigner introduces D-matrices and applies the rotation group in QM
1930: C. Eckart publishes and applies his formulation of the W.-E. theorem
1942: G. Racah further extends the use of spherical tensors in spectroscopy

B Space inversion

Spatial inversion (taking mirror images of all 3 spatial axes, therefore replacing
“right” by “left” and vice versa) is just a discrete transformation. Nevertheless,
there exists an observable associated with it—the spatial parity. In contrast to
the above cases, space inversion is not a valid symmetry of this world.

» Coordinate, momentum & angular momentum transformation

The unitary space inversion operator P is defined by relations:
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pPl=—z

SR

P

Cartesian coordinates:

Spherical coordinates:
r—r

U — (m— 1)
p = (p+m)

» Classification of observables with respect to space inversion

So far, we classified observables according to their transformation under rota-
tions. The space inversion enriches this classification.

A DA

PVP = -V vector prp-! +V’ pseudovector (axial vector)
PSP =48 scalar PSP~ = _§" pseudoscalar
So for example, the angular momentum J is not a true vector, but pseudovector,

and a scalar product ﬁ . J is not a true scalar, but pseudoscalar.

» Invariance sensu stricto (—Pk)-(—Dk) V({- %k} (S}

/—/%
(CANA)

A A 2 A
= VH{EY LS = V{3, {5:))| potential must be even

N-particle Hamiltonian H=PHP = kZ: M,

» Parity

Operator P not only defines the space-inversion transformation, but also rep-
resents a physical observable called parity:

P2=] ’]5 = Pf = 15_1‘ = eigenvalues ||7 = £1

For single-particle wavefunctions we get:
E\Ijeven(f> - +qjeven(f) quodd(-f) - _\Dodd<f)
P[R(r)Yiun(9, 9)] = R(r) Yi(7 = 0,0 +7) = (=) (=)"[R(r)Yim (¥, )]

o .
]Dlm(— Ccos ﬂ)ezmwezmﬂ (7)1

B Time translation

We come to transformations involving time. The most important specimen of
this type represents a shift of the time-axis origin—time translation. The uni-
tary operator expressing the transition between observers with different time
settings is closely related to the evolution operator, which describes the dy-
namics. Motions of quantum systems generated by this operator will be in our
main focus starting from Sec. ba.
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» Observations with different time origins Present
t/
{Zyouzf,i?» — states of the system seen by
old ~ “young” & “old” observers

T dttoung, t

Uniqueness requirement: |¢young(t’)) = [o1a(t))

Transformation between both time frames: [tyoung(t')) = Ut t) [ hoa(t))

= Evolution transformation from time ' to t =t4+7: | [ (t)) = U(t, ") [thga(t'))

» Properties of U(t,t)
T

U(r) = X7 with any {=x'

3 N — T7(+ _ 4 .
(a) q@’ 11)1 o Q(t t) Consistent choice: x = —%H
(b) U(r)t = O N A
— 2 L Ht
() UO)=1 . . U(r) =e "# || evolution operator
(d) U(Tl -+ ’7'2) = U(TQ)U(Tl)

The above association of the generator xy with the full Hamiltonian H of the
system will be shown to be equivalent to the nonstationary Schrodinger equa-
tion (see Sec. 5a). The above derivation of U(7), in particular the requirement
(a), in fact assumes that the symmetry of the system under the time transla-
tion is meant sensu stricto, which in this case implies that the Hamiltonian is

independent of time: | H (t) = H| For instance, a system depending on exter-
nal fields that vary in time does not possess this symmetry. However, it turns
out (Sec. 5a) that even in such situations the time-dependent Hamiltonian H (t)
fully determines the evolution operator U(t, ') # U(t—t') of the system.

» Evolution in the general case

Postulate: Hamiltonian H(t) of the system at time ¢
= hx generator of infinitesimal time translation = evolution from ¢ to t+dt

B Time reversal

Time reversal means an inversion of the time arrow: going from future to
past. Omne can imagine a movie played backwards. When watching such a
movie, how to assign vectors to states and operators to observables to get
a consistent QM description? Like the space inversion, the time reversal is
just a discrete transformation, but a more difficult one. In quantum physics it
cannot be represented by a unitary operator and there is no physical observable
(analogous to spatial parity) associated with it. Similarly as in the case of the
space inversion, the symmetry sensu stricto under the time reversal is slightly
violated in nature (in weak interactions).
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» Basic requirements
We seck for operator T satisfying: |U(£)T |1 (0)) = TU(—t)[(0))| V|4(0))

This means: forward evolution of the
time-reversed state = time reversal of
the backward-evolved state, see the figure:
For infinitesimal time ¢ this implies:

( Hét)T 7-(1 +ZH6t)
= We require: |(—iH)T = T(iH)

For T unitary this would mean:

HT+TH= {H,T}
——

R anticommutator L R
= H|E) = E|E) = H(T|E))=—-E(T|E))
This would imply that energy has no lower bound, which would lead to catas-
trophic evolution accompanied by infinite release of energy. This is not physical.
= 7T is nota unitary operator!

» Operator 7 is antiunitary

This means that it satisfies T(ad) = *TA Va e C
U = a unitary operator

T = UK || where ! K = complex conjugation operator: K3 a;|i) = 3 af|i)
with respect to a selected basis {|i)}i=1.2. .

= Instead of {ﬁ , 7'}:() the above requirement implies: [ﬁ : 7'] =0

The form of T (the choice of U and the basis for K) is not uniquely fixed but
depends on the specific physical application.

» Properties of scalar products

(1la) = (U Uta) =32, @' = (32, @ ic3,) " = (Tn [ Tba)™ = (T Tthn)
(h1|Ofbs) = (Tiho| TOMTHT4)  (e.g., transition matrix elements)

» Classification of observables with respect to time reversal

(1) TAT'=+A even observables (e.g. H :U ) T keeps eigenvalues
(2) TAT '= —A odd observables (e.g. P, L, S, ) T inverts eigenvalues

» Invariance sensu stricto (=pr)-(—p) V{E =5
— %

N-particle Hamiltonian H=THT != >, ﬁ 722%57:71 + ’7—‘/({«%]{}, {S‘k:})%fl
—~ 2M,

s V( { 5%:]5} { §k}) —y* ( { %k} {_ §k}) real potential function (no losses) invariant
, = , R .

under spin inversion (no external mag. field)
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<« Historical remark

1924: O. Laporte introduces spatial parity of electron wavefunctions in atoms
1931: E. Wigner shows that time reversal is represented by an antiunitary operator
1956: C.-S. Wu experimentally verifies that parity is violated in nuclear g decay
2012: experimental evidence of the time-reversal violation in weak decays

B Galilean transformations
Nonrelativistic quantum mechanics must be invariant under transformations
between inertial frames with relative speed v. These transformations involve
space, momentum and time variables.

» Quantum Galilean transformation
) ) . 7 G z Tt
Classical Galilean transformation: (ﬁ) — ( ﬁ) = Gy ( ﬁ) = (ﬁ—Mﬁ)
t t

Unitary operators Gy must satisfy GGl = %—Utf, G’gﬁ@vil =p—Muvl

Gy = ehME-D)T| H enMuidi o= rf“pl erzMvit (uging the BCH formula)
=1
Systems with N > 1 partlcles Gy = H G

Trasformation of single- partlcle Wavefunctlon
Coordinate representation: Gy Y(7,t) = er (MTZ—5Mv*) (F—1t,t)
Momentum representation: Gy ih(p, t) = en (0P MD) o)y (5 V[T, 1)

» Relativistic quantum theory

To implement the relativistic Lorenz transformation into the quantum theory
turned out to be a much more difficult task. It was not possible —at least not
in a consistent way — before an essential reinterpretation of the wavefunction.
In the relativistic theory, it does not describe a single particle, but a quantized
field of particles whose number is not fixed. We do not follow this story here.

<« Historical remark

1925: Erwin Schrodinger attempts to create a Lorenz-invariant wave equation, but
because of problems he remains with the non-relativistic formulation

1926: Oskar Klein and Walter Gordon (simultaneously V. Fock and others) develop
a relativistic wave equation for spinless particles

1927: Paul Dirac initiates quantum field theory (the correct unification of relativity
with QM), in 1928 he creates a relativistic wave equation for Spin—% particle

B Symmetry and degeneracy
Degeneracy of energy levels is an important signature of the system’s symmetry

sensu stricto. It occurs because for transformations Ug = ¢iG¥ belonging to the
symmetry group G the vector Uy|E), where | E) is any eigenstate of the system’s
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Hamiltonian H, remains an eigenstate of H with the same energy F. However,
some symmetries cause no degeneracy, and some degeneracies are not caused
by usual geometric symmetries.

» Abelian symmetry group: Eigenstates of H are simultaneous eigenstates
of all generators G; = €C¥|E) = ¢i?|E) (with ¢ = just a phase) = The
symmetry does not necessarily imply degeneracy. If degeneracy of eigenstates
with different eigenvalues of G occurs, it has some other (“dynamical”) origins.

» Non-Abelian symmetry group: Some generators G; act nontrivially on
the eigenstates of H = eié'§|E> —|E') with H|E') = E|E') and (E|E') # 0
= Degeneracy in general occurs. Example: rotationally invariant H shows
degeneracy of eigenstates {|ajm) ;f: _j» where j,m = total angular momentum
quantum numbers and a = additional . numbers.

» Dynamical symmetry

This term refers to situations when the Hamiltonian H has a higher symmetry
than the commonly required space-time symmetries (like those under transla-
tions, rotations etc.). The sensu-stricto symmetry group G of such a system
usually contains these space-time groups as subgroups. This leads to so-called
accidental degeneracies of energy levels beyond those dictated by the com-
mon symmetries.

fm
\/2h/Mw

& 1 I

P="ona?

Example (a): 3D isotropic harmonic oscillator
Dimensionless coordinate and momentum operators {

H= Llp24 M2 b3 4 (24+ip) - (x—ip
oam P 2 [2 ( A B) - ( A P)}

bT g ol o o
Beyond the rotational symmetry defined by transformations { RETR=RZ } with

RpR =Ry
orthogonal matrices R € SO(3), the Hamiltonian is also symmetric under a class

of unitary transformations { 0%’75:11:5% } with unitary matrices U € U(3). We
have U(3) D SO(3), so the system’s actual symmetry is higher than rotational.
This causes “accidental” degeneracies of oscillator eigenstates with different

orbital quantum numbers [ (see Sec. 2b).

Example (b): Coulomb potential (i.e., the hydrogen atom or Kepler problem)
Accidental degeneracy of the Hamiltonian eigenstates with different orbital
quantum numbers [ exists also in isotropic potential V(r) =—% (see Sec.2b).
In this case the symmetry chain is SO(4) D SO(3), where 6 generators of the

SO(4) group coincide with components of the orbital angular momentum L and
those of the Runge-Lenz vector R= %(ﬁ x L—L x ﬁ) —MK%’, all satisfying
1 L= [ ] 0.
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<« Historical remark

1926: Wolfgang Pauli associates the accidental degeneracy in the hydrogen atom
with the additional symmetry (using Lenz result from 1924)

1935-6: V.Fock & V.Bargmann analyze the dynamical symmetry of hydrogen
1960-70’s: elaboration of techniques based on dynamical symmetries in particle and
nuclear physics (A.O.Barut, Y. Ne’eman, A. Bohm, F.Iachello, D.J. Rowe et al.)

5a. UNITARY TIME EVOLUTION

After all, we are now coming to the dynamics of quantum systems, i.e., the evolu-
tion of state vectors in the Hilbert space with running time variable ¢t. The standard
treatment of quantum mechanics declares two types of quantum evolution: (i) the
spontaneous one— motions signifying perpetual flow of time, and (ii) an induced
one— changes provoked by quantum measurements. At first we will focus on type
(i), the unitary evolution of systems which are not disturbed by any external in-
teractions. Later, when we elaborate a more sophisticated statistical description of
quantum states, we will argue that evolution of type (ii) may also be treated under
type (i) if the external probes are included into the full quantum description.

B Evolution operator and Schrodinger equation
for systems with time-independent Hamiltonians

For quantum mechanics, the nonstationary Schrodinger equation means the
same as what the Newton equation means for classical mechanics. We have
already introduced the evolution operator from the time translation (Sec.4b),
so we do not need to make a special postulate on the spontaneous dynamics.

» Spontaneous evolution of a quantum system

p=—
ih e |y (0))] =H e~ R [1:(0))]

9(E)) = = F [(0)) in|p(t) = Alp()

evolution operator nonstationary Schrodinger equation

This description of the time evolution, with proper definitions of the system’s
state vectors and the Hamiltonian (operator of total energy), is quite general —
valid in both non-relativistic and relativistic quantum theory. However, in the
relativistic domain (i.e., within the quantum field theory) it becomes too com-
plex and more viable approaches are applied instead. The non-relativistic QM
follows from from considering the wavefunction of a fixed number of particles
(in relativistic physics, particles can be created and annihilated) and from using
the non-relativistic approximation of the Hamiltonian.
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Example: Non-relativistic spinless 5 2 -
particle with Hamiltonian =2 1v(i): ihg (1) = [ A+ V(2 )] U(Z,1)

» Expression via stationary states

Assume a discrete energy spectrum of H that provides a complete basis {| E;) },
. E

HIE)=E|E) = [£(0) =|E) 5 [p(t) = ¢ (0))

Eigenstates of H evolve just through their phase factors = they are “stationary”

= Evolution of a general state is expressed by its expansion to eigenstates |E;):

WOY=)_ i IB) = D e EIE)=lu()

b u(0) v i(t)

This yields a rather simple picture of evolution! Im a,
Example: quantum survival probability,
i.e., the probability that the initial state
|1)(0)) is found in the evolved state [i(t))

po(t) —lao O = () ke(e) lal®e ™ e,
= [(®(0)]e % |1(0 >>}
= Z|ai|2€_ii"t = po(t) a5 ()

B Single-particle probability current

If the dynamical Schrodinger equation is applied to the scalar wavefunction of
a single particle in external fields, the resulting dependence 1 (Z,t) describes
how the probability density p(Z,t) = [¢(7,t)|? flows in space. This process can
be described in terms of ordinary fluid dynamics.

» Continuity equation

Particle in scalar and vector potentials V (&, ) and A(Z, t):
0 2 (9’(/) * 1 % 1

57 + = 7 th — A +V

ot |¢‘ (0 1/} ,ﬁ¢ QM( q

14 from Schrodlnger eq.

complex _
conjugate [

— L Im [zp*(—h?ﬁ-€+z’hq6ﬁ+z’hqlﬁ+q%2)¢] — V. [ﬂ My V) — Lo *;z)}
L Y vw)mqv W Ay) i
+h2 (V) (Vi) —ihg[(V*)- Ap—C.C. | +> A2y
We obtain the familiar continuity equation: %p(f, )+ V- 7(Zt) =0

The change of probability in an infinitesimal volume is in balance with the
incoming/outgoing flux of probability. The probability density p(Z,t) behaves
like the density of a fluid whose “substance” is locally conserved.
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Conservation of total probability: Take a sphere of radius R (volume Vg, sur-
face Sg). Then & [ |W(Z,t)[>dZE = — [ V- j(Z,1)dT = — [ j(Z,t)-dSg — 0
Vg Vr Sk o

(since for normalizable wavefunctions j — 0 faster than 1/Sg)
= The norm (Y|¢) = [|¢(Z,¢)|*d¥ = 1 is conserved in time, as was already
clear from unitarity of the evolution operator U (t).

» Probability current (flux)
J@ 0 =4 [0 V|~ Ay =| ok [0 Fe) + (e ] =]

—
— i (*Vyp—yVyr)

(—ihV — qA) = mechanical momentum

T

Parametrization: ||¢(Z,t) = R(Z, t)e%S(x’t) = j=_R? -+ [65 — qfq

This helps to understand the meaning of complex single-particle wavefunctions:
e The squared absolute value [¢)(7,t)|> = R(¥,t)? is the probability density.
e The gradient of phase VS(Z,t) determines the velocity field = flux.

This means that even a stationary wavefuction (&) = R(Z)er5® can have

a dynamical content if ¢)(7) € C and the phase S(Z) # const.

The wavefunction ¢ (Z) can be visualized as
a mesh of arrows whose lengths are proportional
to U(7) = %65’(5) (the velocity field) and whose
density is proportional to p(¥) = R(Z)? (the
density field), see an artificial example here:

» Probability currents for simple wavefunctions

(a) Planar wave: W = Nek? 7= ]J\/'\W
(b) Spherical wave: Y =N1ehr j= |N|2]€[_’?‘2ﬁr
(c) Eigenstate of ¢ déy - ho
. =R Y (9, r i mh
orbital momentum: v \(,T.Z M J X G+ g
|R|ei¢r(r) Py, (cosd)ei™e

The corresponding (a) (C)
probability currents are:

(a) translational
(b) divergent

¢) rotational
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» Interference of probability currents

Let 9(Z) = 11(Z) + ¢o(Z), with ¢1(Z) and ¢2(Z) being wavefunctions with
currents j1(Z) and jo(Z). The probability current corresponding to 1(Z) reads:

-

Example: ] = jl + ]2 * MRe [¢1( ihV)@ZJg—kw;‘(—z’hV)wl_2qu/)i*¢21
plane waves interference term Jine

2\ A[oik1-T - —
Z;Eg;xz’“} = i (7) = NP [ (1 + B) =20 A ()] cos (ki =) - 7]

In particular, we obtain no interference for /ﬁ = j:lgz and A=0

» Stationary solutions of dynamical problems

The continuity equation enables us to solve some nonstationary single-particle
problems, like scattering on a potential V (), via the stationary Schr. equa-
tion. These techniques will be elaborated in Secs. 12 & 13. Here just shortly.

—

Stationary state: %W!Q =0 = continuity equation reads: ||V - j =0

For systems inviariant under time reversal there exist degenerate Hamiltonian

eigenstates {Y;i } with flows { j;} We can combine these solutions to a real

solution with ;:O. However, when solving the dynamical problems we proceed
with complex solutions.

Example: Consider the 1D scattering problem describing passage of a particle
through a finite-range potential V (z) with V(x)—0 for x — +oc.

We search for the solutions of £

j 0 jtrans
B2 d? hk
[~ L+ V(@) te(e) = B gp(z) —— —
with ¢p(z) having the asymptotlc forms: Jrefl V(x
. +ikx —ikx € — ( )
xr— —oo: Yp(r) ~ g + arei(E)e
mncoming reflected
Qrefl, Atrans = coefficients transmitted waves
——~
. ik
xr — +00: ¢E($) ~ atrans(E)eﬂ ’ §(—00)=jo+jret Jerans=J (+00)

1D continuity eq. d%j(x):() = j(x)=const = (1—|awen(E)|*) 2 = |atrans(E)[* 22

Hence the solution of ¥ g(z) of the stationary Schrodinger equation with the
above asymptotics directly yields the reflection probability prea(FE) = |awen(E)|?
(= J;f“) and transmission propability pirans(E) = |awans(E)|* (= Jt%) satisfying
PrefitPerans = 1. It turns out that, in general, even a particle with £ <Max,V (z)
has a chance Pians(F) > 0 to pass (quantum tunneling effect), and also

a particle with £ >Max,V (z) has a chance pea(£) >0 to get reflected.
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» Vorticity of the flow |6 =V x @
This quantity quantifies the spinning motion of the 3D velocity flow.

(a) A=0: §=Vx (ﬁﬁb’) = 0 except points satisfying ¢ = 0, where the
phase S is not determined = In absence of mag. field, the probability flow may

produce vortices only at the points where ¢ =0, cf. the rotational flow (c) in
B
the above example. A

—,

(b) A+ 0: v=—+ (VxA) = The flow is vortical in all points where B 0.

<« Historical remark

1926: Erwin Schrodinger presents the nonrelativistic wave equation for single elec-
tron & Max Born finds its probabilistic interpretation using the probability flux
1928: George Gamow explains nuclear a-decays with the aid of quantum tunneling

B Conservation laws and symmetries

We are ready now to appreciate the deepest dynamical consequence of symme-
try. According to the famous theorem by Emmy Noether, the symmetry sensu
stricto of a given system under an n-parameter Lie group generates n conserved
quantities. This has rather fundamental connotations. One may imagine that
the very recognition of all physical quantities relies on the particular symme-
tries that imply the conservation of these quantities in some systems. But what
the conservation law means in the indeterministic environment of QM, where
all physical quantities yield just statistical values?

» Conservation laws in QM

Time evolution of the probability distribution for measurement outcomes a of
quantity A for a system in initial state [¢0(0)):  py(a,t) = (V(t)| Pl (1))

Quantity A is conserved in a given quantum system iff its probability distri-
bution py(a,t) for any initial state does not change in time:

= & pula,t) =0 Y[1(0)) & Va o
= statistical moments (¢(t)|,21’f|1/;(t)> — <¢(0)|Ak|w(0)> R P |

W)l Are R (o)) = ||[4,H]=0

So, the conserved quantities are those that commute with the Hamiltonian.

» Evolution of averages <¢(t)|[ﬁf]|¢(t)>
g Ht ~ ~ - Ht : N

iR () Ab (1)) = — (@b (0)[e"F H Ae™ ¥ [12(0)) + ((0)[e' ¥ AH e 15(0)

Time-derivative “operator”: A= LIA, H] %(AW = <¢(t)|121|1/1(t)>
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Analogy with the Poisson bracket: A = Z(g—A Di —{—g—; g )=1{AH}

F)H

= correspondence [A, H] «» ih{A, H} ~ 9 + 5
Example: particle speed “operator” for H = m(ﬁ — qff)z +V

~

7= m[flf H] 21]\[;7[A ( qA) ] ( qA)

» Conservation laws generated by symmetrles

A,

Let quantity G be a Hermitian generator of an n=1 Lie group G = {eiés}seR
G.H]=01 % H]=0
G is conserved G is the symmetry group of H (sensu stricto)

Generalizing to higher dimensional Lie groups, we obtain the QM version of
the Noether theorem: invariance of H under a Lie group with n generators
implies conservation of quantities associated with all generators

Standard spatio-temporal symmetries of H and related conservation laws:

translational invariance & linear momentum p’
rotational invariance < angular momentum J
time translation invariance < energy H
space reflection invariance < parity P

Note: Space reflection is not a continuous transformation; parity conservation
follows from an “accidental” Hermiticity of the reflection operator P

« Historical remark

1915: E. Noether proves the theorem relating conservation laws with symmetries
1924: N. Bohr, H. Kramers & J. Slater propose that in QM the conservation laws hold
only “statistically” (not in every event), but this is later disproved experimentally
1927: Eugene Wigner writes about symmetry & conservation laws in QM, he relates
parity conservation in elmag. decays with reflection symmetry of interaction
1956-64: Discoveries of the violation of the spatial and combined parity P and C P

B Energy X time uncertainty relation

Time does not appear as a standard physical observable. It is just “a parame-
ter” whose only role is “to fly” —and we all have to fly with it! In particular,
quantum theory offers no operator to be associated with time. It is possible to
find various observables that can be used for time measurements in association
with some specific initial states, but to find a universal time operator is not
possible. Nevertheless, it is often stated that time and energy form a pair of
conjugated quantities similar to coordinate and momentum. This can be valid
only in a limited sense, which we explore in the following.
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» Survival probability and energy distribution

We return to the above-outlined problem of survival probability. The amplitude
ag(t) = (1(0)|¢(t)) and probability po(t) = |ag(t)|? to find the system in its
t = 0 state [¢(0 )) at a positive or negative time ¢ must satisfy conditions:

ao(1)=((0)e~ "7 1 (0))=(e*F (0)[$(0)) = aj(—t) = |po(t) = po(—t)
[ X |Ek)(EK|dE =1

To evaluate ay(t), we use the completeness: < S(i) k€Pe
(for continuous E & discrete k; other possibilities analogous) <E’]{?’|El{?> = 5(E—E/)5kk/
i
ag(£)=(¥(0 )\Te*’ v () =[f z \E’ ') <E/l</\e " |Ek) (Ek[(0)) dE dE'
] (E/ k') e 6(E B w(E.k)

= [ [; \w(E,k;)\?} e NdE = / QE)e "% dE = ay(t)

S(H)

TV
Q(E) energy distribution

So the survival amplitude ag(t)
is the Fourier transform of the
energy distribution Q(E). The e

general rule is that { Wide 1 energy —

distributions yeild the survival -’ ;
probabilities that decay {qmd{ly }

slowly

7

Defining some widths AFE and At of the energy and time distributions, we
expect an approximate relation AE - At ~ h, where however At is not an un-
certainty in the usual quantum sense. Below we illustrate this by two examples:
(1) Gaussian energy distribution

o2
QFE) = \/;76_(15230) the energy width is naturally defined as AE = o
T _wm? e Sy p
00(t>:\/21r? {O ¢ ' dE=e ~at e ' 'O(t) +
e (Bo4)eh rs
o\%2 t\? -\
po(t) = e (1)) = (&) = the time width
can be defined as Atz% = |AE-At=nh P 5 A t

(2) Breit-Wigner (Cauchy) energy distribution

I' = finite halfwidth of Q(E)
= (E?) = 0o energy disperion infiniteas the decrease
24 (5) of Q(F) for E—+oc0is too slow (algebraic)
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We obtain  |pg(t) = e 7| exponential decay with average lifetime 7 =

=l

T T

= =
So the energy-time uncertainty satified: |AE - At =h

Inverse proof (from exponential decay to Breit-Wigner distribution):

A ( ) e_Ft/(Qh)e_iEOt/h t>0 Coherent assumption on the
ssume ap(t) = . or - phase factors. The ¢>0 exponential
€+Ft/ (2h)€ iEot/h t 0 decay is extended also to t<0

0 +o00
—+00 E— 0
E)=gy | ao(t)e”?fdt:ﬁ(/e[‘;ﬁ*ﬁf“]tdw/ e E]dt) -
- —00 0

J/

bt D S 7
1 ’°(> (T/2)+i(E—Eo) —(T'/2)+i(E—Ey)
s 5l — 1 U2
g T T (E—Eo)*+(r/2)°
So the exponential decay of unstable
C 7 nuclei, particles and other objects is
_—_—'H

related to the continuous Breit-Wigner
distribution of energy, which is called

the natural lineshape. However, the Breit-Wigner distribution Q(£) is not
physical as it has the infinite energy dispersion. The real lineshape can be very
close to the natural one but must deviate from it in both low- and high-energy
tails. This leads to small deviations from the exponential law, in particular, to
a smoothening of the t = 0 cusp of the extended function py(t); see below.

» Mechanism of generating a smooth lineshape

The decay of an unstable quantum system @ is often due

to its interaction with a certain quantized field F (e.g., the

electromagnetic field). The Q + F system has Hamiltonian

H = Hq + Hs + Hqp, where Hq (with a discrete spectrum)

and Hp (with a continuous spectrum) are self-Hamiltonians

of Q and F, and lfIQF is a Q-F interaction. Assume an initial

state [1(0)) =|E;)q|0)r in the full Hilbert space H=Hq®Hrp,

where |E;)q is an excited state of Q (so Hq|E:)q = Ei|Ei)q) E; E
and |0)r is the lowest-energy eigenstate (vacuum) of F. Thus the

state |E;)q|0)p is an eigenstate of Ho+ Hs, but not of the full Hamiltonian H.
Hence this state evolves with time. The energy distribution Q(£) in the con-
tinuous eigenbasis of H determines the survival probability function Py(t).

» Non-exponential decay

The decay of unstable nuclei, particles or excited states is described by the
exponential decay law, but necessary low- & high-energy deviations from the
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Breit-Wigner energy distribution imply that this law is only an approximation.
This becomes particularly apparent at very small and very large times. Devi-
ations at the small times: The exponential decay yields £py(t)], = —21 while

=0

=0

QM always yields %po ‘t 0

- H ot

|Cl(](5t)‘2 = <77/J( )| i ‘7,&( )>< ( )|6+1H&”¢)( )> /2 expand up to 2" order in &t

~ 1+ ((0)| H[1p(0)) 0 — (4(0)| H2Jp(0)) O = |11 — L0 (5¢)% ~ po (5t)
~—~

T2
1 = The QM decay for small times is always quadratic.
P(gt) However, this is usually very hard to measure!
(o]

= We again get: AE At =h

St ) T

<« Historical remark
1950-60s: Theoretical study of deviations from the exponential decay law
1997: The first experimental detection of the short-time deviations

» Energy X time uncertainty in real measurements

Assume the situation in which an evolution of a certain quantity 7" (with quan-
tum operator 7') for some particular initial states is used for the determination
of time (for a given system). What is the precision of such a chronometer?

For T being an applicable “clock” operator there must be [T, H ] # 0| (oth-
erwise the distribution of quantity 7' for any initial state |¢/(0)) would be con-
served in time) = standard TxH uncertainty relation can be apphed in the
evolving state [1)(t)):

VEED s (T > 5[(0@)] 5T, H] [4(1))]

1 fluct.
. (TN AyyT _ .
uantit - = = At can be iden-
§ Quantity s oy S0
K’Y tified with an uncertainty of time determination

via the clock observable 7' for initial state [1(0))

= = real uncertainty relation ||AE - At > %

Time operator in QM? For a certain subset of initial states of the given
system, it is possible to find a suitable clock operator T. However, there exists
no uniersal time operator T satisfying the canonical commutation relation
[T, H| = —ihi, applicable for all initial states € H. For instance, this would
imply the absence of a lower bound of energy, which is unphysical.
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<« Historical remark

1926, 1933: W. Pauli shows the difficulty in building a quantum operator of time
1928: N. Bohr proposes the E x t uncertainty principle, 1930’s debate with Einstein
1945: L. Mandelstam & I. Tamm derive F x t uncertainty for “clock observables”
1960’s—present: Discussions on the ways to formulate QM with a time operator

B Hamiltonians depending on time

Let us have a closer look on quantum dynamics generated by a Hamiltonian

which itself changes in time: | H = H(t)|. This means that, for the system un-
der study, the time-translation invariance is violated, as is actually the case if a
variable external field is applied. However, as explained in the following para-
graph, time-dependent Hamiltonians naturally appear also in time-translation
invariant situations—in the so-called Dirac picture of quantum dynamics.

» Nonstationary Schrodinger equation for time-dependent Hamiltonians

The form of the evolution operator remains valid in the local sense (for in-
H ()5t

finitesimal time intervals 6t): U(ty+0t,t)) = e " 7

= The nonstationary Schr. eq. remains the same: iRy (1)) = H(t)[4(t))

A~ A

o . (a) [H(t),H(t)] =0 Vit | ..easy but rare
We distinguish 2 cases: (b) [ﬁ(t), f[(t’)] 20 t#£¢ | ..normal & difficult

Schrodinger equation can be presented as an equation for the general evolu-
tion operator U (t,t): ¥ (1) (1)
,/\—J‘ . ,A_/_
ih U(t,to)[(to)) = H(t) U(t, to)[¢(to))  valid ¥ [4(to))

= operator equation zh U(t to) = H(t) U(t, to)| with |U(to,to) = I

» Dyson series for general evolution operator

The formal solution U(ﬂ t) =11 f H (tl,to)dtl
of the above operator o w—/
equation reads as follows: joilt

5 [ Hlt) Ultato) dts

t
By repeatedly inserting this equation ’

into itself we obtain the solution in the form of an infinite Dyson series:

- o tt )
Ut,to) = I+ (—4) f H(ty)dty + (—2)° [ [ H(t2)H(ts) dtadty + ...
tO to to
tty tho1 R
F (=D [ [ [ H@)H®). .. H(t,) dt,...dtdt + ...
to e
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In general, the Dyson series can be summed up to a compact form only in
case (a) of the Hamiltonian time dependence. In case (b), which is much more
generic, the evolution operator can only be expressed in the infinite-series form.

> Case (a) commuting Hamiltonians: [H(t), H{')] =0
ffH t1)H (t2) dtadt; = 2ffH t1) H (ty) dtodt, = lfH dt1]

to t[) t[) to
t t1 n 1

[ [ ] Ht)H(ty) ... H(t,) dtn...dtgdtl:%{fﬁ(tl)dtlr

to to to

—i (A d .
Uv(t to) . nt{ (t1) dty ... compact expression

of the evolution operator

» Case (b) non-commuting Hamiltonians: [H(t), H(t')] # 0

t t tn—1 N
Note that [ [... [ H(t)H(t) ... H(t,) dt,...dtsdt; =
toto  to o
. . . .
LS T )@ )| dtdtsdt
I m=2 n{{ t{\ (t1) (j) (tn) 2t
H(t; YH(t,) ... ﬁ(tlns time ordering
‘ (tl,tz...tn)H(til Z%ZZE”)
In each term of Dyson series do the following;:
(1) change the subintegral operator function
| to the t-ordered product: [...]— T[...]
L _ (2) extend integ. domain = all upper limits = ¢
7 (3) reduce the integral by factor L
i ft A(t) dty ... symbolic compact expression in the form
U(t,ty) = Te ' of the time ordered exponential —just an

abbreviation of the full Dyson series

The Dyson series for a general time-dependent Hamiltonian is not a perturba-
tion series, i.e., it is not guaranteed that the size of individual contributions
decreases with increasing order. So it might be generally difficult to make it
useful. However, below we will see that convergence properties of the Dyson
series get much better in the so-called interaction picture of the time evolution.

B Alternative descriptions of time evolution

So far we have followed an approach to quantum dynamics in which the vectors
corresponding to physical states vary in time while the operators associated with
fundamental observables (such as coordinates and momenta) stay constant.
The varying Hamiltonians considered in the last paragraph were exceptions that
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we related to externally varied fields. However, this most common description
of the time evolution is not the only one. All equivalent descriptions can be
sorted into 3 groups, according to whether the evolution is attributed to state
vectors, operators of observables, or to both.

» 3 equivalent ways to express action of any unitary transformation U

varying vectors varying operators varying both
@ U)W ) 3 W= Ol
A — A A = UTAU An—>U1AU0

for any factorization U= U0U1
In all cases, matrix elements (/| A[¢)) are the same = equivalent descriptions

These possibilities constitute 3 equivalent types of description of quantum dy-

namics with unitary evolution operator U (t) =e —ift | which is invariant under
the time translations.

» (1) Schrodinger picture

It assumes varying state vectors and constant operators:

usual time evolution of state vectors

= ihd1h(t))s = Hs|v(t))s

time independent operators

[0 ()s = U0)](0))s

Ag = const.

In nonrelativistic QM, this is the most common description of dynamics.
» (2) Heisenberg picture

It works with constant state vectors and varying operators. Assuming that
vectors and operators in the Heisenberg picture coincide with those of the
Schrodinger picture at time ¢t = 0, we obtain:

_ time independent state vectors
— = t. "
| = W) = U [0(0)s

time dependent operators

= Hamiltonian Hy = [;TS =H

= General observable evolution equation: ||ih4 AH() [Au(t), H]

» (3) Dirac (interaction) picture

It is intermediate between the Schrodinger and Heisenberg pictures.

The Hamiltonian is split to the “free” and “interaction” parts: H=Hy+ H

While the evolution operator with the “free” Hamiltonian H, evolves the oper-
ators, the state vectors are evolved by the remaining part of the full evolution
operator. Mind that in a generic situation we have
to assume that [Hy, H'] # 0, so the factorization of -
the full evolution operator is not the trivial one: U(t) = U(t) Ui(?)

A
Ao

|
}
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. Hot = ~ P
Operators evolve by Uy(t) = e "h = Ap(t) = Ul(t) Ag Uy(t)

= Hp = Hys = H, =
= operators satisfy differential equation ||if< AD( ) = [Ap(t), H

Vectors evolve by Uy (t) = Ul()U () = |[(t))p = U)o (1))s
iy (t))p = —Holtp(t))p + Ug (¢ (ihg1v(0)s)= O3 H'Go(t) (t))o

(H0+H/)Uo( )(t)p i (1)

iRL|(t))p = HL ()| (t))p Schwinger-Tomonaga equation
just the Schrodinger eq. with H — HJ(t)

The evolution according to the Schwinger-Tomonaga equation can be repre-
sented by state evolution operator U (t,to)p, which is expressed via the
Dyson series with H(t) = H[(t). In this case, due to the assumed “small-
ness” of ﬁ]’D with respect to f]o, the series can be used in a perturbative way,
i.e., neglecting higher-order terms (see Sec.11). The Dirac interaction picture
is a common framework in the relativistic quantum field theory.

<« Historical remark

1925-6: W. Heisenberg & E. Schrodinger use the two descriptions of QM dynamics
1930: Paul Dirac connects these descriptions in a unified picture

1934: Julian Schwinger (S.-I. Tomonaga in 1940’s) introduce the interaction picture
1949: Freeman Dyson uses the expansion of the evolution operator in QED

B Green operator

We now briefly outline an approach to evolution which becomes very useful
later, in the context of relativistic quantum theory. Based on the old idea of
Green’s function, known from the general theory of differential equations, this
approach leads to a rather new, revealing view of quantum dynamics.

» General Green’s function
Assume a general differential equation | D, f(z) = R(z)|for an unknown func-

tion f(x), where D, is a differential operator in variable z and R(z) is a fixed
function. The Green’s function Gy(z) associated with this equation satisfies

f(x) = fo(z) + [ da'Go(x—a")R(z')
with D, fo(z)=0

D,Gy(x) = 6(z)| = general solution

» Quantum Green operator

We define the retarded Green operator éar(t, ty) for nonstationary Schrodin-
ger equation with Hamiltonian Hy(t) as the evolution operator Uy(t,ty) re-
stricted to t > ty. It satisfies the following Green-like operator equation:
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Gt t—to) Uoltt [ihQ—H t}é‘* tto) = iho(t—t
o (t,t0) = O(t —t) Us(t,to) 5 — Ho(t)| G (t,t0) (t—to)
{1 for t>t,
0 for t<ty
Proof: G (tto) ih8 (t—t0)Uo (to,to)=ihd (t—to ) Ho(t)G (t,to)

ih O(t—to)Up(t, to) = il 5(t—1to)Up(t, to) +O(t—to)Ho(t)Up(t, o)

Note: The meaning of word “retarded” should be understood here in the sense
that G (t,t) evolves the system from a past time ¢, to a future time ¢. Simi-
larly, advanced Green operator (evolving from future ¢y to past t) is defined
by |Gy (t,tg) = —O(ty—1)Uy(t, to) | and satisfies the same Green-like equation.
Below we continue our discussion with the retarded operator only.

» Transition from free to full Green operator

We assume that the above Green operators with f[o(t) describes free evolu-
tion and the full Hamiltonian contains also an interaction H'(t). The retarded

Green operator of the full Hamiltonian | H(t) = Hy(t) + H'(t)|is defined by

Gt (t, o) = O(t — o) U (¢, to) [mg . ﬁ(t)] Gt (8, to) = RS (t—to)

and satisfies the following integral equation:

... thisis an analog of the

é+ (t, to) GO (t to / G+ t tl)Hl(tl)G+ (tb tO) dty abovege;neralform of
solution of D, f(x)=R(x)

Proof: application of [inf—H,] to the first term and

inside the integral yields the defining eq. of G*: H'(H)G (1)

-~

[m% - ﬁo(t)] GH(tty) = ihd(t—to) + T 6(t—tr) H'(1)G™ (1, to) dty
» Iterative solution of the full Green operator

The above integral expression of the full Green operator G* (¢, ;) through the
free Green operator Gy (t,t) enables us to reuse the above-introduced “insert-
to-itself” (time-reversed uroboros) technique. We obtain an infinite series:

G (t,to) = G (t, 1) — /GO (t,t)H'(t)GF (ty, to) dt; +

+00 00
// (t) G (b ty1) oo GE (b, 1) H (1) G (11, 1) dity ... diy
*OC —00 _|_ ......

TLX
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This series is analogous to the Dyson series, except (a) the zeroth term C;’* #* f
(b) all integrals have the same limits, and ( ) the alternating operators GJr and
H' inside integrals. If H' is small compared to HO, the series can again be
used in the perturbative way, i.e., neglecting the terms of higher order. The
meaning of this expansion will become clear in the following.

» Propagator

Forward evolution of a single-particle state can be written as:

(@ (1)) = (@Gt to) [ (to)) = [(FICH (2, t0)|To) (Tol (b)) dT

= |P(Z, 1) z/GJr(ft\foto) W(Zo, to) dZy|  with GT(Zt|Zyty) (coordinate repre-
(F|G (1. t0)|Fo) sentation of the single-particle Green

operator) being called “propagator”

The propagator G (Zt|Zyty) can be interpreted as the wavefunction ¢ (Z,t)
evolved from ideally localized initial state ¢(Z, tg) = 6(Z¥—7y) = |7). It satisfies

the equation: [zha + ZMA V(Z, t)} G (Zt|Zoto) = ihd(t—to)d(F—7))

Let | V(Z,t) = Vo(2,t) + V'(Z,t) |and let Gy (Zt|Zoto) be the solution for Vy(Z, t).
The iterative solution for the full potential V(Z,t) reads as:

G*(Tt|Tote) = G (Tt|Toty) + - - + (—%’)"/./Gg(ftmtn)‘/’(fn,tn)
—

2nx

- G (Zato|Z180) V! (X1, t1) Gy (Z1th | Zoto) dZ,dty, ... dZydty + - -

This series has a visual interpretation:

/ 7‘( with each intermediate interaction
s bringing the factor =V (&, tx)

and the integration over all
e space-time points (T, ty)

l

» Green operator for time-independent Hamiltonian H(t) = H

Expansion in stationary states: G*(t, ) = O(t— to) Z e |Eik)(Eik| =

7'Lw(t tg)

8—)0

l using the result from complex analysis (see the sketch
simple £ . h d in its derivation):
— pole () 1ntegrat10n path used in its derivation):

f = ;iwdw = O(t)e T for e>0
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Similarly:
+ N
7' 00 G E) G~ (7)= lim
= GHtto)= |GT(h) = lim — e HETdE <
’ =0, 27r T L[ Fam e 1TdE
G—(E)

Operators G*(7) & GF(E), mutually related by Fourier transformations, rep-
resent time & energy images of the retarded and advanced Green operators.

<« Historical remark
1828: George Green applies math. analysis in electromagnetism = Green function
1949: Richard Feynman applies Green funcs.in QM+QED (later “propagator”)

5b. EXAMPLES OF UNITARY EVOLUTION

Having digested all the general approaches to the description of quantum evolution,
we need to see some concrete applications. A few examples discussed below represent
just a personal selection—a multitude of other cases could serve the purpose as well.

B Two-level (& few-level) systems

Two-level systems yield periodic evolution. A lot of examples of such behavior
exists in nature: from oscillation phenomena in particle physics to excitation-
deexcitation cycles in quantum optics. Note that any system with Hilbert
space of a finite dimension n > 2 exhibits in general a quasiperiodic evolution:
it can be expressed via a finite number of periodic motions, like the function
f(t) = gle™ et ) where wi,ws, ... represent partial frequencies.

» General two-level Hamiltonian

The most general Hamiltonian H in d = 2 is determined (including the overall
scale) by 4 real parameters, which can be associated with coefficients fi(wy, &)
at the unit and Pauli matrices that comprise H.

7 hwothws hwy—ifiws \ _ T 2 2 A 2 2 —
H = (hw1+ihw2 ho— o ) = h[wol +&u101—|—w202+w30§] Vw+ws+ws =w
G0

» Two-level evolution operator
is calculated as the spinor transformation (see Sec. 4b):

L . A a
et ae e—z(wgt)l e*l(w-a)t

A~

U(t) = e ™! [(cos wt) I — i(sinwt) <

ISR ESI]

),

iwnt [coswl—i<E sinwt  — <2 gy oy
= € wWo oW w
“’Z_Twl sinwt  cos wt—&-i‘:—f‘ sin wt
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This yields quasiperiodic evolution with partial frequencies wy and w, but the
global phase wyt is not relevant. For a spin—l particle, the motion represents a
steady rotation around the spatial direction 7i = &/w with frequency w.

» Special case: H= (hg“wo hh:ju) = U(t) — e~ iwot (_Qoswt —zsmwt)

1sinwt  coswt

[(0)=(}) — [p()=e " (_52L,)

N {p(l(t):‘<¢(0)|7,/)(t)>|2 =cos’ wt osc.illations
p1(t) = [((0) L[(t))|? =sin*wt  period T =T

» Generalization tod > 0

0

A general d-dimensional Hamiltonian H
is determined (including the overall scale) by d? real parameters. The quasiperi-
odic evolution generated by this Hamiltonian has d independent frequencies

= %Ei, where F; with ¢ = 1,...,d are eigevalues of H. One of these frequen-
cies (any of them) can be chosen to determine just the global phase.

<« Historical remark

1954: M. Gell-Mann and A. Pais describe oscillations of neutral particles
1960’s-present: Particle-antiparticle (d = 2) and neutrino (d = 3) oscillations stud-
ied in numerous experiments

B Free particle

Although a scalar particle moving in empty space (no fields) represents the most
trivial example of evolution, expressed in terms of an ordinary wavefunction, the
related calculations are a bit unpleasant. Nevertheless, they yield two benefits
of general importance: the discovery of the wavepacket spreading phenomenon
and quantification of the limits of validity of nonrelativistic QM.

» Free-particle propagator

Hamiltonian: H = ﬁ]gﬁ = Green operator: G*(t,ty) = O(t—ty) e~ iz’
Propagator: G (Zt|Zoto) = (Z]G*(t, to)| 7o) vl

— _Z'A;Z_, N oL l‘ﬂ-AffiA =
=6(an [ (@), @le F i) (pli) dpdgy = 989 [ oHPATE g

+zp F/h At 52 1 —ipg-Zo/h
e P €
e "2MRYS(p—po) s

27Th(

- 8522)% /ea(ﬁ®2+bdﬁ with  a= —i AL  p=;MAD 5 MAT

v
—_—
(—2)"%e for Rea<o To get Rea < 0 assume: At — At —ie with e — 0+

a

3
2

 M(AD)2 3
= lip 280 (20)F PR < | o(Ar) (k) ef ¥ 4 gr(az, Ay
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|GH(AZ, AL = (5 mt) for At >0 = immediate spread of the particle in
the whole space (<= nonrelativistic theory)

» Evolution of Gaussian wavepackets

If the particle localization is imperfect, the spreading rate of its wavefunction

should become finite. 5

p

Y(@,1) = W J (25) [ﬁf ! } dp'= ( it )p +(ﬁ +%)~~,ﬁ

_ 1 402 2hM 2
o (P po) /40 - Wf@ P g p
(2ma7)>/ ea@=*+b  Rea<0
2 — - =2
B N UNPC1 ESUS W N RO /i
_ 1 7\3 b 1= 402 (1“ hM) =" <zgﬁ+’n b=—aq" =74
~ (Bh2a2)A (") €

3
Probability density: [(Z,t)* = (W) * 2Reb
P

4
Define o3(t) = 4h*o}|al* = 45— [1 + %tﬂ and evaluate the exponent:

xT

7-Dg)’
2Reb = ) [16712 2lal*Re(aq?) + 4h2\a|2ﬁ02] = —(2%}&;2
[Z—z (1) | Zo(t)= %0 t translation
) | S ) 2
(@ 2] 270, ()2 ax(t)zax(O)\/ 1+[m] 2 spreading

For short times, the wavepacket moves like a classical particle with average
momentum py, but for longer times the wavepackets spreads out in space. The
smaller is the spread o,(0) at t = 0, the faster it grows at ¢ > 0.

t=0 t>0

L\

» Validity limit of nonrelativistic QM (0)[ , ]2
) gz v t lar
Spreading speed of the wavepacket: s = é (?t%(t) R Ok 2 == 4M; (0)
\/ 1 ) ¢ z

Nonrelativistic QM becomes invalid for s 2 ¢. This will be so for the initial

particle localization ||o,(0) < Mhh = 3X¢|| where X¢ (for electron = 386 fm) is
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the reduced Compton wavelength of the given particle (see Sec.2b). So the

nonrelativistic Schrodiger equation of a free particle is applicable iff ,(0) > A¢

» Phase & group velocities A

—

ik 7 — w(k)t]

(a) A monochromatic planar wave (7, t) =e
Phase velocity ), given by the condition of a constant phase:

gb(lg, T, t) = const. = k7= const.+w(l¥$)t = Upp = "J]Ef)]g

k=0 hw(k)=S = QM: |G = 22 = L0

\r

(b) A wave packet w(f t)=[a (k)e iled—w(R gf with the amplitude func-
tion a(k)= (£)z 245(hk) having a sharp maximum at k= kg

Group velocity 7, represents the motion of the maximum of w( , 15)
(@, 1) ~ alfy) o) [ T VeoEEr, g
= the integral ~ 0 except when the phase has a stationary point:
Vidlk, B Ol =0 = T=Viw®)pt = e = Viwlk)lig,
, o = QM: |{|Tp = 5} = Tocas
B Coherent states in harmonic oscillator

The harmonic oscillator potential has the magic power to prevent Gaussian
wavepackets from spreading. It provides the simplest specimen from the large
family of coherent states. These states generalized to more complex situations
represent an important tool to construct the classical limit of a quantum system
(cf.Sec.8). For the sake of simplicity we will stay now in 1D space.

» Coherent states as eigenstates of the lowering operator

We know that the 1D oscillator Hamiltonian H = Q—}MﬁQ + %“’2:1?2 = hw(I;Tl;+%)
is naturally expressed through ladder (lowering & raising) operators

=) | [ ot :,{é*rEm:m—mEnm}
e oir) | o2y [ L BB = VALE)

satisfying the commutation relation [b, b*] = 1. Operators bt and b are thought
to create and annihilate quanta of vibrations — effective particles called phonons.

The coherent state is an eigenstate of the lowering operator:

blep.) = z|v.) with an eigenvalue z € C

» Coherent states in the energy eigenbasis lv,) = —— \
VnlEn 1) =
- o0 ~ = 2 00 .
Proof: b|,) = ; T b|E,) =ze 2 n;l 71)!|En71> = z[.)
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The coherent state [¢,) shows |
Poisson energy distribution q

pz(En) - 67)\ % \
with A = |22 = (n), = (n?)).. )
The energy average & dispersion read as:

(). =t (P +3) ()= (w)eP| EEE () B O

Note: There exists no eigenstate of the raising operator b Indeed, assume
a general state [¢) =Y, a,|E,), where coefficients «, vanish Vn below a cer-

tain ng (possibly no—O) We have bt|1h) =32  v/nt Lo, | Epi1) =300 o | E,),
where coefficients o/, vanish ¥ n below ng+1. So bT[)) o [4)).

» Normalization & scalar products of coherent states

_ P ()7 ( PR S ()
<¢Z|¢Z/> - Z Z 'I'L' n/ <E5|E > 2 zn: n! -
Z:|Z‘€7¢ nn!

Z/:|Z/‘Ci¢/

= el eos(e —g)isin(@'—0)] — | = TR S0 —0) — 1y 1))

(Ve]tpz)=1

Coherent states {[1.)}.cc form an overcomplete set in H: { (o120 for 247

» Coordinate & momentum averages

254z
(Woll10.) = \Jot (0B + D)) = | (/25 Rez = (a).
(V:]plib.) = Z\/ th <¢Z|(bJf )sz = | V2Mhwlmz = (p).

» Coordinate representation

vu@)= (o) =% 3 f

Applying the generating function of Hermite polynomials /

Hn(g) = dd17’;e£2—(§—77)2|":0 = 652 a ZH ( )
we arrive to: _ (J:r[_;:)i e_@Jr%xge_(\/@q_ﬁf _ (]:TI_;:)% o~ a2z —2Rez
1 Moo
. (2)]? = (22)2 e h (#-2):) Gaussian distribution with o2 = -

So coherent states of the harmonic oscillator are Gaussian wavepackets with
the z-dependent cooordinate & momentum averages and constant dispersions.
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» Time evolution of coherent states (="

[t L2 0 n . 1 ot 212 0 —iwt\n
W) = o 3 el = ot o 5 B g
Ut)|a0)) = €72 [tha))  2(2) = 2(0)e™™ [21)

Evolution of coordinate & momentum averages [ P\\
() = \/ 2= [Rez(0) cos(wt) 4+ Imz(0) sin(wt)]

7 \Nj
(p)t = —V2Mhw [Imz(0) cos(wt) — Rez(0) sin(wt)]

[

The averages satisfy the following equation of an ellipse:

1 /02 | Mw?; \2 _ 2
s )i + 25 (2) = hw|2(0)]
(E)z0)— %
Coherent state approximately imitates
the classical oscillator trajectory in

the phase space, which satisfies:
1,2 Mw2 2 _ 1 s
ol + T =B L e :

Since (E), > % for [z|> > 1, the J X

approximation is getting improved X4 X,

with increasing |z| <> (E),

Constant widths |0, = \/% oy = | minimize the Heisenberg relation.

= 3

<« Historical remark

1925: Erwin Schrédinger discovers oscillator coherent states (he wrongly anticipates
that such states will make the notion of pointlike particles irrelevant)

1950-60’s: J. Schwinger and J.Klauder use coherent states in the field-theory context
1963: Roy Glauber shows the key importance of coherent states in quantum optics

B Heisenberg picture of particle in general potential

The above-derived results concerning the free particle and particle in the harmo-
nic-oscillator potential indicate that coordinate and momentum averages may
evolve in agreement with the laws of classical dynamics. Indeed, this corre-
spondence can be generalized to the case of a particle moving in an arbitrary
potential V(Z). To practice non-Schrodinger views of evolution, we switch for
a moment to the Heisenberg picture.
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» Ehrenfest theorem

We assume a single spinless particle with Hamiltonian: H= 5T [p + V(%)
Evolving operators in the Heisenberg picture satisfy the following equations:

c(l]iﬁl - z%[Ai’H] - %[Ai"/(f)] - —g—X(f) N d_itﬁ: —VV( )
L= L2y, H] = L[, s2p2) = Lp; dz_
ali = Eli i Lis oprPi mPi a Mp

P d (1 10V

&ti=5 (3701)=—17 o (7) = | MEL2 = —VV(Z)|| “quantum Newton law”

» Semiclassical behavior
Consider an arbitrary state ) = |¢5(t=0)).
Coordinate averages (z;(t))y = (V¥s(t)|Zis|vs(t)) = (Yul|zi(t)u|vu) evolve in

accord with an averaged Newton law; in particular: | M jﬁ( C(t))y = —(VV(Z))y

= Semiclassical evolution of average coordinates is obtained for convenient
initial states, like narrow wavepackets. However, as we saw, the dispersions
{(x2(t))), are not fixed and may behave in a crazy way (like in the case of a free
particle, and in contrast to the exceptional case of the harmonic oscillator).

<« Historical remark
1927: P. Ehrenfest formulates the relation between quantum and classical dynamics

B Spin in rotating magnetic field

In the following example we describe the evolution of quantum spin in a time
dependent external field. Although the time dependence of the Hamiltonian is
of the nontrivial type [case (b) of Sec.5al, the solution can be found analyti-
cally —not as the Dyson series. The example touches on the physics of nuclear
magnetic resonance, which has a number of very important applications.

» Magnetic resonance setup: a particle (e.g. the proton) with magnetic
moment (operator fi) is placed in a combined stationary (homogeneous) +

variable (rotating) magnetic field. Hamiltonian reads as:  stationary Vag(ﬁg
field
—

~ ~ /_,\/R 2, —
Magnetic dipole operator: = QMN%SJ H(t) = =By —fi- Bi(t)
A~ 16 1 2 Z Blﬁ(f)
H(t) = — guhiBo 793 — gﬂhiBl (n(t) : ﬁS>
0 1

5 sin ¥ cos wt . ~
i(t) = (—sinﬂsénwt) rotating field < B (t)
cos \\ 1

Without loss of generality one may set B, (t)Lgo X : «3/
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In the resonance case, the frequency w of rotating field By (< By) is tuned to
the Larmor frequency wy of the spin precession in the stationary filed By,
and is applied in the form of pulses of certain duration. These pulses are used
to prepare the spin in a desired state.

» Hamiltonians at various time instants do not commute:
[ (), H(¥')] = et (ae)S).(310):5) | non S0, (1(05) [ ncn (0)-8) ] =
= ity (wn[ii(t) x 7t - S+ wolfi(¥) x S — woli(t) x §s) #0

» Separation of the time dependence R K
H(t) = —(wo + wi cos¥) Sy — wy sind [(coswt) Sy — (sinwt)Ss]

-~

BCH formula: e*4Be 4 = Z kl[/i [A,...[AB]... ] R S
io\2 & G ip
e W 53516 o Sl—Fl, (f) [Sg, Sl] (—%E) [53, ZhSQ] 3l ( ) [Sg, hQSl]
cos ¢ ihSs sin 28, i3S,

:(1—§+...5S1—E%—3—f+...55*2

i N N N 13 t t' 7
H(t) = etiwtos [—(wo + wy cos ) S3 — (wy sin )5y ] e~ itSs rotating

Hamiltonian

(o)
So the Hamiltonian time dependence has been separated to the overall rotation.
This enables us to solve the dynamics explicitly, using the rotating frame.

» Transformation to the rotating frame

[p(t)) — ['(t)) = e~ iwtSs |th(t))  the evolving state in the frame that rotates with B (t)

~

iR (1)) = wSs e 15[ (1)) + e R F (1)t it e wsww( 1)

S

/(1)) £1(0) /(1))

Schrodinger equation in rotating frame: |k | (t)) = {ﬁ(O) + wgg] [0/ (t))

5 = = ~——
Heg = (w—wp—wi cos¥)S3 — (wy sin )5 Hes

So, in the rotating frame we obtain a stationary effective Hamiltonian H.g,
for which the evolution [¢/(t)) can be easily found analytically as it is just a
certain rotation. To obtain [¢(t)), we have to finally apply an inverse transfor-
mation from the rotation frame back to the laboratory frame.

» Solution

For [1(0)) = [¢/(0)) we obtain:  [¢5(t)) = etietSe it |y(0))

The leftmost operator is a rotation around the 7, axis by angle —wt, the right-
most operator represents a rotation around a direction 7 by an angle ¢.

We assume By (t) LB (0= 5),as the parallel component can be included in By:
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N resonant case

i, 48Q, i = N —w1
U(t) = eta“tSse=a¥A@edS)| O — /o 07 7152:%( 0 > W=wp :
w—Wwo

Q:CU1, ﬁQ:_ﬁx

<« Historical remark

1938: 1. Rabi proposes the magnetic resonance method to measure mag. moments
1946: F. Bloch & E.M. Purcell develop a spectroscopic method based on the magnetic
resonance and provide its theoretical description

1971: dawn of the magnetic resonance imaging (tomography) applications

6a. QUANTUM STATISTICAL ENSEMBLES

Physics would not be nearly as powerful if it did not have the branch of statistical
physics. It deals with situations — rather generic for all complex systems — when the
system’s initial state cannot be precisely determined. Instead, one has some knowl-
edge on the probability distribution characterizing a multitude of possible states in
which the system may occur. In classical statistical physics, a single realization of
the given system at a point (py, go) of a multidimensional phase space is replaced by
a statistical ensemble of replicas of the system at different points. This means that
(P — po, ¢ — Go) changes into a delocalized probability distribution p(p,q). We are
ready now to apply this kind of statistical description to quantum physics.

B Generalization of quantum states in terms of the density operator

Statistical description implies statistical uncertainty resulting from the im-
perfect knowledge of the system’s state. However, quantum physics, as we have
learned it so far, already contains quantum uncertainty, which exists even
if the system’s state is known exactly. It is useful to unify both these types
of uncertainty in a generalized notion of quantum state. It is expressed by a
positive-definite Hermitian operator in H, called the density operator.

» Unified description of quantum & statistical uncertainties

In analogy to classical statistical ensemble, we want to introduce a quantum
statistical ensemble. We assume that the state vector describing a given system
is randomly selected from a certain predefined set:

',

|¢1) ...drawn with probability p; ‘

[19) . ..drawn with probability po v

where (Vg|tr)=1Vk and > p = 1.

k
We stress that the orthogonality of states is
not required, so in general (¢y|Yy) # 0 for k#1.
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We note that probabilities pj express only the statistical uncertainty of drawing
a state from the ensemble. An additional quantum uncertainty expresses the
fact that the actually drawn state |¢;) can be mixed up with other states |;)
in the process of measurement.

Example: electrons from an I 1 ; ...probab%l?ty Pr
: |—) = 5|1 ——5|{) ...probability p_,

accelerator are delivered to the V2 v2 N

target in the spin states: ) = 7' >+7§’ +) -..probability p.

The probability of measuring the spin z-projection 1 in an unknown state that
has been delivered is pr + B> + B= = 37 pi|[(T [¢0y)|?, which takes into account
both statistical and quantum uncertainties.

This statistical ensemble of quantum states is described by the

density operator & density matrix

P=> Prltr) (xl pij = (ilply) = Zk:lﬂk<i|¢k><¢k|1>
B

Taking into account both satatistical and quantum uncertainties, we see that
the density operator p generates probabability distribution in the entire
Hilbert space #H: The probability to find an arbitrary |1)) € H in a state ran-

domly drawn from the ensemble is given by > py [(0|1x) > = || (@|p00) = ps(2)

B
» Pure and mixed states Puy (¥)

Since statistical and quantum uncertainties involved in quantum statistical en-
sembles cannot be resolved, it is convenient to incorporate both of them into a
generalized definition of quantum state. So the general state of a quan-
tum system with Hilbert space H is described by the density operator p acting
in H. This formalism naturally includes the previous definition of states as
vectors in H, i.e., the description in absence of statistical uncertainty.

pure state :6 - |¢> <¢| g W}) J state vector no stat. uncertainty
mixed state 16 — zk: pk|¢k><¢k| < X ﬂ state vector stat. uncertainty exists

» Properties of the density operator

~

(a) Hermiticity || p = p' (eli)=1
(b) Tr[; pklwk><wk\}22§ P (i vr) (Yrli)= ijpk Z<wk|z’>(z’|wk> =

(©) (WIA1) = pulp) € [0,1] V) = eigenvalues|[p; € [0,1]

(d) Diagonalized density matrix:
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p 00 Z pi =1 p;...probability to find |¢;)

AZZPi|¢z’><¢i|

10
For a pure state [¢)), the diagonalization yields p= (8 0

) with |61} = ).

The quantity "yp = Tr p* € [0,1]|] is called purity of the state p. It allows one

1 for pure state

to distinguish pure & mixed states, and for mixed _
" {<1 for mixed state

states to quantify the degree of impurity 1 — ~,.

» Ambiguity in the expansion of p
The diagonalized form p=>" p;|d;)(¢;| (with {|¢:)} orthonormal) can be consid-

13
ered to be a “canonical expression” of a general density operator. This form
represents an ideal statistical ensemble, in which the states |¢;) are mutually
distinguishable. However, the same diagonalized form is assigned to different

non-diagonal expressions p = Zpk|¢k)<¢k| < with {[v%)} normalized ) This indi-

but otherwise arbitrary

cates equivalence of various statlstlcal ensembles (those with the same diagonal
form), which is due to some kind of arbitrariness in dividing the total uncer-
tainty between the statistical and quantum components.

» Statistical properties of observables

If the density operator p defines the state of the system, we have to learn how to
use it for the determination of statistical properties of measurement outcomes.

(A), = average of quantity A in state p = Zpk|wk)<¢k]
Po()

(A), = fazpk ¢k|PaWk> da = %:PMWMWQ = %: ;PMWVMH&])UW@ =

k

Pwk(a)

=3 " prlilen) (wrli) (i Alj) = || Te(p A) = Te(A p) = (4),
1] \k

J/

Wiy For a pure state: (A), = (i) (¥|Ali) = (¥]A]y)

Dispersion: (4%), = (A2), — (A)2 = [ Tr(4%) - (4 ) = (42),

2
P

Probability distribution p,(a) = 3 pi(tr| Pa|tr) = Tr(P, p)
k

<« Historical remark

1927: John von Neumann introduces the density operator (matrix) to build quan-
tum statistical mechanics; simultaneously, Lev Landau uses the density operator to
describe quantum states of subsystems of a larger composite system
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B Entropy and canonical ensemble

The concept of entropy plays an important role in thermodynamics as well as
in mathematical information theory. Statistical physics is a bridge between
both these seemingly distant coasts. States with null entropy are the pure
states of ordinary QM. In contrast, states whose entropy is maximal—within
given constraints upon some physical averages—represent equilibrated systems
in contact with a thermal bath.

» Shannon information entropy
General probability distribution for a finite set of events:
event ¢ € {1,2,...n} < probability {p;} = {p1, pg, cey Pt

Information entropy is a functional on the space of

probability distributions: S[{pit] = Z pi Inp;
Properties
Maximum S =Inn for p; = const = % Vi | maximal uncertainty
Minimum S=0 for p;=9;; (withanyj) | minimal uncertainty

i P

Additivity: 2 sets of independent events { i o P, } = entropy {g; }

Joint distribution: event (i A j) with prob. p;; =p;p; = entropy ‘Slz =51+ Sg‘
However, for correlated events (p;; #pip;): S = 51+ S2 + AS with AS 20

» Von Neumann entropy

.|| To make contact with the
Sp=—k Z pilnp; = —kTr[plnp] thermodynamic entropy we use
= the Boltzmann const. k=8.6-10""eV /K

S, = 0 for pure state
S, > 0 for mixed state (S, = Smax = Ind for “maximally mixed” state)

» Equilibrium state of a quantum system which exchanges energy with the
surrounding environment (thermal bath):

p diagonal in the system’s energy eigenbasis: p = > p;|E;)(F;| = stationary
5
state with respect to system’s Hamiltonian: p(t)=">" pie’i% | E;) (Ez|e+’% =p(0)

Probabilities p; determined from constrained maximal entropy prinicple:
Search for max. S, with fixed energy average (E), = ., p;iE;and ), p; =1
= method of Lagrange multipliers: we look for an extreme of function

szlnpz (a+1)>pi = B piEi
1 2 A
ln pi — pi; +(a+1)—BE, =0 = |p= e PE | = T o PE;

normalization

of _
dpi

Constants a, § determined from the Tr p=1 & fixed average (£), conditions
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» Canonical density operator

From the above-derived result ps = e* > e FEi
i

~ 1 _—BH
P = Zp €

Z(B) = Z e PEi — Ty o= BH

with || = %

i normalization factor e® = 75

E;)(E;| we obtain:

inverse temperature
the only parameter of the canonical state

canonical partition function

1

» Z(3) contains complete information on thermal properties

%Z(ﬁ) = %Tr e P = Ty []:[ eiﬁH}
Z(B)ps

(E)s = — 757252 (8) = — 5 Z(B)

—%<E>B = kT* %<E>T
1

ev(T) Z(ﬁ)TY{ﬁQe_ﬂH]

—
1_d*Z(B)

—Z(8) Tx[H pg]

(E)g

energy average

specific heat at temperature T’

(E)

2
—(Es=dmnZ(8)= Z5 5

(E*)s = gaev(B) = 4 n Z(B)

— b [42] = (B)s — (B3 =(F")s

energy dispersion & specific heat

» Z(3) contains complete information on energy spectrum

energy levels {E;} =

o(F) can be obtained as the inverse Laplace

transform of Z(B) = [ o(E)e "PdE

Thermal distribution of energy
ws(E) (probabability density for
finding the system at energy F
if temperature is T') is expressed
via the level density o(E):

ws(E) o< o(E)

e PE
Z(3)
Usually the (increasing x decreasing)
function product yields a peak at
a certain value [E]z close to (E)g

level density

o(E) = Zé(E - E;)

» Imaginary time t= —ihf evolution operator U (1) =e ' is equivalent to

the unnormalized canonical density operator

e = 7(8) py = U(—ihp)
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This is used in some advanced calculations of thermal & dynamical properties.

» Similar procedure (using maximal entropy principle) is applicable also for
systems with variable numbers N; of particles (types i = 1,2,...n) but fixed
averages (IV;) (particles exchanged with the bath) = grand-canonical ensemble
characterized by inverse temperature § and chemical potentials p; (see Sec. 15).

<« Historical remark

1878: J.W. Gibbs presents the concept of canonical ensemble & entropy formula
1927: J.von Neumann introduces the density operator & entropy in QM

1948: C.Shannon applies entropy in the information theory

B Wigner quasiprobability distribution

As the density-operator formalism merges statistical and quantal fluctuations
into a unified picture, it may raise hopes of formulating quantum mechanics in
a purely statistical language—via some appropriate statistical distributions in
the classical phase space. Although it turns out that such a formulation is not
possible, the product of this effort is useful by itself.

» Motivation: Assume a system with f degrees of freedom with coordinate

& momentum eigenvectors |Z) & [p). The { coordinate 1 yenresentations of an ar-
momentum

bitrary density operator p are given by functions { %J"; t@i - ﬁgg, ;)) } Could we

also construct p(Z,p), i.e., an analog of the classical phase-space distribution?
» Characteristic function of a probability distribution

Any continuous probability distribution p(z) is equivalently expressed through
its so-called characteristic function x,(n), which is the Fourier transform of
p(x). For a distribution p(Z, ) in the classical phase space we can write:

X&) = [ p(@ 7)eS THPAE AR 5 p(E,5) = grger [ Xp(&7)e D dE dif

where { %} are f-dimensional variables having the same units as { gi}, and b is

an arbitrary constant in units of the product zp

= characteristic function expressed as the average: Xp(é’, 7)= <e%(ﬁ'f+£'ﬁ)>
p

» Quantum characteristic function and its inverse

The last expression enables us to find a quantum analog of characteristic func-
tion. In QM we naturally set h = i and obtain: - P
Xo€ ) =T |46

Fourier inverse:

= Crh)T

W,(z,p) = ;/Xp(g, 7) ¢~ (TT+EP) dgdﬁ Wigner distribution
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This represents a distribution in the phase space. Some of its properties are
consistent with the interpretation in terms of a probability distribution, but
there is one essential drawback: The distribution can take negative values!

» Wigner distribution for f =1
The characteristic function:
&) = [(elp et Da) de "E e [ (a]p et i) d
special BCH formula for [A, B|=C, [A,C]=[B,(]=0: eAtB = ¢AeBe3C
= ¢t e x|peﬁ’”’|x> (@ 5p|a:> do do' = e~ [ (z|plx—&) e dg

TV \— / L £
nao< |p\1’)< Ne—&)=06(z'—x+E) plz,x—E) subst. z’'=r—3

- Xp(§,77) - /p(x/‘{’g,x/—g) 6%771" da’

The Wigner distribution:

Wy p) = e IJ [ ol 2'=5) eb” da] e 60) iy dg =
— e JJ P45, 2—5) { / e’ =2) dn} e P da’ dg
- 2ﬂﬁ5?;’—x)
; where
W Z,p 1 /p x+§7$_§ e_ﬁépdé“ R
A02) =3 | ot 573) pla't§, =) = e Slala—$)

Reality: W,(z,p)* = 5% [ p(z—5, 2+5) eTiP d& = W, (z, p)
Normalization: [[ W,(x,p)dzdp = (%LW I [Je 5 dp] p(:r+§, :Jc—g)da: dé =
ﬁ,—/ .

onmo(e) = [ p(z,x)de=Trp=1

These are properties of a probability distribution.

However, W,(z, p) 27rhf[Rep x—i—g, )cos(&’)—l—lmp(x—f—g, )sm(&’)} 70

Taking negative values in some phase-space domains, the distribution func-

tion W,(x,p) does not have the meaning of an ordinary probability density. It

is sometimes called the quasiprobability distribution.

Moral: quantum oddity is unremovable!

<« Historical remark

1927: H. Weyl derives a mapping of Hermitian operators to phase-space functions
1932: E. Wigner introduces quasiprobability distribution related to density operators
1940’s-present: developments in the phase-space formulation of QM

B Density operator for open systems

The way we introduced the density operator invokes a picture of somebody
drawing numbered balls from a wheel of fortune. The balls are prepared
there, one just does not know which number will be drawn. However, there
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is another—and probably more important—use of the density-matrix formal-
ism. It deals with open quantum systems, i.e., systems interacting with some
other quantum systems, such as the surrounding environment or some intrin-
sic degrees of freedom, which are not explicitly considered on a given level
of description. Such composite objects generically occur in entangled quantum
states and the density operator is the only tool that allows one to extract states
of individual subsystems. )

1 = the quantum system of interest

» Two coupled systems i .
2 = environment (external system or internal degrees of freedom)

The total Hilbert space ‘7—[ =M1 ® ’Hz‘ with {|¢kl>}l = basis of Hy (k=1,2)

A general pure state of the whole system 1+2 is given by: | |V) = Z aij| i) | P25)
This is in general an entangled state i
= state vectors of subsystems 1 or 2 do not exist!

» Reduced density operator

The information on the state of any subsystem of a larger system is avail-
able only in the form of a density operator. This means that any such state
represents in general a statistical ensemble. The density operator of a given
subsystem is obtained as a partial trace of the density operator of the whole
system over the Hilbert spaces of all the other subsystems. In our present case,
the density operator p; of system 1 is given as a partial trace of the full density
operator pi over the basis of system 2:

purestate |U) +—— |U)(V| = p12 —> p1 = Tro pro = Z<¢21|ﬁ12|¢521>
l

W) =>_ qijldri)|d2y) = ZZZ% 5 (D2ld27) [d13) (Drir| (G2 Do)
] ij 7'’ T T
b i1
= i | |é1i) (Pra| This is an operator in H; which has
; (Z ! J> (as shown below) all the properties

of a density operator, and therefore

— ¥
Piit =Py1;

it is a density operator of system 1

» Properties of p; = Tr [)12:

(a) pl = ZP’M% Y| =
( ) Trlpl Z |a’LJ‘ =1
(c) <?/)1|01W)1> >0 V[) = Zl:ﬁzldhz)

= eigenvalues >0

Proof: <¢1!ﬁ1|¢1>=%; By %;(ZJ: ;) (Pur|ou) <¢1i'|¢11>=%:‘; 5§‘a¢j|220

6[’:‘ 52”[
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(d) Tripf <1 <= (b),(c)

(e) Average value of a local observable A = 4; ® I Tr(An)
(U A|W) = Z Zaija;(/j’<¢1i’|/il|¢1z ¢2J /| d2j) Z Z i (b |A1’¢u>
ij iy
5 g
P a,_/
= <A>\p = Tl"(Alpl) Prii!

» Pure states of the subsystem

The reduced density operator allows us to capture situations in which all prede-
fined subsystems of the composite system are in pure states, which happens iff
the state of the composite system is factorized with respect to the given decom-

position: p1=Try p12 is a pure state |1);) EZ@'WU) & |U) :Z@\qﬁuﬂ@j)
= [¢1) (3= lé2;)) = |n)[eba) is factorized. Yoy
j

pr= V) = puir = (Qulpil|drr) = Bib;
W) = [Y)|e) = pur = Z j 047,] B Z |%|2 same expressions

/7)/)// [7)/7]
» Schmidt decomposition of an entangled state

Any entangled state of a general coupled system composed of two subsystems

1 and 2 (with Hilbert space dimensions d; and ds, respectively) can be expressed

in a “canonical form” which makes use of the eigenvectors of both reduced

density matrices p; and py. Consider the general state |W) = > a;j|o1;)|d2;):
ij

State of subsystem 1: State of subsystem 2:
pr="Try p1a = Z(Z i) |ou) (b pa = Tra pro = 3 (30 ey ) [day) (625
Jitoi

P2jj Za“a Y E\F‘Su Pi 03j1=p;j0y;1

Prii Zama/ _Z \/E(sw\/pj5 / ':piéii/
Suppose |a;j = +/pi 0ij | = { } diagonal { -

Qij Uy v Pk Sk Vij
. ofo
This form of |¥) corresponds to the .
singular value decomposition % - *Tolo .
of the generally non-square d; X ds ololo
matrix a of coefficients a;; through d,
the formula , where o' is semidiagonal and u, v unitary. In partic-
dy do
U=1 —
ular, we get a;; = Z Zum(,/ KO0k)vy; With Zpk—z l;j|?=1 and { %="
dy Xdy ‘X1k> ‘X2l>
some umtar matrlces. N e from unitarity
{d2><d2 } y -~ ~ of wand v

dy ds di do al A d2 /<_|/):T
W)= Z Z%|¢1Z>!¢2J> > 2 /il Zluk¢\¢1i> Zlvlj!¢2j> e
= i= J=

1=17=1 k=1l=1
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Min{dl,dg} A~
= |||¥)= Z VP |xak) [X2k) || where {{’X1k>}k 1} are eigenvectors of {el}
k=1 {’X2k> P2

> (0 for k=1,..,Min{d;,ds}

with the same sets of eigenvalues pj .
= for k=Min{dy,d2}+1,....Max{dy,ds}

Remark: Note the potentially large difference in the size of both expressions

[0) = S 300010 [0ng) = Sy N/ [xaw) [xa)- The respective num-
bers of terms dyds and Min{d;, d2} in these two formulas are for an example
with d; =2 (qubit) and dy =10° (large environment) equal to 2-10° and 2. The
use of the Schmidt decomposition can imply a huge simplification!

From the Schmidt decomposition we also see that:

Min{dy da) Von Neumann entropies corresponding to
S, =S, =S = Z o In pp both subsystems 1 & 2 are equal, expressing
information on the mutual entanglement
of both subsystems in the full state |¥),
which was lost in the transition from |¥) to p; & po. The entropy Sey (Boltz-
mann const. = 1 here) is called the entanglement entropy and quantifies the

amount of entanglement involved in the given pure state |U).

Example: Hy basis = {|1), 1)} Hs basis = {|1),2),[3)}
[T+ D122 113+ V2 D1l o= 51 12— 5| 1ul3)e]

1 Z5 112 +12)2+13)2] + \@ NG e el )

—— V3 &23 Q
Ix11) \X21> \//72 x12) |X22>

L

)=

L

ﬂ(x

pr=slxan) (vl +3lxaz) (xazl, - p2=51xa) (ol +31x22) (el 00 L) (x|

« Historical remark
1907: E. Schmidt formulates the decomposition theorem (in theory of integral egs.)

B Evolution of density operator

The density operator in general depends on time. The form of this dynamics
can be easily deduced from the evolution of individual states in H. However,
we come to an essential point here: There is a fundamental difference between
the evolutions of density operators for closed and open systems! The density
operator of a closed system undergoes just a continuous unitary transforma-
tion by ordinary evolution operator. This implies a fully reversible picture of
dynamics. In contrast, the evolution of a reduced density operator associated
with an open system is more complicated. Since the environment in general
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interacts with the system, one cannot write its dynamical equation in an au-
tonomous way (i.e., just in terms of the system’s degrees of freedom). This is
the place where irreversibility enters the physical description!

» Evolution of a closed system

Consider density operator in the form given by an initial set of state vectors.
Evolution of the density operator determined by evolution of individual vectors:
initial state evolved state

p0) = S prlun) (] f»(t):;pkmwmxwmtrl

General evolution:

p(t) = U6)p0)U (1)

<+ operator differential —
forms

ih&0(t) = [H, p(1)

quantum Liouville equation

» Analogy with the classical Liouville equation for a statistical ensemble with
the probability distribution p(q, p,t) in phase space:

o o dp dg | dp dp; B) p)
@)= G wlrE=0 = %={Hp}
i ~~

0H 0H
* apl B 6%’

» Evolution of a closed system does not change traces and entropy:
Unitary transformation p(t)=U(£)p(0)U(¢) = Z-Ut i ZU )1
y p()=U(t)p(0)U (1) Eklp |1)(|;§>><¢<!¢(())
A (t (t

Tr p(t) = Tr p(0) = normalization conserved

Trpt)? =Trp(0)> = any { Dhe } state remains a { "o } state

mlxed

Eigenvalues p; conserved = entropy |S,(t)=—k Z pilnp;=5,(0) | =const

» Evolution of open systems: non-interacting case

Consider first the case when the system under study and its environment do
not interact with each other. Below we verify that this effectively coincides
with the isolated case, as may be immediately anticipated.

The total Hamiltonian | H = 1:11 ® fg + fl & f]g = Hl + I:IQ consists of two
commuting components acting separately on the sybsystem 1 and subsystem 2

= separable evolution |U(t) = eI = UL (t) ® Us(t)

Oi(t) =7 N { pi(t) = Ui(6)pn (0)Ui(8) ™ mdfpl(t) = [Hy, (1))
Us(t) = ei' 1 pa(t) = Us(t)pa(0)Us(t) " ihGypo(t) = [Ho, pa(t)]
For an initial pure state |WU(0)) = > \/pi |x1i)|x2) (%) x2i(1))

-~

of the whole system 142 wé get: W(t) => \/pi 8’1 ()| x1i) Ug(t)b@iy
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= The entropies of both partial density S1(t) =St :_kzp In p; = const
matrices remain equal and conserved: e

= Factorized initial states |¥(0))=|11(0))]1)2(0)) remain factorized:

[W(2)) = [ (6)[¢a(1))

» Evolution of open systems: interacting case

If the system-environment interaction is turned on, the system’s evolution be-
comes qualitatively different. We assume the total Hamiltonian in the form

H=H ®I+I; ® Hy + Vi5|| where V} acts irreducibly on H = H; ® Ho.

Hence the evolution of the whole system is non-separable: |U(t) # Uy () @ Us(t)

A general pure state of 142 evolves as |¥(t))= ZOZZJ( )é1i)|p2;), which in

the Schmidt decomposition yields |W¥(t) Z Vpi(t) |x1i(t))]x2i(t)), where the

common eigenvalues p;(t) of both partlal den51ty matrices vary in time.

= The entropies of both subsys- Si(t)= " Z p:(t) In pi(t) # const

tems are the same but vary:

= non-unitary evolution of partial density matrices p;(t) and po(?),

» Decoherence ih%ﬁl(f)_[ﬁl’ﬁl(m 70# ih%ﬁQ(t)—[ﬁQ,ﬁQ(t)]

Assume that the [system ® environment] composite evolves from a separable
o 0. ) A . )
[pure@general] 1n1t1al state at t=0: |,¢)> <¢|1 ® PQ(O) _ ,012(0) LN P12(t)
—— ——

£1(0) may be a pure state |1) (¢
For Vis # 0, the evolved total density operator at ¢ > 0 is most probably un-
factorizable, pio(t) # p1(t) ® pa(t), and moreover yields the partial density
operator p1(t) = Try p12(t) equivalent to a mixed state = Loss of the system’s
initial coherence (purity):

pure state p1(0) s b (t) mixed state

Entropy relations:

:0 >0 =0 >0 >0 #0 . .
A~ —~— A~ ~——~ —~—  where the correlation-induced
Sl( ) +5(0) + AS(0) = S1(t) + Sx(t) + AS(E) term AS(t) compensates
S12(0) S1a(t) the change of Sy (t)+Ss(t)

The decoherence process results from the system’s entanglement with environ-
ment, which takes place due to their mutual interaction. An increase of the
system’s entropy can be interpreted as spreading of information (quantum cor-
relations) from the system alone to the composite system + environment. Since
mixed states often carry semiclassical properties, decoherence usually induces
loss of quantum features and emergence of classical behavior (cf. Sec. 8).
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Note: The canonical (micro-canonical, grand-canonical) density operators rep-
resent equilibrium states resulting from a “generic” and “long-enough” interac-
tion of the system with a “large-enough” environment. The reason why nature
prefers these states is their maximal (under given constraints) entropy.

<« Historical remark
1970: H.Dieter Zeh introduces the concept of environmentally-induced decoherence
1980’s-present: intense research of various aspects of decoherence (W. Zurek et al.)

6b. EXAMPLES OF STATISTICAL ENSEMBLES

We will briefly present a few applications of the above-outlined theory of quantum
statistical ensembles. It is worth emphasizing here that the density operator is not
just a superfluous appendix of the quantum formalism, suitable only in some more
or less exotic situations. Strictly speaking, hardly any quantum system is perfectly
isolated. Almost all systems are embedded in some external environments and hide
some effectively “irrelevant” internal degrees of freedom. Therefore, the density
operator represents the most fundamental language of quantum theory, while the
previously established description based on pure states appears as a mere approxi-
mation which holds only in some favorable situations.

B Harmonic oscillator at nonzero temperature

Let us start with the most familiar system, the ordinary harmonic oscillator. It
will be immersed now into a heat bath with temperature 7" > 0. This example
has a great historical importance as it indicates the correct quantum solution
of a so-called specific-heat paradox—the fact that the specific heat of solids
gradually vanishes with the temperature going down to absolute zero (despite
the equipartition theorem of classical thermodynamics, which predicts that the
specific heat should be constant). The same calculation, just in slightly different
clothes, applies also to the well-known problem of thermal blackbody radiation,
which was historically the first hint of the coming quantum theory.

» Partition functiorgl of a 3D oscillator

Energies:  Epnyn, = 2 hw; (nL + %) ni=0,1,2,...
i=1

hw;

0 3 W, > -
Partition function: Z(3)=>_ e #Fmnns =[] [e_ﬁrf Z eﬁhw"“} H T j T =

{ ny } i=1
ng »=0
ns

In Z(8 Zln (05 — e85 =

S
Il
o
(=
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» Specific heat

CthM

We utilize the above-derived formulas: f
Energy average: (E)p = —% InZ(B) = Z By — —
e“"ﬂ 21 . e_BTI

2
Molar specific heat: () = NAkBQdd;Q InZ(B) = Nak Z (%)

etF 3" _ B3

hw,t

+5h;}1 +e Bt

ngh—T = ﬁ < (hwi)’l
AT ~ 3N 4k = const

classical behavior
Low-T' = B> (hw /-)*1

1\

hw;
(T NAkZ o) =¥ s

T—0

quantum behavior
<« Historical remark
1907: A. Einstein derives the specific heat formula for a quantized oscillator
B Coherent superposition vs. statistical mixture

The following example attempts to clarify the difference between a coherent
superposition, which is a pure state composed of several components weighted
by complex/real amplitudes, and a statistical mixture, which is a mixed state
involving the same components but just with the respective probabilities. We
consider states of a single structureless particle.

» Coherent superposition of states |¢1) & |¢r)

For a pure state [¢)) with wavefunction (Z) = (¥

1) the density operator
p= 1) (1| in the coordinate representation is: || (¥|p|T") = p(Z, Z") = (Z)y* (")
For a superposition ’WJ = alyr) + Blvm) ‘ = ai(7)

p(7,7") = [apn(Z)+Beu ()] [y (27)+ B ¢ (7))
Probability distribution: p(7,7) = |ayr(Z)[*+|8¢u(2)]*+2Re a8 r1(Z) ¢ (7)]

Vv
interference

+ () we obtain

» Statistical mixture |p=|a|*|vr) W]+ |B]*|¢mn) (Yn|

p(&, ") = laYu(@)er (&) + 8P (@) e (E)
Probability distribution: p(Z, %) = |ay1(Z)]* + |SYu(Z)[? no interference

» 1D example
(a) Coherent superposition |i(z) ~ %5 (x+a) + \%56@—@
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ia)Z (wiu,)2

with d.(x+a) = (%6)16 12~ 80 that |6 (x£a)| = 5=t

Fa and small widths €< a (normalization exact for ¢ —0)

are Gaussians

with averages (z)=

ple,a') ~ L [b.(a1a)3,(a'ha) + 8, (x-a)d.(2-0) +0.(2-+)3 (¢'-a) + 6, (z-a)d.(a'+a)]
(z a) (:m—a)2 22442
Probability distribution: p(z, ) = %\\/21776 - %ﬁ e I+\\/217?e’ 2:2,
%(5(‘:;%1) %6(95 a) 50 fores0
Wigner quasiprobability distribution: /S
|44 (:I? p) Qﬁh f p x+§a$__> fpdg ¢
[«
11 _(ac+a>2 _@a? T2
~ 2nhovone (e 2 te e ) fe 82 hipdg
+00 +00 _Cfi 2,
veia( [ e S ey [ S —nﬁpdg)] < l
—00 —00 t

Using the Gaussian integral formula

B2
€T = \EQH_C for ReA>0

—Toe—(Am?—l-Bm+O)d j%

(e(z%a) EO

This distribution (satisfying [| W,(z,p)dzdp=1) consists of two factorized
Gaussian peaks of widths o, =€ and 0, =2 centerred at (z,p) = (Fa,0) and
an oscillatory pattern (taking both positive and negative values) with the same
factorized Gaussian envelope centerred at (x, p)=(0,0). The oscillatory pattern
does not fade away as e —0. It indicates the coherence of both components in
the superposition state ¥ (z).

we arrive to:

Wy(x,p) ~ 55

27h

2
(z—a)? __p
+e 22 4 2e 22 cos 2?p)e 2(h/2¢)?

(b) Statistical mixture |p(z,z') = 5 6.(z+a)d.(z'+a) + § 6(x—a)d(z'—a)

(z+a) _(e— a>
B . . . . ~ 1 1 _ 5 1 1
~ = 2e = 262
Probability distribution: p(x,z) =~ 5 ——e¢ +57=e
(m+a)2 (1)57&)2 p?

Wigner distribution: W(z,p) ~ 55 (e” 22 +e >0

(the oscillatory pattern is gone!) can be interpreted as a classical probability
density in the phase space. The two components of p(x,z’) are incoherently
mixed and do not interfere.

o )e* 2(h/26)2

B Density operator and decoherence for a two-state system

The rest of this section is devoted to the familiar spin—% system —a qubit.
A general pure or mixed state of this system can be visualized in a simple
unified way. We examine a qubit in equilibrium with a thermal bath and
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illustrate the process of decoherence, which can be generated even by a very
gentle interaction with some environment.

» Parametrization of general d = 2 density matrix

b= (by,bo,bs) is a vector of parameters

s 17 7 5] 1 14by bi—ib
pP=3 [I +b- U} 2 (b1+ig2 1_232) = normalization Tr p = 1 satisfied
A o e (=1 bl=1
Te =L Te | 4205 3)+ (5 &)2| =2 for | 11=1 pure state
~ <1 || <1 mixed state
b[21
(b-3)2=L S b;b; (60 + 0,0;)=[b2]
» Spin polarization B gl 51,1 L
28,1
The average values of the 3 spin components: ' 25,
N - A ——
S=15 = (S),=Tr(Sp) =T [a + (b-&)&i} = 130, Tr(6,67) = By
j
Geometric interpretation <§ )p = g(;

with the Bloch sphere:

mixed states lie inside

the sphere, pure states 1
are on the surface.

average polarization vector

(cf. the stereographic projection

> Thermal ensemble of spin states in Sec. 2b)

General Hamiltonian: | H = hwyl + h - &| with |&] = w

To get e=BH , we use the same trick as when calculating the evolution operator
(Sec. 5b), but now for imaginary time t=1ih/:

R > e Qk B )
bt = it S (55" = o] S 5 et (23]

k=0,2,4... k=135...

J/

~~ ~~
E+Bﬁw+efﬁhw 7€+['J'ﬁw_e7[3hw

= e oosh(Gw)] — sinh(6w) (2-8)] T 2

The partition function: Tre #H =|2¢ 7™ cosh(Bhw)=Z(5)
The canonical density matrix:

pp= ( 7€ —BH — [f— tanh(Ghw) <§ : 3’)} —
bs=— tanh(Bhw)®

The average spin polarization (S) 52%5/3 is
oriented along the direction of the unit vector 7= —

g and Wlth a decreasing
temperature T — 0 it increases to the maximal size |{ S 5 | =2 associated with

the (pure) ground state of H.
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» Dynamics of qubit coupled to environment Hy Ho

—f—
Bases in the spin & environment Hilbert spaces: {1, 11} @ {le) },

We assume evolution of the qubit-environment system over time ¢ defined by:
where |e;1(t)), |eii(t)) € Ho stand for some states

t
[Toles) = [Thlea(t)) of the environment which in general overlap:

[Dles) = [D)]e (1)) (en()|en(t)) # 0

This represents a rather special evolution, which conserves the z component of
spin. So one may think that the influence of the environment on a general pure
spin state ) = «a| 1)+ | |) should be small. However, as shown below, the
evolution quickly changes the above pure state to a mixed one.

Separable initial

ool PN ¢|®(sz|€ ) ) = o) + 511
X p(0) = (K5
/32(0)

pra(t) = sz[\&\ lear (D) | 1) (T [{ear ()] + b |en (t
Evolved spin state: @ Blean@) D {(T{eir®)] + 18P lewn(t))

p1(t) = Trapia(t) = )
a2 1)1 [waeﬂen(t»<em<t>|ej>]+a/8*r¢><u S e lea () e (B

_ij -

Evolution:

NIT e ()] +
[ (e ()]

J/ N J/

-~

i S wilen (Blen ()= D)

oI [Selentt) e 0l [P | SO} s)

_ij -

J/ . S/

-~

sz<€n |€1¢( )= D(t)* 1
<1
. Oéﬁ*D(t) ,_7%
= <
0= tpr g )| e |01 < S Tele o7 <

» Spin decoherence

The evolved spin state is most probably mixed:

s (2 — Ty (JelHaPISEIDOR (af+|3P)as i 2, (g4
T o2 = Tr ( (o 50 (st ) = ol + 2alIBRID@PE +15)
=1 for |D(t)|=1 or af=0

= (o +167° - [1 - |D<t>’QlW{ <1 for |D(t)] <1 and af£0
1

€[0,1] €[0,1]

For a large environment, |D(t)| is usually a very quickly decreasing function =

pure state } ¢ { mixed state, for ¢t — oo :

V)=l 1) +BIL) pr=IalI )T +IBP)
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This process of changing the coherent superposition of spin |1),|{) states at
t = 0 to a statistical mixture of these states in asymptotic times represents
decoherence of the spin/qubit system. It is caused by the entanglement of the
spin with the environment, which records the spin states into almost orthogonal
(distinguishable) states of the environment. It is essentially the same situation
as in the double-slit experiment when the path of the particle is somehow
(anyhow) recorded —the coherence of the particle wavefunction is destroyed
and the interference pattern must disappear.

» Evolution of polarization vector o B
L . sindeosy —_— S
Spin initially along direction 7= (sinﬁsinap ): 1Y) = e ¥cos g | 1) +sing |])
cos ¥ ~ ~~ -

Jsa=-+5)

The decoherence paramneter: D(t) = |D(t)|eX®

B | D(¢)| sin v cos|p—x(t)]
b(t) = | [D(t)|sindsin[p—x(t)]
cos U

= b0)=7 =¥ cosdii. = b(c0)
dephasing of the xy-projection of b(t)

7a. QUANTUM MEASUREMENT

Besides spontaneous evolution, described by the nonstationary Schrodinger equa-
tion, quantum mechanics assumes also another type of dynamics — a sudden change
of the state vector induced by a measurement performed on the system. In contrast
to classical physics, where measurements just specify states of the system without
essentially disturbing them (in an ideal case, the influence of measurement can be
reduced to zero), quantum physics needs a special treatment of measurements. Their
impact on the system is irreducible and rather dramatic! This “sector” of QM has
quite unusual consequences and is a permanent subject of a vivid debate.

B State vector reduction

The spontaneous quantum evolution is smooth and deterministic (in the sense
of uniqueness of the evolved state vector in the Hilbert space). We may call this
motion “process U”, which emphasizes its unitary character. In contrast, the
evolution induced by quantum measurement —at least in the form assumed
by conventional quantum theory —is abrupt and indeterministic. Following
R. Penrose, we can abbreviate this reduction of the state vector as “process R”.
We have to admit that the exact nature of this process is still partly unclear.
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» Why do we need process R 7?

Without the process R, the theory would not be able to explain correlations of
results obtained in repeated measurements of the same quantity on the same
system. Assume that we measure quantity A twice, first at time t; and then
at time ¢; = tp+At. The conditional probability to measure eigenvalue a; of A
at t; given the result at ¢, was a; reads as: p(a;ti]aito) = (V|UT(AL) P, U(AL) ),

where [¢p)={ state vector immediately —For Ay — () the second measurement must
after the first measurement.

yield the same outcome as the first one: Alimop(ajtﬂaito) = 85, s0 ||ib) = |a;)
%

Example: repeated position measurement  Sketch of the U and R evolutions
on a particle with wavefunction given by  for a position measurement:

an isotropic spherical wave

source of individual
particles (sph.waws)

process R
“a/t ted /
etlecle
ositio '
o o ort, <</<<
Frocessu

—_

non cle t i
Fosits;‘ﬁ;u ig%ifctors (SFhe re S)

» Measurement postulate

This leads us to the postulate on the instantenous evolution of a general quan-
tum system induced by a measurement of an arbitrary observable A:

measurement |CL1> Zﬁ a measured: pI‘Ob. pw(al) — (1/)|15a1|¢>
| w) of quantity A

10) = Ralt)={ laz) iff as measured, prob. py(as)= (| Py, [1)

R AlY) & /; Pai ) where £ means conditional equality, which holds
ARL iff the outcome of the measurement is equal to a;.

This process is called either the “state vector reduction”, or more dramatically
the “collapse of wavefunction”. We stress that the term “collapse” does not
mean here the “end of wavefunction”, but just its instantenous localization to a
certain subspace of the Hilbert space. After the measurement, the wavefunction
continues its evolution according to ordinary Schrodinger equation.

» Properties of the reduction operator Ry

non-deterministic: one knows only probabilities of possible outputs
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non-linear: 4l%= >} but RA(a]al + ﬁ\ag { @) } #aR lay)+BR|as)

a1
Alaz)=|az) laz)

)
. =x|aq a f? <a R
non-unitary: [4)=a)tde) | _A>{ B ) @)
)

dI‘bltI‘dI‘y 0orl

“non-local” “acausal”: (%, t) collapses simultaneously in the whole space.
This indicates that R in the present form is not real but only an effective
process — a shortcut for a so far unknown physics or ontology (see below).

<« Historical remark

1927: Werner Heisenberg first explicitly considers the wavefunction collapse

1932: John von Neumann includes the reduction postulate into the mathematical
formulation of QM and discusses its properties

» The unknown nature of process R

Numerous solutions of the quantum measurement problem (and the emergence
of the “classical world”) have been proposed, but none of them can be declared
as the final answer. We do not aim here at the interpretation issues, so we only
briefly outline basic directions in which various interpretations operate:

(a) Classical answer: R is an unavoidable and irreducible consequence of inter-
action between a “quantum system” and a “classical apparatus”. This early-day
answer is not considered satisfactory as everything is made of quantum con-
stituents: Where ends the quantum domain and starts the classical one?

(b) Metaphysical answers: R “happens” on the interface between the quantum
world and (human?) consciousness. The hard form of this idea (consciousness
having an impact on physical reality) seems inadmissible, but a softer form
looks acceptable: the state vector is not the “reality” itself but just a max-
imal (ultimate?) “information on reality”. R captures a sudden change of
this information and thus does not have to conform with “materialistic” forms
of causality. Another answer of this type was given by the so-called “many-
worlds” interpretation, in which the observer, identified with one of the possible
recorded observation sequences, becomes a part of the physical description.
(¢) Logical answers: R is avoided in the very formulation of QM. Example:
formulation in terms of the path integral or quantum histories. The notion of
state vector, hence also its reduction, is eliminated from the formalism. The
theory is considered as a mere “machinery” to compute observable results.

(d) Physical answers: R results from a so far unknown, but completely natural
process, which happens spontaneously when the “amount of matter” involved in
unitary quantum evolution becomes “macroscopic”. Examples: spontaneous-
localization hypothesis, hypothesis of gravitationally-induced collapse (to be
elaborated within the future theory of quantum gravity).
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The vagueness of the reduction postulate can be

illustrated by the celebrated paradox \
of Schrodinger’s cat and its various Wigrer's l
extensions. The cat is, by a genuinely
quantum mechanism (such as a decay
of a single unstable nucleus), brought
to a superposition state

frie

Sclnr“odinger cat

1) = L|dead) + %\ahv@ If the situation is observed by multiple obsefvers7
2 2 who of them causes the wavefunction collapse?

<« Historical remark

1926-9: N. Bohr & W. Heisenberg put cornerstones of “Copenhagen interpretation”
1930’s: J.von Neumann & E. Wigner consider consciousness-induced collapse
1935: E. Schrodinger points out oddities of QM description of macroscopic objects
1957: H. Everett proposes the “many-worlds” (relative-state) interpretation
1960’s: E. Wigner writes about quantum paradoxes and introduces the “friend”
1980’s-90’s: attempts to introduce R as a spontaneous process (G.C. Ghirardi et al.,
R. Penrose) and to explain R from the decoherence theory (W. Zurek)

1990’s: attempts to formulate collapse-free QM (R.B. Griffiths, M. Gell-Mann)

B System—apparatus interaction

We should quickly descend to a more physical level. Let us consider a schematic
model of the measurement process, involving a specific interaction between the
measured system and any kind of measuring “apparatus”. We will see that a
correctly performed measurement induces the system—apparatus entanglement
expressed in the basis of the measured quantity. Both subsystems are then
described by statistical ensembles involving alternative measurement outcomes.

» A model of measurement

The measured system S and the instrument I form a pair with the total Hilbert
space H = Hg ® H;. The I space H; (within the rigged space) is spanned by
continuous position vectors |z); (where x may define a “pointer” position). The

S-1 interaction is taken in the form ﬁim = /1(121 ® ]5) where k is an interaction

strength, A is the quantity to be measured on S, with eigenvalues a; and the
corresponding eigenvectors |a;)g, and P is the momentum operator of I. We
neglect self-Hamiltonians of both S & 1, and consider an initial factorized state
1W(0)) = (35 ailai)s) @ |zo)r, where a; are arbitrary coefficients (normalization
assumed) and xy is a fixed initial position of I. The evolution leads to:

V(0)) = ZZ:%‘ lai)s ® [e#19P |zg)y] = ;Oﬁ |lai)s|zo+sta) = [V(t))

translation
ro—xo+kKta;

6_% intt

Kta;
~—
Al‘i
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This is the Schmidt form of an entangled state, therefore both S & I partial
density matrices are diagonal in the given bases (see bellow).

» States of the system & apparatus

The state of S & I after the interaction: 0(Az;—Az;r)

A
-~

ps(t) = Trr|W () (W(t)] = X cvoj|ai)s(av| [ da (x|zo+Azi)i(zo+Azy|z)

pi(t) = Tas[(£)) (L (H)] = > i Z<ay‘\ai>s<ai'\%> |wo+Azi)1(zo+Azy|

J/

-~

5
The resulting reduced density operators

ps(t) = loillag)s(ail| and |pi(t) = |oul’|wo+Az;){zo+Ax]

are diagonal in the given bases and express statistical mixtures of all possible
orthogonal measurement outcomes with probabilities |o;|? corresponding to the
expression of the initial state of S. In this formulation of the measurement
process, the reduction postulate represents just drawing one particular state
from the pool of states contained in the statistical mixture pg(t) or pr(t).

» Imperfect (weak) measurement

Instead of the localized initial state |z(); of the instrument in the above model,
consider a non-ideal initial state given by a Gaussian wavefunction of width o, so

U1(2) = i —#*/47" | and the initial state is 1W(0)) = (3, ailai)s) ® ir(x)

= (2ro2)1/4 €

The system S evolves evolves from the state before the measurement
Ter| W(0)) (P (0)] = 2 cviexfs [ai)s {aw| = ps(0)

(1—Ami)2+(ac—Aa:i/)2

T lU(0) (E(0)] = T o las{af] ey fdre™ w8 =

to the state after the measurement:

1 Az, —Axi/ 2

= (with the aid of Gaussian integration) = Z o a;-k/ e 272 2 ) |ai>S <ai’ | = ﬁs (t)

i,
b= ps(t) =2 |ail’|ai)s(ail Trpg(t) =3 |ail* <1

V= ps(t) = ad |ag)slan] = ps(0) Tepd(t)= (3 |a|?)* =1

1,1’ i

Limiting cases:
o=0

ideal measurement

g=00

no measurement
The intermediate case o € (0, 00) corresponds to a measurement with a limited
accuracy (some shifts Az; = kta; of the pointer cannot be distinguished because
of the pointer uncertainty o). The final state pg(t) is between the pure initial
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state and the maximally damaged (mixed) final state of an ideal measurement,

S)e € (Slaift1).

yielding an intermediate purity Trpd(t) = Z |ovi |*| i [2e (
) i

B Repeated measurements

Altering considerably the state of a quantum system, the measurement be-
comes an important constituent of the evolution. We will briefly consider what
happens when we measure one or two observables in a quick succession.

» Quantum Zeno effect
Repeated measurements of the same quantity slow down, or even completely

stop (in the limiting case of infinite measurement frequency) the evolution.

Define a binary quantity (“yes/no” outcomes) |A = 1[¢)(1)|+0 Z o) (o7
where [¢)) = an arbitrary selected state € H, '
{|#7)}; = a basis in the orthogonal complement Hi to 1) in H.

If the system at ¢t=0 is prepared in the state |1)(0)) =|¢), the survival prob-
ability of the spontaneously evolving system for small times ¢ reads as:

po(t) = (O[NP~ 1= (£) +...  where 7 = \/{E%)y/h

Periodic measurement of A with time interval 0t = % — 0 leads to a modified
(larger) survival amplitude: —e t7 —ett/T

pit) = [po (2]~ [1 - ()] =T o s £ =
Note: for an exponential decay, in contrast, the measurement has no effect:

p(t) = [e]" = e = po(t)

» Description via system—apparatus interaction

Although it seems that the role of the collapse in the quantum Zeno effect is
essential, an equivalent result can be obtained in a collapse-free formulation.
Assume that at each time tk—kt with k=1,2,....n, the state of the system is
measured by an instrument I, € {I;}}_, and recorded in its state |1); (intact
system) or [0); (decayed system). The §t =L evolution of the system can be

written as ||¥)g A T—e [9)s+e | )s | where € is a small number and |7 )g is
a state from the orthogonal complement #,;. We assume #; so large that it

confines any evolving state for a very long time, so that we can write |1 )s %

3 )s 2

= After time ¢t the composite system is in a state:

|‘I/(t)> <1i€)ﬂ >S®(|1> |1>n71|1>n>1+(1_6 nz 62W}l S®(|1 1-- |1 n— 1|O>n)
+(1—e) = 62|¢2 )s ® (|1> ’0>n—1|0>n)1 )s ® (|0 1] 0) 1|O>n)

We see that the term recording the measurement h1story (1)1 1)n1|1)n),

dominates for small d¢, the other terms vanishing in the limit ot — 0.

KIS [:E)s, with {|¥i)s}i_, being a sequence of states in ’Hi
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<« Historical remark
1977: G. Sudarshan & B. Misra theoretically describe the quantum Zeno effect
1989-present: exp. evidences of the measurement-induced slowdown of evolution

» Consecutive measurements of incompatible observables

The reduction postulate has also a striking consequence for measurements of
incompatible observables: Statistical distributions of outcomes of successive
measurements of such observables depend on the order of measurements.

Measurement of quantities A and B in sequences (A, B) and (B, A) performed

at times ¢y and tp+At with At — 0 on an initial state [1)(ty)) = [¢)

Joint probabilities of results A=a and B=b: py(a,b) = py(bla) py(a)
—— =

( ) Order A-B: p (AB) (CL b) < 7’pb|7$>< ’pa‘¢> joint conditional
— WIBIRI) (| P, = (] PPy Pl )
(i) Order B-A: p"V(b,a) =+ = (WIBABIY)

Compatible versus incompatible observables:

[A,B]=0=[P,, ] = pprB (a,b) = prA)(b, a)| order independent

[A,B] 404 [P, B = pprB (a,b) #p BA)(b a)| order dependent

Statistical dependence of results
The reduction postulate trivially implies that the results of subsequent A & B

measurements are in general statistically dependent. py(ald) # py(a)
The correlation between results exists for both py(bla) # py(b)
incompatible and compatible observables. py(a,b) # py(a)py(b)

B Measurements on entangled states

A real puzzle arises when we start thinking about the effects of quantum mea-
surements on coupled systems. If such a system is in an entangled state, any
local measurement on one of the subsystems can alter the potential outcomes
of local measurements on the second subsystem. This is independent of how
large is the spatial separation of both subsystems.

» Local measurements on a coupled system

A system composed of two subsystems, with total Hilbert space H = H; ® H

Local observables defined separately on both subsystems: { A=de b

We trivially have [A, B =0 = compatible observables B=hLebh
The statistical dependence of the results of subsequent measurements of these
local observables appears only for entangled states. It generates a possibility

to influence subsystem 2 by a local action on 1 and vice versa:
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N

A . - (Rah®l, k=1
Effect of s in H: L | ® (F
ect o { B } measurements in H ko< { L ®(Rp)y k=2
. : |a)1]tha)s k=1
F U)= v)=
actorized state | |U)=|1y)1[¢n)2 = Ry |¥) { W) 1|b)y k=2

= measurement, on subsystem 1 has no consequence on 2 and vice versa,
hence the results are statistically independent

N1272J<a|¢1> [a)1|;)2

1

. k=
Entangled state | |V) = 7| D ; = R,V
g ) Z’VJ|¢ )1l;)2 k| V)= NQZ%]<()|¢]> i)11b)2
k=2
Ni=(Ci; ”yfj’yi/j<¢i|]5a|gz5i/)1)’l/2 and Ny = --- are normalization factors

= both measurements change the state from entangled to separable
= measurement on subsystem 1 generally alters probabilities of measure-
ment outcomes for subsystem 2 and vice versa:

Before: py (b )_<\p’f®]56]\11> Z%J%g <¢j|Pb|¢j>
After: pRIqJ( )= <R1‘I/‘I®Pb‘R1 > sz%;%; <¢1|P |pir)1 <¢j‘ﬁb‘¢j’>2 # pu(b)

i’ jj’
= local measurements on entangled states have non-local effects! However,
the nature of these effects must prevent any possibility of causality violation.

» EPR situation

The paradoxical consequences of measurements on entangled systems were first
noticed by Einstein, Podolsky and Rosen, so the corresponding situation is often
referred to by the acronym “EPR”. The original EPR thought experiment was
later reformulated in terms of the spin singlet state of an entangled pair

of spin—% particles. .Essent.ially the same |UgpR) = \/Li (1] L2 = [ D] 1)
results can be obtained with other types
of maximally entangled states, e.g., polarization states of a pair of photons.

It is assumed that particle 1 goes to observer A (named Alice) and particle 2
to observer B (named Bob). 2

&
Since |Wgpgr) is the state with @ / - @
total spin s = 0 (see Sec. 3b), @ N O > @D

Alice S=o

it may originate from the decay
of a spin-0 object to a pair of
Spim—l particles. The |Ugpr) state is naturally invariant under arbitrary

rotations Rﬁ¢ = U & U where U Sﬁ¢ <g é > with «,8= normalized coefficients:

n¢|\IIEPR> — ||+ 8)%=1

L[ (ami+811) (=57 Ma+asla) = (=5 Mi+ain ) (ala+81)2) | = (laP+18P) [ VEpR)
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So, we can use any of the infinite number of equivalent expressions:
|[Ugpr) = Z5(Milb2=Ibilt)2) = (19102~ N2) = Z5(N)1IN)2= N1 N)2) = oo

» Local spin measurements
Due to the invariance of |Ugpgr) under rotations, the a priori probabilities of
individual spin projections before any measurement are all the same:

p(T)=p(t2) =p(l) =p(2) =p( 1) =p(2) =p( 1) =p(2) = -~ =3

This changes once Alice makes the measurement on particle 1 in any spin basis:
Alice measures particle 1, e.g., in the basis {| 1)1, |{)1}:

Alice | 1|d)2 iff T1 measured ...case (a)
Ve Ri|¥spr) = { |12 iff }1 measured ...case (b)

Bob then measures particle 2 in the same basis {|1)9,|])2}:
[ p(T2) } _ [ (1) ] in case (a), { (1) } in case (b) % { probabilities before

p(lo) Alices’s measurement

The same holds for any basis {| )1, | )1}, {|~\)1,\)1} - .. chosen by Alice as
long as Bob uses the same basis. In fact, Bob’s particle is always polarized
(either up, or down) in the basis selected by Alice!

<« Historical remark

1935: Albert Einstein, Boris Podolsky, Nathan Rosen publish the EPR paper, ques-
tioning “completeness” of the quantum description

1951: David Bohm reformulates the “EPR paradox” to the spin language

» Description via density matrices

The reduced density operators of particles 1 & 2 in the entangled state |[{gpr):
pr = Too|Wppr) (Wepr| = 3 5(I1)1(e]d)2—[L)i(e[1)2) ((LIo)2(T [ —(T]e)2(L]1)

=T
= [+ 5 =30 =

p2 = Tr1|Wgpr)(VEpr| =.:ZH%(<-M>1M>2—<- D)) ((Ll2(t o)1= (T]2() o)1)
P2

{
p1 & po are obviously invariant under = 151Dt + 3124 = %f
any spin basis transformation.
Let ty be the time of the pair emission, ¢; the time of Alice’s measurement, and
to the time when Bob learns (by some classical means) about Alice’s results. In
the language of reduced density matrices the evolution is described as follows:

time particle 1 particle 2
" ot A % 0 A % 0 quantum uncertainty
€ [to,t1) p1= 01 P2 =1\, 1 (Alice & Bob)
1 -
A 710 00 ~ (350 purely statistical
te [tla tQ) P1 = (0 0) or (0 1) 2 = (2) i uncertainty (Bob)
t € [tz,00) pr=1(50) or (§1) A2=1(47) or (50), resp.
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In the first line, the states are those calculated from [¢gpgr). In the second line,
Alice already has either the | 1); or ||); state, but Bob does not know which one
it actually is, so he has to use the density matrix to account for this statistical
uncertainty. In the third line, the information about Alice’s result arrives to
Bob who therefore modifies (in his mind) the state of particle 2 accordingly.

» Impossibility of superluminal communication

The fact that the density matrix of particle 2

remains in the basis-invariant form ,62:%12 8 B
until t=t5 shows that no local measurement / o
on particle 2 in time interval ¢ € [t1,t5) can

A

reconstruct the result or the spin basis of
Alice’s measurement. For instance, imagine that
in repeated emissions of particles 1& 2 in state
|Yrpr) Alice always performs her measurement

in the bases { HQiK‘;ﬁ } to communicate the {{} bit value to Bob. The basis

used by Alice is indeed imprinted in the state of particle 2, but Bob cannot
determine it as both up and down orientations of spin in this basis are equally
probable. The situation would change if Bob can somehow make a number of
identical copies of the particle-2 state. Having e.g., a sample of n>>1 particles
in states | Vol )3 ... )ni1, he would be able to deduce on a high level of
certainty that Alice is sending the bit value 0. However, this is not possible!

No-cloning theorem: it is impossible to copy the state vector to more carriers
as the ideal “cloning” transformation |1))1|e)o |10)1|1))2 V|1)) violates linearity:

W)a>1|¢>2 — ’¢a>1w}a>2
Vo)1l @)a = |n)1]n)a

b= (@l 810 )2 - bl Bl

)1 Aol

In can be proven rigorously that the EPR setup cannot be used to send
information out of the light cone. Note that the treatment of the EPR
problem would remain the same even within the relativistic QM formulation.

» Order of measurements

Alice’s and Bob’s measurements can be off the light cone. We know that the
time order of such events can be reversed by a suitable Lorentz transformation
= In the new frame, Bob can make his measurement (and the state reduction)
first. Which picture is true? Both pictures are equivalent as they yield the
same probabilities of measurement outcomes. This follows from mutual com-
patibility of local measurements on subsystems 1 & 2 (see above), which implies
independence of the joint probabilities on the succession of measurements.
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B Quantum nonlocality, Bell inequalities

The EPR thought experiment challenges the assumption of locality, which —
since the formulation of Einsten’s relativity — represents an untouchable ingre-
dient of any ultimate physical theory. From the above explanations it seems
that the locality is rescued. Indeed, we saw that even with entangled states and
the reduction postulate, the quantum description of EPR-like systems does not
allow for superluminal communications and remains local on the operational
level. However, there is a subtle consequence of quantum theory which goes be-
yond the classical version of locality. To show this, we use the same EPR setup
but allow Alice and Bob to select spin bases of their respective measurements
differently, independently from each other. With different spin bases, Alice’s
and Bob’s results are no more strictly anticorrelated. Nevertheless, it turns out
that the correlation is stronger than might be expected from any classical con-
sideration satisfying the locality assumption. This subtle type of “nonlocality”
is the real mystery of quantum theory.

» Hidden variables

Historically, the aim of EPR was to demonstrate incompleteness of QM. A com-
plete theory was assumed to be classical-like (“realistic”), although possibly
indeterministic, based on some so far unknown parameters called “hidden vari-
ables”. Can the entire QM be replaced by a hidden-variable theory? A hidden-
variable description of some special situations can be easily developed.

Example: the EPR situation when Alice & Bob perform their measurements
in the same fized spin basis, e.g., {|1),]])}. At each emission of the pair of

particles, a random hidden variable x = {(1) giggjﬁig gg;ﬁ decides whether the
pair is emitted in the state 11/2 (e.g., when k=0) or |17 (when k=1).

A hidden-variable description can be formulated even if the basis is varied but
remains the same for both Alice’s & Bob’s measurement. However, it was
shown (see below) that once Alice & Bob are allowed to chose their bases
independently, the corresponding hidden-variable theory reproducing the QM

predictions would have to be nonlocal.
» EPR via hidden variables

We assume a classical-like, but probabilistic description of the EPR situation.
Let us introduce all relevant quantities: /T\ )\
(a) outputs of Alice’s & Bob’s measurements: a, be{+1, -1}
(b) rotation angles of Alice’s & Bob’s spin bases: ®y4, Pp
(c) hidden variables sorted to 3 groups:
a={ay...}

B={p...}

. 1 .
} related to particles { 2} and the corresponding measurements,
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v = {1 ...} related to the emitted pair 1& 2 as a whole.

Scheme: mgb Dy Mgb dp
1) =a m — — m b={*"
particle 1 particle 2
hjdden
hidden vanables @ variables ~y hidden Vdrldbleb B
Probabilities
Conditional probabilities of outputs b .
.. p .. . p Pa,(alay) pe, (bl57) conditional
Conditional & apriori probabilities po,(aly)  pao,(Bly)
of hidden variables p(v) apriori

Here we assume that output a cannot depend on b, 3, ®p (similarly b cannot
depend on a, a, ®4), hidden variable o cannot depend on 3, ®p (similarly J
cannot depend on «, ®4), and variable v cannot depend on any other quantity.
This follows from the required locality of the hidden-variable description.

» Consequences of locality
A less obvious consequence of the required locality is the factorization of the

joint probability of outputs a & b: ’p¢A<pB(ab|aﬁ7) = po,(alay)ps, (b[ﬂfy)‘

This follows from statistical independence of variables {a, a} on {b, 5} and vice

versa, and from no influence of angles gg } on probabilities related to { S }:

PD 4 @ (abafy) Pd 4 @ (albaBNPe 4 @ 5 (bB)

Poyep(ablofy) = 500 Gmy = Po 40 (@07 = pa,35(albap)bsgo, (blaBr)
+1
= For fixed {7, @4, g}, the average (ab)o,0,, =[] D abps o, (ablafy)dadp
. a,b=—1
factorizes: (ab) g 40,y = (@) 047 (0)®,~

Variable 7 is out of our control, so we evaluate the observable correlation coef-
ficient between A & B measurement outcomes as (ab)e 0, =/ (ab)s,0,,P(7)dy

We finally consider the following 4-angle combination of correlation coefficients:

B(®4, Py, Pp, Dp) = (ab)o,a, + (ab)s, o, + (ab)e,6, — (ab)e,a, || =

J[{ab)e,0p,  +{ab)asar,  +(abaa,,  — (abaye,, | p(y)dy =

J a)o.7b)asy + (0o D)oy + (@), (D)asy — (@), (D)ar,, ] p(7)dy
242« (@.bel-1+1 €242

The last constraint follows from the fact that zy+zy' +2'y—2'y € [-2,+42] for

x, 2’ y,y €[—1,+1]. Hence the locality requirements restrict B so that

Bell inequalities

(one of their forms)

These inequalities represent necessarily conditions to be satisfied by any local
classical-like theory that aspires to fully describe the EPR experiment.

_2 S B(q)Av {,47@37@,3) S +2
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» Quantum factorized states satisfy Bell inequalities
General factorized state [U) = (a| 1)1+ 1)1 ) (6|T>2+5 11)2 ) (with a.06,5 =

normalized coefficients)

o) )2 €[~1,+1] €[-1,+1]

: ~ ~ ~ = =
For this state we have (ab)s, 3, = (¢|As,|¢)(X|Ba,|x) = (a)s, (b)s, , where
{Aq)A Uq;.AO'ZUq)A

Alice’s :
Boyy—Uloy 6.0z } is the spin operator of particle {4} in { 4> } basis.

= B={(a ><1>A<b><1>3+< )o.(0)ar, + (@), (D)o, —(a)o, (b)ay, € [-2,42]
» Quantum entangled states violate Bell inequalities

The average (ab)g, 0, for entangled state like |Wgpr) does not factorize!

Spinor transformation between mea- (rm >:< cos e sin %o )( |/be )k ) k=1,0=A
suring frames (y-axis rotation by ®,): Wk ) \ —sin @2;005 > )\ oo ) k=2e=B
The |Ygpr) in rotated bases is expressed as: Us,
blnf(OSq)ZB *COb(I; bln 2 Il 5 bln JrC()b ;CoquB
L5 (1Th D=l D) = 7 Al B
o ‘/_/ S
9 [Tepr) a++<<I>A @p) ab=+1 <<I>AA>B>

—sinPAgin 2B 04 s 2B A 00528 o5 A gin 2B
|/((DA> |\/DB>2+ Sll’l2 sin \/7(’0@ (’OQ LKDA> |/((I)B>2+Sln COS \/EOS ‘slIl ‘)/I)A> ‘X/PB>

ab=-—1 a—+((I>A7(I>B) ab=-—1 a,,(CI)A,<P3) ab=+1
(ab)o,0p =[0+4 (P4, Pp) [ =] (P4, Pp) P — a1 (P4, Dp) | +]a_— (P4, Pp)[
= - - with a little push - - - = — COS (CI)A—(I)B>

B=—cos(®4—Pp) —cos (Py—Dy) — cos (&, —Pp) + cos (P, — D)

Bell inequalities violated, replaced
/ /
—2v2 < B(®4, ©y, Pp, Pp) < +2v2 by wider “quantum inequalities”

For example, with ® 4 =0°, &, =45°, dp=112.5°, ', =67.5° we get B = +2/2
= Predictions of QM differ from those of a general local hidden-variable theory

Conclusion: “Quantum nonlocality” does not exist in the sense of an exploitable
superluminal communication. Nevertheless, a trace of nonlocality lies in corre-
lations between Alice’s & Bob’s results in the generalized EPR situation. These
correlations are stronger than possible classical ones if locality is required in the
classical description = The following soft form of nonlocality is valid: Quan-
tum mechanics cannot be replaced by any classical-like local theory!

<« Historical remark

1964: John Bell derives the first version of his inequalities

1969: J. Clauser et al. derive the most common form of Bell’s inequalities

1981: A. Aspect et al. provide the first reliable experimental test confirming the
violation of Bell’s inequalities; discussion continues about potential “loopholes”
1990’s-present: many more experimental tests, including “loophole-free” ones
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7b. EXAMPLES OF QUANTUM MEASUREMENTS

In the previous section we have introduced the universal process of quantum mea-
surement in a rather abstract, mathematical way. But how can any real measure-
ment of tiny quantum objects be actually performed?

Bl Destructive & nondestructive measurements

The collapse postulate, describing what happens with the wavefunction of a
quantum system in an ideal measurement, does not apply in all cases. Real
measurements often completely destroy the measured object. The cases, when
the object is preserved and its wavefunction “collapses”, are usually connected
with indirect measurements based on the entanglement of the measured system
with some other pieces of matter.

. crystal
» Destructive measurements
The measured system (a particle) is often l] @
destroyed in the measurement process. For instance, (-—'
the detection of photons goes almost always this way, jf’f?tfmg{lve
eteclors

both for the measurements of tracks and polarizations
of photons (the latter being performed with the aid of B\/
polarizing beam splitters based on birefringent crystals).

» Nondestructive measurements

These are most commonly based on an entanglement of the measured system
with another system, on which the actual measurement takes place. Examples:
(a) Tracks (positions) of charged particles: These can be detected through
the ionization caused by the particle in the surrounding material. Schematically
the instantaneous state of the particle + surrounding can be written as:

|\I[> _ fdf ¢(f) |ionization>

around ¥

Spin orientations of charged

particles can be nondestructively =
measured using the Stern-Gerlach ]
type of instrument, in which
different spin orientations lead to
different deflections of the magnetic
dipole in inhomogeneous magnetic
field. If { zﬁg } is the shifted wavefunction corresponding to { }B } spin—% state,
we schematically write:

W) = al 1) [ dF r() |pmion) + BI4) [ dF (@) |iomtion),
where we assume negligible overlap of components () and ¢ (Z).
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(b) Decay processes: To measure
whether the “parent” system (an excited \ /
atom, an unstable nucleus or particle...) @

has decayed to a “daughter” system,
we usually detect the emitted particles \
(photons, a-particles, electrons...).
Schematically, the instantaneous state of the entire system can be written as

|\IJ> = OC|¢parent>|0> + ﬁ|'¢daughter>|x>a
{||2>>} denoting states in the Fock space of decay products with products ggzeg;ft

» Partially destructive measurements —filters

Another type of measurement arises if the measured system is destroyed only
for a certain subset of possible measurement outcomes. Imagine the above
example of the photon polarization measurement with one of the destructive
detectors removed: Each time when the photon enters the device and there is
no signal from the remaining detector, the photon is in the other arm of the
beam splitter and has the corresponding polarization.

In general, for this type of measurement we can write

Ralt) = { X probability = <¢|pa1|f/’> = result a; measured

N(I—-P,)|t) probability=1— ()| P, |)) = result #a; deduced

A partially destructive instrument acts as a filter. We stress that a quantum
filter changes the state of the system (unlike the classical filter, which only lets
some states through). This is illustrated by the problem of three polarizers:
Two polarization filters with ¢ =0° & 90°

stop every photon. The third filter

with ¢ =45° inserted between the |
two changes the photon polarization No pasarans
state to |[¢) = f]x>+f]y> (see be- @ @l@swecan!

low) and hence enables some photons
to pass through the whole device.

The class of measurements, in which a certain outcome is deduced just from
the absence of the measured particle in the branches of the instrument corre-
sponding to the remaining outcomes, is sometimes cast as “interaction-free”.
Consider a two-path interferometer, in which one of the paths contains the
detector. If the detector is silent, the particle is localized on the other path,

which prevents the two-path interference from occurring. So once we observe
the particle propagating in the forbidden direction, in which the interference

» “Interaction-free” measurements
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would be destructive, we can say that the measurement was successful, but — at
the same time—the particle went along the path with no detector!

Example: Bomb testing problem d4et

Mach-Zehnder photon interferometer: H\_i
. . -

The photon beam is split on the first beam
splitter (BS1) to paths I and II, which both
after a normal-mirror reflection merge at the
second beam splitter (BS2) followed by
detectors 1 & 2. A symbolic expression

det
2

of the evolving photon state reads as: é Sﬂo_”gf’ier'cl’l“’fm @ bk
BSl . mirrors_ 4 . _ o
|1> (D +i[I) == Z5(ID+i[IL)) = |4)

== I5(12)+i[1)) o s
\H>B—> ~(11)+i12)) { } dtirectionts} = |[Y) = —|1)=|1).

The photon goes only to detector 1, so an interference occurs. Now assume
that a bomb with a trigger sensitive to a single-photon reflection is placed, e.g.,
in arm II. The bomb acts as a which-path detector, reducing the photon state

as follows: (]I)—H\II)) { ‘\?1) gg;ﬁ . In both cases, the photon can then exit

in either of states {|2>}. The sequence |1) — - - A, IT) SLEN |2) (with probability
25 %) indicates functionality of the bomb without causing its explosion! Note
that more sophisticated setups have been described in which the efficiency of
the “bomb detection” may increase arbitrarily close to 100 %

B Production & measurement of entangled states

An increasingly important role in QM is played by measurements that are able
to distinguish various entangled states of some elementary objects (like qubits).
Such measurements are often performed on photons, so we first outline some
facts about the photon polarization.

» Photon polarization as spin-1 projection

All kinds of light polarization are manifestations of the photon spin s = 1. We
start from the basis states {|z), |y)} of linear polarization, where the directions
i, L1, L photon flight direction 7, = ¢

Rotated linear <|g:’>) = (copd, sind) <|x)>

izati i ' —sin® cos
polarization basis: ly') sinv cost )

Circular < L) ) _ < |~ > — (1) <Ix>>
polarization basis: |\ [re) V2L A




159

Here we introduced spin-1 projection states in the photon flight direction:
Note that state |s=1,mz =0) does not exist for massless (v=c) particles.

» Bell states

The EPR experiment is most commonly realized not with spin—% particles,
but with photons, the photon polarization states playing the role of spin—%
projections. Since the EPR particles represent essentially a pair of qubits, we
proceed with the qubit-basis notation |0), [1). The basis in the 2-qubit Hilbert
space can be taken factorized, as well as entangled:

1001]0)5 Y wiitary [ 75 (10)1[1)2 +[1)1]0)2) = [¥F)

Onl1)s | "5 ) 7510102 = [1110)2) = [¥7) | orthonormal
11)2]0)9 7 (10)10)2 + [1)1]1)2) = [@7) Bell basis
DADE 7 (10)1]0)2 = [1)1]1)2) = |@7)

Bell states show maximal entanglement as the entanglement entropy of both
partial density matrices for any of these states is maximal S; = Sy = In2. The
violation of Bell inequalities is the same for any state of the Bell basis.

» Production of Bell states

At present, various entangled states of pairs of photons are prepared with the
aid of so-called parametric down conversion, which is a nonlinear optical process
in some crystals. We mention here an older method based on a two-step cascade
of electromagnetic transitions in atoms:

J=0 The total angular momentum of both
l ~ photon 1 emitted photons must be 0, so the
J=1 photon spin state is:
| ~» photon 2 (=)l )2+ ] —=)2) =
J=0 — [ (#hla)s + Iwhaly)s) = [07)

» Measurement in the Bell basis

The identification of Bell states is equivalent to an ideal measurement of a suit-
able quantity composed of these states, e.g.:

A= LU (U 4 200 ) (U | + 3| DT DT| + 4|D ) (P |

The problem is that the resolution of all 4 Bell states is possible only with
measurements that simultaneously affect both qubits. Alternatively, one can
perform an inverse of the above unitary Yy )y ... output 1
transformation (which involves mutual { &™) } U { )2 ... output 2 }
. . . |®+) Yo ... output 3
interaction of both quibits) and perform o) Yo ... output 4
local measurements on both qubits.
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<« Historical remark

1922.: O.Stern & W. Gerlach perform the first spin-projection measurement
1970-90’s: development of techniques to produce photon pairs in entangled states
1993: A. Elitzur & L. Vaidman present the bomb testing problem

1990-present: rapid progress in controlling & measurements of simple quantum sys-
tems on various experimental platforms (S. Haroche, D. Wineland, A. Zeilinger...)

8. LINKS BETWEEN QUANTUM AND CLASSICAL

This is a breaking point of our journey. In Secs.la-Ta we have constructed the
basic formalism of quantum theory and in Secs. 1b-7b we have have demonstrated
some of its elementary applications. This stage is now finished. Before proceeding
to some more complex applications of QM in the forthcoming sections, we need
to specify under which circumstances the new quantum description gives rise the
familiar classical laws. It turns out that the land on the border between quantum
and classical physics contains a rather inaccessible and sometimes hardly passable
terrain. Genuinely quantum structures often hide classical roots, and conversely, our
classical word has to emerge from purely quantum substrate. I dare to say that the
quantum-classical correspondence belongs to the most interesting topics in physics.

B Classical limit of quantum theory

When quantum dynamics becomes approximately classical? We will see that
even for classical-like initial states, which seem to guarantee an almost perfectly
classical description of the system, the classical-like dynamics tends to become
invalid after a certain finite time (not tremendously long even for really large
systems). Quantum-classical correspondence at these time scales can be main-
tained only due to decoherence—the process in which quantum attributes of
the system get lost though interactions with any kind of “environment”. The
role of decoherence seems really substantial as it is also the main suspect in the
matter of selecting the ultimate basis of alternative states in which the classical
world emerges. On the other hand, to answer the final question “who selects
the actually realized alternative?” is probably only an issue of interpretation,
which may forever remain outside the competences of physics.

» Singular limit 7 — 0

A general physical theory can be subject to a limiting procedure: the variation
of its essential constant to the limit in which a particular approximate the-
ory takes the reins. Familiar examples are the limits ¢ — oo (or £ — 0), when
special relativity changes to classical mechanics, and N — co, when statisti-
cal physics becomes thermodynamics. It turns out that the limit A — 0 (or
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—S — 00), in which quantum mechanics should crossover to classical mechanics,

is rather tricky — we may even say singular.

Example I: harmonic—oscillator eigenstates 2y

. A .
Classical motion with period 7' = =L is given by: z(t) = Zyax(E) sinwt

Probability dens1ty for finding the oscﬂlator at position z in random time:

— 3 — 1 — 1 1
pclas($)Ed$ ‘d ‘ dr = 7rx,mx(E)|coswt\d'r = pclas(x)E =7 Tanax (B)2—12

/ |
Is there any link to the quantum probability density | pquant (¥) 5, = [Vn(2)]*] 7

To keep E,, = E = const for h — 0, we need

n — oo = infinitely dense oscillations of i, (z)

We introduce a smoothed quantum distribution
T+ 5

ﬁquant E dL f |wn |2d{li TH—O% pclas(x)E

2
which gets close to the classical one for n > 1.

Therefore, the limit A — 0 reproduces the
classical case only if smoothing of |, (z)
is performed along with the limiting procedure.

’ 2

Example II: potential-barrier transmission probability

We consider the square potential barrier of width a and height V{). The reflection
& transmission of quantum waves on this barrier depends on a dimensionless
barrier parameter = %\/QM Vpa? and dimensionless energy e = % The use of
the method of probability currents (see Sec. 5a) yields the quantum transmission
coefficient (probability to get to the other side of the barrier):

1
| Tquant (€) = Ee—— e R 1
/1 quant 1 ) y 1
m 1+m sin? (yWe—1) =
L | \ What is the link to the classical
transmission coefficient
, 0 e<l1
Taas(€) =01 e>1

-
a4

forh -0=~v—>007

(a) e < 1: lm Tyyant(€) = 0 = Tias(e)
Y—00

(b) € > 1: lim Tyant(€) shows infinitely-dense oscillations within the interval
Y—0Q

[m, 1]. This is not Tyas=1. To get to the classical result, we need

two types of smoothening:
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=
(i) of the potential: V(z) = 2 [ V(2/)*da’ (which smooths out the edge),
e et de
(ii) of the transmission coefﬁ01ent Tans (€) = di [ Tant (€')dE'.
de
-2

» Problem of long times

Limitations of the Ehrenfest theorem: We consider a particle moving in a
potential field. The Ehrenfest theorem (see Sec. 5b) seems to guarantee the cor-
respondence between the classical dynamics and the quantum evolution of the
average position and momentum for initially well localized wavepackets. A good
example are coherent states of the harmonic oscillator, which evolve in close
correspondence with classical trajectories. However, for a vast majority of sys-
tems, such a correspondence is limited to not too long times. The spreading of
wavepackets (in almost all potentials) implies that the semiclassical descrip-
tion ceases to apply at times ¢ 2 7q, in which the variance of the force across the
wavepacket spread becomes (:omparal‘)le2 with (or larger than) the force aver-

% >w(TQ)ij(TQ) ~ ( g;/ >w( o’ where
Axj(1q) is the spread along direction z; at ¢t = 7q.

age. This leads to a criterion: Maxj<

Phase-space description: Consider an initial t=0 state of a general system
represented by a non-negative Wigner quasiprobability distribution W (Z, p;0)
in the 2 f-dimernsional phase space, equivalent with a classical probability dis-
tribution p(#,p,0). The support S,(0) of the initial distribution is a sim-
ple compact domain of volume ,(0). The semiclassical approximation holds
if W(Z,p,t) evolved by quantum dynamics roughly coincides with p(Z, p)t)

evolved by classical dynamics. L quantum evolution oL
The classical dynamics conserves the Wi(z,p.0) r WA ;p 1)
volume, so Q,(t)=Q,(0), but makes = . . =
the shape of S,(t) more and more p(Z,p,0) classical evolution, (@, p,t)

complicated with increasing time.

Its maximal linear size grows typically as L,(t) a2 L,(0)e"/™uo where 75!
is the maximal Lyapunov exponent characterizing sensitivity of dynamics to
initial conditions. Semiclassical behavior ends when fine structures of S,(t)
reach the size A/ of the quantum cells deduced from the uncertainty principle.

A rough estimate of this time:
A
‘
O

~ 2,(0)
TQ =~ Tchaos In %f

At t ~ 71q, the distribution
W (Z,p,t) develops negative
domains = gets non-classical.

\J
\
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» The effects of decoherence

Even a maximally isolated system interacts with omnipresent matter (relict ra-
diation, solar photons, dark matter...) or with some internal degrees of freedom
is most likely out of control. This has important consequences:

Semiclassical behavior in long times: On the classical level, interactions of
the system with some environment show up as random noise which prevents
the distribution p(Z,p,t) from developing the ~ A/ fine structures. Hence for
classical-like initial states, predictions of (a) classical theory with noise and
(b) quantum theory with decoherence are usually consistent up to long times.

“Einselection”: A quantum system S interacts with some environment E. The

total Hilbert space is H = Hg ® Hg. Assume a basis {|ay)}r of Hg formed by

eigenvectors of an observable A (we neglect possible degeneracies) and a general

basis {|e;) }; of Hg. As in the spin example in Sec. 6b, we start from a factorized

S+E state p(0) at t=0, in which the system is in a pure state |¢)s, and end in

a generally non-separable mixed state p(t) at ¢ > 0. lb)s — Z oklag)
k

We assume that the quantity A is conserved (it com-
mutes with the total Hamiltonian including the S-E

interaction), so the evolution of basis states reads as: ||ax)|e;) AN lag)|eri(t))
where |ey;(t)) are some states of the environment.

This leads to the following evolution of the whole S+E system:

. t . .
0= [9)(0] & (S wilei e ) 5 s T anatlan) ) s =0
kzk:/ apa|ag){ap | : —~ Y ' 7 = ﬁs(t) =Trg ﬁ(t) =
T =0 Pe(0) > gy (32 wiewi(t)leri(t))) lar) (an]
e k! i
We may assume that for ¢ > Tgecon, where the decoherence time 7gecon quickly de-
creases with an increasing size of the environment, we obtain (ex;(t)|ex;(t)) & g

Vi (the scalar product approximately factorizes to the overlap integrals in all

individual degrees of freedom of E). Then we have: [ . N D

= the state of system S expressed in variable ay, is ps(t) ~ zk: ekl "lax) (x|
a classical-like statistical mizture of alternatives. The
basis diagonalizing ps(t), in which the system becomes classical, is selected by
the S-E interaction, which conserves A. This process is sometimes called “ein-
selection”, or “environmentally-induced superselection” (of “classical” basis).

<« Historical remark

1913: N. Bohr discusses the quantum-classical correspondence within the “old QM”
1920’s-present: research of various aspects of quasiclassical quantum mechanics
1970’s-90’s: M. Berry points out the singularity of the i — 0 limit

1970-90’s: H.D. Zeh and W. Zurek consider environmentally-induced decoherence as
an effective mechanism for quantum-to-classical transition
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B Feynman integral

When the classical trajectories of particles were replaced by quantum wavefunc-
tions, people might believe that trajectories became irretrievably outmoded.
However, they returned in all their glory in a later reformulation of quantum
theory in terms of path integration. This brilliant approach further elucidates
the link between quantum and classical, but also serves as a computational tool
for some more advanced problems of quantum theory. Here we just take a little
taste of this powerful technique.

» Infinitesimal single-particle propagator P

3 1M
Free-particle propagator: G{ [(Z4+AZ)(t+Al)|Zt] = (52 )  eh 2 At

Infinitesimal At — 0 propagator of particle in potential V(7):
L(E4) - ¥ (8P -V(@) ;

3

GH(Z+AT) (t+A8) 7] = (;24o) e £ (7 30) At

= Gy [(THAT) (t+AL)|t] e FV @A (522 AMES 1= V(@A

2iThAt

It must be so since the At — 0 limit of evolution operator factorizes:

2 *%{*2@1 q2+V(f)}At 7%{72@6?}& _i
U(At) =e ~e e h

V(Z)At (from [TAAt,VAt]NO(AtQ)%O)

Up(At)
» Finite single-particle propagator
Since any finite time interval can be split to a sequence of infinitesimal intervals,

we can compose a finite-time propagator from the infinitesimal ones. We pro-
ceed in the Heisenberg representation, in which the propagator represents the

scalar product of time-dependent position eigenvectors: |G (Zt|Zgty) = <xt|x0t0>

G*(@t|71t1) GF(F1ta|Toto) |Tt) = eigenvector of XH( )
GH(Zt|Zoto) = [ (Tt|Z1t1) (T1t1|Toto) dTy =
[ GH@EZt,) ... G (Ttenr|Tutr) ... GT(Tit|Zoty) dZ,...dTy...d7
N——— N -~ N————
(i) T Cn &) (e B he(si)an (e yhhe(roig)an

Assume At = At = Eh

m nos / c (i:’ f) dt

[l
A2

8y
—

~
it

3
8

=5 [ la) : < 8
g ~ ) %(n-‘rﬁ % L (fk7 fk“ifk) At
= G (t|Zgto) = // dz,. . .di [#{N)}
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Path integral:

G+ (#t|Goto) = / DF(t)] e #SF)
= functional integral over the space i 4
of all possible trajectories Z(¢) ‘)

satisfying @(tg) =7y — T=12(t)

2

Note: the functional integration is in
fact a very complicated procedure, whose —— >
technical aspects we do not explore here!

» Classical correspondence

The contribution to the functional integral is most significant for trajectories
in a vicinity of the classical trajectory Z.(t), for which (these trajec-
tories contribute “in phase” while the others tend to cancel each other). This
effect in general increases as we approach to the classical limit A — 0.

Example: free particle SolZe ()]
G (Tt Eoto) = [ M F %%(ijg)z = non-classical trajectories cancel
0 0%) = | 27in(t—to) out perfectly even for A > 0

» Path-integral formulation of the double-slit interference

To see the path integration in action, we try to apply it to the double-slit
experiment from Introduction. Let us stress, however, that the calculations in
this and the following paragraphs are rather schematic.
We consider the usual scheme: . d

TA = (U, —|—§)

Emitter 7y = (_—s ,0) — Slits { L P
m IrB = (0, —5)

We assume the initial state (t——o00) as a Gaussian wavepacket with average
momentum p= (Mwv,0) and width ,/o,=Ap<p. = On the slit plane we get an
approximately planar wave with almost a sharp de Broglie wavelength A\g = %
We divide the trajectories to two disjunct subsets {Zx(t)} & {Zp(t)} passing

the slits A & B: G+(ft|f()t0> _ fD[fA(t)] e}%S[fA(t)] + fD[fB(t)] G%S[fB(t)]
Assume that only classical trajectories contribute to almost free propagation:

} — Screen T = (1, y)

i i i Sa+SB 1 SA—SB i 5A=SB
GT(Zt|Zotg) [e RO e hSB} —eh 2 [ Tho 2 4e h 2 ] X COS SA%SB
SAQ;SB :%”AJZF”B Apath = |psr(y) o cos ()\L%y) = Ayz%)\g interval between
pa v, two minima/maxima
SR

The approximations of Apath and the constant prefactor are valid only for
small y, and the real interference pattern disappears outside a limited domain.
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» Aharonov-Bohm effect

A bonus of the path-integral treatment of the double-slit experiment is an el-
egant explanation of the so-called Aharonov-Bohm effect. Consider an ideal
electric coil placed in between both slits A & B. The coil is oriented perpen-
dicularly to the plane defined by emitter & both slits, with the section area S.
Magnetic flux & = B, S is confined inside the coil. The area S can be made
arbitrarily small and the coil can be shielded against the passage of particles, so
that the particles have no chance to experience the field B, . Yet the field has
a strong impact on the interference pattern! The reason for this surprising be-
havior is that the vector potential, which appears in the Schrodinger equaition,
may take nonvanishing values ff(:f) #0 even in the spatial domains, where the
field induction vanishes, B(Z)=0.

" B <R (region of B#0
For a cylindrical coil of radius R:  A(%) = { B;e;h :>R gigzz zf B#O;

Lagrangian of a charged particle: | £(Z,7) — L(Z,T) + ¢7 - A(Z)

X
(8 O4q [on-Andt)  E(SP4q [ T Apdt
G (2t|Zoto) o er( R )Jreh( o )] o €08 [l <S§))—S§0)+Q>]

h 2

where Sg)), S](BO) are actions for zero field
and where we used the relation:

[Oa-Apdt — [p-Agdt = § A-di
A

B, 4B @ |

= [(VxA)-dS=B,S=®
S

= pscr<y> X COS2 <%% Y+ %)

The interference pattern is shifted although the particle cannot enter the region
with B () #0. So what affects quantum dynamlcs of charged partlcles seems
to be rather the field of the vector potential A(Z) than the field of B(Z). Nev-
ertheless, as we saw, the observable shift of the interference pattern depends
only on the flux ®, which is independent of the gauge— a particular choice of
A(Z) consistent with the given B(Z).

» Application of path integral to level density

Despite the quantization of energy in bound quantum systems is considered
as a genuinely quantum attribute of such systems, it turns out that the key
properties of energy spectra follow from classical dynamics. To show this, we
first relate the density of energy spectrum to the evolution operator of the
system and then use the Feynman integral.
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smoothened

—funcfions

VAN

Level density (cf. Sec. 6a)
=Y 6(E - Ey)
k

contains complete information on the ” ‘ \ ”m
system’s discrete energy spectrum {Ej}. ,
The unit of o(E) is (energy)™* and the

number of levels in any energy interval [Ey, E] is given by Nip, g, = J o(E)dE.
Ey
The exact level density can be smoothed by any weight function 6,(z) > 0

satisfying f 6o(x)dx=1, [26,(x)dx=0 and [ 2?6,(z)dr=0%

0,(E) = f5g (E—FE)p (E') dE' =Y 0,(E — Ek)
If the Width o> (E1—FEy) (average level spacing), the smoothed density g, (FE)
does not show individual levels but the main trends of the spectrum.

The link to the evolution operator is obvious from the relations:
Te0() = SUBU ()| B = S e i = [o(B)et7'dE Fouier
k

transformation

+00 . i ; . .
0(E) = g [ TrU(t)etiHdt = Re f TeU(t eﬁEtdt anstormation
—00
_ 1 Lpt
In the Z-representation: e f Tr G(t)et it dt
+00
o(E) = L Re / iz / dt G*(#t|20) ¢*iF || -5 7 propagator
i (Z|GT(t,0)|7) = GT(¥t|70)

= The path integral method for G (Zt|7)0) can be also used to evaluate o(F)
» Oscillatory level density via classical periodic orbits

It turns out that the main features of the level density can be determined from
periodic orbits (the ¥ L 7 orbits which also satisfy p 4 p). While the
classical periodic orbits determine the so-called oscillatory component of the
level density, the most trivial nonclassical orbits of zero length determine the
smooth part of the level density. So we assume a decomposition:

o(E) = o(FE) + o(F) where 9(F) can approximated by the
smooth oscillatory || above g, (E), but is precisely defined by
components the zero-length orbit calculation below.

The oscillatory component is given in the form of so-called Berry-Tabor (for
integrable systems) or Gutzwiller (for chaotic systems) formulas. We do not
derive these formulas here, but just give their general form using a sum over
all classical periodic orbits of the system:
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o= identifier of periodic orbit

r= number of repetitions of o
To= basic time period of o

( ) + QSO} where |M,|= a stability measure of o

r=1 So(E)= action along o

¢o= a phase connected with o

For a “cavity” (a compact spatial domain with V'=0 surrounded by inaccessible
complementary domain with V' =00):

8

l,= geometric length of orbit o

1 a1 2 To(FE)= its time period at energy F
= §pd$: nV 2MFEI,= 7 TO(E) E A,(E)= variable wavelength of the energy
27T/Av(,(E) oscillation: AO(E):%

Eﬁgrgt ((ll“oig } periodic orbits (L= cavity linear size) cause { jof } oscillations of o(E).
Very long orbits, yielding A, < Min(Fx1— F)), can be cut off. The summed
oscillatory density o(F) typically exhibits “beating patterns” which result from
interfering terms caused by several most relevant stable orbits. This generates
thickenings & dilutions of energy spectra with respect to the slowly-varying
smooth level density. Such phenomena are relevant for the stability of some
quantum systems (cf. various shell effects in atoms or metallic clusters).

» Smooth level density via zero-length orbits

The smooth level density g(E) can be derived from the contribution G;_, of
zero-length orbits to the path-integral expression of G (Zt¢|#0). For single-
particle applications, these “orbits” correspond to the particle remaining at
rest, which for nonzero potentials is not a classical behavior.

3 LIMAT gy
In the single-particle case we get: G;_,(Zt|70) = Al}glo (72-)* eh{ eV }
+00
oB) = e { | [ G| 70) 17 draz
0 4w _[A_A_} o
lim Re{(Z?ﬁhyf | hiz ¢ eﬁ[E_V(I)]tdtdf} =...
0

”h AZ—0
. i
Trick: * = (%%M)g Je "

- = 7rh(27rh) hm Re{ﬂ [ e [pAI M ]e%[Efv(f)]t dtdfdﬁ}

S ldp (Gaussian integral)

s(E— ;ff —V (&)
_ =2 N — _ P (A ardn
o(E)= (zquh):% fj5 [E_ QpM_V(x)} dz dp UE) =IO [E 2M V(x)] div dp
S —- A= phase—space volume available
iz 1E) for a particle with 574V (Z) < E
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1 ... 1D infinite square well

Example: “Cavities” of general dimension f = {2 ... 2D billiard
3 ... 3D cavity

— [ o [B—g| didp=V; [ [o|E~d|p/tdpf(0)d0 =V S
JJ — 3% D = L I p&/)_/ oo &
i}lmce Iy (pvfpo) polar/spher. sphere
volume I angle(s) surface
Po = 2M E

. E-1/2 f _ W
0By E= =¢ E° f= \
E+1/2 f =3

An analogous result, a generalized Weyl formula, is valid for general systems
with 2f-dimensional phase space (e.g., N-particle systems with f=3N):

QE) = [|©[E-H(p, )] dZdp = phase-space
Volume avallable for the system with H(p,2) < E

@(E) = (znlh)f d%Q<E)

= Nig,g|= f o(F)dE = gfrg))f = the phase-space volume for energy € [Ey, £

in units of the elementary quantum cell given by the uncertainty principle

<« Historical remark

1912: Hermann Weyl derives a formula for the density of resonances in a cavity
1927-30’s: development of semiclassical methods in the level-density evaluation
1948: Richard Feynman presents the path-integral formulation of QM

1959: Yakir Aharonov & David Bohm discover the effect of elmg. potentials in QM
1970’s: M. Gutzwiller, M. Berry, M. Tabor et al. derive periodic-orbit formulas

B Semiclassical approximation

Not only that the quantum-classical correspondence represents a problem of
fundamental importance, its investigation also yields a class of powerfull ap-
proximation techniques. Here we present the so-called WKB theory.

» Classical Hamilton-Jacobi theory

(13

Classical mechanics can also be formulated in a “wave” form. The appearance
of classical trajectories in this formulation is quite analogous to the way how
rays of light arise from electromagnetic waves in geometrical optics.

We remind the action S[Z(t)];} = til L[Z(t), Z(t)]dt of a structureless particle
with Lagrangian £(Z, f) = %52 —V(Z), represents a functional on the space
of trajectories Z(t). For a fixed initial point Z(ty) = Zy and a fixed final point
Z(t1) =7 the classical equations of motion select the trajectory 7. (t) satisfying

the variational principle §.5[Z,(t)];) =
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Consider a bunch of classical trajectories {Z(¢)} (satisfying 65 = 0) leading
from a fized initial point (¥y,ty) to wvariable final point (Z1,t1). The action
along these trajectories as a function of (%1, ¢1) is the central object of the H.-J.

theory: t _ /
S(@, 1) = | L), 7.0 I
to —
Differential equations for S(#y,;):
(a) Space variation (Z1,t1) — (Z1+071, 1)
=5 = (S+09) s
tq
0S8 = f(g—fidxi aﬁ&cz )
to 7
( 6331) (dia*ﬂ)&tz pi
_|oc (42 0S(T1.h) _ OL(Z.)
= {a—@&ﬁih +f 5z 07 — (Grog)om) dt - = =5 55, | =)
—_—— ~~ F=ic(t1)

oL .
@T-nifsmu

(b) Time variation (Z,t,) — (xl, t1+0t1)

= |V S(T1,t) =

as aS s - 5 ) - -
o= = 5=+ T = = [ﬁ —p- ZL’] =25 r1,t) = —H(x1,p1, 6
dty Oty Ox1; Lt Ot b t=t, Ot ( ) ) ( » P1s )

Cla) ety pu e CH ()

Both these equations together yield a single equation for S(,t1) = S(Z, t)
25(#,t) + H[#1, Vi, S(#1, 1), 1] =0 or shortly: |25+ H(&, VS, t) =

Example: massive particle in a scalar potential %S + W(VS) + V(@) =0

For a time-independent Hamiltonian the energy is conserved: H = F =const
= 9S=-F = |S@t)=W(@) -Et|] = HEIT VW)=
= the generating function W (&) can be determined from VW =5

contour integral along a classical trajectory from an

=
arbitrary initial point 7y to the given point ¥

Il
éﬂ%&
Sy

If S(#,t) is a solution of the H-J equation, the momentum p'= VS at each point
is perpendicular to the surfaces S(Z,t)=const = classical trajectories are like
rays associated with a “wave” whose phase is represented by S(Z,t).

» WKB equations for a single particle

In the language of so-called WKB equations (named after G. Wentzel, H.A. Kra-
mers and L. Brillouin, who — among some others—formulated the related theory
in the early days of QM), quantum description becomes related to the Hamilton-
Jacobi theory. We will stick to the case of a single particle in a potential.

Let us rewrite the Shrodinger equation Q@MVQ—FV(Q?)} V(2 t) = z‘h% (Z,t)



171

with substitution |¢(Z,t) = \/p(Z, t)e%S(f’t) where p(Z,t) & S(Z,t) are some

unknown functions:

27 [AVP+ E(VVP) - (V) + £ /PAS = s BVSP| e +V ypets
=1ih [%ﬁ+% pas} erd

ot
Separate Re part : gy A7+ 537 /A(VS) +V/p = _3\/5%_}?
Impart :  —14-(V,/p) - (VS) — 42\ /pAS = ha—\gﬁ
2,/p x Im part = %f + 47 | pAS + (Vp) - (65)] =0 continuity equation
$.()V5) - % *.( E):Q
Re part = ’ otV P
R 1 L (T2 oS _ J=p7
—WWA\/ﬁJrW(VS) +V+5 =0
— Hamilton-Jacobi equation

+ quantum correction * o< A2

In the classical limit i — 0, the quantum correction term [* — 0] = one
obtains a coupled pair of classical equations: (a) the Hamilton-Jacobi equation
for S(&,t) = velocity field v(Z,t) = %65(9?, t), (b) the continuity equation
for p(7,t), given ¥(Z,t) determined in step (a). These equations describe an
ensemble of classical particles with initial space density p(,0) evolving in

agreement with classical equations of motion.
» “Pilot-wave” picture of QM

In the quantum case, the correction term % 2 0 may be considered as an
addition to the potential V(Z). Then the WKB equations may be interpreted
in terms of classical trajectories of an ensemble of particles moving in a modified

potential Vaiiot(Z, 1) = V() h2 1A\/ﬁ
—_———

~

Va (Z)t)

The “quantum potential” Vi (7, t) depends on the
solution of the quantum problem —on |[¢(7,t)|?
= The force ﬁpﬂot: —ﬁ%ilot acts also at places
where no classical field ﬁdas: —~VV is present.
= Quantum wavefunction ¢ (Z, t) plays the role of
a “pilot wave” which modulates individual particle trajectories.
= Quantum interference patterns can be explained without abandoning
the concept of trajectories.
However, Vq, is a strange field (not an interaction with other particles of the
ensemble < acts even for 1 particle) which turns out to have explicitly non-

local character (= non-local hidden-variable theory equivalent to QM).
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_z=mg@))?
Example: Gaussian wavepacket of free particle: p(z,t) = ﬁe 202 (?
[z—o(1)]?
= Vo(z,t) = 4ZUU () {1 - 2%(@)2 }
— < L _

Force increasing with the wavepacket localization
= consistent with the wavepacket spreading

» WKB approximation — conditions of use

Even with the actual value of the Planck constant, the quantum term in the
WKB equations can sometimes be neglected. This is the essence of the semi-
classical approximation in terms of the WKB theory. When the quantum term

b idered 11? I 2 o)
can be considered sma ¥ = — L2 \fA\/_ O(h?) < terms ~ {O(hl)
For the sake of simplicity we assume the 1D case in the stationary regime:
Continuity eq. =+ (p ) =0 = p = const

v %
5 0 -FE r ;\ ~
2 2yp . /\ B2 125 (222
WKB eq. 231?/54'21»1( )+V+ =0 i_QLW[@Q_b_ Z,ﬁ} 2M( ) E-V

Substituting p from 1% to 2"?eq. and comparing the quantum & classical terms,
we obtain the quasiclassicality condition:

n2s\? AN A
' ((555)2) <1 = S ‘71’ A“:x<<1

So the relative momentum o B
change at the distance of de Broglie wavelength must be negligible!
This condition is usually satisfied for sufficiently J
high energy E except: \~— _
(a)“wild” (rapidly oscillating) potentials V' (x) Y
(b) regions near turning points zy with £=V(x) / \
(c) regions near stationary points zy with 2 () =0
In case (a), Ap can be arbitrary, in cases (b) & (c) we always

Ap

get — 00 as x approaches to the return or stationary point xg.

> Statlonary WKB approximation around 1D turning point

From the stationary continuity equation we already know: p(az)ag—gf) = const

From the H.-J. theory: W(z) = S(z,t)+Et = [pde =+ [ \/2M[E—V (2')|d2’

To )

1 1
V2M[E-V (z)] X T @)

= ||p(z) x in the classically available region V' (z) < E

The WKB wavefunction on both sides of a turning point x¢ with V(x¢)=F:
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Y +i [ \/2M[E-V (2/)]da’— L Et

Yi(x,t) = v )1/46 0 for V(z) < E (region I)
| o +3 zfo 2M[V (z')—E)ds’'— Bt
Yn(z,t) = —N e " for V(z) > E  (region II)

(201 (2)- )

How to connect these solutions at xy where the WKB approximation fails?
Bypassing zy from II to I in the complex plane = € C along a half-circle with
radius e:

starting in region II... ...arriving to region 1
following Az =—ee'® from ¢=0... T T .to p=m: Az =—ceT=1¢

T—x0 T—x0

IS

av 5|_V

‘E ‘10 € eld} — / — € dx |;1c0
—— IS ——
~V(—e)-FE §/‘7L ~E-V(+e)
= the wavefunction prefactor, exponent and whole 1) change as follows:

) 4

N ~ N N Yz c TN 71
(2m[V(2)-E))) ) (21 %L(;aeio) ! (2]V[|%|woge”) (2ME-V(@) " |agte
o) I~ 1 Tote
[ V2M[V(2') — Eldz’ = 0 0~ [ 2M[E —V(2)]da’
To—€
Un(z,1)]

= ¢1(x,t) given above receives an extra |phase factor e~

1T

. Zo
efm/4 1/11(% t) ’

To—E ) \ To+e

im/4

» Application to bound states in a potential well

. . . . 1I To1 I To2 g
2 classical turning points in the well: | ———————— .
forbidden T allowed T forbidden

Wavefunction in the allowed region can be connected to the left or right for-
bidden region II or II’:

—1/4 i[+% 7 zM[E—V(zU]d.z’_ﬂ
w1<l') = N 2M[E-V (x)]) e 701 using left return point g
—1/4 1{_% 1?2 QA,I[E—V(I’)]dz’+%:|
TN (2M[E-V(z))) e z using right return point xge

Consistency condition:

£02

_+% | 2MIE V(s - g] - [—% [ /OB~ V@ + | = dnx

- o / n=0,1,2,3,...
02 Bohr—Sommerfeld
2/ V2M[E — V(2)]dz’' = (n+ 1) 27} energy quantization
o h (derived in old QM
N ~— . without the 1 term)
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Examples in which the WKB energies reproduce the exact 1D QM results:
(a) harmonic oscillator

s7P° + %"JQSUQ =F = ellipse (%)2 +(%) *=1 with area S = mab = $pde

=/ Z5V2ME = (n+1) h @ @)

= E=(nt3)hw f \\ ——

(b) infinit 11 _J :
infinite we :

no access to region II k FJ DY

= consistency condition reads as:

+ f\/ Edr + L f\/ Edy' = krm  with k=1,2,3,.

To1

=  §pdr=22ME L=kh = E={""}?

1175

» Application to tunneling through a potential barrier

2 turning points on both barrier sides: p

IR N 1 /\/\\ T
allowed T forbidden T allowed

The WKB method is applied to the wave- I \

function ansatz for scattering problems from

Sec. Ha. We assume a wavefunction with the

xr— —o0 asymptotics of incoming & reflected

waves, and the x — +o0o asymptotics of the —

transmitted wave. The WKB approximation ~-2 [ \/2M[V(z)—Eldz

of the transmission coefficient 7' = % is: Twkp e ™

« Historical remark

1913: Niels Bohr proposed a model of hydrogen based on semiclassical quantization
1919: Arnold Sommerfeld elaborates the semiclassical quantization = old QM
1926: G. Wentzel, H.A. Kramers, L. Brillouin (based on earlier work of A. Einsten,
H. Jeffreys...) develop the WKB approximation for a single-particle Schrédinger eq.
1927: Louis de Broglie formulates the basis of the pilot wave theory

1928: George Gamow uses the WKB transmission coeff. to explain nuclear a-decay
1952: David Bohm uses the idea to formulate a hidden-variable alternative to QM

9. QUANTUM INFORMATION

Having spent so much effort by building the foundations of quantum theory and de-
veloping the paths back to our classical world, we deserve now to see some genuine
quantum miracles! Not just paradoxes, but practical applications of the strange
and beautiful quantum laws — applications that may help us to design new magical
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technologies and to impress friends! There are three main resources for such appli-
cations, namely the quantum superposition, quantum entanglement and quantum
measurement. These new concepts actually revolutionized the information science.

B Quantum information channel

Classical information (bits 0 & 1) is often transmitted by means of quantum
objects, like photons. However, the use of full quantum properties of the carrier
particles tremendously enhances the capabilities of the transmission. Of course,
this comes at a price of a much more demanding requirements upon the physical
maintenance of the channel over which the particles are sent.

» Quantum cryptography 1 1

The measurement-induced collapse A G > B |-
of wavefuction can, in principle, CQ_&Q— EPR E
disclose any hidden measurement
performed on the system. This can be used to detect an eavesdropper Eve (E)
in secret quantum-channel communication between Alice (A) and Bob (B). It is
assumed that A & B are also connected by a classical communication channel.

Protocol (i): Alice sends a binary sequence by individual photons in linear

polarization states ||;:,>> } =0 and ||5/>> } = 1, selecting between 2 rotated polar-

ization frames S & S’. Bob measures photon polarizations using independent
selection of the same frames S & S'. If E is absent, the photons for which
A & B frames coincide must yield the same A & B polarizations. Any violation
of this rule, which is detected on a released sample of photons, indicates that
the photon state was distorted during the transmission (Eve’s measurement).
If no eavesdropping is detected, the states of the remaining photons, for which
A & B frames were the same, can be used as a private key.

Protocol (ii): The communication is repeatedly interrupted by test measure-
ments, in which A & B probe the violation of Bell’s inequalities on a sample
of EPR pairs of entangled photons, one of which is sent through the quantum
channel. Eve’s local measurement makes the the state of the pair factorized, so
in case of eavesdropping the A & B test measurements satisfy Bell’s inequalities.

» Quantum teleportation ¢ 3

The teleportation means a transfer A L <« [FPR——— B

of the state of a given physical
object to another carrier composed
of different particles (possibly far 1| [¥) A E
away from the original particles).

Quantum mechanics offers a way how this goal can be achieved using quantum




176

entanglement. It needs to be stressed that quantum teleportation is a causal
process with no superluminal action!

We will demonstrate the teleportation of an unknown single-qubit state |1))
of particle 1 (on Alice’s side) to particle 3 (on Bob’s side), which belongs to an
entangled EPR pair of qubit particles 2 (going to Alice) and 3 (going to Bob).
The unknown state of particle 1 is||¢); = a|0)1+5|1)1 = (), | and the pair of

particles 2& 3 is in any of the Bell states, e.g. ||V )q3 = %(\0>2|1>3—]1>2|0>3)

(like the spin-; singlet state). The procedure is as follows:

Alice measures particles 1& 2 in the entangled basis of 4 Bell states (Sec. 7b):
#1 0 [0)1=5(10)1]1)2+[1)1]0)2

This suggests the following decomposition |
|0)1]1)2—[1)1]0

)2)

of the initial 1& 24& 3 state: #2 ¥ ho=gg(Ohlha—{th(0)2)

. #3  19T)12=5(10)1]0)2+[1)1[1)2)

(@|0)1 4 BI1)1) 75 (10)2]1)s — [1)2]0)3) = #4187 )12=5(10)1[0)2—[101]1)2)
Wi il (7 [w#2)s [73)5 [ 4y,

=7 (19 )2 (a0l +51105) +18 )12 (=al0)s=511)s) +@* )15 (al1)s=510)5) +10 )12 (el 15 +610)3) |
Define:  U¥=(30)  UP=(3 %) OP=(4)) TR}
In correlation with the result #£k of Alice’s measurement, Bob receives particle 3

in the state [1)7*)3. Alice communicates the result #k of her measurement via
the classical 2-bit channel to Bob, who then applies the corresponding unitary

transformation U#! such that |U#F|#F) s = (3), = a|0)3+8|1)3 = |1)3
The teleportation of the state |¢) from particle 1 to particle 3 is completed.

» Quantum dense coding
Reception of one particle from an —<—EPR > B [ >

entangled pair enables Eve to send =3l A
information to Bob in a compressed
form. Assume that the entangled

pair is in the Bell state |U~). Alice performs one of the above-defined unitary
transformations U#* on particle 1 and sends this particle to Bob. { [T for k=1

Bob then receives the pair 1& 2 in the corresponding Bell state: g;; fgi ZZ;
(up to the overall phase). By performing a measurement in the &) for k=4
Bell basis, Bob can deduce which of the 4 transformations Alice applied. So
Alice transfers to Bob 2 bits of classical information by sending him only a sin-

gle 1-qubit particle. This can double the speed of the A—B information flow.

B Quantum computation

The use of quantum laws for a substantial speedup of some computational tasks
would be the most spectacular practical application of QM. This field attracts



177

a lot of theoretical and experimental effort and public attention since 1990’s,
when fast quantum algorithms for crucial computational problems were de-
signed, and has made tremendous progress since then. Possession of a powerful
quantum computer might be a strategic advantage, so this is a race!

» From reversible to quantum computation

Thoughts about the role of QM in computation came as the size of electronic
elements started approaching the atomic scale. Can the computation be per-
formed by elementary physical constituents? An obvious obstacle is irreversibil-
ity of common computational procedures, which is in contrast to reversibility
of fundamental physical processes. The irreversibility leads to the production
of entropy (= heat) and thus sets fundamental limits to macroscopic comput-
ers. Theoretical attempts to compose the computation of reversible steps grew
into considerations whether the involvement of QM cannot have more substan-
tial consequences. It was pointed out that the impossibility to replace QM by
a local classical-like theory (Bell inequalities, see Sec. 7a) implies that quantum
dynamics cannot be simulated in parallel by a classical computer. This then led
to the question whether some types of quantum evolution can be equivalent to
the fast solution of some classical computational problems. Yes, they can.

» Quantum computer

From Sec.1b we know that the quantum generalization of the classical bit
b € {0,1} is the qubit carrying any superposition of the 0,1 states, and that
the generalization of an N-bit register (by,by,...,bny_1) = & = Zf\if)lbi 2 ¢
{0,1, ..., 2N —1} is the quantum register carrying any superposition of numbers z:

Qubit: Quantum register:
2V _1
. a1 eC . a,;€C
9) = aol)+anlt) with { | #55E) = % aula) with { i
|2)=|bo)|b1)...]bN—1) = separable
Quantum computer is an N-qubit device that basisin H=Ho@H1®...0HN -1

for a general state |¥) allows to perform (i) controllable unitary operations
U (not necessarily all but a sufficiently large class of them) and (ii) quantum
measurements (usually a class of local measurements on individual qubits).

» One- and two-qubit operations

A general N-qubit unitary operation can be decomposed into a product of
unitary operations acting only on single qubits or on pairs of qubits:

U=UyUy_, .. .00, with Uy, € {Ui(l), Ui(]?)}

ﬁi(l) = a lqubit unitary op. on qubit ¢
01(12) = a 2qubit unitary op. on qubits i,j

With increasing N, the number M scales polynomially in favorable cases (which
can be implemented as scalable quantum algorithms) or faster than polynomi-
ally in cases when quantum computation would not be scalable.
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Examples of 1- and 2-qubit operations:
Hademard transformation: a 1-qubit unitary operation

defined as {[0) — L (|0)+]1)), (1) = L (l0)—1)).}

This operation can be used to produce a uniform superposition of all |x) states:

2V—1
(®0") 10 =® (¢110)) = 3t & I
CNOT transformation (controlled NOT): a 2-qubit unitary operation

’ 0)al0)s = 0)al0)s, 10)al1)s — 10)al1)s }
defined as | ' '
$ b { 1)al0) = [1)al1)s, [1)al1)p = [1)a]0)s.
This operation generates entanglement between qubits:
UNOT (]0)atB11)a) [0)5 = @]0)a|0)s + B[1)al L)s

» Some many-qubit operations

Two important examples of unitary transformations acting on many qubits:

(i) Quantum Fourier transformation: 9N _1
PT 27rzy
U = 2N/2 5 e' 2N |y)

2N_1 om (2 —2)y

(yly'y = LN z:oez 2N = O
=

(N+1) (

The unitarity follows from:

2N _12N 1 QW(,y —ay)

Q?QPTxquPsz ::%v E: z: R

There exists a 1- & 2-qubit decomp081t10n with M = polynomially fast).

(ii) Function evaluation: The trivial transformatlon |z) — |f(x)), or rather
lz) — | f(x) mod 2V) (since f(z) may exceed the capacity of the N-qubit regis-
ter) would not work since for non-invertible functions f(z) the operation would
be irreversible (= non-unitary). Instead, we split the whole register to part A
with n qubis and part B with m qubits. The input x is realized on part A, the
output f(x) on part B. More precisely, the transformation reads as:

The unitarity follows from: O |2)aly)s — |)ally+f (2)Jmod 2")
(U wy|U7a'y) = (ala’)a(ly+ f (x)Imod 27| [y + f (2')]mod 27) g = 6,018,

The decomposition of Ul to 1-& 2-qubit operations depends on f(z) and is not
generally guaranteed to be polynomial.

» Quantum algorithms

Quantum algorithm is a particular sequence of 1- and 2-qubit unitary operations
and a particular final quantum measurement to be performed on a properly
initialized quantum register. It is usually assumed that the initial state of the
register is the trivial factorized state |0) = |0)1|0)s...|0) y_1. The same sequence
of operations and measurements with the same initial state can be repeated K
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times to yield a sufficiently large statistical sample of outputs. A common task
is finding properties of an unknown function f(x):_z , — f(2)

The usual scheme is this: €{0.2"=1} g0, 2m—1}

groups A & B with —
®n 17 W,
H . UAJ R /\

n & m qubits A

n—1 _
H®n — ® UH

=0

f= evaluatlon of f(x)

UA, UA = unitary opera-
tions to be specified

Examples:

(i) Deutsch-Jozsa algorithm: A toy algorithm deciding £(0) f(1)
whether an unknown (1-bit) — (1-bit) function f(z) is Ei; (1) (1)
constant [cases (a) & (b)] or balanced [cases (c) & (d)] (© 0 1
in a single call of the function-evaluation routine. @ 1 0

Here and the unitary operations |Uy = U"|and |Up = UY6, | (where
o, represents the 1-qubit NOT operation).
The state of the register at the indicated control points is as follows:

©)
0)al0)s  3(10)+1)A(0)=11))s  5(10)al0)s—[0)a|)s+D)al0)e—[1)alls)  5l00a(0)-[1))s (a)
3(10)al)B=10)al0)s+1)al1)s=[1)al0)8)  Zl0)a(I1)=10)) (b)
3(100al0)s=[0)a[1)+1)alDe—1)al0)s)  ZDa(0)=[1))e (c)
S0 the measurement on 3(10)al)5=10)al0)s+1)al0)s=1)a1)B)  ZDa(1)-10))e (d)

qubit A distinguishes the constant = |0)5 and balanced = |1)5 cases. Note
that in the classical case one would necessarily need two calls of the function-
evaluation procedure! This example illustrates the synergy of quantum super-
positions (both inputs are simultaneously present in stage (2)) and quantum
entanglement (individual inputs are correleted with the corresponding outputs
in stage (3)). None of these ingredients can be absent in quantum computation.

(ii) Shor algorithm: It is the heart of Shor’s factorization algorithm — its
quantum part, which determines the period r of a certain function f(z).
In this case |Up = I | (so this operation is absent) and |Uy = U®T

@ @ ® @
A0 Sl e Sl @hs & STl @)

The probability of a particular output y on subreglster A is thus given by:

2m(z—a)y

Paly) = g e Y@ = e 3 o

:0 +1..

=1 for z—a'=kr
=0 otherwise

For large n, m, this probability is a periodic function of y sharply peaked around
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values satisfying 2273/:27?1 with [=0,1,2,..., so y:l%". The period 7 (an integer

number) is therefore deducible from a relatively small number of repeated runs
of the procedure. Indeed, Shor’s algorithm solves the factorization problem
(finding a pair of prime factors P, @ of a given integer I = P(Q)) so that the
computational complexity (the number of elementary operations performed in
the solution) grows only polynomially with the number of digits of I (the best
known classical algorithm exhibits an exponential growth of complexity).

» Correcting errors

The efficiency of quantum computation quickly fades away if interactions with
any kind of environment induce decoherence of the computer. As such inter-
actions are hardly preventable, the feasibility of a functioning quantum com-
puter seems to be rather questionable. Fortunately, there exist methods for
repeatadly correcting the state of the computer so that the effects of decoher-
ence can be considerably slowed down. An unpleasant consequence is however
a multiplication of the number of qubits needed for the computation.

Assume a single qubit with density operator p(0) = |¢))(¢)| corresponding to
a pure initial state [1)) =ap|0)+a1|1). At t>0, the qubit state p(t) is generally
mixed because of decoherence. The density operator can be decomposed as
p(t)=>"; pil1i) (] to arbitrary 4 linearly independent states [¢;). We choose
one specific decomposition yielding a clear classification of errors:

p(t) = po(6) W) (Y] +p=(t) 0:]0) (V|6 +pa(t) 02|0) (] 00 +Paz(t) 026 |1)(Y]6:04

Vv
no error phase error flip error combined error

The probabilities are normalized, po+p.+p,+p..=1, and for small times ¢t =0t
satisfy po~1—0(8t%) and p,, py, Pe. ~O(5t?).

The quantum error correction proceeds as follows: Each logical qubit is repre-
sented by k>1 physical qubits, the states being mapped o oh

as [|1) =ao|0)+an|1)] > [[0) =ap|0)+1|T)]. The whole | V7 1% =%,

quantum algorithm is performed on the logical instead of | ) , 1) 2's>' 5,0

physical qubits. For a given number £ it can be assumed
that within a certain small time interval At(k) only one

(any) of the physical qubits is affected by an error. This yields a limited number
of possible errors, which can be detected and fixed. Performing computation
on N logical qubits with kN physical qubits, the correcting procedure on each
logical qubit must be repeated with period At(k). The correction of a general
single-qubit error was shown to require redundancy

Example: correction of single-qubit flip errors with k=3 encoding {
Quantum measurement of a quantity A = Zle 1P; on each logical

qubit, with projectors P, = &;(f)(|000>+|111>) ((000|—|—<111|)6;(f), yields as the
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result a the number i € {1, 2, 3} of the flipped qubit (the result =0 indicates no
flip). This measurement does not destroy the superposition and entanglement
of the logical qubit, so it keeps the logical state of the whole computer intact!
The correction of the ith-qubit error on the given logical qubit is achieved

simply by applying the operator 64 on this qubit.

« Historical remark

1982: R. Feynman anticipates potential use of quantum systems for computation
1985: D. Deutsch defines quantum computing and seeks for quantum algorithms
1985: A. Peres proposes the method for correcting single-qubit flip errors

1984: C.H. Bennet & G. Brassard describe a protocol for quantum cryptography
1991: A. Ekert proposes entanglement-based method of quantum cryprography
1993: C.H. Bennett et al. describe a scheme for quantum teleportation

1994: P. Shor develops an efficient quantum algorithm for prime factorization
1995: P. Shor proposes the first general single-qubit error correction code

1997: first experimental realization of quantum teleportation by A. Zeilinger et al.
1995-present: massive effort to built the quantum computer on various platforms

10. STATIONARY APPROXIMATION METHODS

Application of quantum theory to realistic systems results in very complicated com-
putational problems, which often cannot be solved exactly on the present-day com-
puters. Not surprisingly, there exists a plethora of approximation techniques that
help us to get close to exact solutions. Here we start with techniques used to approx-
imate stationary states, i.e., eigenstates of a general Hamiltonian. We focus on the
two main methods — the variational and perturbation method — and describe some
applications of the latter (the variational method will come into play in Sec. 15).

B Variational method

In classical physics, variational principles represent an autonomous formulation
of the fundamental laws of nature. The role of these principles in nonrelativistic
quantum mechanics is not as important. Nevertheless, they constitute a very
useful approximation method.

» Dynamical variational principle

Let us start with a variational formulation of the dynamical Schrodinger equa-
tion. Trying to keep the formalism parallel to that of classical mechanics, we
employ the notion of independent bra & ket variations. In particular, we search
a quant%m analog of classical variational principle:

§ [ L[Z(), Z(t)]dt = 0 with boundary conditions { 0T(h) = 0 = 0z (1)
ty

0(t1) # 0 # 0Z(ty)
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The quantum variational principle can be cast as:

5/ H‘ b(t) > —0 with

S

( ket variation |5t (t))
160 (1)) =0=1[3¢(t2)) |

bra variation (6¢/(t)]
(00 (t)[ #0# (00 (t2)|

t

| [(ow @i~ Hlwe) +wling—Alov(e)) dt

ty

Ve

We consider the variations of kets and bras
independently, distinguishing 4 different entities:

Op@E)] = 109()) & (5P (1)] < [09'(2))
The only correlation between |01(t)) and (6¢'(¢)|
is through the conserved normalization (¢[¢) =1

= 6(|v) = (60 (1)[$(1)) + (L(1)]0¢(t)) =

Proof of the variational principle (we show that it implies Schrodinger eq.):
to

f@uoling - Alwo) + @ling - o) |a
tq ~\~
(S8 ih g — H ()" +ih g (|69) 0

R R e e
= f[ o' (t ]zh — Hyp(t)) + <51/)(t)]z'h% - H\@/J(t»*] dt + zh[(gb\éw)]if

L0V (50/(t)| & (6¢(t)] (with the above constraints)| = (m% - H) (1)) = 0

Note: If (6¢/(t)|=(01(t)| (kets & bras varied in the same way), we would only
get Re(éz/}(t)ﬁh% — H|1(t)) = 0, which would not imply Schrédinger eq.

An alternative treatment of the variational principle (without independent bra
& ket variations) is possible if the variation is performed only in kets (or bras):
S(ulihg — H|v) = (blihg — H|60)

» Transition to stationary problems

The dynamical variational principle for nonrelativistic QM, derived in the pre-
vious paragraph, is not very impressive. Indeed, the Schrodinger equation can
be recognized in it already before its formal derivation. On the other hand, the
variational techniques are rather useful for stationary problems—in approxi-
mating the lowest eigenstates of complicated Hamiltonians.

Assume [¢5(t)) = e~ #]¢)) = Fu(t)=eH"50)

' (00 (t) |=e R (60

Tl owrting - r10(0) + wie)ing - sy | a

1

_f{w \E—H|) + (¢ \E—H|5¢>J dt = (ta—t1) S(W|E—H|p) =0

<w\E HIyp) #0 )
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S(Y|H—E) = 5[(W[HW)—E@y)] =0 & |6@|H[p) =0 & (Pv)=1

with a Lagrange multiplier with explicit normalization constraint

If the above variational conditions are applied in the whole Hilbert space H,
they yield the ground state. To obtain the first excited state, the conditions
must be applied only within the orthogonal complement in H of the ground-
state energy subspace. Increasing restrictions reveal higher excited states.

l

» Stationary variational principle

(V| H )
(W)

The ground-state energy & eigenvector
correspond to the global minimum of F:

Ey = Min {F(|¢)) }yyen = F (| Eo))

Proof: [¢) = Z%|E> = F(J¥)) =Y |a|*E; > Ey = F(|Ey))

7

= functional on H

Define || F(|1)) =

If HW is the orthogonal complement of the ground-state subspace H,,
the 1%t excited-state energy & eigenvector read as:

By = Min {F ()} enew = F(|Er))

Proof: [¢) =} aulEi) = F([¥)) = X2 |ul*E; > By = F(|Ev))

1>1 i>1

» Ritz variational method

.. et cetera for higher states

Choose a suitable (for the given H) subset of test vectors [¢)(a)) controlled by
continuous real parameters a = {ay, as, . . . a,} forming a domain D, C R".

Functional F(|¢)) +—— function | F(a) = F(|[v(a )>)_% on D,

The search for an approximate ground state, and eventually also for approxi-
mate excited states, is performed within this set of vectors:

Ground state: Min{F(a)}aep, = F(ao) = Ey > Ej is an estimate of the
g.s.energy and [¢(ap)) = [1g) =~ |Ep) is an estimate of the g.s. eigenvector.

Excited states: If the set of test vectors is sufficiently rich, we can se-
lect a subdomain DY) € D, such that (Y(a)|lY(ap)) =0 Va € D). Then
Min{F(a)}, pm =F(a1) = Ey > Ej is an estimate of the 1% excitation energy
and |1h(a1)) =|1) ~|E)) is an estimate of the 1st e.s. eigenvector. For higher
states we can proceed analogously (if the set of test functions is really rich).
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<« Historical remark

1909: W. Ritz publishes a method for solving variational problems

1926: E. Schrodinger uses variational arguments in derivation of stationary Sch. eq.
1930’s: P. Dirac, J. Frenkel et al. formulate dynamical variational principle of QM

B Stationary perturbation method

The stationary perturbation method is very useful if the actual Hamiltonian H
is just a small modification of a simpler Hamiltonian H,, whose eigensolutions
are known. The difference between both Hamiltonians represents a pertur-
bation which is quantified by a dimensionless parameter \. If expressing the
eigensolutions of H as power series in A, one may believe that high-power terms
will naturally die out. A closely related dynamical technique is a principal tool
of the present theories of fundamental interactions.

unperturbed
part  perturbation

» Formulation of the problem A o
We look for eigensolutions of a Hamiltonian given by | H = H, + \H'
with the perturbation A A’ much smaller than H.
Here we assume that both Hamiltonians Hy and H' are comparable in size
(their matrix elements in the relevant energy domain are of the same average
size), while the dimensionless parameter sets the smallness of the per-
turbation. In contrast, some textbooks prefer to consider the size of H’ much
smaller than Hy and treat A just as an auxiliary parameter, whose only role is
to indicate the power of H' in the relevant equations, and set its value to 1 in
the final expressions. Both approaches are equivalent.

For each level 1=0,1,2... we know the unperturbed energy FEy,. The unper-
turbed eigenvector |t¢y;) is unique if the level is nondegenerate. In the de-
generate case the unperturbed eigenvector is ambiguous within the degeneracy
subspace Ho; = Span {|oi1), [Yoi2), - - - [Yoia;) }- 1t will turn out that the per-
turbation selects an appropriate basis in this subspace.

We assume [ﬁo, H 'l # 0, so the perturbation has a nontrivial effect. The task
is to expresses the eigensolutions as power-law series in A, so that the size of
contributions can be assumed to decrease with increasing power:

Ei(N) = XEy + 2\1E1i + NEy + NE3; + - -
/()
W@()‘)) = )‘OWOz’) == )\1|1/11z‘> == )‘2|¢2i> + )\3|’L/}3i> + ... unnormalized
~ ~~ - vector
[4;(N)

In the nondegenerate case, [1;()\)) represents the expansion of the only eigen-
vector. In the degenerate case, |¢;(\)) expands a selected vector from the
unperturbed degeneracy subspace Hy;. These issues will be clarified below.
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Orthogonality condition for the eigenvector correction: || {bg;|1i(\)) = 0

This is a natural requirement since the changes

in the direction of the unperturbed vector

|1o;) can be expressed by normalization. \
(In some textbooks, the ortogonality is not

assumed, but the results are equivalent.)

The term with A" = the ntPorder correction
The sum of corrections up to A" = the total correction in the nttorder
The sum of all terms up to A" = the solution in the n'" order

EM'(\) " (V)
—N— —N—

EMO) =By + Y XN Evi () = o) + > N )
n'=1 n'=1

Q

3
so that some n=n,,;, gives a sufficient precision: 10:(N\)) =~ |¢£”"P)()\)>

Since A< 1, we may hope in fast convergence, { E;(\) E(”up)( )
N ()
- (n)!
i)+ (A
= |1+ 170

Normalization

(n) )\ :r .
¥ (M) VI )

The n orde‘r correction to eigen- anii =0 following
vectors given as an expansion |¢m‘> = Z anik|¢0k> from the ortho—
in unperturbed eigenbasis: k#i

in n'order:

gonality condition

» Equations for corrections of increasing order

Schrodinger equation: [HO + A [:I'} ([0 + A1) + A2 thos) + A3 hg )+ - +)
= [Eoi + ABy + N By + NEs; + - - | ([0s) + A|th1a) + X2 [125) + X3 ihai) +- - - )

Comparison of different orders oc A™:

Holo:) = Euilt) n=

I?0|Z/11¢> + f:f'W)oz') = Ei|) + Evlo:) =1
Holv) + H' Y1) = Eil|v2) + Bl + Ealvo:) n =2

A N n
Ho|wns) + Hl'@b(nfl)i) = >, En’i|¢(nfn’)i> general n
n'=0

» Nondegenerate case

The nondegenerate case is easier than the degenerate one, so we start with it.
In this case, the solutions in the 0"'order are determined from the n =0 equation
above, which singles out the vector |1)y;) equal to the unique eigenvector of H,.
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15torder correction to energy:

Multiply the n=1 equation by (¢;] 1

N . A
= (Yoil Ho|ww) +(oi| H'[v0i) = Eoi(oil Y1) + Evi (Voil o)
—_——

Eoi(voilt1s) 2
Y = || Eu = (o H'|%0i)

1%torder correction to eigenvector:

The n=1 equation = [ﬁo—Eof,;} (Z a1¢k|¢ok>) = |:<¢0i|ﬁ’|¢0i>—ﬁ/] %0i)

Wi
Multiply by (4| for j # i e o) .
e N ~ — ~
= g;(EOJ — Eoi) avik (thos|tbor) = (oi H'[0i) (o;[100i) —(voj | H'|¢h0i)
o oy | H' [tbos)
= ay = —% = ||l = Y S —=— o)
7 = Eo; EO]

Multiplication by (1| yields just identity
0 = 0 = ay4; undetermined = consistent with the above setting a;; =0

2"dgrder correction to energy:

Multiply the n=2 equation by (1| 0 1
5 —— ——
= Eoi(Voi|vai) + (oil H'[1h1i) = Eoi{oi|vai) + B (Yoil Y1) +Eai (oiltos)
3 H'|vpo:)|?
= By = JH |1y | 7vZJOJ| i
= tlft =+ B =SSR
General-order correction to energy:

Multiply the general-n equation by (¢ Syt
= Eox {oilthus) + ol B ) = 3 Bus Worlda—my)
0i \%0i | ¥ni 0i (n—1)i = n/i \¥0i| ¥ (n—n')i

0 A
= | Eni = (Yol H' [Yn-1yi)

We see that the n'Porder correction to energy are
determined from (n—1)™order correction to the eigenvector.

General-order correction to eigenvector:

[ffo—Eoyz] <Z amk|¢0k>) +H <Z a(nl)z‘kWok)) Z B (Za (n—n’) mWOk))

kit kit kit
o) 1) )
Multiply the above general-n equation by (vy;| for j # ¢

R n—1
= [Eoj — Eoi] anij + gK%j\H/W()k)a(nq)ik = Z_:l Eia(n—n)ij

S
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= nij — Enz (n—n')ij — H nz’

n'=1 k#i

We see that the n'order correction to the eigenvector is determined from the
corrections to energy & eigenvector of all lower orders 1,2, ..., (n—1)

If apyi = 0Vn' < (n—1), the multiplication by (1| yields just identity 0 = 0
= a,; undetermined = consistent with the above setting a,;; = 0

We note that the above-derived corrections contain denominators with differ-
ences of the unperturbed energies. These imply that if levels of the unperturbed
system come close together, the size of corrections quickly increases. In other
words, a generic perturbation gets more efficient in dense parts of the spectrum
than in sparse ones.

» Degenerate case

What about if the level Fy; becomes exactly degenerate? Then the derivation
presented above fails and must be redone from the scratch.

The d;-dimensional degeneracy subspace | Ho; = Span {|¢oi1), [Voi2), - [Void,) }

has a randomly selected basis of vectors satisfying (voi.x|¢0i) = Ok

The n = 0 equation does not determine a unique vector |1y;) € Hp; which
would fix the 0"order solution as the starting point for the whole procedure.

We satisfy the n=0 equation using | [1)o;) = Z ag|toik) | with { = unknown } and

coefficients

apply the n=1 equation:

R d; R d;
Holw) + > anH'|[Yoir) = Eoiltr) + B Y axltboik)

Multiply by <¢gl 1| k=1 . S
a; /_H
Eoi(oia|t) + Z o (Wora | H' [Yoie) = Foi(bosa|v) + Eu S o Woialoir) =
=1
. ] H, Hpy o\
(Woia H'|oisk) cow = Erjen | & || o Hla - (Q.Q):E” (CY?)
k=1 H, : - : :

This represents the diagonalization of the perturbation matrix in the
degeneracy subspace. We stress that the degeneracy subspace is not in gen-
eral invariant under H' (since [Hy, H'] # 0), but the above formula implicitly
projects the action of H’ to the degeneracy subspace prior the diagonalization.
Oth

We have d; energy solutions of polynomial eq.

s st L
order eigenstates & 1%'order energies: L —B,  Hl, ..
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= The degeneracy is lifted in the 1%%order correction.
Determination of the corresponding eigenvectors:

o This equation yields the eigenvector

11 12 - QLk Qlk . . -

(Hél Hyy .. ) <O‘2;k> = Bk (“M) associated with the correction Fjy;.j,
: i ; = | |Yoi) — [Yoik)

= The perturbation selects the proper basis of H,, in the 0"order.

Eigenfunction in 0% order: Energy up to 1*order:
g

d;
|oir) = Z are|[voi) & Ei(,lk)()\) Eoi +AEyy| k=1,2,...d,

Special case d = 2:

Hi, Hi, R T R Hi,—FEy  Hi _
<H§1 Hjy a2 = ki Qs = Det Hy  Hy—Ey =0 D

e ™~

2
: Hi,+Hj Hj,—H;
= 2 solutions: Eyy = ~1=2 & \/(%) + H{,H),

Hh H{Q Q4 o E ' Q14
Hyy Hi, ape )~ THE sy

Lowest-order eigenfunctions & energies:

Wo&) = Ozli’%i;ﬁ + a2¢’¢0¢;2>
{ EY(\) = Ey + AEys
Higher-order corrections:
Diagonalize the perturbation H' in the degeneracy subspace of every level

= orthonormal basis {{MOZQ}Z:J@ = (o H'[thoir)=0 for Ik

= the procedure used in non-degenerate case can be reiterated without prob-
lems with zero energy denominators. So we obtain:

" d;
Eirx(N) = Eoi + Moi| B |[doir) + A2 32 S0 % + O\
§(#) 1=1

Wix(N) = Do) +A X z Wogd Mlhuse) |, ) + O(X2)
J(#i) =1

<« Historical remark

1860’s: Ch.-E. Delaunay performs a perturbation analysis of three-body problem
1894: Lord Rayleigh studies harmonic vibrations in presence of small inhomogenities
1926: E. Schrodinger introduces the stationary perturbation theory to QM
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B Application in atomic physics

The primary domain of application of the perturbation theory in the old-day
quantum theory was atomic physics. Already the plain hydrogen Hamiltonian
needs to be corrected for some subtle internal effects beyond the Coulomb
attraction, as well as for effects caused by external electric or magnetic fields.

» Alternative eigensolutions of the hydrogen atom Q2 M2
: : : n? e? 1 e2 1 1
Plain hydrogen Hamiltonian: Hy = AN Tnegr| Spectrum E,=— Trneo an 202
(n=1,2,3...)
e? 1 e? - 1

Remind (see Sec.2b) the fine-structure constant O=mSoTIE = Trahe — 137

and the Bohr radius ag=2¢ ;\C = % =0.53- 10" m (with X¢ = zm)

The eigenvectors are usually expressed as |Ypym,m,) in the basis of observables
H,L? L.,S., but we can also express them as [¢h,;,) in the basis of observables

H , IA/2, jQ, jZ, using the total (orbital4+spin) angular momentum J:

Uncoupled eigenstates: [L;, H))=0=[S;, Hy] = [Li+5;, H]=0
Uty (7) ITyor L) 3 i=1,2,3

1 ‘

|2/}nlmlms> = Rnl(r)Y}ml (197 90) |§> ms>

Nomenclature:  nly,, = 1sy, 254, 2p1, 351, 3py), 3dyy, 4511, 4pyy, 4dy, 414 .
v Ty 291y APTLs 991y OPTLy OUALs 0], P, =0T, =) 1]

TV TV
. E E E E
Coupled eigenstates: ! ? 3 :

|\IJ"LUmj> = CZJ(T:;_%)%(+%) Qbnl(mj—%)( ) |T> +C]1::L]+ Di-d) nl (m;+ (F) |\L>
—_— \—/—/\W_/

1 0
li"L]'Jr% RnlYl(m 77) (O) l:Fm +7 R"l)/l(m ito ) (1)
j=1+ % +\ = ST
B 1 +4/ltm;+1 Yl(m_i%)(ﬂ,ap) . . .
= Ry(r) NG spinor spherical functions
+ \/l:Fm] l(m +1 )(19,4,0)
yljm,j(lg’W)
Nomenclature:  nl; = 13%,25%,2]9%,2p%,3s%,3p%,3p%,3d3 3dg
v NG ~~ -\ ~~ “
» Stark effect £y By By

Hydrogen atom in a homogeneous external electric field of intensity E\ = N\,
(we introduce a dimensionless factor A to scale the intensity):

H=Hy+ \H with |H =e&z|= Tol component of a spherical vector

Unperturbed hydrogen solutions expressed in the uncoupled basis |[¢nim,m.)

Selection ruleAs for matrix elements: even

(2) (Vntmym. | H [nimm,) =0 <= parity conservation ( [ [t (7)|* z dF = 0)
Wigner — Eckart

b 177 ! I

(B) Wm, theorem

S>:() for mj#m; or mi#m, or I-U|>1 <= {
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We disregard spin quantum number my as the interaction does not affect it

Ground-state: the 1*'order term vanishes (reasoning: any state with a good
parity shows no electric dipole moment = no linear effect of an electric field)

Correction up to 2"order: E? = E Shy —w"lmlklwmo”
p to 2Morder: E|” = By + (e£,)? Y. 3 Z < By
n=2 =0 m;=—1

Excited-states: the 15torder term contributes

(reasoning: “accidental” degeneracy
in the H atom involves states with
different parity = a superposition -

of such states, as obtained in the
degenerate-case perturb. expression,
can yield electric dipole moment # 0)
_
Example: n = 2 shell with [ =0, 1 T~
We proceed according to the degenerate-case perturbation theory. According

to the above selection rules, the only nonzero matrix element within the degen-
eracy subspace is the following one (its calculation is not presented here):

adl adl
(V10 H'[tha00) = (W200| H'|1210) = —3ape& lose) B
o N
210 210 —_
3000 g1 g1t \[(\1/120@ [t210)) =  Eax+3apeéy
|7/)21( 1)> = Eo
The states with eigenvalues AFE #0 show the [Wor+1y) = By

linear Stark effect, those with AF =0 show the quadratic Stark effect.
» Zeeman effect

Hydrogen atom in a homogeneous external magnetic field of induction B \ = A\By1,
(where we again use a dimensionless field scaling factor \):

H=Hy+ I with |H = —35Bi(L. +25.)| = —3%Bi(J. + 5.)

Here we used H' = —([ij+/is) - B with the orbital and spin magnetic moments
expressed via gyromagnetic ratios g;=1 and gs=2 (Sec. 2b).

The perturbation is diagonalized in the uncoupled basis:
(Untmm. | H' [Onimm,) = Lh By (my + 2my) This is the exact solution,
<~

2M
Bohr magneton i no perturbation theory is needed.

The 1%%order perturbation formula can be used to express the energy corrections
in the coupled basis: (Wtjor, | H' [ Woijm,) = (using £.+26.—.45. )
2042
— Jmg 2 1/umg 2 ’uBBlﬂ—I—lmJ for ]—l_|__
po b <C Hm; = %)%H%)) Q(Cl(mﬁ%)%(—%)) = { psBigigm; for j=1—}
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» Spin-orbital coupling

Correction caused by an interaction of the spin magnetic moment of electron
with the magnetic field generated by its orbital motion. In the electron’s rest
frame, this can be seen as an interaction of its magnetic moment with the
magnetic field produced by a “moving” nucleus (then a relativistic effect, so-
called Thomas precession, must be taken into account) The crucial operator

term that appears in the perturbation Hamiltonian is (L S ), which is why this
correction is called the spin-orbital interaction. To evaluate the action of this
operator, we use the identity J2 = (L+S) L2—|—52+2L S which leads to an
expression diagonal in the coupled basis [1,jn,). The resulting perturbation
term for the hydrogen Hamiltonian reads as follows:

H = s b(L-§) = fat M (@)% (/2 - [2 - 52)

4meo 2M202 )

15torder effect in the coupled basis: @ ?%Ian(r)Pr("drz((é

<wnl‘jmj|ﬁ/|wnljmj> o 4MC |: (]+1) - Z(H_l) - %} 2¢nl]my|(aTB)3|wnljmj;
— +IO‘4MC ()l for j = l_|_%
{ fatMe? ()™ (1+1) for j=1-1

o
Assuming <(é)k>nl~1, we see i
that the relative corrections with

respect to the unperturbed energies are of the order

ap

Sl a?~ 1074
» Relativistic correction

The correction due to the spin-orbital coupling is of the same order of magnitude
as another correction of a completely different nature, namely the correction

caused by relativistic deviations from the familiar kinetic energy formula 5 AZ 7-

2 2 2
Rel. kinetic energy: T = \\/(MCQ)Q + (pc)%—Mc2 ~ L — (%) + ...

2Mc?
Me2y/1+(35-)? VI+é=1+3 %+
The effect of this correction can be treated within the non-relativistic QM,
2
. - . . Al 1 H2 . D
adding to Hy a perturbation term: B = (QPW) = 2]\462(17170 V)
15torder effect in the coupled basis: o®Mc((5)")u (@*Me)2{(G5) ™

<¢nljm_,- |f{ /|¢nl jmj> = 73 A{(,Q E 2 2En <¢nl jm; |‘7 | ¢nljm_,-> + <,¢nljm_,- |‘72 |¢nl jmj>

Using an estimate <(é)k>nl ~1, we obtain relative corrections % ~a?~1074

» Fine structure of hydrogen levels
After the precise evaluation of all radial integrals, the spin-orbital coupling and
the relativistic correction together yield a formula describing the fine structure
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of hydrogen levels: |AFEps ~ —a'Mc®-

An”t

(.2”1 — §> We see that this formula
Jt+3 2

partly lifts the accidental degeneracy of unperturbed hydrogen levels in quan-
tum number [ (see Sec.4b). Note that the Zeeman splitting for magnetic field
strengths B € (1,10) T would be of the same order of magnitude.

» Helium atom

We know (Sec.2b) that the non-relativistic description of multi-electron atoms
has to include the mutual electric repulsion of electrons (besides single-particle
terms of individual electrons expressing their kinetic energy and potential en-
ergy in the attractive Coulomb field of the nucleus). This in general requires to
use many-body techniques such as the mean-field method. Here we present a
simple treatment of the 2-electron Hamiltonian of helium in terms of the per-
turbation theory The Hamiltonian H=Hy+H' (we set A=1) is defined by:

2 2 1
HO - ZJU <A1 -I- AQ) 47TEO <‘I1‘ -I- |IQ‘> H - 47’1’60 |fl—2?2|
The calculation can be performed in the coupled spin basis of both electrons:
| S. M > _ |0,0) singlet (antisymmetric under exchange)
s [1,Ms) triplet (symmetric under exchange)

As the total 2-electron wavefunction must be antisymmetric under the exchange
(fermions), the orbital part associated with spin singlet /triplet is

symmetric/antisymmetric: V1(71) V2(22) V2(21) 1(72)
\1101 (xlu x? [gbnlllml xl) wn2l2m2 (x2> :i: wn2l2m2( 1) nlllml( )\J
e? NN SR - R
Define E{% _ 42260 fwl(l“l)wz(b)|flz§2‘1/11($1)1/12(x2) dzrdiy para
Treg f1&5(51)11)1“(52)mwz(fl)wl(fa) A, d7 e o
2 L _— ortho
and E12 _ 476;60 J i@ 1/’2(:52)\“ L2|¢2($1)¢1(12) dz',dzs
47r60 J 3@ (@) 77 _$2|¢1(9«“1)¢2(sz) a1 dz; pere

Tles) o~ d

1%torder energy correction:
Singlet & triplet spin states are degenerate, but H' is
diagonal in these states = the nondegenerate case para

expression is applicable: /
(Wou| H'|Wos) = 3(Efy + Efy + ER, £ ER) = Efy + B

E}+ER
By~ E12

We stress that the correction is in fact not small (potential energy of the
electron-electron interaction is comparable to that of the proton-electron in-
teraction), so higher-order expressions would be needed for a qualitative de-
scription. Nevertheless, the above calculation shows the most essential effect.

inglet
For spin { ji"?s;leet } states the energies up to 1%%order are: EZ.(l): EOZ-—F{



193

The splitting of singlet & triplet states is a direct witness of the indistinguisha-
bility principle in action! The corresponding subsets of the helium spectrum
(connected only by weak electromagnetic transitions) form two seemingly dis-

tinct helium species, called parahelium & orthohelium.

<« Historical remark

1892: F.Paschen & C. Runge discover the splitting of He spectrum

1897: P.Zeeman discovers the splitting of atomic lines in magnetic field

1913: J. Stark & A.Lo Surdo discover the effect of electric field on atomic levels
1916: A.Sommerfeld introduces the fine-structure constant and calculates the rela-
tivistic splitting of hydrogen levels within the old QM

1925: so-called anomalous Zeeman effect contributes to the discovery of spin
1925-6: L. Thomas presents relativistic calculation of atomic spin-orbital interaction
1926: W. Heisenberg explains the split He spectrum via electron exchange symmetry

B Application to level dynamics

So far it was assumed that the parameter \, weighting the perturbation term
in the Hamiltonian, has a fixed (small) value. However, one may think of
Hamiltonians H (M) for which A € R is a control parameter that can vary in a
large domain. The energy spectrum £;(\) and the set of eigenvectors |¢;(\))
change with running A and one may use the perturbation theory to write down
a set of differential equations governing these changes (sometimes referred to
as “level dynamics”) in terms of local properties of the spectrum at given A.
The most interesting situations are encountered if the variation of A leads to a
qualitative change of the nature of the evolving eigenstates.

» Hamiltonian with a linear parametric dependence

H(\) = Hy+ \H'

Perturbative treatment at any \:  H(A+0A) = Hy+ XA H' +(6)) H'
. SN—

Level dynamics:

We assume a linear dependence: A € (—00,+00)

H())
“particle trajectories” in 1D

» Local “dynamical” equations obtained from the perturbation theory

evolving energy levels | E;(\) <+—

%Eiv‘) = <¢i(/\)\ﬁ”7/)z‘(/\)> = Ei = Hfi velocity
2 i (V) H |1hi (M) oo \H, 2 .
%Ei()\) =9 %’;) % = ||E;, =2 Z Yoo acceleration
e J()

The “force” on the right-hand side of the last equation consists of terms o< ﬁ,
i L

which are analogous to the Coulomb repulsion force \ﬁ | o FH on particle 4

Lj
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interacting with another charged particle 7 in a 2D world. However, mind that
in the present case, the numerator in the force expression cannot be factorized
to individual “charges”: |H’,|> # q;q;.

(W H [i(N) = (K (VH[i(N) + (N H | (V) =

(M g k(A - i
> AN s () || 45(A) + Z W )T )
] 7

1!
= ||H], =

1, 1y, 1y,
E;—Ey E;—FEy
) K(#)

evolution of matrix elements H ]’Z

For given E;(0) & H7;(0) (¥4, j) the above system of differential equations allows
one can calculate E;(\) & Hj;(A) for any A. There exist many “integrals of
motion” (in the sense A = t), in fact so many of them that the system is
integrable. For instance:

P=TrH =Y H!, =Y E; =const

(2 3
. . . i
W= 3Te(H') = 33 HH}; = 55 EF + 5 3 [H};|* = const
1,] 7 i#j
The “center of mass” of the spectrum

evolves linearly with A: /

B\ =L E(\) = T () f
i I R L _-

_ [nTrHO} I\ [nH} ﬁ

» Global properties of spectrum
for finite dimension d

The variance (squared spread) of the
spectrum evolves quadratically with A:

PR = [iEIE (A)P !
\/ ZE E2(\) = ' >

\/ LT A3 T2 o |+ [ETr(HOH/)—n—ZTrFIOTrFI'}LAZ LT |

The spectrum is maximally compressed [reaches a minimal spread D())] at a
certain value A=y, while for A — +o00 the spectrum freely expands: D(\)ocA.

» No-crossing rule

The equation for E;, which contains the repulsive 2D Coulomb “force”, prevents
the levels of the spectrum to cross each other. Consider a crossing of two levels
at A=M\«. Near the crossing, the dynamics of the two levels is well approximated
by the corresponding 2-level Hamiltonian, which in general yields:
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E(A):(?((AA)Z :2%))) = cnergies By(\) =200 /a0 a0 ()2

To get Ey(Ax) = E5(Ax), one needs to simultaneously satisfy 2 real equations:
e1(Ax)=e2(Ax) and |v(Ay)|=0. This is not generically achievable with just
a single real variable parameter )\, except of some accidental rare cases.

Instead of real crossings there exist numerous

so-called avoided crossings of energy levels

(close encounters with subsequent split-ups).

At such places, the corresponding eigenfunctions /\
—

change very rapidly, as can be seen from the
overlap formula (A — A+0\ survival probability):

pi(A, 0X) = [ AN |B()P = 1 — 62(\) ~ 1 — (1)’ Z' R

Here, 6¢2(\) = g ()\) (6A\)? can be interpreted as an infinitesimal squared dis-
tance between parameter points A and A+d\ with respect to the variation of
the iMevel eigenfunction. Then g™ is 1dent1ﬁed with the i"level quantum
metric tensor (generalization to matrices gi in higher-dimensional parame-
ter spaces is obvious). We see that near the avoided crossing g () is large, so
the distance £;(A, \) = [ /\); g (V)N from Ay to A grows quickly when A goes
through the avoided crossing.

Proof of the overlap formula:  [{(¢;(A6)\)|vi(N))|> =

S b, o b VLA 19 )2
I jgj;ﬁj(k)ﬂd](k)\ (6)) %r
——N— - - >
(iAW (A (i N i (A+0A)) = 1—% (®j(N)|1hi(A+0N))
J(F

On the other hand, real crossings are abundant if matrix elements /}; between
some subsets of levels vanish identically. This typically happens because of
some symmetries of the system. For example, the rotational symmetry yields
H’;=0 for levels i, j with total angular momentum quantum numbers j; # j;:

0= (s [, P 14(N) = 12 [5Gt D) =3+ D] (s OO ()
0 £0 = =0
We stress that the crossing of levels with different symmetry quantum numbers

has no effect on the corresponding eigenvectors.

For a given pair of levels ¢ and i+ 1, the avoided crossings (minimal spacing
A=FE;.1—FE;) appear at individual points along a single parameter axis A\, and
generally on some (n—1)-dimensional subsets of n-dimensional parameter spaces
A= (A, ..., Ay), in particular along some curves in n=2 spaces. In contrast,
the real degeneracies of levels with the same symmetry quantum numbers form
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(n—2)-dimensional subsets in n-dimensional parameter spaces, so in particular
they appear as isolated points (so-called diabolic points) in n=2 spaces.

» Quantum phase transitions

In some systems, an increasing size parameter N (typically a number of particles
or other elementary constituents) induces lowering of matrix elements

Hij(A) = (@ (VH [:i(A) = [E5(A) = Es(A)] (@ (M)[i(A))
This is due to the asymptotic behavior (1h;(\)]e;(\)) 2 resulting from
a dominantly power-law scaling of scalar products with N (this would be exact
for states factorized in individual constituents). As a consequence, the avoided

crossings become gapless in the limit N — oo.
N—oo

Assume that Ey(A\.)—FEyp(A.) — 0. The point A. of asymptotically unavoided
crossing of the ground & first-excited states is the critical point of the
(ground-state) quantum phase transition. From the degenerate perturbation
theory at A=\, we obtain generic eigensolutions for small JA=X—\:

oA FEroy foroA<0 O\ By fordA<0
EO(A)QEO(AC”*{ S\ Eyg_ for 6A>0 El(A)“EO(AC)H{ S Eyg for 6A>0
where Eyoy > Eyjo_ are eigenvalues of H' in the degeneracy subspace. The levels
and the corresponding eigenvectors swap at A = A\, = the first derivative of
energy -LEy()\) and the eigenvector [¢()\)) are discontinuous. This situation is
referred to as the discontinuous (first order) quantum phase transition. It is
commonly pictured via a Hamiltonian with two potential wells, one increasing
and one decreasing in energy: the critical point is where both wells become
degenerate. Such systems also typically show multiple crossings of excited
states, in which the structures of the corresponding wavefunctions swap.

AN U
3 X

0 1 1 0 E

Another type of ground-state criticality, a continuous quantum phase transi-
tion, arises when the matrix element Hj,(\) increases with A— A, and the level
energies are affected so that Fy()\) does not develop a discontinuity but a softer
kind of nonanalyticity that occurs in some higher derivatives j—;EO()\C). Also
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the eigenvector [1y(A)) changes continuously, with nonanalyticity affecting only
some derivatives. This is often pictured via a single-well Hamiltonian evolving
in such a way that the minimum becomes locally flat (quartic) at A=\, and bi-
furcates into two quadratic minima (and one maximum in between). Again, the
accompanying crossings of excited states often come in some typical patterns.

« Historical remark

1929: J.von Neumann & E. Wigner formulate the no-crossing rule

1932: L. Landau & C. Zener calculate transition rate for a 2-level avoided crossing
1970’s-present: investigation of quantum phase transitions in specific systems
1980: J.P. Provost & G. Vallee introduce the quantum metric tensor

1980’s: P. Pechukas & T. Yukawa elaborate the Coulomb analogy for level dynamics

11. NONSTATIONARY APPROXIMATION METHODS

The goal of this section is to introduce some techniques for approximate solutions of
quantum dynamical problems. We start with the most commonly used method —
the nonstationary perturbation theory—and then briefly outline some computa-
tional approaches to externally driven systems, which attract growing attention due
to their potential role in quantum simulations and related applications.

B Nostationary perturbation method

The basic approximation method for nonstationary problems is conceptually
close to the stationary perturbation method. It assumes the total Hamiltonian
being split to the principal stationary part Hy and a small perturbation NH'(t),
which may (but does not have to) be time-dependent. The task is to estimate
the probabilities per time unit for transitions between various eigenstates of the
main Hamiltonian induced by the perturbation. Here we focus mainly on the
general formulation of the method. We will see that its application to realistic
problems, particularly to decay and scattering processes, may be technically
involved because of a rather difficult structure of the corresponding Hilbert
spaces (associated with typically composite participating objects) and intricate
mixtures of discrete & continuous energy spectra.

» General setup
Total Hamiltonian assumed in the form | H(¢) = Hy + AH'(t)| where:

f{() = free stationary Hamiltonian matrix elements of PAIO

H'(t) = generally time dependent perturbation and H'(t) are of about
A = dimensionless parameter the same size, A < 1

The task is to evaluate probabilities of transitions between eigenstates of Hy as
a function of time in the form of a power-law series in A
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» Typology of applications

Example I: stimulated transition

The Hamiltonian H describes a bound quantum system with a discrete energy
spectrum { Epy; };, while the perturbation AH'(t) represents a non-stationary
external field inducing transitions between the unperturbed eigenstates {| Eo;) };.
These states may be taken as a basis of the Hilbert space H of the problem.

Example II: spontaneous decay |A" — A+~

The Hamiltonian lffg = ﬁa—i—ﬁﬁ describes a bound system (e.g., an atom or
atomic nucleus) with discrete energy spectrum {Ey;}; and the free electromag-
netic field (photons) with continuous energy spectrum £, € [0, 400). The time-
independent perturbation MNH' represents the interaction of the system with the
electromagnetic field. The initial state is [1y;) = |Eni)a ® |0), (an excited state
of the system and the electromagnetic vacuum). The final states are of the
form |1hg;) = |Eo;)a © k), (the system’s ground or lower excited state, j <,
and a single-photon state with a given wave vector k and polarization v). The
Hilbert space H = H,®H, can decomposed into two relevant parts: the space
of initial states Hin = Ha ®'H,(70) and the space of final states Hgy, = Ha®7-l,»(yl),
where 'HWNV) is the photon Fock space segment with N, photons.

Example III: scattering ’a +A— B+ b‘

The free Hamiltonian H, with continuous energy spectrum represents non-
interacting particles a, A, B, b that will participate in the process and the sta-
tionary perturbation term AH' describes all their interactions. We stress that
at least some of the participating particles are in general composite and write
states in the corresponding Hilbert spaces as |p)|@)qp or [P)|®)ap, where p
stands for an overall momentum and ¢ or ® for a relevant internal state of the
given particle. The initial state (in the center-of-mass system, where the sum
of linear momenta is equal to zero) reads as [1y;) = |Pi)|®i)a @ |—Pi)|Pi) a, the
final state as |¢o;) = ;)| ®;) s ® |—Dj)|¢j)p, where the indices ¢ and j are used
to label the initial and final states. The relevant initial and final Hilbert spaces
are Hiy = Ho @Ha and Hin = Hp QH,p.

» Dyson series for transition amplitudes

It is favorable to move to the Dirac interaction picture of the time evolution,
identifying the free Hamiltonian with Hy. This immediately yields the desired

power-law series in the perturbation. -7

) P = Hys = H
Operators:  Ap(t) = Ug(t) As Up(t) = { HOD( 9 :HOAJ( )HO( HO(8)
Vectors: W(®)p =Ui®)1)s = ih&|v(t)p = Hy(B)]¢()o
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Dyson series for evolution operator:

A t to
Up(t, to)= I+ (—4)" fH’ tr) dty + (—iX)* [ [ Hp(t2) EH (1) ditrdts + .
to t
t tn 2 ’ OA
+ (=N [ [ fH’ no1) - Hp(ty) dty .. dt,_ydt, + . ..
toto  to
This series can be rewritten to yield wavefunction IY0;) — |100;)
(3
amplitudes of transitions between unperturbed energy  Fy; — EO']
A~ (3
individual eigenstates of Hy within the " _ EOj_E]Oi
transition frequency wj; = ===

time interval [tg, t]:

A~ . t A~
a;i(t,to) = (Yo;|Un(t, to)|voi) = 6ij + (—i)\)l f$¢0j|H1/3(751)|@/)0¢2 dty+

t,

H; (fl)eiwj]gt2 H (tl) iwpitl 0 HJ’ (tl)e wjitt
t t2 ~
+ (N TS (Whogl By (t2) o) o BTy (60) o) dtadits +
to to k

/ ky_1in / W 1ky_otn—1
H 1(f )() “ikn—1 Hkn . 2(7‘n71) n—1%n—2
t tn to ~\

DN NG BIPIDY (Wos | By () [Wok,) (o [ E (b 1) |t ) -
toto  to kn—1 kpn—2 1 . ‘\<w0k1|HD<t1)|w0i>j dtl Ce dtnfldtn + ..

(t)e Wklz‘tl

/
Hklv

This leads to the following perturbation series:

a;i(t,to) = Zanﬂ(f,to) = 05 [n=0)

t
[TL:l] + (—;—i ) fH/'i(h)eiwjitldtl
t to

=2  +(=N)’[J ZH (to)e™i2 Hy, (t1)e™ 1 dtydty  +

to to

[gen. n] ( ) ff fZ 3. ZHJ/k (t )eiwjkn_ltn

toto to kn—1kn 2

H g, (tnog)e™ i S - Hyi(t)enifdty - -dt, o dt,

» S-matrix
The dependence of aj;(t,ty) on times ¢y & t can be removed by considering an
asymptotic time limit with respect to a certain short time scale (see below).
The resulting so-called scattering matrix (S-matrix) includes asymptotic-time
amplitudes of the i — j
transitions: wi(tots) s || S5 = tiglglo aji(+t,0) (W?th to =0) (a)

Jim a;i(+t, —t) (with ty = —o00) (b)
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Case (a) applied if the interaction is “homogeneous” in time (decay processes)
Case (b) applied if interaction H{,(t) can be “centered” at t = 0 (scattering)

» Limiting time scales

The nonstationary perturbation method describes quantum processes on the
time scale somewhere in between two limiting scales: T. < At < T%.

Upper time scale: Fast convergence of the above series is expected if the time
difference (t—tp) is much smaller than a characteristic time scale of the exact

state evolution. The scale T% is therefore given 7
by the total energy width of the evolving state t—tg <15 ~ =
in the eigenbasis of the full Hamiltonian. (R

Example: for a decay process, the upper scale 7. is associated with the mean
lifetime T:IQ (with I'=width of the Breit-Wigner peak) of the decaying state.

Note: for a time-dependent perturbation, 7. should be evaluated from a maxi-
mal energy width acquired during the evolution: 75 ~Min {h/\ E) } Y

Lower time scale : The “asymptotic-time” S-matrix is defined for time differ-
ences (t—tp) much longer than a short time scale associated with the system’s
internal or single-particle dynamics. For systems with discrete spectra, this

E[to,t]

scale is determined by the average o

density of unperturbed energy b oo(Eoi) =~ E E ~ T < t—ty
o 0(i+1) — £0(i-1)

levels around the initial state.

Examples: For decay processes of composite objects, T- represents a charac-
teristic period of motions of internal particles. For scattering of particles with
a short-range interaction, 7. is given by the time spent
by the colliding particles within the interaction distance.

Consequence: For a discrete spectrum, the time window
(T-,T-) for application of the nonstationary perturbation Tﬁ’@w
method exists iff the total energy width of the initial state
is much less than the spacing of unperturbed levels: |[I° << AE

» Step perturbation

Consider first the case in which the perturbation is switched on abruptly, in
a step-like fashion, at time ¢ =0. This is, in fact, the same as if we describe
the t > 0 effects of a stationary perturbation H on a system, which was
prepared at t=0 in the initial eigenstate [;) of Hy.

Perturbation Hamiltonian [

[ﬁl’(t):ﬁ]’, toz()] {H’() {OH, iig o <0]
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Transition amplitude & probability up to 15torder contribution

We consider transitions ||tg;) — [1g;) for j#i i

7 »
alt) (1) = ayi(t) = —iAH, [ ettty = M e

1 1— 3 zt 2 ‘iIlQ Lt /
i () = o) () = b AH P (s b
~ 4 I\ [ =
1 ;o S0 (55°) asin? (4tr) =N 22\
— ﬁ’)\HA wr b t w]2'i 4
(551) Z _

The right way of treating this expression:

2 Wi
a) Consider long time t > (see above) = [t — co] = Smw(__ i) ~ 21 o(wi;
T j

in? (o a for x= e in“(ax : sin” (o
sin”(ax) { f 72: . f sin®( )dl’ = lim % = 71'5([17)

ax? 0 for =225 .., ax?

1 - .
= 0 (1) = 5 INHGP 0oy — B
(b) Instead of transition probability calculate the transition rate

Ri(t) = Lpu(t)| = RY =2|NHL?S(Ey— Ey)

(c) Sum over all final states at energy Ey=EFE), making use of averaging with
respect to an e-smoothened density of final states of(Ef)e =) 0c(Ef— Eo;)
= N————

=

1 €
i
T e +(Ef—E0j)2

Remark: The density of final states at energy Ej, differs g
in general from the density of initial states at the same

energy. This is so because initial and final states are often treated as vectors
in different Hilbert spaces. Consider the the decay A* — A + ~ of an excited
system A* (example II above): Here Hiy = Ha ®"H%O) (the space of states

with no photon is equivalent to H, alone) and Hg, = Ha®7{$) (the space of
system-field states with a single photon). Therefore, the density of final states
at energy Ey = Ey; + E, = Ly, is calculated in the larger space Hgy.

The summation over final states leads to the following general expression:
Rji(t) = Ryi(t) | = Z IMH [ 6 on Eyi) = Q%SMH 1%y Qf(Ef Eii)

= O (Eoz E()g)/ averagew1th =9 0 f( Ey)

respect to of(Ey)e
~(AH ;) ¢ Z5E(E0i—E0j)
j

[

» Fermi golden rule

The above derivation is summarized in a very useful and famous formula, whose
validity turns out to be much wider than in the presently studied case:
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(INH};|*) y = squared matrix element
averaged over available final states
0f(Eo;) = density of final states
at final energy Fy = Fy;

2
Rg‘lz) - <|/\ \2> 07(Eo;) || where
f

2nd0rder correction

£ (Eoj—Eoi)t _q
i H/ H/ eWiktz piority 2 H/ H/ eh
a2]1,(t) ( € dtydty =X Z (Eok—Eoi)(Eoj—Eo;)
_ o (Boj—Eor)t _q
Writwir=wii = _ | it 1,”1” 1 (Eoj = Eor) (Eox—Foi)
Wk:iwji WikWki

Assuming Ey; # Eop # Eoi (so Hj Hy,; ~ 0 for equal energies) we may neglect
the second time-dependent term (otherwise special treatment needed). The
first term yields the same dependence on (Ey; — Ey;) as the 1%-order correction:

L,
Eoi—Eop

(2) 27 2
RV = — <‘AH}i+A
k

fi

2> of(Eyi)| “direct”+ “virtual” transitions
¢

<« Historical remark

1927-30: Paul Dirac derives the 1% & 2"dorder perturbative expressions and applies
the theory to calculations of electromagnetic transition rates in atoms & nuclei
1950: Enrico Fermi coins the name “golden rule” for the general 1%order expression

» Exponential perturbation

Another perturbation type, for which the Dyson series can be evaluated explic-
itly, is the one with an exponential time dependence. In this case, we move the
initial time ¢y — —oo and look at the effect of a slowly rising term H'(t).

Perturbation Hamiltonian

H'(t)=e"H'| 1>0

Initial state |¢y;) prepared at ty — —o0
Final state |¢;) with j # i measured at any ¢

Transition rate up to 15order contribution
t

Transition amplitude: aﬁ)(t) = —%AH}i [ ertiwiltqy = 1 F AH, en+zw]1

17+1w]7)t

—0o0

Transition probability: pg?(t) = |a§‘7: (t)]> =7z | AH |2 f_iz

Transition rate:

5 l (pw(E) = Breit-Wigner
TN ey — )
~——

ji T, energy distribution (Sec. 5a)

hQBw(E()]'—EUi) Wlth the Wldth F — 2h/r]
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Adiabatic limit (n,I' — 0)
lim O (Eo; — Eor) = 0(Eoj—Bo)) - = lim R = 2N/, 126 Eo;— E)
This is consistent with the previous result on constant H' = golden rule
» Harmonic perturbation

Expressions similar to those derived above apply also to harmonic perturbations
with period T— . In this case, however, the perturbation induces transitions
up and down to ﬁnal energies F;+hw or E;—hw.

Perturbation Hamiltonian

!/ “+iwt —iwt | __ (V+VT> COS( t)
G = Ve {+z<v V1) sin(wt)

Initial state [ig;) at to =0
Up/down transition rates to 15*order
t
1 1 (s *
Transition amplitude aﬁ-i)(t) =& [ij‘fﬁiz(wﬂw)tldt1+v fe wii—w tldtl}
to |¢OJ><<7 7é Z) |:V 1— el(W]rFW)t V*l 61(“}]1 w)t:|

wjitw wji—w

Transition probability:

. itw 2 wji—w 72€iwt cos wjitfcos wt
1 \2 sin? ( £4iTy sin t W22
T 2 1— z(w W)t 1— —1i wji—w t
—|—2R€(V V Leu itw ewjl-—w )1
The first 2 terms yield: 27té(wji+w) & 27t d(wji—w)
The last term for wj; = £w +-¢€ is negligible relative to
the previous terms: 0
_coswjit—coswt _ cos(dtw+e)t—coswt €0 tslnwt ~ 0
w3 —w? o (w+e)?—w? 2w T
Transition rates l

R(l) z%<|)\vh|2>f of(Ep—hw) stimula’?edemission
%<|)\Vij|2>f 0f(Eoi+hw) absorption

<« Historical remark

1916: A. Einstein theoretically discovers stimulated emission and discusses the de-
tailed balance between absorption and emission processes

1950’s: Application of these ideas in the construction of laser

B Application to stimulated electromagnetic transitions

The above results of the perturbation theory for a periodic field can be directly
applied to atoms or nuclei interacting with external classical electromagnetic
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waves of appropriate wavelengths. We outline these issues here, leaving the
discussion of the spontaneous emissions of electromagnetic quanta to Sec. 14
(where the quantization of electromagnetic field will be outlined).

» Planar electromagnetic wave
Vector potential: k
A(Z,t) = Ay € cos (’:gnb T — wt)
with |[7|=1=|¢"| and following

A,
from the Coulomb gauge condition V-A(Z,t)=0

q( )) _ < wé sin(l?fﬂ—wt) >
(B(f 0) A © [fixd] sin(k-z—wt)
(w) = glen(E*(T, 1)) +pg (B (7. 1))]
(P) =

» Hamiltonian of particles in the external elmg. wave field

il
= el. & mg. field intensities:

= averaged energy density: = %eoAgcﬂ

= averaged energy flow: (w)e = egAlw’c

Ensemble of N charged interacting particles in a classical elmg. field:

N N 2 N A N N N
A(t) = 3 i [f—ad@E D] + X V@D + 3 > W)
k=1 k=1 k=11=k+1

with V(Z,t) & A(Z,t) standing for the scalar & vector potentials of the ex-
ternal field, and W (Z, ') for the potential of a mutual interaction (of any na-
ture) of the particles. Neglecting q,%A(xk, t)?, setting the scalar potential V' =0
(elmg. field far from its sources) and assuming the Coulomb gauge V-A(Z, t) =0:

N N N N
B =3 sk + 30 50 W)~ 30 [ 5]
ic:l k=1 l=k+1 PN k=1
i, _ [A@ 1) Fu(@) dE = H'(1)

For the above planar elmg. wave we thus get the harmonic perturbation:

N
. A sua
2O =43 #| e d)
k=1 «V ¢ stimul. emission
Ey; Ey;
So the external elmg. wave interacting with the particle system of energy FEy,

induces stimulated emission and/or absorption, depending on whether the wave
frequency w matches some of the internal frequencies w;; or w;.

—Ho.)t_'_ 6+z;n~xk (5 ﬁk) e—zwt]
~—_——

oVt s absorption

emission: hw = Ey; — absorption: hw = Fy; —

» Absorption cross section

In the following, we focus on the absorption processes (the procedure for stimu-
lated emission is analogous). We define the absorption cross section, which can



205

be seen as an area on the plane perpendicular to the incident wave propagation
direction. The elmg. energy passing through this area is being continuously
transferred to the system:

energy absorbed in unit time  fw Ry

abs _

It incoming energy flow eOAOw c

Perturbation theory prediction (1%'order):
= (o | e m e ) o)
» Electric dlpole approximation

Assume that the atorn/ nucleus size | R < A| radiation wavelength
= ettt =4 Z = <Z L. xk> ~ 1 (only the n=0 term considered)

n=1

2
0 (Eo;+hw— Ep;)

abs ~
UJZ €qwWe

N A
<¢0] Qk eTisT: u(g ﬁk) 1/,02.> ~ <1/10j g3 f—ﬂﬁk ¢0i> _—
k=1
Trick: pk M [.CCk, HO] e = %(on — EOz <77Z10] quxk Q/)Oz>
hw

where we introduced the operator of electric dipole moment: D

= O.abs%mu <¢o;|€ D|¢Oz> (EOZ+hW EO])

€pC

(ol Doltbos)|

- = abs ~ W
For &=1i,: |loy;" dw =

#04ff =1 <35 < (5i+1)

The above condition for the initial- & final-state spin quantum numbers j; & j;

follows from the Wigner-Eckart theorem applied to the A=1 tensor operator D
(see Sec.4b).

» Beyond electric dipole approximation N
We look at the n=1 term in the expansion of | (¢)y;| Z o (5" D) |0

It contains matrix elements of quantity (7 - 2,) (€ pi) = (& pi) (7 - Ty )+ihi (€- 7)

k
= %(Fk++Fk,), where we define Fy.= (£ py) (1 - &) £ (- Zp) (70 - D). 0
(a) Electric quadrupole term arises from the component Fj, treated using
N N N N N
the same trick as above: i (1| 2:31 o (€ fﬁ)(n - T)+ (- Tk (1 '\Pf')”%ﬁ

— LMy [Tk Ho] 3 — L My [, Ho)

2hc(E0j Eoi) (thoj] Z i (71 - ) (& ﬂ%k)’?/}m) = an€m<%1|@lm|¢01> where

lm 1
sz Z Ok (TR T gm— 35lmxkz) (with the last term, which ensures Z Qu=0, being

added Wlthout any harm because of £-77=0) are Cartesian components of the
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A =2 electric quadrupole tensor. Thus the angular-momentum selection rules
for electric quadrupole transitions are: |j;—2| < j; < (ji+2)

(b) Magnetic dipole term arises from the component F._: Using the identity
N

(& D) (7 - B)— (- Tp) (- pio) = [T x £] - [T x D] we get: i (| 2 o4 Fr-[on)
= k=1

Fik 5
Ly,

N ~, ~ ~

= @2l x €] - (Yos| > oh-Li [voi) = @[ x €] - (tojlfiltoi), with i denoting
k=1

the orbital magnetic dipole moment. For particles with spin the spin magnetic

moment needs to be added. Since the magnetic dipole moment is a A=1 tensor,
the selection rules for magnetic dipole transitions are: |j;—1| < j; < (ji+1)

» Multipole expansion

To systematically evaluate transitions of higher multiopolarities A, it is conve-
nient to expand the incoming planar wave into the spherical waves. This is not
quite trivial as one needs to correctly treat the wave polarization, which on the

quantum level results from the photon spin (s=1).
Plane wave expansion into spherical harmonics & Bessel functions (cf. Sec. 13):
oo+ - S
= w3 it k) Vi (F) ¥in ()
=0m=-1
To 1nclude the polarization, we introduce circular & linear polarization bases
é’i:¥%(§;ii§y)

in a general coordinate system { =

.- } so that an arbitrary linear
0=¢z

polarization vector can be written as: &= /% ZﬂYf;(é) ¢, (note that the

circular polarization vector éj is present because the evaluation is performed in
an arbitrary coordinate system unrelated to the wave vector k).

Introduce a “vector spherical function” with total angular momentum (multi-

polarlty) Al )_}l/\#(%) ZClulmeVY}m(g) - ey lm( ) chylmj}l)‘/‘(g)
= RS SS T Ol i) Vi (£) i) Sl C)
N——
g bm v spatial dependence

For each multipolarity A one can separate terms with both parities, electric
component EX with parity (—1)* and magnetic component MA with parity
(=DM and construct expressions for the rates of the corresponding transi-
tions. The previously treated terms are identified with E1 (electric dipole), E2
(electric quadrupole) and M1 (magnetic dipole) transitions.

<« Historical remark
1900’s-10’s: Multipole expansion of elmg. field elaborated within the classical theory
1940’s-50’s: Multipole expansion applied in QM (M.E. Rose et al.)
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B Driven systems

We will now briefly deal with problems combining parameter-dependent and
time-dependent descriptions. The aim will be to analyze the dynamics of sys-
tems whose Hamiltonian parameters are driven, i.e., varied with a given, exter-
nally controlled time dependence. This can be achieved with the aid of some
approximation techniques based on suitable perturbative expansions.

» “Forward” driven system

Consider Hamiltonian H(G) depending on a set of parameters G = (G, Ga, ... )
and define a curve G (g9) in the parameter space described by variable g € R.
We denote H (é (g)) =H (g) and the corresponding eigenvalues and eigenvectors
as E;(g) and [1;(g)). Now consider motion g(t) =gt along the curve, assuming
(without any loss of generality) g =constant. The actual “speed” in the pa-

rameter space é(t) = depends on the selected parametrization é(g)

_ o dd
: 9 dg 9=9(t) .
and generally varies. So we switch to a time-dependent

problem: |H(G) — H(G(g(t))) = H(gt)

The speed ¢ is assumed to be “small” and the /
task is to approximate the evolution induced by

the Hamiltonian H (gt) on the level of precision /
which is consistent with a selected power ¢% g%, ¢2..

» Equations for instantaneous eigenvectors

Stationary Schr. eq.: ﬁ( )Ni(9)y=Ei(g)|vi(g))

= P i(9))+H(9) %2 (9)) = 52 i (9)) + Ei9) | 42 (9)
Multlply by (t;(g)] for j#i: P,

(sl S 1) + B |%) = 4 T la) +Esluty] %)

by (W (9|2 (9)|v:(9)) oy
> |WOI%06) = Vg | for i#

For j=i we use: i (¥il) = (G [0i) + (il G") = 2Relyi] G) = 0
= | {0i(9)|52(9)) = igi(g)|| with ¢y(g) € R

With substitutions ¢ — ¢t and %

g = 4 the above formulas become t-dependent

» Time evolution by the driven Hamiltonian

Expansion in the instantaneous eigenbasis: l(t)) = Z a;(t)|vi(gt))

Nonstationary Schr.eq.: ihd|U(t)) = H(gt)|w(t))
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= ZFLZJ: (6 () 105 (gt)) +ay (8) 15 (91))) = EJI a;(t)Ej(gt)|¢4(gt))

Multiply by (¥i(gt)]: ihdi(t) +ih 32 a;(t) gwi@t)l%wj(gt)z = ai(t) Ei(gt)
J
Here we use the previously derived result | . (¢ (9)14 (g )W% e
. E9)-E5(g !
and obtain a system of coupled for i4] for i=j

differential equations for o;(t):

da (453 (,,< DIt) 4 — gd
40y = [ i )] )5 S RS =0
i)

» Adiabatic approximation
Let the initial state is one of the g=0 eigenstates: ||¢(t=0)) = |¢i(¢9=0))

= «a;(0)=0;;. We further assume that ’g’ is very small —>0‘ (adiabatic limit).

The offdiagonal terms of the above set of differential eqns. yield contributions
ox ¢gP with p>1 to the solutions «;(t)

ot 9
= they can be neglected in the 0™order —7 [ Ei(gthdt" i [ ¢i(g)dg
. . . . Qs (t) = (5ij e v L, e P
(so called adiabatic) approximation. —— ~—’
namica eometrica

So the 0™order solution reads as follows: v phase factor

The non-adiabatic p>1 terms o< ¢', ¢%... can be also systematically constructed
within the so-called adiabatic perturbation theory (not discussed here).

» Adiabatic state preparation

We see that the adiabatic approximation yields |a;(¢)[*=4;;, so in the true §—0
limit the driven system remains all the time in the instantaneous eigenstate
|1i(g)) following from the initial eigenstate |¢;(0)). This result is known as
the adiabatic theorem. However, for g small but # 0 this remains a good
approximation iff the levels do not come too close to each other (see the energy

denominator in the neglected term of the above equation).

The adiabatic theorem is used in various protocols of quantum computation
& quantum state preparation. An N-qubit system is prepared in the ground
state [1y(G ﬁ)} of a parameter-dependent Hamiltonian H(G) at an initial param-
eter point G = G( ), where the ground state is fully separable (e.g., spins at low
temperature in strong external magnetic field). An adiabatic parameter change
G(t) in time interval ¢ € [0, 7] then drives the system into a highly entangled
ground state of the Hamiltonian at the final parameter point G (1) (correspond-
ing, e.g., to mutually interacting spins with vanishing external field). Note that
|¢o(é (7))) cannot typically be prepared directly by cooling down the system at
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point G (7) becuase of a too complicated structure of the corresponding thermo-
dynamic potentials. The entangled state |0o(G(7))) can be used as a resource
for various quantum information applications, including quantum computation.
The crucial question, which decides about the practical applicability of the pro-
cedure, concerns the scaling of the time 7, which still ensures adiabaticity of
the driving, with the increasing number N of qubits.

» Berry phase
We saw that the adiabatic evolution generates two types of phase factors:

(a) dynamical phase (b) geometrical phase (Berry’s phase)
o (1) = - f E;(g(t))dt OBt f ¢i(g')dg'| depending only on the
derived from the standard geometrlcal path in the parameter space G.

evolution of energy eigenstates

gt)=gt = M (1) x g7 = 0o, but ©8(t) is finite

In fact, the phases of Hamiltonian eigenvectors in the space of G can be cho-
sen arbitrarily, having no physical meaning: physics is invariant under local
gauge (phase) transformations of eigenvectors i (G )) However, the geometri-

cal phase can yield a nonzero value | p¥*[p fp oilg even for the adiabatic

drive along a closed path p returnmg back to the 1n1t1al point. Such phase
changes are gauge-independent and have measurable implications.

» Periodically driven systen}s A g(t)

Consider a driven Hamiltonian [ (G(g(t)))
with a periodic dependence g(t)=g(t+T),
where T:%T. Any periodic Hamiltonian
H(t) = H(t+T) can be written as

H(t)=Hy+ Y. Vie™'| with V., =V],
k=—o00

§£0 0 T 2T ¢t

In particular, there exist the following two special types of periodic driving:

(a) harmonic (Vk 0 if |k|>2): ﬁ(t):ﬁo—i—(‘}i—f—Vf) coswt—H'(Vl—VlT) sin wt
“ N ~ ~ +00

(b) kicked (Vk:V#O if k£0): H(t)=Hy—V+VT > 6(t—IT)

l=—00

The evolution operator over 1 period |U (to+T, tO)EF(tO) = Floquet operator
F(ty) = U(ty+T, 1)) = U(to+T, to+T) F(to)U (to, th) = U~ (to, t6) F (to) U (to, tf)

Uty to)
Floquet states |¢;(t;)) and the corresponding quasienergies &; are solutions

of the eigenproblem: | F'(ty)|¢;(to)) :e_%g"T|¢i(t0)> where the values & do not




210

depend on to and |¢; () =U (to, th)| ¢ (t0))-

Any initial state can be expanded as |¢(ty)) =), (¢i(to)|¥(t0)) |¢i(to)) and its
evolution from ¢y to ¢ = ty+nT + At with integer n and At € [0,1) reads as
[h(t)) = U(t, to) | (to)) = i(to+At)). So the general evolution is
solved via the full set of Floquet eigensolutions within 1 period.

The unitary operator F/(t) can be expressed as an exponential of a selfadjoint

operator Hp(ty), called the effective (Floquet) Hamiltonian: | F'(t,) = e ~ e ()T

S ~
It can be expressed as series in powers of the period: | Hp(tg)=>_ hy(to)T"

Example: periodically switched Hamiltonian
H(t) = g(t) Hy+ (1= g (8)) s with g(t)={§ & Do T <0000 7 e (0,1)
F(O)—e HH(1=NT o= I T — o= He(0)T expressed by the BCH formula (Sec. 4a):
XY — (XY 43 [XY] (X XYYV XD+ ﬁF(U) _

fH1+(1 ) Hy + 2520 Ho) T LD [ — (1= f) o, [H, Ho)] T2+

hO(O) hl( ) 77,2(0)
Periodic drivings of various types can be used in quantum simulations of sys-

tems with the corresponding Hamiltonians H = Hy(ty). If T is much smaller
than the time scale of the internal dynamics, the series for Hy(t) can be trun-
cated. For instance, a very fast switching between H, & H, in the last example
effectively simulates the Hamiltonian H = fH; 4+ (1—f)H, = iLO(O).

« Historical remark

1884: G. Floquet develops formalism for solutions of periodic differential equations
1928: Max Born & Vladimir Fock formulate the quantum adiabatic theorem

1984: Michael Berry presents the theory of geometrical phase (later linked to an
earlier work of S. Pancharatnam from 1956)

1980’s-present: perturbative approaches to forward & periodically driven systems
1990’s-present: use of periodically driven external fields for trapping particles in
quantum experiments and simulating complex quantum Hamiltonians
2000-present: development of adiabatic protocols for quantum computation

12. SCATTERING: ITERATIVE APPROACHES

Description of the processes induced by scattering of particles belongs to the most
important application domains of quantum theory. Knowing the the initial state and
the interaction Hamiltonian between all particles involved in the scattering process,
can we predict all outcomes and their probabilities? And inversely: knowing the
outcomes & probabilities for various initial states, can we determine the form of the
interaction Hamiltonian? This may resemble a task to analyze an internal structure
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of a watch by detecting tiny parts shot out when the thing is smashed on an anvil.
In the quantum world, this is often the only research method available.

The scattering theory is a rather wide area, of which we are going to taste only
a little bit. Here is a general typology of scattering processes:

(1) a+A—A+a elastic scattering (total kinetic energy conserved)
(2) a+A— A*+a* inelastic scattering (intrinsic excitations of particles
involved, total kinetic energy not conserved)
(3) a+A—B+b+0b +... | more complex reaction (reconfiguration of the

interacting particles, appearance of new objects)

Scattering theory is closely related to the nonstationary perturbation theory.
Indeed, the solution of the scattering problem can be searched in the form of a power
series in the particle interaction strength. This approach will be elaborated in the
present section. We will start with an intuitive stationary description of elastic
scattering and then proceed to a rather powerful formalism which will allow us
to transform general nonstationary scattering problems into equivalent stationary
problems that support iterative solutions.

B Elementary description of elastic scattering

In a large part of this and the following sections we will deal with elastic scat-
tering — the simplest scattering process which does not change the nature or
internal structure of the scattered objects. We first focus on an elementary de-
scription of this process, based on solving the stationary Schrodinger equation
with an appropriate asymptotic form of the wavefunction.

» Scattering by a fixed potential

Consider a spinless projectile (a particle with the scalar wavefunction) moving
in a fixed potential field. This corresponds to elastic scattering of the projectile
on an infinite-mass scattering center (target particle). We further assume that
the target—projectile interaction has a limited reach, being described by finite-
range potential satisfying ‘V(f) ~ 0 for |Z| >R‘

The projectile’s initial state coincides
with one of the momentum eigenstates.
Choosing the initial momentum p'= pr,,
we start with the incoming plane wave
Y(Z) ox e with k=%. To determine the
probability distribution for the projectile being
scattered to various angles ¥, ¢ (spherical coordinates),
we apply the method of probability currents outlined in Sec. 5a: We solve the

stationary Schrodinger equation [—%A + V(2)]¢(Z) = E(Z) with energy
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E= % equal to the initial kinetic energy (this energy has to belong to the
continuous spectrum of the full Hamiltonian so that it corresponds to un-

bound states) and with the following

. . = ikr
asymptotic form of the wavefunction: = TR g, €
() 2+ filde) =
. ) ) incoming E/—/
The function f;(1J, ¢), which is called plane wave outgoing
. . spherical wave
the scattering amplitude, modulates

the amplitude of the outgoing spherical wave in various directions. This func-
tion contains all relevant information on the scattering of the incoming particle
with momentum = hk7i, to various angles (¢, ).

» Differential cross section

Probabilities of scattering to various final states are usually quantified by the
corresponding cross sections. In general, the production rate Rx of a given
final state X (the number of X events per unit time) is given by | Rx = Njinox

where N is the number scattering centers, ji, is the flux of incoming particles
and ox is the cross section of the process X (it can be seen as an area per-
pendicular to the incoming flux such that the passage of the incoming particle
through this area leads to the process X). If X depends on a continuous variable

. . . . . dox(s
x, we can introduce a differential cross section defined by | LRx(y) = N jim—on)
) dx () dx

. . . . ddx(z)
The integral cross section is given by ox = [ dr—73=.

In the present case N =1 and the outgoing state X depends on two spherical
angles (v, ), so it is convenient to differentiate ox with respect to the space
angle element df2=sin ¥ dildp. The rate of the scattering events to the direction
around (v, ¢) measured by a detector of front area S placed at distance r from
the target would be Ry, = N jin% g—g(ﬁ,w). The differential cross section

979, ) can be determined from the above ansatz wavefunction:

Incoming flux: Outgoing flux in direction (¢, ¢) & distance r:
Z hk = Z w(00)° hk =
Jin = 37 Nz ]out(raﬂa (;0) - Mﬂnr ,.;;6
__ outgoing flux to space angle d2 around (%,0) __ |Jout (r0,0)| T o 2
= d0'<19, 90) - incoming flux - |jm‘ - |fk<19’ 90)‘ ds2

= differential cross section for elastic scattering: || (43) L (0, 0)=|fi(9, ©)|?

» Transformation to the center-of-mass coordinates

We need to adapt the above-outlined procedure to the cases when the target
particle is not fixed in space (does not have infinite mass). Elastic scattering
of two finite-mass particles represents a genuine two-body problem. The
familiar way of solving this problem proceeds via separating the relative target-
projectile degree of freedom from that related the system’s center of mass:



2 particles with masses (%;) Position & momentum operators (?) & (@1)

Transformation to new coordinates & momenta:

5 M o My, & 5 L4
Te M1+M2£E1 + a5 %2 o| =P + D2 center of mass
. S My S5 My 5 ;

i — ik = 4 Pr = a5 — wraghe || relative

Commutators: [Zei, Pej| = [Zri, Prj] = h0ij,  [Tei, Prj] = [Tvis Dej] = 0

= corresponding Poisson brackets = the transformation is canonical

Transformation of the Hamiltonian:

A 2, 2 2, 2 5 2 2,2
Kinetic energy of both particles: |T"= Ji-+ 2%2 = 2(1»1];12»12) +
T 2N+ M,
Define reduced mass: | M = ﬁ 7 g
1+ Mo ;; — Ir
. . — — . . o ﬁc ﬁr JaR
Potential depending on 1 —7» = Hamiltonian || H = + + V(x,
p g 14 2 WMt | 2M ( 1)
Ty

This represents the separation of center-of-mass and relative motions. Solution
of the Schrodinger eq. with H,. is a plane wave in center-of-mass coordinates.
We need to solve the equation with H, in relative coordinates. This represents

just the | M — M| change with respect to the fixed-potential problem.
» Transformation of scattering angles & cross section

Once the two-body problem is solved in the the center-of-mass (CM) system (as
described above), one has to return back to the laboratory (LAB) system, in
which the scattering angles and cross sections are measured.

Notation: particle 1 =projectile, particle 2 = target
Uy, Ua, P1, P2, U, = velocities & momenta & scattering angles in LAB
vct, Uce, Pci, Poe, Yo, o = velocities & momenta & scattering angles in ¢M

Center-of-mass Speed in LAB: / CM \
= M,
U= 350 T +M2 N0, 2
= constant (along z)
por=M (01— 0)=M(01—t)=+pc=p;  Peo=Ms(Uo—W)=M(Us—01)=—pc=—Pp;

It is obvious that and we can set ¢ =0

= pisind = pesinde ppcost — Myu = pe cos V¢

p1 sind

pc sin Yo
p1 cos¥—Myu

m transformation ¢ <> ’19(]

= |tanv = tandc =
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Outgoing fluxes in both LAB & CM systems must be the same:
dS2y, = sin ¥dddy

do i do _ (do dQ¢
(d_Q)LdQL = (dQ) dQC = (d_Q)L - (d_Q)Cﬁ dQC:SinﬁCdﬁcdSOC
do sindg dic .
(m) (0, ¢) = ( ) (Yo, c) 5 58 relation between LAB & CM
. ~— differential cross sections

P d p1 sin ¥
pl—Mlu dvy arctan p1cosI—Mju

From now on we will work in CM, skipping the indices “C” and “R”.
» Scattering of indistinguishable particles

Quantum indistinguishability of identical particles has a substantial effect on
the cross section of elastic scattering. Depending on whether the scattered
particles are identical bosons or fermions, the asymptotic wavefunction in cm
D(T) o< e+ (0, go)— must be symmetrized or antisymmetrized with respect

to the particle exchange.
Exchange of particles in cMm: 1 : 2
[ ]

=T ° )
@ = Tt

Symmetrized wavefunction (for example 3He +3He scattering):
Y(E) oc [e% 4+ e *] + [fr(d, ) + fu(m—0, m+p)] <

'Lkr

Cross section:

(42)" = | fu(®, 0) 2+ | fi(m—0, m40) P+ 2Re[fi (9, 0) f (70, mhp)] }

comes from the normalization of the incoming flux.

where %

The same expression applies for 2 fermions in antisymmetric spin state
(for example e + e in spin singlet).

Antisymmetrized wavefunction (for example e + e in spin triplet):

(I o [e7 — e ] 4 [ fr(D, ) — fr(m—9, m4+9)] <

'Lk7

Cross section:

(48)x = 2 {110, @)1+ fi(m—9, m4) " = 2Rel fi (9, ) fi (=0, m+0)] }

Example: unpolarized e + e scattering

Probabilities for finding spin singlet & triplet states are 3 &: =
do _ 1 (d
() =10k +1(R), =

2{\fk; )P+ [ fo(m =0, m+0) P — Re[fu(9, @) fi (m =9, m+)] }

<« Historical remark
1926: M. Born applies QM to scattering processes (probabilistic interpretation)
1930: N. Mott describes the effects of indistinguishability in Coulomb scattering
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B General formalism: Lippmann-Schwinger equation

We now turn to a rigorous theory of scattering processes. It is based on the
so-called Lippmann-Schwinger equation, which transforms general quantum
scattering problems— genuinely time dependent—to a stationary form, and
moreover allows for a perturbative expansion of its solutions.

» Full & free Hamiltonians and their evolution & Green operators

The full Hamiltonian of the system is supposed to have the form H=Hy+V

where ]:[0 represents the free Hamiltonian of the particles involved in the scat-
tering process and V' is their mutual interaction.

Oolt) = e it G (E) =
O(t) = e i GH(E) =

free evolution & Green operators
E- ng:

o H - full evolution & Green operators

Here, the energy representation of retarded and advanced Green operators are

obtained as follows: G*(t.0)
Nt _ (i Ht + (E+ie)t r_(_i e (H-E ze)t:|
GH(B) = (—7) lim f O(t)e” at' = () lim [__M =
_ 1
g (t,0 ))[0_61—1}(%‘ “h H E— “] e—1>r(§}|—E H+26 — E—H+ie

G- (E) = (=%) i T e T (B gyt — (45) Qi[RI 0
( )_ (_E) 6_1}(%_7{0_ (—t) h t —( ;—1) Ei)r& [;(FIEHE)]OO

- ( h) [51_1}(5_ —*(HlE-‘rZE) - O} - Fl_lgi_ E— I%I i€ = E—I%I—z'e

Note that the fraction é = O ! means inversion. The infinitesimal quantity
e>0 is used to make the above integrals converging. Due to the +ie term, the
expressions for G*(E) do not diverge at states |¥) satisfying H|¥) = E|¥).
At last we prepare for later use the following identities:

Ut )(—i’H)W )00 >(+%f10)00<— )

A

U(+t)Up(—t) = fdt,[ Oo(—t)]dt =1 — 1

U(+t"\VU(—t)dt!

O (—t)Up(+

t A~ A~ . A~ ~ ~
+ [LU(—t)O(+)|dt =T + L [U(—t)VU(+t)dt!
0 N ~~ -/
( % )U() t/ +U )(*%H()) Uo(t/)

> Transformatlon tot=20

We consider a scattering process in which the initial state |¥(—o0)) of the par-
ticles involved is prepared at time ¢t — —oo and evolves to a final state |¥(400))
at t — +o00. A quantum measurement of scattering products may identify the
final state with a plethora of other states |¥/(400)). The task is to determine
the amplitudes (¥'(+00)|¥(400)), which characterize the corresponding tran-
sitions from |¥(—o00)) to |[¥'(+00)). From unitarity of quantum evolution we
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get (U'(400)|¥(+00)) = (V'(t)|¥(t)), so the %

transition amplitudes can be obtained [P (6))
from the corresponding evolvin

ey & v
states at any finite time ¢. —_

Il £=0 11
We assume that the interaction n— |l

between the particles takes place e 12111 [¥'(6)
only in a limited time domain near /

t=0, so it is quite natural to shift _ﬁ

all the evolving states to t=0.

To avoid distortions of the total wavefunctions by the interaction potentials,
we perform the shift using the free evolution operator: |W(=1))

R /A_/%
incoming state |U(—oc)) —— [Uy) = lim Uo(+1) U(—1)[¥(0))
U

outgoing state |V'(+00)) — |Wou) = lgn Un(—t) U(+1)|¥'(0))

From this and from the above prepared relations we obtain: V(+4))
W(0)) = lim U+ U(—)| ) = [I =L [ U)WV Uo(—t)dt'] | Win)
(0)) = lim U(=)0o(+)|[Toue) = [I+ L [XTU(—t"\VUo(+")dt'] | Wour)

» Expansion of incoming & outgoing states to “plane waves”

We now use the eigenbasis {|®g,,) } of the free Hamiltonian: H, Pp,) = E|Pp,)
In case of a potential scattering, these states would be plane waves, with n de-
noting a degeneracy index which determines the direction of wave propagation.
In the 1D space (e.g., in tunneling problems) the index takes only 2 discrete
values n==1, while in 2D & 3D scattering problems it is a continuous quantity
expressing a unit vector 7.

The expansion the incoming & outgoing states yields

B, = /dEZaEnrchn> W) = /dEZa’Enrchn>

where g, o/, = coefficients and )" possibly means an integral [dri.
From the above-derived expressions we obtain: Wk, )

wo) = [ 183 o5, ’[f -4 U<+t'>vz70<—t'>dt’] 05
10'(0)) = / dE " aly, [f +i /O N U(—t’)\A/UO(%—t’)dt’} |<1>En>l

Wgn)

= (V0)|w(0 ﬂdEdE’ZozE, (Y Y,




217

» Equations for |¥3 )
For the incoming & outgoing states identified with plane waves |®g,) & [P ),
respectively, the above relation can be diagrammatically expressed in the form:

amplitude of

incoming state t=0 state outgoing state
)=l — V) =1 tromation "
V) [P} =|%ou)
" < E’ ’\I}En>
The vectors |[¥F; ) can be further evaluated as:
V) Vi)
Sl e e o) = [T e i e,
0

= [I—hm %f _%(ﬁ_E_“)tldt’}‘A/VI)ETJ [I—l—hm feJr (H=E+i)t gy }V|(I>E,L>

e—0+ =04 I
|:[+el—l>n}i- E— H+z } ’®En> |: —0+ Efﬁfié } |(I)E77>
Skipping the “lim” symbol (see the definition of the Green operator) we get:
GE(E) Li . .
N ippmann-Schwinger equation
oty = |7+ 1 | B ) in explicit form (LSE)
o E—H+ie !

In principle, this formula explicitly determines the desired states |V En) for
each plane wave |®p,). However, to evaluate the full Green operators G=(F)
for a general Hamiltonian H = H0+V is usually a difficult task. We would like
to use the free Green operators G (E) associated with H, only. Manipulating
with the LSE equation |W% )= [[—i—m \7] |®p,) we obtain:

(E—Hy—V +ie)|VE V=[E—Hy—V +ie+V]|®p,)
(E—Hyxie)|UE,)) = [E—Hytie]|®p,)+V|V3,)

At
,_Gozl(E; 'Lippma.n.n-Schwi(nger equation
Uty = [Bg,) + - ale: in implicit form (LSI)
k) = 00 + e V)

This formula indeed makes use of the free Green operators, but the price we
pay for this is that the searched solution |U%, ) occurs also on the right-hand
side of the equation, so it is determined only implicitly. Fortunately, as shown
below, the solution can be written in an iterative form.

We may consider both the LSE & LSI equations as modified forms of the
Schrodinger equation, vyhich are however tailored directly to the scattering
problem. Indeed, using Ho|®p,) = E|®p,) in the equation above the LSI yields:
(B—Hyxie)|[U,) = [E—Biel|0p,) + VIE) = (Ho+ V)05, = E[U5,)
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= |U%,) is a solution of the stationary Schrodinger equation with the full

Hamiltonian H which has the property: ||[WE ) — |®p,) for V — 0

» Iterative solution of the LSI

The LSI can apparently be expanded in an iterative way. If we repeatedly
substitute |®p, )+ G (E)V|¥E ) for |[UE ) on the right-hand side, we obtain:

Wt ) = [[+GEE)W +GE(E)WGE(E)W +------ 1@ 2n)

This is apparently a series in powers of V, so if the interaction is small com-
pared to the free Hamiltonian, the series can be understood as a perturbative
expansion of the solution |¥F, ).

This can be equivalently expressed
through the T-operator defined by:

The LSI in terms of this operator reads as: |03 )=[I+ G (E)T*(E)]|®g,).

Multiplying this formula by V from left we obtain:
TH(E)|®p,) =[V+VGE(E)TH(E)]|®g,) = TH(E)=V+VGi(E)T*(E)

T4(E)|®gn) = V| V5,)

=  |TEE) =V +VGEE)W + VEEEWGEE)W +------

» S-matrix

The scattering matrix S (so-called S-matrix, cf.Sec. 11) expresses probability
amplitudes of transitions |®g,) — |Ppr,y) that occur in the scattering process.
We already know that this amplitude is equal to (¥%, .|V, ), so we can write:

(Perm|S|Pen) = (Vg | Vi)
Using LSE & LSI consecutively on both sides of the scalar product we derive:

<\IJE’ |\IjEn> <¢E/ |I+V H+ E’\IJE71> <(I)E/n/| \I]E > <¢E/ |V|\I[En>

LSE... 1 LSI...
E—E'+ie

H‘—\
- <CI)E,”'|(I)EH> + <(I)E’n | E— H +ie V‘ En> <®E'n ’V’\I] >W
— <¢E/TL/|®E7L> —+ (E—El”—‘rie + o E+Ze) <(DE/n/|V|\IfEn>

0(E—E")6,,, 9 t 0
—2irl W

E—He

—2in6(E—E')

- (D |S|Pp,) = 8(E—E"bpy — 2im §(E—E') (® | VT,

From the T-operator expression we finally obtain:

<CI)E/n/|S|(I)En> = 5(E—El) X
[%, 2 (B |V VEE(E)V +VEE(E)WWCE(E) +- - |<1>En>]
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<« Historical remark

1937: J.A. Wheeler introduces the scattering matrix in nuclear processes
1943-4: W. Heisenberg elaborates a general scheme of the S-matrix theory
1950: B.A. Lippmann & J. Schwinger derive the LSE & LSI equations

B Application to elastic scattering

The above-developed theory based on the Lippmann-Schwinger equation and
its iterative solution will now be applied in the simplest setting of the elastic
scattering (no change of the target/projectile internal structure). We move
back from the S-matrix to the description using the differential cross section.

» Evaluation of LSI for elastic scattering by a potential V (&)
The general notation is transformed to the coordinate representation:

U3,) = %%t(f) and | |®g,) = ¢z(7)| with k = the initial wave vector

The LSIT equation: ¢§(f)=¢g<f)+/<f|m| z") ﬁ'|V\¢+>
(a) (f’|‘7|ng) = V(Z") ¢! (Z') local potential
(0) (Z | g2 = I {@l9") < |mw> @) dp'dp” =

L +ho’ T 1 e
(2nh)2° pEm w2+7ﬁ65( —0") (271)3
hk)2 - : Y S Lo
E = (2/\/)1 2@:‘6 =¢ p'=hq polar coordmates of ¢ with 77, oc (¥—2")

) o)
+0(EF-T")

o 1 e,LIL M zq(r z') - QM 1q\z #'| cos® 2
~ (27h)3J E— 55 p"?+ihe dp'= h2(2m)? k2—q2+15 d fff k2 —q%+ie q Slnﬁd(pdﬁdq

oM &0 iqld—7"| cos 9| V=T 1 9 tiqld—3"|_ —iq|li—&’|
o _ ial#—#| cos - oiali—3'| _ ,—iq|T-7
— (27wh)? L({‘ |: iq|T—2" ]19:0 k27q2+i5q dq (27rﬁ i|7— a'c'/\ f q>—k>—ie qdq

Poles at ¢ = £Vk? +ic = + (k + z;—k) = use the residuum theorem

k
. IM 11 etiald—a'] d e—ialz—&| d e—0 gMieZ [#=&'|
= TR iE—7] 2 i 49— | gz 499 " TR I 7 — |
> PGS , h ™ :
~— ~— =(7|G§ (B)|Z”)
k| T2 k|lZ—z|
e —27i oTE k —=27i k
1 . =1 A - =
~ ) The free Green function (7|G{ (E)|Z') =G (Z,7)
. in x-representation satisfies the following equation:

(A + k2)GHE, T) = (% — T)
LSIT in x-representation:

4 - - eikld—z’ - - -
N\ () = () — 2}1_@%/ Ny (3 g (3 da
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» Asymptotic wavefunction for a finite-range potential

Now we show that for finite-range potentials the solutions @D*(x) of the above
LSI* equation automatically satlsﬁes the asymptotic condltlon for the elastic
scattering, @b}j( T) o kT 4 [0, )<, where (9, ¢) are spherical angles with

. To this end, assume V(&) = 0 for |Z| > R and consider z%r (%)

kl??‘l

respect to 17, =
for [2] > R 2 |&']:

- =
|Z—F'| = Vr2+r2—2rr' cos |X — X'l Y
~ T+d; Vr2+r2=2rr' cos a " 2'7
=r—r'cos
eikw*f/l ~ —ikr' cosa E””
=~ = ~¢ r
e} (oplVIv2)
= T L k’ )z
Fl=k — (2m) 3 o - .
|f| +(7 = 2M 1 —ik'-&! AN AN E=-1) o
: = E(‘”):%(x”l [ ¢ V(@) yp (@) dz"| —
scattering N —
. . . _3 —
direction LSI* equation (2m)72 fr(k')

= explicit expression of the scattering amplitude from the exact solution z/zg(f)

M&wE&@Fﬁ%W@/€%“VﬂWVU”= — A (Gl i)

» Born series

With the aid of the T-operator defined by |V[t) = T (E)|¢p) | with £ = (B2

and using the above-derived iterative expression

A+ % 1 T .
T ( ) Vv + VE H, +zhev + VE H0+LheVE—ﬁ0+ihev + )

we obtain the so-called Born series of the scattering amplitude:

fak') = M (6. |TH(E)|¢z) = lim 3 f (k)
N——

m—o00 =1
1 @)
Falf) == oulViog)
fQE(kl) = 47r M <¢k’|vE H0+zh77vl¢ >
fgk'(k/) = 47rh2/\/l <¢E |VE7HT)+z'h77VE H0+lﬁ77 |¢k>

Interpretation through
a sequence of free evolutions > / _/ —/\/

and point interactions hd ® ® Y




221
» Relation to non-stationary perturbation theory

We confine the system into a finite box of linear size L. A normalized plane
Ny

wave in the box is given by ]qz%;) = L% 7| with k = =ii, where 71 = (Zy)
2 z

satisfies the quantization condition n,,n,,n. =0,1,2,...

The |gz~5,;) — |gz~5,;,> transition rate can be obtained from the Fermi golden rule,
as well as from the corresponding differential cross section:

Riiw = 2% |<¢~5;;/W|¢~5E>|2 of(E) = |Jln‘ (dQ) (k ) dS
oo 2
(@) |Gl VISP = 3o | FF9#'V (@) di
LYk2 dk do 3 : 2
®) (E) = - % = (£)" 40 with B= G

(C) |]1n| = L3M
2
do 1 2 — Vn
> () (F) = (=) = 1O
Therefore, we see that the nonstationary perturbation theory in the first order
yields the same expression as the first-order Born approximation.

Z(Efg’)f’v(f/) Az’

» Convergence criteria

The Born series for scattering amplitude converges for finite-range potentials.
For infinite-range potentials, the series may converge if the potential decreases
“fast enough”. For a given potential V (Z) there exists a function of energy
Amax(E) (convergence radius) such that the Born series of a scaled potential
VA(Z) = AV (Z) converges for A < A\ax(E).

» First Born approximation for spherically symmetric potentials

For potentials depending just on r = |Z| the integration in each term of the
Born series is reduced. For the first term, in particular, we proceed as follows:

fél)@/) _ 47;;”‘ 2;)3 fei(E—E/)' V(|Z'|)dZ’  Fourier transform of V'

transferred momentum ||Ag = h(k'—k)

q = |k'—k| = VE? + k2 = 2K’k cos U
= /2k*(1 — cos)) = 2ksin ¥

We introduce a local coordinate system (2',y',2") with 2’ along ¢ and then

spherical coordinates (', ¢, ¢'):
oo 2w

JOEY = =M [ [ [ e sty (o) o sin ' def e’ dr’ =
' 000



™

M
h2k sin

7Lqr cos 0’

9

M
2

3 sm 2kr sin £

dr' = k"=

o0
'V (r
PR
2

0

V') f}i ( ) dr’

=],

——

72siuqr’
We see that the scattering amplitude depends only on angle ¥ (not on ¢),
which remains valid for all terms of the Born series. This can be seen directly

from the axial symmetry of the problem with an isotropic potential around the

St

incoming-particle direction.

» Yukawa scattering

e
Scattering by Yukawa potential ||V (r) = K with a > 0
r
Vr KM | :
k") e~ sin (2kr’ sin &) dr’
fk ( g2 l{:smg Of _(,_)/
2KM 1 (—a+ig)r’ 3,0 | (—a—ig)r’ 2KM 1
2 2iq{ / ¢ dr / ¢ dT] W o ak? sin? 2
0 0
1

ag

= aQ

(7

)

(1)
k

(9) =

M)’

. 2
[aQ + 4k2 sin® g}

The @ — 0 limit = Rutherford formula:

This formula can be obtained classically (it does not contain #).

(

do

dQ)

M qd
2 47T6[)

2
1
) psin?

7
2
However,

), ) = (

Coulomb scattering cannot be described by the spherical-wave asymptotics
used here, as this asymptotics is applicable only for finite-range or quickly

decreasing potentials (cf. Sec. 13).

« Historical remark

1911: E. Rutherford derives classically the cross-section formula for Coulomb scat-
tering to describe the 1909 experiment by H. Geiger & E. Marsden

1926: M. Born describes the scattering processes within QM; he derives explicitly
the first approximation of a general scattering amplitude

1935: H. Yukawa introduces the potential for meson-mediated interaction of nucle-
ons; this potential is now used to describe screened Coulomb interactions

13. SCATTERING: PARTIAL WAVES

We turn now to another method of analyzing scattering processes. It relies on the
assumption of spherical symmetry of all terms of the total Hamiltonian. This
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allows one to express the cross section as a series of contributions associated with
orbital angular momentum quantum numbers [ = 0,1,2,... The series is formally
infinite, but for finite-range potentials and a finite projectile energy E it is effectively
terminated above a certain maximal value | =l,.x(E) corresponding to the maximal
orbital angular momentum for which the projectile passes through the interaction
region. So we again deal with a kind of expansion, but of a completely different
nature than the above perturbative expansion.

B Elastic scattering via partial waves

The basic idea of the method is to express the scattered particle wavefunction
in terms of states with different conserved values (for spherically symmetric
potentials) of the orbital angular momentum.

» Expansion of the asymptotic wavefunction ()~ 5 1) g [ei’%l- f, k(ﬁ)%}
m

for a general isotropic potential V (r) in the orbital-momentum basis:

“l{:lm) X Ry (1)Yim (9, ) ‘ with [, m = conserved quantum numbers.

Since z is associated with the direction of the linear momentum of the incoming

particle, the angular-momentum projection to z is 0 = only compo-
nents Yy (¥, p) o Py(cos?) [= Py(cos?)] contribute to the expansion:

(a) Expansion of the incoming plane wave into spherical waves:

e = 20 + 1)i'j;(kr) Py(cos ¥) ~ 9l + 1)€Y =" b (o5 9
2ikr
1=0 1=0

where we used asymptotics of Bessel functions for r > % = % = %:
. sin( kr—13 oTi(kr=1%) _ —i(kr—1%)
jl(kr) ~ (kr ) = 22ikr :
(b) Expansion of scattering amplitude: || fz(9) = Z(2l+1)Fl(k’)Pl(cos V)
This is a general expansion of an arbi- =0

trary function of angle 1, the unknown
coefficients Fj(k) expressing the individual partial-wave amplitudes

The entire asymptotic wavefunction then reads as:

: 00 . . etikr e i(kr—lm)
Vp(T) = =y Z(Ql + 1)ﬂ{ [1+ 2ikFy (k)] m— . }Pl(cos )
=0 Si(k)

» S-matrix element

Parameter S;(k) in the above expression is the diagonal element of the S-matrix
in the basis |+ klm) of outgoing spherical waves with given [, k. We derive
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a relation of Sj(k) to the S-matrix in the plane-wave basis. From Sec.12 we
know: <(I)E/7L’|S|(I)En> = 5(E—E,) [(Sm,/ — 2i7T <(I)E/7,/|T+( )|(I)En>]

= (dplSIey) = (k=) — 2im it 6(k—k') (6T (E)loy)

"k Sy (k)—1 27 o
cos) = Lk S (204+1) 2By (cos ) ()

L B
|¢;;> (k=K + g 0(k—K) fr(K) =
d(k— k:’)zl:(Ql—i—l)Pl(cosﬁ) L o(k—k') > (21+1)Si(k) Pi(cos 9)

)¢ + e l
L 6(k—k')5(cos ¥—1) 25(cos 1) < completeness of Legendre polyns.

2
T T T sy 6—k)6(cos0—1)k2sin d dk i dp = 1 2 (21 Fi(x)Aly) = 256(z —y)
000 !

expansion of S-matrix
to Lagendre polynomials

(DplS10p) = 6(k—K) 7= > _ (21+1)Si(k)P(cos D)

l

» Equivalent parametrizations of the scattering amplitude

The continuity equation = incoming flux = outgoing flux (thls is sometlmes
called the unitarity condition) = coefficients for each [ at ©— and ¢ ™ differ

just by a phase = |[S;(k)| =1

1+ 2ikFi(k) = Si(k) = X% o Fi(k) =

Sl(k) —1 _ eifsl(k')Sin 51(1{7)
2k k

0;(k) = a relative phase shift of the i

outgoing partial wave [
The above relations define alternative ’
(equivalent) parametrizations of the

scattering amplitude & elastic cross section
via quantities Fj(k) <— Sj(k) <— 0;(k)
The scattering amplitude: -2 0 +1

—>

>~ I

Z (21+1) e ®) sin (k) Py(cos 0)
1=0

Z (2041)[Si(k)—1]P(cos ) =

» Differential cross section of elastic scattering = |f;.()[?
(92), () = S (2+1)(21+1)Fy(k)F; (k) P, (cos¥) Pr(cos V)
L

Z(Zl+1)(2l'+ D)[Si(k)=1][S; (k)= 1] Pi(cos ) Pr(cos )
E(Ql+ 1) (204 1) sin &; (k) sin 0y (k) e *) =8 R P, (cos ) Py (cos 1)
Ll

L

T 4k?

1
12
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» Integral cross section of elastic scattering

Integrating the differential cross section over the full space angle we obtain the
integral cross section:

2T 21+1‘;ll’
= [ [ 1fx(9)]*sin ¥ dp dv) g o
O 5U(k) = 21 SO (204-1) (20+ 1) Fy(k /Pl (cos ) Py(cos ) sin ) do)
L 0 d(cos )
e 47
ol(k) =4n zz:o:(%ﬂ |Fi(k :k—z:;21+1 Ee 1|2_k—§21+1 ) sin®6; (k)

o (k) :ialel(k‘) ol (k)=0 for [ Fj(k)=0 & sind(k)=0 & S)(k)=1]

» Classical calculation via the impact factor

The above expressions of the integral cross sections can be interpreted in a clas-
sical language, making use of the so-called impact factor b defined as the trans-
verse projectile-target distance for z = —o0

Orbital momentum L =b

p
—~
NZIESY) —
= for given [ we have: b(k) =~ ZH .7

Estimated cross section of (™ part. wave:

In the quantum calculation we obtained: 6[0’4]

I a2 ‘
o7 (k) = 7= (2041) 4sin” 0;(k)

The quantum factor 4 sin”® §;(k) expresses constructive/destructive interference

effects in each term o¢!(k)

» Estimate of maximal angular momentum

The classical impact-factor considerations make it possible to estimate the up-
per value of [ where the cross-section series can be cut off. This value is obtained
from the maximal angular momentum for which the particle still hits the finite
spatial region of nonzero potential. For a potential satisfying V' (r)=0 for r > R

we expect ||af (k) & 0 for > lnax(k) ~ kR

In this way, all infinite sums become effectively finite sums: =0 =0

» Determination of phase shifts from the actual solution

If we happen to know the actual unbound solution of the Schrédinger equation
for the given potential (with the given energy in the continuous spectrum),
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we can directly calculate the required phase shifts & amplitudes of individual
partial waves:

Radial Schrodinger equation Puplr) _ [2h_/\2/1 Vi(r)+ Z(ZTLQU] wp (1) + Eug(r) = 0

dr?

Solution | Ry () = “2 | outside the range of the potential (for 7>R):

r

= a ji(kr) + byny(kr) = ¢ b (kr) + ¢ by (kr)

ji(kr), my(kr) = Bessel, Neumann | h; (kr) = j;(kr) & in;(kr) = Hankel
functions with asymptotics: functions with asymptotics:
Ji(kr) ~ & sin (kr—1%)
= L cos [kr—(1+1)%] hf(kr) =~ L gtilkr—(+D3]
ny(kr) = —% cos (kr—1%) hy (kr) =~ kl o~ i[kr—(+1)3]
= Lsin [kr—(1+1)7]

et for V(r)=0:

The general form of r>R wavefunction yielding 1y ()= )

RklA(r)
(20+1)d [l*hl*(kr)%—cf T (k )} ) (cos 1)

~ 5 )i Z(Ql—i—l)ik [ - +;kr —c e lw)} Py(cos?)
)% 1=0

Mg

Yi(T) =

3
(2“)2 1=0

This is compared with the required asymptotics:

Ur(@) = oLy l;)(zz“)ﬁ [em(m et e*“jjﬂ Py(cos )

= 1 > R solution of radial Schrodinger eq. expressed in terms of §;(k):

o =0 =1 = Ry(r) = S (k) ing (k)] L [ (k) — g (k)]

Ri(r) = ik )[cos 0(k) ji(kr) — sin (k) nl(k:r)]

70

For kr > | we get: Ry (r) = %[COS 0u(k) sin(kr—15)—sin 6;(k) cos(kr—1%)] =

i1 (k) r—00

So d;(k) is really a phase shift of the ——sin(kr—1Z4+6(k)) ~ Ru(r)
asymptotic partial wave with respect
to the V =0 solution, which has &;(k) =0 VI because n;(kr) is not in e**.
Conclusion: If one writes the actual asymptotic solution of the radial Schrédin-
ger equation in the above form (using Bessel & Neumann or Hankel functions),
the phase shifts ¢;(k) for all partial waves are read out from that expression.

» Phase shifts for a sharp finite-range potential
The above-described general method yields explicit results for potentials that

vanish identically outside the range R: V) #0 forr <R (inside)
=0 forr > R (outside)

We require continuous connection of “inside-outside” logarithmic derivative
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Ry, (r
Bru(R) = dlanl( >| RZR—R’;ET% . Vi=012...
B R) =k R ER G (bR) —Bu(R) ji (k)

& |tan (k)=

cos 0y )]T (kR)—sin ¢;(k) ny(kR)

kR 9 (kR)— B (R) ni(kR)

Calculating the values of the logarithmic derivative x;(R) from the inside so-
lution, we can determine all phase shifts §;(k) = solve the scattering problem.
» Hard-sphere scattering

oo forr <R
V(T)_{O forr > R

Rkl(R) = ei5z(k) |:COS (5[(/{}) ]l(k‘R) — sin 51( ) nl(kRﬂ =0 = |tan 5l<k): ]l((llig))
ny
(=0: ]U(k‘R) 512§R7 no(k‘R>:_% ‘50 k’) _kR‘

(a) High-energy case (k:R > 1)

| <kR = ji(kR)~ Z5sin(kR—15), m(kR)~ —5cos(kR — %)
= tand;(k) = —tan (kR — l—) = the ™ and ({+1)™ phase shifts differ by %
= their contrib. to 0 is 35 [(20+1) sin® 6;(k)+ (20+3) cos® (k)| ~ 5(21+2)

= each [-term of the series contributes by ~ %QZTJFQ

I>kR = G(kR)~ G2y m(kR) ~ -2

= tand;(k) ~ —% = tand;q(k) ~ @tan 01(k) = decrease with [
Assume %(ki «!

ol(k) ~ i—glmax(QH—l) sin” 0 (k) ~ 13 Z 242~ 2R & o 2% TR?

1=0
(b) Low-energy case (kR < 1)
Only the (=0 term works: (k) = —kR ~ sin dy(k)

o°l(k) ~ 15 sin’ 6y (k) ~ A x TR?

In no case the classical geometrical cross section |oc.s = 7R?| was obtained.

The reason for low energy is a quantum interference phenomenon, but why is
it so for high energy, when one would expect the classical behavior?

» Shadow scattering

The answer to the above question concerning the geometric cross section in
high-E case: For 0 =0 the wavefunction would be 1 () oce’**, which is nonzero
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everywhere, including the region behind the sphere, where we classically expect
a shadow (zero probability of finding the particle). Just to generate (%) =
in the shadow region behind the sphere, the cross section must be o~ 7 R?.
The reflected part of ¥(#) produces another contribution o™~ 7 R2.
Together: ¢ = g*h2d 4 grefl &~ 27 R?

Reflected & shadow parts identified in:

fr(9) = Z_ZO(QZJrl) U1 py(cos ) =

ffCﬂ(ﬁ)

ﬂ (k) fshad (19)

A
e ™\ 7~ Y

:Lkz 2l+1 2151( )P](COS'& —%Z2l—|—1 Pl(COSﬂ)
1—=0 =0

o™ (k) = [[ | frft(v |2 sin Vdpdd) =

4k2 121;<2l+1>(2l/+1)6i[5l(k)_5l/ ]2%+1‘5ll’ - lz%<2l+1) ~ mR?
O_Shad J"J" | shad |2 sin 19d<pd19— ...... o ~ 1R?
O.interf 2R€ reﬂ 9 shadx* N sin ’19d(pd19: ) :2_7; max 2l+1 cos 26[ .
k %
=0

» Coulomb scattering

Coulomb potential is a long-range one, hence the asymtotic solution of the
Schrodinger equation cannot be required in the above-applied familiar form.
A special treatment is needed. Here we just very briefly outline the method
of solution without performing all calculations (which are rather sophisticated).

We consider the repulsive Coulomb potential V(r)=+ qu i with { qq/:éee}:
A+ -G @ =0 e [A+ k-2 @ =0
_ qqM e? oM / 2 29k l(+1) .
= dmegh?k 47reo(hc) hk 27 |:d7“2 +k r 2 i| ukl(r) =0

ot (1)
The Schrodinger equation is solved analytically in terms of hypergeometric
functions. This yields the following asymptotic solution:

wk(—') z[k‘z yInk(r—z)] +f( ) .
X 317 z(Zl + 1) P(cos 1)

r—00 'L(krf'y In 2kr)

l_|

2151( ) i(kr— 'yln2kr) 7i(kT7'yln2k'r7l7r)i|
T T

x =« po My g hk My 1) g T2
Jin X =7y T(rfz)nx M T(T*Z)ny + < 7’> Ny —
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e Fe? ( nk By 1\ - r—oo 9 hk =
Jout X % &2 ny — |fk(79) /\/Ilrz Ny
Differential cross section:

(48); @) = fr()* =

So the Rutherford formula is reproduced. Recall that this formula can be
obtained from classical mechanics and that we have “derived” it (in the 1**Born
approx.) from the Yukawa scattering (Sec.12). The fact that the correct cal-
culation with hypergeometric functions yields the same result can be seen as
a lucky coincidence. The situation is more difficult in case of a superposition
of the Coulomb potential with an additional (finite-range) potential (as, e.g.,in
elastic scattering of nuclei). Then the above modified asymptotics must be
used, in which the phase shifts §;(k) are to be determined numerically.

00 2
%Z(Ql + 1)€i51(k) sin 0;(k)Py(cos¥)| = a2ZZ (%)2 +z

16 sin® &

B Inclusion of inelastic scattering

The method of partial waves makes it easy to include into the description the
presence of inelastic scattering. More precisely, the inelastic scattering is in-
cluded only through its influence on elastic scattering, the method providing
nothing more but just a convenient phenomenological parametrization. A mi-
croscopic description requires to keep under control all the segments of the
full Hilbert space where products of various inelastic channels appear, which is
a hard problem. Nevertheless, even with these limitations, the parametrization
provided by the partial-wave method has rather important consequences.
» Elastic scattering in presence of inelastic channels
The S-matrix element is no more a complex unity but satisfies: |S;(k)| € [0, 1]:
_ Si(k)-1

Fi(k) = =550~

— %{m(k) sin 26;(k) + i [L—m (k) cos 25;(1{)]}

Si(k) = mi(k) e ® || =
(k) =m(k)e

€[0,1]

The scattering amplitude:  fi(9) = > (2{+1)Fj(k)P/(cos 9)
1=0

The integral cross section of elastic scattering:

ol (k) :% > (2041 |S;(/<;)—1|2:% > (20+1) [1+n,2(k)—2m(k) cos 25;(@]
=0 =0

» Integral cross section of inelastic processes

The integral inelastic cross section can be calculated through the balance of the

overall incoming & outgoing flows derived from the asymptotic wavefunction:
— > ikr —i(kr—lm)

V(@) ~ —r S (204+1) L {Sz(k> grihr _ gt } Py(cos )

3
(271') 2 1=0
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The radial flow at point #: (7)) = + Re (wi(f) [—ih% — wg(f)> n, =
k —_——

pr rad. momentum

M (2717)3 7,y (2041)(20'+1) Py(cos ¥) Py (cos ) x
N ke P o
XRe%@]f{Sl,*(k)erk etk l)}%{S[(k)e+k Lo (k l)}

T r T

Lo, > (20+1)(20'+1) Py(cos V) Py(cos 19)4;7,2 [|Sl(k)|2 — 1}
L

The integral flow through a sphere with radius r (total rate of scattering events):

JAK) = [ j(r, 9, 0)r? sin Vdpdd = —ﬁ%l_o(mﬂ) [1-]S(k)[2] <0

The J(k) < 0 value represents the part of the incoming flow which is not
compensated by the outgoing flow because of inelastic processes = the integral
cross section of inelastic process is:

inel _ yel g ™ -
O.incl(k) — 7§m(lil)€) — ‘1] (h'lz) = O-lnfll(k,) — E;(Zl—i_l) |:1_|Sl(k)|2

@m? M (k)

Total cross section

P (k) = 0*(k) + 0 (k) = & 2 (20+1) {517 + [1 - (SR}

do not allow one to calculate the
differential cross section of inelastic
processes. For this task, the n;(k) parameters alone are not sufficient.

Note that the above considerations tot _ 27
ot (k) = ﬁ;(ZH—l)[l — Re Sy(k) |

n (k) cos 26; (k)

» Relation between elastic and inelastic cross sections

_ oo _ g '
Let us define variables ni(k) = %1(12([;)1) i (k) € [0,1]

w(k) = <6y = L4+n?(k)—2m(k) cos 20,(k) € [0,4]

k2

= |y(k) =2 —x1(k) — 2+/1 — 21(k) cos 20;(k)

Considering —1 < cos 2§;(k) < +1 we obtain:
2—.Tl(]€)—2 1—1,’[(]{})
< yi(k) <

2—1’1(]€)+2\/ 1—1'1(]{)
This represents an important constraint
upon the possible values of elastic & inelastic
integral cross sections for a given partial wave.
In particular, we see that oi"(k) >0 implies
otl(k)>0. Even in case of the total absorption, X
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n (k) =0, when oi"l(k) is at its maximum, we obtain o¢!(k)=o"l(k), which is
a consequence of the shadow scattering (see above).

» Optical theorem

Statement: Imaginary part of the elastic forward scattering amplitude

x total cross section including all processes: ||Im f{'(9=0) = £ (k)

Proof for isotropic potentials:

Im fH(9=0) = 12(21+1) Im Fy(k) P, ( ) = 5 Z(2z+1) [1—mi(k) cos 20;(k)]
=0 N =0 VT
— ﬁo.tot(k,) 5= (1= (k) cos 26, (k)] ReS;(k)

This relation is valid in the most general case, i.e., also for anisotropic poten-
tials (beyond the method of partial waves). For elastic scattering by a general
potential, it can be proven from the Lippmann-Schwinger equation that:

2 ~ 7T2 2
5 (g P E) o= & (54)° e [T B ol (k=5 Y awasy

J/

Imf,;(l;) Uel(k)

Elementary interpretation of the optical theorem for elastic scattering: The

asymptotic wavefunction vy, () = e** + fﬂﬁ)% is approximated for
o202
using r=+/22+y? +22 = 2+ 55 +y = |Yu(Z)* = 1+ 2 Re[fi(9)e™* 2 ]

Integration over a small distant rectangle Am X Ay at z=const. > Ax, Ay:

Ay
I= [[ [Yn(D)|Pdedy =~ AzAy+2Refi(0 ) e 2zda: j eh=d
AxxAy 5 P
;r,_i dtto —Imf%(0)

y 2m (=) . k
~ AzAy+7 Relifi.(0)]
0 Z .Ay R =j(k)I = the actual rate of par-
\ . Ax ticles passing through the rectangle

Ro=jm(k)AxAy = the free rate
Ro— R = jin(k)o'(k) = optical theorem o"(k) = 2ZIm f;,(0)

An intuitive analogue of the optical theorem can be formulated within the
(non)stationary perturbation theory: The amplitude of the initial unperturbed
state in the final state is given —through the normalization condition — by the
summed admixtures of all other unperturbed states in the final state.

» High-energy scattering on a black sphere

S; =0 forl <ly. full absorption

We assume .
S; =1 forl > [ no scattering

with [ < kR > 1
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Integral cross sections:

o) = % §(21+1)[1—|sly2] - lz (2041) = & (lpax+1)> & TR?

lm

o' (k) = —22(2z+1)[1 ReS)| = (20+1) = 2 (o +1)? ~ 27 R
=0 1,
o (k) = o' (k) — o™ (k) ~ mR? shadow scattering

B Low-energy & resonance scattering

We conclude this section by sketching two additional topics: The low-energy
scattering, which is a tool to determine basic properties of interaction, and
resonance scattering, which indicates the existence of metastable states. Both
these topic became much expanded in more advanced courses of QM.

» Low-energy limit of scattering amplitude

For k— 0, only the [ =0 partial wave is active, so in absence of inelastic scat-
tering there is just a single real parameter which determines the cross section:

; el _ 102
%:13(1]0 (k) = hg(l) 75 sin® dg (k)

a= IICirr(l) [—%} scattering length =
_)

0% (k—0) = 47a®

The visual meaning of the scattering length is derived from the wavefunction

form at » > R: sin b — goskr
. ~—~ ¢i%0
Ry g—o(r) = €0 [cos 6y (k) Go (k1) —sin 8o (k) o (kr)] = S sin [kr—+6y (k)]
~ “;0(” sinfk(r —a)|] = “’“r(r) [\ 1
2
= uk(r)|k_>0 x (r—a) forr>R
= the tangent at r= R crosses zero 4 g &) .
at r=a o >

The value of a indicates some basic properties of the potential, although the
information it gives is usually not unique:

0<a<R repulsive potential (convex — concave wf.)
a<S R strong repulsive potential(a = R for hard sphere)
—00 < a< 400 p <& < attractive potential
a<0 shallow attractive potential
R<a attractive potential with weakly bound state F < 0

» Isolated resonance

Essential insight into the scattering theory can be gained via a complex ex-
tension of the S-matrix. Mathematical properties of analytic functions in the
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complex plane can then be used to disclose some general physical features of
scattering processes. Here we assume elastic scattering on an isotropic po-
tential, for which all information is contained in a set of S-matrix elements
{Sl(k)}loio. These elements are now considered to be complex functions of the
complex momentum variable k& € C. On the real-k axis, all Sj(k) should be
smooth functions, but in the complex plane they can have some poles. Let us
look what happens if such a pole is located near the real axis. We assume:

 k— k| function satisfying |S)(k)|=1 for k € R with a simple pole

k— kg at k=kg given by %:Eo—z——ER

K

k
/—/OH —
kr = \/QMER - \/2MEO \/1 i5p; & \/2/\;112150 —t 8%1:5 for I'<Ey

For complex energy the evolution is not unitary. The survival probability of
a state |1r(0)) with E=ER € C exponentially decreases:

po(t) = [(UrO)wr(®)]? = [ FETE 2 2 ekt = (g (t)um() norm

This corresponds to a quasistationary state with the mean lifetime |7 =
for which the decay products go outside the initial Hilbert space H

=l

Only the outgoing wave is present at k = kg since Sj(kr) = 00 = scattering

. — +ikgr +ikgr . . .
wavefunction () o< & ~ “— e™"" has modulus increasing with r

4/4,2

Approximation of the cross section for F— Fy < Fjy: (k—kg)Z+2
! 2 Fn—hi | 2ir_|°
ol (k) = EQ+1)|Sik) —1)" = &R |2t ~ 5 (21) ) | =
ir () 1 (5)
dm 9141 2h . s~ 5 (2141 P
e (20 >2,¢;E0(¢E—¢ET)) +25 (%) G 7+(3)
(E—E)? g

Breit-Wigner resonance

el ~ 47Th2 (5)2
o; (k) =~ 2ME(2Z+1)(E Y (5)2

« Historical remark

1870-90’s: Lord Rayleigh develops the scattering theory for electromagnetic & sound
waves, deriving the “optical theorem” and elaborating the partial-wave expansion
1927: H. Faxen & J. Holtsmark apply the partial-wave expansion in QM

1928: G. Gamow applies the complex energy formalism to unstable systems

1929: G. Breit & E. Wigner describe resonant states via the B.-W. distribution
1939: N. Bohr, R. Peierls, G. Placzek apply the Rayleigh optical relation in QM
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14. BOSONIC & FERMIONIC SYSTEMS

It the following two sections, we will deal with systems consisting of a number
(fixed or variable) of mutually interacting particles. In the main focus will be the
systems of indistinguishable particles, either bosons or fermions. The concept of
indistinguishability and its various consequences were already discussed at several
places of this course, starting from Sec. 1b. Now we intend to formulate a general
language describing all non-relativistic many-particle systems like atoms, nuclei,
molecules, condensates etc.

In this section, we will introduce the principal mathematical gear of many-body
physics: the operators that can create or annihilate particles in a given state. These
operators make it possible to generate a basis of the whole Fock space and to ex-
press any physical operator in this space. Moreover, basic algebraic properties of
the creation/annihilation operators capture elegantly the difference between bosons
and fermions. As a by product, we will learn how to quantize the electromagnetic
field, preparing the ground for the relativistic theory of quantum fields (which is
unfortunately beyond the scope of this course).

B Hilbert space of bosons & fermions

Let us first recall the relevant properties of bosonic and fermionic subspaces of
a general many-particle Hilbert space. We define a so-called representation of
occupation numbers in these subspaces, which is a natural starting point for
introduction of the creation/annihilation operators.

» Indistinguishable particles

Let us recall some facts from Sec. 1b. Hilbert space of N identical but distin-
guishable particles is HN=H,QH® - - - H ~, where all H;, are identical single-
particle spaces. If the particles are indistinguishable, we need to perform a pro-
jection to bosonic or fermionic subspaces ”HiN) CHWN). Tt is expressed via sums

over particle permutations [(1,2,...N) — (k{,k3,...kY) m=1,2,...N!

N X NI X
bosons: P, = 17 > & fermions: P =+ Y o, &
=1 =137

permutation sign

Factor % ensures projector property Pizpi

» Bases in the bosonic & fermionic spaces

Separable (non-entangled) basis in H™N):  |®; i) = [di)1|di)2 - - iy ) v
where |¢;)r = i basis state in the k"' single-particle space

Simplified notation: |®;;, i) — || P12.8) = [d1)1]P2)2 .- . [oN) N
S0 @)1 is any (not the k™) basis state of the k™ particle

with
|D1) k=i )k
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Action of permutation operators: c‘:'ﬂ|<1>12_nN> = [drr)ildrg)2 - - - |drr) v

Projections of the separable basis {|¢12“.N>} to H(N) =

(a) basis in boson space: N, P, |®, y)= N,Z \Prr)1|drg)2 - - | drr )N

(b) basis in fermion space: N_P_|®15_y) :% Zoﬁwkir)lkbkg)g k)N

. . o1 [61)2 - [o1)
antisymmetry of the determinant under o] 1921 1202 1820x | Siager

any exchange of columns or rows : : determinant
[pn)1 [dN)2 o [EN)N

Normalization coefficients Ni=y/—+2 ' N =VNI

nir =number of repetitions of the state |¢;) in the ensemble, i.e., number of
particles in the state |¢x) (bosons: np=0,1,2,3..., fermions: n;=0,1)

Reasoning: ’nl +ny+nz3+---=N

We first note that N_ =N if nj, € {0, 1} Vk (as follows from the Pauli principle
valid for fermions). So we only need to derive N :
NP | Py N) =N, ]\1], [ sum of N! states, partly identical |

i
=N ”2 ”3 X[sum of I P e
B

nylnglngl... . NI
\ T = Ni= niTnglngl ..

» Representation of occupation numbers

orthogonal terms |

We introduce the following notation:

() e o0 © tH >
NiPi|®io N) = |n1,m2,m3, -, ng, - )2
with 1. = occupation number of the _10,1,2,3... for bosons
"= basis state |op) (with k=123,..00) [ | 0,1 for fermions

These vectors form a basis in the space of indistinguishable particles (bosons
or fermions) = representation of occupation numbers

B Bosonic & fermionic creation/annihilation operators

Creation and annihilation operators, respectively, increase and decrease the
number of particles in a given single-particle state by one, forming a system
of “ladder” operators in the Fock space. Their repeated application enables
one to generate any basis state in the occupation-number representation from
a unique state called vacuum. Mutual permutations of these operators obey
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simple commutation or anticommutation rules, depending on the bosonic or
fermionic nature of the particles involved.

» Definition of creation/annihilation operators

Action in the Fock space (Hilbert space with indefinite particle number N):
He=HV o HV o HP o - H Vau™Mon™h...

Particle creation operators: ”HSEN) — ”Hﬁ_LN“)
Particle annihilation operators: ”Hg[N_l) — H(iN) and 0 < H(io )

Creation operators

Bosons: lA)L|n1, Moy o)+ = VnE+L ng, L (ngL), )
1

—
Fermions: &L|n1, My ) = { Vg4l |ng, . (ng+l), ...~ for ny =0
0 forn, =1

So lA)j€ or dL (unified notation é]z) create 1 boson or fermion in state |¢y). For

fermions, if the state is already occupied (n;=1), the application of dz yields
zero (which guarantees the satisfaction of Pauli principle).

Annihilation operators

Bosons:  bp|n, ., )+ = 7k |0, . (ne=1), .. )4
Fermions: ag|nq,..ng,..)— = /ng |n1,..(np—1), ...) -

So by or ay (unified notation ¢) annihilate 1 boson or fermion in state |¢y).
Note that for ny =0 the application of ¢, yields zero.
Defined in this way, the annihilation operators are Hermitian conjugates of

creation operators: _(p! _nt . |bglng, .0, L)t = j<”17 M |ZA),T§\77,/1, ., )fb
N TV Vs
\/m on/lnl'“(571,2(7%—1)'“ Tl;‘+1 6"1”/1“.67%(”;64»1)'”
. / " ~ 7 j?[ / / *
—(ny, .y, Jagng, ng, ) - = Z(na, ong, ag g, ong, )T

Square-root coefficients included in the above definitions ensure simple algebraic
properties; see below and in Sec. 3b (the ladder operators and particularly the
phonon creation/annihilation operators for the harmonic oscillator).

» Commutation relations for boson operators

[bf, 6] = 0 = [bg, by] (order of creation/annihilation of 2 bosons is irrelevant)

Perof for k=1 1is trAivAial and for k= [ follows from:
O gy = OIbE] g = /(e D) (1) |- (1) (1)) ¢
The relation for annihilation operators obtained by the Hermitian conjugation.
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(b, l;;] = 0| (do not commute for k=1)

1
A

Ve

Proof for k=1I: (Z;klA),t — BLEk)]nk>+ = (V(ng+1)2 = \/nd ) g+
For k#1: bpbl|.ng..ng..) y=blb|..np.ng.) =/ (m+1) |..(ng—1)..(mg+1)..) 4

» Anticommutation relations for fermion operators
Fermionic relations expressed through anticommutators: {A, B} = AB+BA

Pauli principle = &L&H.nk...), =0 = agag|..ng...) -
= alal =0=arar = |{al,al} =0={a )}
arfng ) = { Ly s afanlmp..y = { ) for et
= (apal +alap) |y =g = Hagaly =1
{an.a}}

We require more general relations:
. — The validity for £=1[ was just proven. For k#1
{ay, a} = 0 = {ax, ai} these relations represent some satisfiable

requirements upon the phases, namely:
{dk,@;}:&d 0 0 0 0

CALJ](C(AIH ne .. ny >,:—CAL;(CAL£ LNy oYy >,

LAt ot

apa) |.. ng .. ng ) =—aag|.. ng .. g ..

Ry |- e ) 1 |- e )

1

1

0 0
In this way, the fermionic creation/annihilation operators are fully analogous to
the bosonic ones except that the commutators are replaced by anticommutators.

» Particle number operators
Number of particles in the single-particle state |¢y):

bosons Nk = IA)LIA)k fermions Nk = d;&k
Db | )y = A/n2 o) abag g = /0 L)
~—— ~—~—
ng n,=0,1
= total number of particles:
bosons | N = Z Z;ZZA);C fermions | N = Z d,tdk
3 i
( [ ~ A1 ~ [~ ~ ~
Ny, b} | = oy} Nk,bz] = —Onby
We ifientify standard commutation N’ I;ZT] _ +32r N7 [)l] _ _[;l
relations of ladder operators (Sec. 3b): o N P R
Nk,al] = 0, Nk,az] = —0n
N, aj] = +d N,al] S
\ L L




238

» Creation of basis states from the vacuum

Consecutive creation of individual particles into the occupied single-particle
states:

g — 4 T O GG 0) o bosons
C (ah)ym (adym=(alys .. |0) for fermions

Here, |0) represents the vacuum state, which is the only state forming the

subspace 7{58 ) (no particle present). This state satisfies: |bp|0) = 0 = a,|0)

» Relation between spin and statistics

How to decide whether a given particle is a boson or a fermion? For the reasons
explained in Sec. 15, belonging to the boson or fermion family is referred to as
“statistics”. In relativistic quantum field theory it is possible to prove that all
elementary particles (which are excitations of some particular types of fields)
satisfy the following relation between spin and statistics:

Particles with s = half-integer are fermions. These are the electron, muon,
tauon, all neutrinos, and all quarks, i.e., all leptons & hadrons forming matter.
All these particles have s= %

Particles with s =integer are bosons. These are the photon (s=1), inter-
mediate W & Z bosons (s = 1), gluons (s = 1), and hopefully also the yet
undiscovered graviton (s=27), i.e., the mediators of all fundamental interac-
tions. Also the Higgs boson, which plays a special role in the Standard Model,

is a boson with s=0.

How about composite particles formed by several elementary constituents? The
spin—statistics theorem holds even for such objects, but only in a limited sense.
Indeed: (a) An object composed of any number of bosons (integer-spin parti-
cles) has an integer spin and the bosonic character (a wavefunction of a pair
of such objects is symmetric under the exchange of objects). (b) An object
composed of an even number of fermions (half-integer-spin particles) has again
an integer spin and also the bosonic character (a two-object wavefunction is
exchange-symmetric due to even number of sign changes involved in the ex-
change of objects). (¢) An object composed of an odd number of fermions has
a half-integer spin and the fermionic character (a two-object wavefunction is an-
tisymmetric under the exchange of objects due to odd number of sign changes).
However, the problem gets more complicated if checking (anti)commutation
relations of the corresponding creation/annihilation operators.

» Bifermions vs. bosons

Bifermion = a pair of fermions. Example: meson (quark-antiquark). Any
bifermion must have an integer spin. Question: Is it a real boson?
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Exchange of 2 bifermions = 2x change of sign = boson-like behavior

However, consider the creation/annihilation operators of a general bifermion:

At=32 O‘kldld; A=) of,aay Antisymmetry : agp = —ag
bt . = ,k’l. . Normalization : Z |akl’2 = %
creation annihilation T

Normalization: 1= (0]AAY0) = 32 37 afpom (Olarapalal |0) = 23 ol

kil kU k.l
Commutator: rearrange to the form of the 1" term
A A Tat /T_h
[A, AT] Z Z Oék/l,Oékl [apak/ akal] Z Z Oé};/l/akl (al/ak/akal — apa;apap )

kel kU Bkl

= Z Z az,l,akl( 5kk1al ay + 5kl’€l ap + 51/4&2&;/ — 511/&2&]4 + Oppr Oy — 5kl'5lk’)
kKU

= j 42(2 allkakl> alal/

LU

A k k

correction to the boson-type commutator
Its effect for a given many-body state | )

depends on the expectation value (U|A|W). ﬂz
Example: 3

Consider a set of fermionic states that appear 5 ﬂz
in pairs (k, k) = (1,1),(2,2), ... (e.g., quark- 1

antiquark states in a meson, or time-reversal

conjugate states of electrons or nucleons in a superconductor or in a nucleus)
and define At 1 AT AT AT AT — subset of k-states
Al = VAna Z (akaf_a]}ak) SA: with na members

2 bifermions
AT A
B = TnB Z (aka —aga,

We first assume that the subsets Sa and Sg do not overlap:

Then we can easily prove the bosonic commutation relations:
[AT, Bl = [A, B] = [A, Bl = [AT, B] = 0

[A, A1 =1~ LNy o vata:
[B’BT] _ i - %NB with N kezs ( k_a akak)

NI

) Sp = subset of k-states
B = withng members

However, we get:

The last relations show limitations in the repeated creation of bifermions of
both A- and B-types. The numbers of these bifermions is limited by the Pauli
principle, i.e., by the capacity of the corresponding Sy and Sp fermionic state
subsets. Consider for instance the A-bifermion: If Ny =0 (no particle in states
€84), we get [A, AT] =1 = [ATA AT = +A1 = At behaves as a creation
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operator with respect to the “number operator” ATA. However, as the states
At|o), (AT) 0), (A1)?|0), ... yield Ny =2,4,6, ..., the repeated action of the
operator Af gradually changes its character. Once the state subset Sy is full,
Na=2ny, we get [A, Al] = =] = [ATA, Af] = —Al = Af behaves effectively
as an annthilation operator with respect to ATA.

If the subsets Sy and Sg overlap 0| (see the A’ & B’ case in the above

figure), we still keep the bosonic commutation relations [AT BT] [A B]=0, but
in addition to the above non-bosonic relations [A, Af|=1 ——NA and

(B, BY] [A, B'|=[B, Al]=

the number of k-states in the Sy N Sp set and Nap :‘SZ‘(SCLLak—l—QEak). So not
keESANSA
even a single pair of the A- and B-bifermions behaves as a pair of true bosons.

=]— éNB we also get with nag =

\/W(TLAB] NAB)

Conclusion: Bifermions may resemble bosons only if they do not overlap with
each other (i.e., if they do not share the same fermionic states) and if their
numbers are very low compared to the overall capacity of the corresponding
part of the fermionic Hilbert space.

» Transformations of creation/annihilation operators
= ZZ (d0|¢s) |dir)

U represents a unitary operator relating the two bases, which also constitutes
the transformation between boson & fermion creation/annihilation operators:

Consider 2 single-particle bases:

0‘2>
I

Z:’IEZWZ’M%)BI' Z<¢J|¢J > a EZ<¢1’|¢1> é352<¢;j|¢j’>dy

,L'/ j 7’/ jl

6‘/ :/

i'j i'j

——

o] =010 00160 [ 8 =0 {8} =010} (00160) { gl

= commutation/anticommutation relations remain the same

5'/ i/

» Second quantization

A transformation of creation/ annihilation operators for general particles to the
coordinate & spin eigenbasis {|¢fm)}
&7 (Z,ms)

—Tl
Z (@ilbim,) b]

Z <¢x ms ¢j> j azm, = (T, m,) = Z <€5:E,ms
j ~—— j

?; (#,ms)
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The new single-particle basis is not discrete (countable) = commutation/ an-
ticommutation relations will contain the d-function:

Commutation relations (bosons) Anticommutation relations (fermions)

(
P, my), L&, m) =0= OL(E,my), 9L (@, m)
Qﬁ+(f7m8)a¢+(f/7m;) =0= 'l[}—(fa m8)7¢—(f/7m{9)
Q;_,_(.CIZ_", ms);@;i(a_ﬁ”?mls) — 5(5_51)67)13771’5 — r&—(fa m8)71&1-—(f/7m{9)

Proof of the last line: bij S(T=2")0,, e,

- -t ~ ~ ,_/HT e A
_er(f? ms)aw—&—(f/vmls)} = Z<¢iﬂms ¢J><¢Z|¢i”,m2> [b]7bz] <¢93m |¢x ,m >

]
{0 @ m) BL@E" ml) |} = Gl 03) (0110z1m0) {05, 81} = (G| d2rme)
" 8 §(F—-)5,

msmg

Particle number operator: Ny = Z/%(f )zpi(m m) dT

o

g (Z,ms) partlcle density

The above procedure is often referred to as the “second quantization”, in anal-
ogy to the “first quantization”, in which physical quantities became operators.
In view of the above particle-number formula we can say that the second quan-

tization induces the transition: | wavefunction ¥ & ’ms)} > {’%Ti(”j’m“") operator
Y(ms) g (Toms)
What used to be the single-particle probability density |¢(Z,my)|? is now the

density of particles expressed by operator n. (¥, ms), and what used to be just
the normalization condition Y~ [ dZ [¢(Z,my)|*=1 is now an operator expres-
sion of the total number of particles N,. The Hilbert space of interest is no
more that of a single particle, but the Fock space with any number of particles,
including zero. This is one of the entry points to the quantum field theory,
which treats all elementary particles as quantum excitations of some specific
fields. Let us stress that this is the only way how to marriage quantum theory
with special relativity, which allows to transform the rest mass to energy and
vice versa, and therefore cannot in general guarantee conservation of the num-
ber of particles. But we must keep this gate closed (however tempting it may
be) and continue with our tour of non-relativistic quantum problems.

B Operators in bosonic & fermionic N-particle spaces

Creation/annihilation operators enable one to express any operator acting in
the whole Fock space. In particular, the operators that conserve the total num-
ber of particles (those keeping the subspaces Hg[N) invariant) can be written
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through products containing the same number of creation and annihilation op-
erators. This results in an important classification of such operators according
to the number of particles (n = 1,2,3...) they influence in a single action. We
talk about n-body operators, e.g., 1-body, 2-body or 3-body terms of a Hamil-
tonian describing independent motions and mutual interactions of particles in
a bound quantum system (an atom, nucleus or quantum dot).

» General operator expressed via creation/annihilation operators

unified notation:

Creation/annihilation operators of bosons or fermions éL = bL or dL
¢ = by or a

Consider operator O conserving the particle number = [O, N =0

O acts within any N-particle subspace H"), where it can be expressed as:

O=3" 3 (¢i--0iy|Olou..0) |1, bir ) (Dt -1 |

11, AN Z'l’L/N
Assume that the operator (observable) O is physical for indistinguishable par-
ticles = it acts inside H\") = [0,P:] =0
OP, = P.OP; => X (6i,--0iy|Ols,.. 011, ) Pi|¢z'1~¢m> (9257:'1-'@/ Py
i1, 0N 1,0
N \/W‘nl Na,.. n n ‘ 7L1'7L2
157925
M 2 X {00010y -1, €], AL el 10)(0] & 8

217 ZN 71, IN

within the space ). .. P®  can be removed

=5 > Z (G- Gin|Ol iy i) € AI;; &l e eyl

i1,0IN 7’17 N

This is the most general expression in the N-particle subspace of an operator re-
specting particle indistinguishability and conserving particle number. However,
as shown below, for some classes of operators this can be further simplified.

» One-body operators

Operator defined in the N =1 subspace through: | (T');]¢) = Z(qﬁlk T[4 |3, )

particle @k
index

Examples: the kinetic energy of a particle

and its potential energy in an external field

The action of 7' is extended to all N > 1 subspaces via summation over all
particles:

N N
O(I)ZZ(T)I@ = (j1®"'jk—1® T ®fk+1"‘®jN)

k=1 k=1 kthplace
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The defining property of the 1-body operator in an N-particle subspace is

expressed as:
OW Pilgy-- -y ZZ 1| 6x) Piloy - - Gi - 9n)
ﬁéiélémm =L \/%(‘1 cjk CN\()}
We consider an operator defined as O = S"(|T'| ) éjéi/ and show that it
satisfies the above property: 0! Syl

N

. /—H
Note that: [OW, &l] = S| T'|ow) [¢lén, él] = Z<¢z‘T’¢k>

OWel el ¢ 0:{ OW elel.el) + - 4 (el..él_ [OW, ¢l el
1%k N|> ([ 1] 2 N) (1 k:fl[ k] N)

S [To0e], (i [Tlow)él (i, T |0k )el,
i1 i ‘k
o At N S a g
fot (@i, o 1)}|0> 21 S (Gallo0e.él el o)
Zk

The above defining property is verified, so the 1-body operator is given by:

O = S"(6,{Tl6s) clé

1,1

Graphical representation of this expression:

» Two-body operators - -
WVual) = E (D5 i) V1V ) k| @i, Di ) i
Operator defined in the N =2 p:/"rticle i e B

subspace through: indices

Example: an interaction energy of two particles. With respect to the exchange
symmetry we require: <¢1¢J|V]¢Z bjr) = (d)]gbzﬂ/]qb] ¢i). The action of Vois
extended to all N >2 subspaces via summation over all particle pairs:

N
= Z Z (V)kl = ZE@"]Ak71®jk+1®"jl71®fl+1®"fN®(V)kl
k=1 l=k+1 lkk }:1
>

The defining property of the 2-body operator in an N subspace reads as:
OV i ) = & S (0ubalVIondr) €8]84 10

k sl
l>k} 1

We consider an operator defined as O = 1 Z Z((b 04|V i) ¢ c el iCpCyr and
show that it satisfies the above property: ¥ JJ'

6/kc (SR (‘T(’/

N

/—/h
First note that: [O®), ¢l W =5 Z Z<¢z¢y|v|¢z 'Bjr) [ CWC% , CL] =

Z’L ]]

=%Z<m!vm¢]> eyt 2050l Viewsa)jeler = S (0i05|VIoronelelen
JsJ’ HJ

7]1
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A

O@el el el el |0 { O® el el el)+-- + (elél_ [0® el ¢l
Lelclelloy =9 (] 1 &-ty) (er-¢ 1 -Cn)

Z <¢21¢]1|V‘¢1¢l1>cq /lcll Z <¢1k¢1k|v‘¢k¢lk>c71€ chlkr
llJl 1 7k]kk
At 2) A
P N S O }o S Y (b balVIdedn) &l éjo)
(1 N— 1[ N]) ’> . 1%]1 Ul N
Y (GiyoinlVieno el el ey 1>k

iNGINGIN
The last equality results from the fact that ¢;, in the commutator expressions
can only annihilate a state already created (otherwise the result=0) =
ly;=(k+1)or(k+2)or... N. The pair é}kélk commutes to the right to the posi-
tion of the é;k and the whole combination éjkégké;k is replaced by éjk The last
expression verifies the above property of 2-body operators.

So the 2-body operator is expressed by:

OB = IZZ 3|V bidpy) eléley e

01 g,

Graphical representation of this expression:

» Higher-order operators

An analogous procedure can be applied (though with increasing intricacy) to

any n-body operator.
Z Z Z (W) kim

Example, three-body: =11=k+1m=I+1 P
3!222(¢z¢j¢k|w|¢z ¢j Qbk/)C iC.CL/ Cj1 Cy
i1 5,9" kK
Graphical representation p p
of 3- & n-body operators: s 2 2
l—— 3 3
m m

» Normal ordering of the products of creation/annihilation operators

Matrix elements of an n-body operator in the N-body space are expressed in
terms of the following vacuum expectation values:

A Aot A A A At Af
<0’ le . .C]N Ck,‘l .. 'Ckn cll .. .Cln CiN .. ‘Cil ’0)
N—— S—————
N x nx nx Nx
The product inside is standardly rewritten in the normal-ordered form:
At N At o ~ P 2L AL B S SEN
. Cil e le T Cik ’ le C.]m 7,n T Q‘-ﬂ/cil ’Lk Cin g]l C.]l C.]@
N d + N —~ d R
unsorted product of n X éi and m X ¢, n x éi m X Co
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)+l bosons
| £1=0, fermions: sign of permut. (1..71..05..J1-- Jm--in) —> (i1 05T J1--Ji--Jm)

L bibl - = blb; L) = —dla
Examples: b*b b1 =blblb; :alaja) : = —alala
= biblb; = +ajala;

» Wick theorem

There exists a systematic way how a product of creation/annihilation operators
can be transformed into the normal-ordered form. It makes use of so-called
contraction, which for an operator product AB is defined as the vacuum

expectation value | (AB), = (0|AB|0)

(bibl)o =i = (@af)o
Examples: <b;bi>0 =0= d}d»o
(1610 = (b;bi)o=0=(a;a;)0=(alal)o

Statement:

Product of creation & annihilation operators =
5 (normal ordered product with k pairs removed) =: oy, :
f=012.. \/ x (product of k contractions of the removed pairs) = ¢;,

The proof not given here, instead we give some examples

Examples : bosons| |fermions
bibl =+ bibl <+ (bibl)o a;at = 4l + (@al)
R,_/ —— —— N —
bib; dij —ata, dij

Www_$&bm+@ﬁb+@um alajaal =alala;ap+opala;—dualay
General product :

~

ABCD=:ABCD : + (AB)y: CD: ABCD=:ABCD :+ (AB)y: CD :
+(AC)y: BD : 4+ (AD)y: BC : —(AC)y: BD : 4+ (AD)y: BC' :
+(BC)o: AD : + (BD)g: AC : +(BC): AD : — (BD)y: AC' :
+(CD)y: AB : + (AB)o(CD) +(CD)o: AB : + (AB)o(CD)y
+(AC)o(BD)y + (AD)o(BC)q —(AC)o(BD) + (AD)o(BC)q

If the vacuum expectation value of an operator product is to be evaluated,
one makes use of the obvious fact that |(0|: e;:]0) =0 Only the terms
composed solely of contractions (if #0) may contribute to the result.

» Two-state correlations

The N-body state |¥) contains complete information on the system, including
information on statistical distributions and mutual correlations of all occupa-
tion numbers n; associated with single-particle states |¢;). For any |U), these
properties can be described by means of the following general quantities:



246

(a) Average: (niyg = (\If|éjéz|\lf)

(b) Dispersion: (n2)g = (n?)y — (n;)% <\If]cTéLéTcZ|\IJ> —(W|ele;|w)?
—_—

(c) Correlation between occupation (W[6]b1bibi| ¥)+([blbi| W)  (bosons)

numbers of states |¢;), |¢;) (for ¢ # j): (¥]a}a;|¥) (fermions)

{(ninj)w = (ninj)w iﬁ”i)xﬂ”j)w <‘1’!CTéz5TCJ|‘I’> — (Wl e; | W) (w|ete;|w)

J/

V

((ni=(niyo)(mi—(ns)w)), (wlelele;el v)

{{nin; ) w

Normalized correlation coefficient: |Cj;(¥) = € [—1,+1]
+1 f fect lati 2 2

C(m)={ o I B (n2hodnihe
—1 for perfect anticorrelation

» Many-body Hamiltonian

General expression of a Hamiltonian with 1-body terms (kinetic energies of
individual particles + potential energies in an external potential field) and

2-particle interactions:

33

H = E Eig! éjéy +% E Vijitj! éjé;réj/éll
i iyi

where Eiil — <¢2|T‘¢1’> and Vijiry = <¢1¢]|‘7’(/Z§21¢j/> are matrix elements in the
space of distinguishable particles. The 3-particle and higher interactions can

also be included by the respective n-body expressions.

» Coordinate form of Hamiltonian

If the many-body Hamiltonian is expressed in terms of coordinates 7). and
spin projections §,; of individual particles (k=1,...N), it is useful to utilize the

coordinate form of creation & annihilation operators.

N ,—/x—(T)k (U,)’“ (V)kz
H= Z( BIT] ) E :U xk,szk + E V xk7szk:axlaszl)
k=1
b ~ ~- o
kinetic term Ol((in external potential Oé?t ~ ~~ o

interaction Ol(m)

Ol + 0%k = S (il (T+0) | g el

) - ; {%fﬁ(f, ms) { A+ U(, )} G (¥, ms)d

T

|

=3 [ eitmd] |-fa s v m) {z@ 7 m.)e ] iz

J/

g

7[)1& (#,ms)

-~

"/):E(xams)
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O =4 S (6:65|VIbwoy)ileleyen = bx

i 5/
272 ’]7]

{Zﬂcgﬁ T, mg )3T, m)V (T, mg; T,/ mi) g (Z,m) o (T, m )dxdx}cjcjcj/cl
JJ’ m . K
=3 Z i %E ¢i($ m)V (@, mg; @, m) o (T, m))s (&, mg)dadz’

The final expressmn is of the field-theory type:

H=Y" [$L(F ms) [~ 2 A + U(F, my) |9 (T, m,) dF
+ 15 [ OL@, me) DL (@, m)V (Z, mg; &, ml) s (7, m )b (T, ms) dF AT

!

mg

B Quantization of electromagnetic field

The above-described formalism of the second quantization will now be applied
in a concrete task to quantize the electromagnetic field. We know that elec-
tromagnetic quanta— the photons — have spin s=1, so they are bosons. The
quantized elmg. field enables one to describe all processes connected with the
electromagnetic interaction of matter, including, e.g., spontaneous decays of
many-body systems accompanied by the emission of photons.

» Photon creation/annihilation operators

The general solution of the wave equation VZA — C%O;Tf = 0 for the elmg. vector
1

v €oHo

potential ff(f, t) in vacuum (c= ) is a superposition of planar waves:

A(Z,t) = /Nm{ oz, €re etilkd—wt) | ar égye_i(k'f_“kt)}dlg
= :t -~ v

'—>b~ »—>bT

with wy, = c|k| and:
(a) Ny, = a scaling factor for each mode which will be determined later

(b)| €. = $\/% [e*,;m + ié,;y} = circular polarization vectors composed of
unit vectors of linear polarization satisfying

the Coulomb gauge condition: 5,;1,-12 =0= eqlgy-lg = € €5 = 0w

(c) aj, =arbitrary coefficients

Field quantization:

The field function fT(f, t) € R? becomes a quantum observable N
AN z, o o

described by a selfadjoint vector operator A(Z,t)=A!(Z,t) = af” = IA)ITW

We work in the Heisenberg picture = Ais time-dependent. kv kv
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Operators I;L and bk , respectlvely, create and annihilate

.|. —
photons with momentum p., = hk and spin pI‘OJGCthIl b |O> [kv)y
sp=vh==£h to the flight direction k/k: ‘kV) = |0),

The reasoning of this statement follows from evaluation of the total field energy:

» Energy of the electromagnetic field -od ﬁ A

—
Classical expression for energy: & = 3 f [eo] E( E(Z,t) >+ g B( t)[*]dz

iA=2 Nyw{iog,wiy, e 7 — iy wyez o550} df
wwk “ky N 7:Vwk€];l/ o .
[V XA E fNVk{ZCYkV Ck % ekz/] e+z(k T—wit) _ Z'Oz};y [Ck % é»gy] efz(kwfwkt)} dk

For V—o00 the spatial integration yields: [ e R T ns 1V §
v

The resulting expression for energy: € = Ve [(Nyyws)? (a% aEy+aEyazy) dk

This after the quantization, with the choice of Ny = leads to:

2Ve wi?
Hamiltonian of a system of independent

€= Z / hwp (b%ybl_éu + %) dk harmonic oscillators, each of them
== associated with a single field mode kv

So the free electromagnetic field is equivalent to an infinite (continuous)
system of independent (uncoupled) harmonic oscillators! Photons with
a given momentum Ak and polarization v are quanta (“phonons”) of the oscil-
lator associated with the corresponding mode.

Note: The energy term associated with zero-point motion yields diverging con-
tribution and must be removed (this is a mere shift of the energy axis).

» Photon emission & absorption

In Sec. 11, we outlined the theory of transitions stimulated by classical elmg.
waves in systems of charged particles. Now this theory can be extended to
describe interactions of matter with general, also non-classical field states.

Example: Any field state |U,) with a definite photon number N, is non-
classical. Indeed, any such state yields vanishing averages of field intensities:
(W, |E(x Hv,) =0= (¥ 7|B(ac t)|¥,) (both E & B are composed of terms
containing a single operator bE or b~ = change of N, on one side of the scalar
product). Hovever, the dispersions of the field intensities in |¥,) are nonzero.

In particular, such general theory applies to the processes of single-photon
absorption and spontaneous single-photon emission.

Consider a system composed of N particles with charges ¢, and masses Mj,.
The matter-field interaction Hamiltonian (cf. Sec. 11):
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i ; . . _ | where ff(%’k, t) is taken from the above general
expression with the ¢ " . 3 substitutions
k=1 ap = bEu
The Hilbert space is H=H, ® H,. The atom/nucleus space H, is spanned by

energy eigenstates |Ep;),. The full Fock space of photons #H., = @ﬁ:l ’HSN”)

can be reduced (for the single-photon processes) just to the segment H(VO) D Hgl
spanned by vectors |0), and {|kv),}. Transition probabilities for photon ab-
sorptions & emissions are calculated with the aid of the Fermi golden rule:

Process Initial state |t;) Final state |tg;) | Active term in H'(t)
emission |Eo)al0)y  — | Eoj)alkr), one with bl
absorption |E0¢>a|lgy>w — | E0j)al0)y one with BEV

From this point on, the calculation of transition amplitudes is rather analogous
to that presented in Sec. 11 (using either just the dipole approximation or the
whole multipole expansion). For spontaneous emissions, the density of final
states must include also the state density o,(E,) of the emitted photon. This
is calculated as the energy derivative of the number of elmg. modes in a box of
volume V' — oo (cf. Sec. 12). Details can be found in many textbooks.

<« Historical remark

1927: Paul Dirac shows the equivalence of an ensemble of non-interacting bosons
with indefinite particle number (elmg. field) with a system of harmonic oscillators
(the use of occupation-number representation & creation/annihilation operators)
1928: Pascual Jordan & Eugene Wigner generalize Dirac’s results to fermions (the
use of anticommutators) & ensembles of interacting particles

1932: Vladimir Fock introduces the Hilbert space for q.fields/ many-body systems
1939,40: Markus Fierz and Wolfgang Pauli formulate the spin-statistics theorem
1950: G.-C. Wick provides a method for evaluating products of creat./annih. opers.

15. MANY-BODY TECHNIQUES

We are ready now to apply the above-derived general formalism in some sophis-
ticated approximation methods, which are extremely useful for the description of
various quantum many-body systems— atomic nuclei, atoms, molecules, molecular
aggregates and nanoscale metal clusters, quantum dots etc..

B Fermionic mean field & Hartree-Fock method

All elementary constituents (bosonic and/or fermionic particles) of a typical
bound many-body system interact with each other. This usually makes the
exact solution of such systems very difficult, practically intractable. However,
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this difficult problem can be often effectively approximated —at least as far as
the system’s ground-state properties are considered — by solving a much simpler
problem of individual particles moving in a single-particle mean field. For any
selected particle of the system, the mean field expresses the influence of all the
other particles averaged over their quantum-mechanical distribution in space.
We first treat the essence of the mean-field method in systems composed of
fermions, e.g., in electron shells of atoms or in atomic nuclei.

» Hartree-Fock ansatz for the ground-state wavefunction

Fermionic Hamiltonian with H = Z 5%/@2@,6, + % Z Vklk’l/&]td;&l/dk/
one + two body terms written Y Y o
in an arbitrary basis: L
The ground state of an N-particle system
is searched as the Slater-determinant

type of the
wavefunction || |Wyp) = djv : ATaI|0>
where d}], e d;, &I create some ortho-

normal single-particle states interpreted

as the lowest eigenstates of an unknown

one-body Hamiltonian = mean field

= the ground state can be seen as the “Fermi sea”
(N lowest levels of the mean-field Hamiltonian occupied, higher levels empty)

» Variation of the HF state

The unknown mean-field states |¢;) = dj»|0) entering into |Wyp) will be deter-
mined by the stationary variational method:

Infinitesimal unitary variation |[¢;) — |¢;) + [0¢;)

[00) = Y wigloy) = o) +i Y eyle) = |al s al+i)y egal| e =

€| ) |6¢:) gal
Whe) = aly--adallo) > (alroal) - (al+aab) (al-+oal) 10)
~ |Wyp) + (daly ---abal)|oy +- - + (@l -+ dal al)|o) + (aly ---al sal o
[War) + (day - a201)|0) (ay 2 @1)[0) + (ay -+~ ay 04, )|0)
YZGNJ iZEQj&.Ij izeljd;
J
Ket varlatlon Bra variation (mdependent coefficients € =€):
N oo
Tpp) = [Tup)+i > Y €t Unp) | | (Uyp| — \IIHF|—zZZ ¢ (Wnrlala;
i=1j=N+l i=1j=N+
5%r) (W)
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» Variational condition

The condition for |Uyp) reads as follows:

2 2 . Frata Ata D ! €ij
(Wi F|3Wi) (00| H W) =i S (Wl b — el 1 War) 0 7 {17

Ji
iI<Nj>N

Ak I i

Assuming without loss of generality that H= > 5kk/d2dk/+% Zl/klk/l/&;gd;&]/&k/
k! ke kL1
is written in terms of the creation & annihilation operators of the states involved

in the desired state |¥yyp) we get:
) <
\IIHF> =0 V{ i N

/] E:s ,aTa,JrlE:u patalapay |ata .
<HF kk'QpQl T+ 5 klk'l Q) Ay Qg ) G50 i>N

ke k7 k&'
L

Evaluation of both terms: anticommutation of dj. or a; to the leftmost position

(the resulting matrix element =0 since j>N and i<N)

(a) One—body term: Z Ekk/<‘I/HF|(AlLCAL]¢/&}L&L|\I/HF> =

ok
= Ep (<\DHF‘&;&LCAU€’&Z"\I/HF> +ojn <\I/HF’&LCL@|\DHF>) = O ik = ij
kK N ) N /, ok

-~ v~

(b) Two-body term: 1 S vy (Upplaja)apayala;Upr) =
kK
L
_1 AT AT A
=35 2 Vkikr [5]%/51:1@ (Ur|a)ar|Vear) +0,000 (Var|a)ary | Vir)
k7k, NG -~ e NG ~
Ll o forISN= 5 fork<N O RSN 5 i<
UfOl‘lJ >N Ofork,k/>N Ofork:,k >N Oforl,l/>N

e ™~ e ™~

—030i1 <\IJHF|dJ;£;dl’|\I]HF> — 010 <\I/HF|d;r&k:’|\I/HF> =

= %{ > (Vikjk +Viikj) — > (Vikk,j+Vki,jk):| = > (Vkikj — Vikkj)
) e e N D k<N

21/]“']@]' QVikkj

1< N
Together: Eij + k;v(yk,kj — VZkkj) =0 \V/{ j >~ N

This represents a coupled set of conditions for the Hamiltonian matrix elements
in the HF basis which must be satisfied to minimize the energy functional

» Mean-field equation

We know that ¢;; = <<;SZ-\TA\¢>J~>. The above set of equations can be formally
solved by introducing another one-body operator Vi, which is defined through



252

its matrix elements in the HF basis as follows: (¢Z|VHF|¢J) = Z(Vkikj_Vikkj)
k<N

It represents the Hartree-Fock mean field

= The above variational condition reads as: (¢Z|(T + VHF)\gb]) =0 for ;i%
This can be replaced by a stronger condition that (1" + VHF) is diagonal in the

basis {|¢n)}, i.e:

(T + Vir) |#n) = €4|¢,) || one-body eigenvalue equation

So the state |¥yr), which approximates the exact many-body ground state, is
determined through eigensolutions of a one-body problem! However, the mean
field Vigp contained in this one-body problem is expressed vis the eigensolutions
that we want to determine: [

m

> (<¢k¢m|‘7|¢k¢n>—<¢m¢k|‘7|¢k¢n>>]|¢m>

m k<N
= selfconsistent problem

The solution can be searched in an iterative procedure: an initial “randomly
selected” basis {|(/57(10)>} = (0"order mean field Vé%) = new basis {|(b£ll)>} =

1%*order mean field VI%) = new basis {|¢$12)>} = 2"order mean field \A/}g;) = ...

One may hope in a fast convergence (facilitated by a good choice of {|¢£LO))})
» Coordinate representation of the mean field

Meaning of the above-defined mean field operator becomes more intuitive in the
coordinate representation. The action of Vip on the HF single-particle basis
read as: VHF an (3_7'7 M) = two-body interaction

SIS S5 @1, )0 (o, o) V (T, To) (T, p1) b (T, o) dT1dTs] i (F, 1)

m k<N pjia

_Z [ Z fogb;L(fl? M1)¢z<527 M2)V(fl, 52)(;511'(:?17 /jll)gbn(f?? MZ)dfldfﬂ ¢m('fa ,LL)

m - k<N pif2

Using Z Ot (T, f1o) P (T, 1) = O(Ze—1T),,,,, (With e=1,2) we obtain:
Vit ¢ (T, 1) = l/ZZ’@bk (@1, ) PV (1, )dl’1} (T, 1) +

k<N
Viur () local potential nonlocal potential IZWHF(I 1, T, 12) D (T, 12 )dTo
I
/ E [E (T2, p2) V (2, Z) op (T, M)] ¢n($2,u2)dw2
The local mean-field p2 “k<N
~
potentlal VHF( ) 1S gwen by Whr (Z,p,Z2,12) transformation kernel

averaging of the two-body potential V' (#, ) at position Z over a cloud of all

constituent particles with spatial density o(Z1)= >_ > on(Z1, p1)|?.
k<N 1
The nonlocal, so-called exchange term with the kernel Wyp(Z, i, Z, p2) re-

sults from the antisymmetrization of two-body wavefunctions.
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» Ground-state energy

From the HF wavefunction obtained from a converged mean-field procedure we
estimate the ground-state energy as:
By~ (Vyp| H|Uyg) = -+ - =Y emt+3 2 > Wi — Virw)
k<N k<N I<N
However, summation of single-particle energies of the occupied mean-field states
yields a different value:

Soer= S (T + Vip)low) = 3 e+ 3 (Vhiw — vikw)

k<N k<N k<N k<N I<N
Comparison of the above expressions: Ey ~ g |:€k — g Vkikl — Vikkl ]
k<N IN
<¢k\VHF|¢>k>

The correction Agj, = %(gbk\VHF]qﬁk) of energy e, present in the last formula,
compensates the double counting of particle interaction energies (e.g., the sum
€1+ €9 contains all interaction between particles 1 <+ k£ and 2 <> k, so the term
142 =2+ 11is counted twice)

« Historical remark

1927: D.R. Hartree introduces a self-consistent method to solve many-body Sch. eq.
1930: V. Fock and J.C. Slater modify the Hartree method to respect antisymmetry
1935: D.R. Hartree reformulates the method in a way suitable for computations

B Bosonic condensates & Hartree-Bose method

The Hartree-Fock method has its bosonic counterpart, called after Hartree and
Bose. It relies on the same principle, but is much simpler technically since
bosons do not obey the Pauli exclusion law. So in the mean-field approximation,
the ground state is formed by all constituent bosons sitting in the same state.

» Bosonic condensate ~ o Siars A

. ‘ ‘ ‘ H = E Exkrby.b —|—% E l/klklllbzb;bllbk/
Bosonic Hamiltonian with WY Tk
one + two body terms: Ll

Ground state of the N-particle system searched in the form of the condensate

type of wavefunction: |||Wyp) = \/LN—,(BT)N|0>

with | Bt = E Bkl;L creating the boson into
teeoee— O
~—

N

a general single-particle state [vp) = > Bi|odk)
F

with unknown coefficients subject to normalization: Y |B|> =
k
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» Energy functional

To perform the variational procedure, we need to express the energy functional
(Vyp|H|¥yp) as a function of coefficients {f;}. First we evaluate commutators:

(e, BT = B

T [l E) e

[blm(?T)N]Z[bk;BT](BT)N_lJFBT[%(E)N1] (B)Y, 6] =Npp (BN
Cn k Cn-1

From these relations we calculate the following averageS'
(Wap b by [ Wap) = 701 (B)Nbjbw (BN |0) = 57 8 A7 (O (B)N -1 (BHN 1 |0)
= NB*B.
(W B W) = 4 01(B) VB e (B1) ) o
= BB (O1(B)N"Bibe (BN 110) = N(N—L)5;5; B v
The energy average (energy functional) in the space of condensate states:
(Unp| H|Whp) = N > BB + st > vk BB B Br = E{Br})

L

To find parameters {f; } of the condensate state, the function £({fx}) must be

minimized, respecting the normalization condition > |8;]? = 1.

Alternatively, one can skip the normalization F (Uyg| ﬁ’\pHB>
constraint and minimize the expression: E{B}) = m

<« Historical remark

1924-5: A. Einsten & S.N. Bose predict that systems of bosons at T— 0 form a con-
densate state with unusual properties (the first laboratory preparation in 1995)
1938: F. London relates boson condensation to superfluidity of some liquids

B Pairing & BCS method

The Hartree-Fock method does not work well for the fermionic systems whose
valence shell (or valence band) of single-particle states is filled up approximately
to the middle. Indeed, the existence of a number of partly occupied valence
orbits with nearly degenerate spectrum makes the HF method unstable (it has
many almost equivalent solutions). In this situation, an attractive short-range
type of interaction produces a new effect beyond the mean field — pairing of
particles in conjugate states related by the time reversal. It turns out that
at low temperatures, the systems with pairing exhibit superconductivity,
a phenomenon partly analogous to the superfluidity of some Bose systems.
The basic many-body theory which takes the fermionic pairing into account is
abbreviated after its inventors Bardeen, Cooper, and Schrieffer.
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» Pairing interaction

Consider a short-range (approximately contact) interaction given by:
V(fl —fg) ~ —% 5(51 —fg)

Matrix element (¢i¢j|f/|¢i/q§j/> ~
Vo 22 [J &5 (T, 1) &5 (o, p12) 6 (1 —T2) b (T, 1) Do (T, ) A1 ATy

15142 = -V I[Z Qﬁ(f, Nl)gbi’(fa :ul)] [Z ¢;(f’ Ng)gbj/(f’ MZ)] dx
. 251 . M2
A;S(um“;g thjt' =) (0161 |¢dy) ~
i@, 1) =03 05(T, p Vo [ 6 (&, 1) bir(F, )| A
61 (7. 1) = 61(F, —1) =T 5%, >};‘ 0 /1329 |

we get large attractive interaction
We may approximate this situation by assuming that V acts only between pairs
of states | |¢r) <> |¢r) =T |ér) | related by the time reversal transformation 7°
~— ~—~

o ot
apl0)  al0) Examples of such states are:

+0, 1) « |—-p, 1) quasimomentum-spin electron states in metals
In, 1, j,+m;) < |n,l,j,—m;) angular-momentum nucleon states in nuclei

» Simplified Hamiltonian

For fermionic systems possessing the time-reversal symmetry the so-called
Kramers theorem asserts that the Hamiltonian eigenstates |E;) and T |E;)
with half-integer total angular momentum are orthogonal and have the same
energy. This must hold also for the one-body mean-field Hamiltonian given
by f]MF:T—l—VHF:Zk 8k(d2dk+d£d,;). To this Hamiltonian we now add the
pairing interaction Vpair. The above approximation
yields a so-called monopole pairing interaction:

(G = pairing interaction strength
> = sum over the states close to the Fermi energy cp: |[|ep—ep|< S

(With er taken now as the energy of the highest occupied orbital in |Wyg))

This interaction can be expressed with the aid of
the following bifermion operators:
L

Pi=2L>"alal| P ady
K 1
I; vr ! lex —ep| < .S interval around ep

‘A/pair ~ —Gn pfp

where n = number of levels ¢, in the

If the k, k states correspond to |n, [, j, +m;), the Pt operator creates a pair with
zero total angular momentum (hence the term “monopole”)

Boson-like commutator (see Sec. 14): [f), IADT} =1- %Z’(didk+d£dk) € [-1,+1]

The full Hamiltonian then reads as follows: Nk€[0,2]
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» The BCS approach

/
Splitting of the full Hamiltonian into + Vi +V;

pair

(the main part)
(the rest)

k
T+Var Vp’air Vp, .
[[A{N] =0 -~ ; A-i—AT — /ATATA — -
|:H07 ]#0#[‘/}9’211!‘7 Aj| +A Z (a]?ialk + aka’k') — G a/]_fazkalal - EO
k k.l

Here, A is a so far undetermined parameter called pairing gap (see below). It
is believed that V. included in H represents “a larger part” of the full pairing

pair
V//

pair 18 “small”.

interaction Vpair, while the rest

The subsequent procedure consists of 2 steps:

(1) The ground state of Hy found analytically = wavefunction |¥pcg(A))

(2) [Wpes(A)) is used as the ansatz wavefunction for the variational procedure
using the full Hamiltonian = minimization of E(A) = (Upcs(A)|H|Upes(A))
determines the value of parameter A.

The idea behind:
Pip

. . : . (7!
small contribution — 0 the main part — Vpair
7\ 7\

— [T (PN)] [P—(Pha] + (Phu Pt + (P1)o P
Gvn(Phy = Gv/n(P)y ~ A

» Bogolyubov transformation (a toy form)

_Cll

const. — FEj
7\

—(PYye(P)y

The gap can be identified with:

quadraticHamiltonian

Spin states { ho — £ +€< TaT +aTa¢> + 0ayay +5a (JLi

Eigenproblem of ho in the 3D Hilbert space (spanned by states |N,) with par-
ticle numbers N,=0,1,2) can be solved analytically via Bogolyubov transform.:

CAWA& R A
d%&i g

particles quasiparticles
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Quasiparticles are fermions (the transformation is “canonical”):

{%Oéﬁ} {al, 1} {a,,a,}={a], ¢} {%0%} {%O@} 0

{O‘Tﬂoﬂ} {a¢> {O‘%O‘T} {0%7%} wtovP=1
Coefficients u, v are determined by the required form of Hamiltonian after the
transformation, which is: ho — hly = eq +e (&iéw + dIéx 1)
—_——
N

This Hamiltonian is solvable: eigensolutions identified with the states having
fixed numbers of quasiparticles: | A44) = (04), |1a),]24)

The ground state is the quasiparticle vacuum:  |¢g) = |0,)

Amphtudes u,v & constants e, ey (together 4 real variables) obtained from the
condition ho = ho, yielding together with the normalization constraint 4 real

equations: 0 N 6 5
o 2 2 2\ aTaA fa T N
h = eo + 2ev” +e(u’—v7) (@ a¢+aa¢)+euv aiaT—i—e T = hy

» Solving the main part of the pairing Hamiltonian

The part Hy of the total pairing Hamiltonian is quadratic = solvable
Bogolyubov transformation (the full form):

Q= ukdk-l-vkd% OAJJ]L :uk&L-l-vk&,; ap = Uy, —kaAz;g CALL = ukéz,i — VR0
Qp=urip—vki) & =wal — vpy || Gp=updptupdl al =wdd +opdy,
v al—
uy, vy € R {a,cu}=0= {amazf} {Cjk,ffélT}—%l
{az,a7}=0= {a ar}t {6g,0;=0u
uitvi=1 Y i i
k k {@k@l—}:oz{ak,&[} {&k»@[}zoz{‘ifwé‘z}
Remarks:
(a) We assume (ug, vg) = (1,0) for levels “far from” the Fermi level: |ep—ep|>S
(b) Instead of Hy we consider 54 = Hy — N, where p will become a Lagrange

multiplier for fixing the average partlcle number (= chemical potential)
The required form of 74 expressed through the quasiparticles reads as:

Ay =2 [(ex—pvi—Aupo] + (3 [2(en—puror — Aui—v7)] afdy
|

k g _ o O S
i +H.C.) z [(5k— )(uk Uk +2Aukva,( J]LOAék CAY;E@)\

Solution of the diagonalization condltlon
2(er— p)ugvg — A(u%—v,%) =0 = 2er—pur/1— uk A( 2uk =
A[A%+ (ep—p)? uf —4 [ A%+ (e, — p)* | ul + A2 =0

\/AQ 5k_ ) ui:%[l_kak—*“] ’U]%:%[l— Ep—p }
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» Ground-state wavefunction

The ground state of %%’ = vacuum of quasiparticles (= 4, =0). Written
in terms of creation/annihilation operators of the original particles and their

vacuum, this state has the following form: ot
|\Ichs> = H (Uk T Ukakak) |0>
k

Proof: ai @5
| Wpes) = <u;a1+vla) <uk+uka;az) 0) = {[al,n W+ (T15 )a1}|0>
2 %
N . . it
w; [a, asa a] 1 up+upagay ) + [T (urtoraga ) w+vaa ulal+vla ]0)
— kA by R
— +ulvl&li|0>

= |q|VUpces) = 0| similarly: |dq;|¥peg) =0

The solution |WUpcs) approximates the superconducting state at 7' = 0

» Interpretation

(a) [Wpcs) is a state with undetermined particle number

(b) The average | (N)pcs = Z<\I/Bcsl (akak + 2 ) |WUpcs) L N| fixed by
k \—/_/

A

(c) The dispersion (N?)pcs = (N?)pcs — (N)jeg is beyond the control (for

small systems like nuclei this is a drawback

(d) ux and vy represent probability
amplitudes for the pair of states
|bk), |05) being empty and occupied:

pzmpty lup* and p)

oceup_

vk |?

(e) The occupation probability v/
as a function of ¢, is smeared
around the value p. The smearing
width ~ A. For A=0 we get:

1 f .
o =1 = { § fr =< H
=

(f) Excited states (with n, > 1) have energies

s

11

BCS

’Eexc > Min{e,} > A‘ = energy gap above

the ground state in the spectrum is a typical
signature of pairing and one of the origins of

7TT7TT77TTT777777777777777T
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the superconducting behavior (the friction is suppressed due to the difficulty
to excite the system)

» Determination of the gap
(a) Variational approach: &'(A) = (Upcg(A)|(H—puN)|Upes(A)) =

(Upes| | Uncs) +AZ (Unes| (@) +anap) [ Uscs) —G (Ppes| > | alafai] Vpcs)
Il

N J/
-~

{;'ukmmm)} 2

N J/

2%:’ (%*M)%(A)

Minimization of £'(A): %{22}; (er — p)vr(A)? — G[Xk:'uk(A)vk(A)}Q} =0

(b) Derivation from expectation values of pair operators P or P':
A = G/n(Vpos(A)|P|Upes(A)) =

— GO TT (e + viar) (S dgar) [T (un + vrital) [0) = GZ w (A
k./

sz (1—"u) H(Uk+vkaTaL) G (sl -2
S~ ikl 5; 1_A2+(€z e

ot - . ¢ 1 _
Both derivations equivalent = gap equation: A <1 -5 Ek:’ N—) =0

2oy
Gc o Ex—H
k

= Ja critical value G, of pairing strength:

= Solutions:

(1) G <G, : A =0 (normal solution)
2)G>G.: %= Z’\/ﬁ = A # 0 (superconducting solution)
k il

« Historical remark

1947: N. Bogolyubov introduces the transformation to quasiparticles
1957: J. Bardeen, L.N. Cooper & J.R. Schrieffer formulate the BCS method

B Quantum gases

At last we turn to systems of non-interacting indistinguishable particles, bosons
or fermions, at nonzero temperature. Generalizing the concept of the canonical
ensemble (see Sec.6a), we will point out some crucial differences in thermody-
namic properties of Bose and Fermi gases. We will evaluate partition functions
of these gases and show how these can be used to calculate various thermody-
namic properties and also the energy level densities of these many-body systems.
The level density of the Fermi gas will be actually derived and discussed.
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» Grand-canonical ensemble

Consider a gas of indistinguishable particles at temperature T=(k3)~! (with
k= Boltzmann constant and /5= inverse temperature) in volume V. Assuming
an exchange of both energy & particles between the system and a bath, we
cannot fix either the total energy E or the actual number of particles N in the
system, but only their averages (F) and (V). The density operator describing
the most probable state of the system follows from the maximum entropy
principle. The resulting grand-canonical ensemble generalizes the canonical
ensemble (Sec. 6a) by taking into account also the effects of particle exchange.

Hamiltonian H commutes with the particle-number operator N. For each par-
ticle number N, the system has a discrete energy spectrum {Ey;}. The equi-
librium density operator p is diagonal in the common eigenbasis of H , N =
diagonal matrix elements (probabilities) | p(N, En;) = pni

Constraints induced by the normalization and fixed averages:
> 2 penvi=1 3 2 pwiN =(N) > > pnifini = (E)
N=0i=1 N=0i=1 N=0i=1

Entropy S = —k > pn;In py; to be maximized with the above constraints:
N,

== pnilnpni + (a+1)>" pni — B pniEni +7 > pvilN
N N N N

%:_lnle_l‘F(OK"‘l)—ﬁENz—f—’}/N:O = lIlei:Oj—ﬁENi—f-’yN

This leads to the grand-canonical form of the density operator, which de-
scribes an equilibrium state of a many-particle system exchanging energy &
particles with the environment:

=1 hemical potential
1 B B p=3 chemical p
pN’i — W e B(ENZ NN) Whel"e Z(ﬁ’ /’l‘) - e—ﬂ(EN,'—p,].V). )
A N partition function

» Thermodynamic quantities derived from the partition function

(a) Energy & particle number averages:

_ _ 0Z(p,
<E>B,MZ%PN,iENi:mNZjENi€ BB MN):_Z(,é,u) (,()’g”) :—%IHZ(ﬂ,,u)

=(E)7u

_ _ 1 —B(Eni—pN) _ 1 0Z(B,w) _ .19
<N>5,u_]%;PN,iN—m%N€ BlEni—p )_BZ(/H#)TH —+Bman(ﬁ,,u)

=(N)1

Energy & particle number (b) variances:

(E*) gy =+ Z(B, )

=(E?)r specific heat ¢y (T, p)= a% (EVr =75 (E* N1 (Sec. 6a)
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L 26w E 2[4 26m)]

<<N2>>,57M = <N2>ﬂ7ﬂ_<N>%.u = B - Z(B.1)2 . = "‘%38_:2 InZ(B, u)
=(N2)r 1_92 o Q(N) _ L«NQ»
s Zﬂ28u2 au T’u — kT T7M

» Partition function of the Bose gas

Bose gas is an ensemble of non-interacting bosons. We assume single-particle
states with discrete energies {e;} and occupation numbers ‘nLk =0,1,2,3,...
[0.9]

Index 7 specifies the state with the total energy: Ey; = Z NiLE

The total number of particles is: N = Z o

= partltlon function: sum over all sets of occupation numbers k=1
~~ _ R _ .
Z(ﬁ“uJ — Z Zefﬁ En;—pN) _ Z e 6(;n1k5k M%nzk) _ H Z e (nzkak /mz;c)
N i k
{nir} Nik =0
b
In Z(8, 1) Zln[ Blei- u)] P
For the Bose gas in a finite volume V' the sum goes er P
over the elementary phase-space cells, so we change 22/]‘/ 0
0
the sum into an integral via the substitutions: Zk: = @rhp bf p~dp

» Partition function of the Fermi gas

Fermi gas is ensemble of non-interacting fermions. We assume discrete

single-particle energies {£;} and Pauli-restricted occupation numbers m
o0 o0

for states with total energy En; = > nirey and total particle number N = >~ nyy
k=1 k=1

= partition function:  sumoverall setsof occupation numbers

~~ o ‘
Z(ﬁ’ /~L> — Z Z e—B(ENi—uN) _ Z 67/3 (zk:nzk(?k ,u‘zk:'szk) H Z (nlksk ,Lmzk)
N 1

{nix} g nik=0,1

J/

ln Z(ﬂ? ,U/) — + Z lIl |:]_ —|— 6_6(579_/1’)] 1+e*ﬁ?(5k*M)
k

For the Fermi gas in a finite volume V' the sum is replaced by the same phase-
space integral as for bosons.

» Distributions of occupation numbers

Average total particle number: o Blen—n) )
19 ; 1—eBleg—n) :; etBleg—1) _1 Bose gas
<N>ﬁ7ﬂ = 3o In Z(ﬂ,u) = —Bleg—1) 1 .
K Yo == 75— Fermi gas
; 1+ePER—H) - etBlEr—rm 11 )
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From the expression (N)s,=> (ny)s, using the average occupation numbers
k

(ng) g, we get:

—sm ;7 Fermi—Dirac statistics

1 . . o e
I =y Bose—Einstein statistics
(k) =

Chemical potential p is
determined from a fixed
average (IN)g,, of the f
total number of paricles.

For bosons we require: E d F D
(the lowest B 3

single-particle energy) 2

(6
Nla

For fermions we identify: -
Fermi energy

N
7

» Level density as the Laplace inversion of the partition function
The density of energy levels Ey; for a fixed particle number N on the continuous
energy axis F is defined as:  o(N, E)=> 6(E— Ey;)

2
In analogy, the level density in the plane
(particle number) x (energy) is defined EERECCI
using a continuous particle-number variable V: )

o(N,E)=> ") §(N-N)i(E—-Ex;)
N i

N+-e _ B
= | o(N,E)dN = o(N, E)

N—e¢
The grand-canonical partition function and the level density are tightly con-
nected:

Z(B,p) = %: ZQ*B(EN«L*NN) = [[o(N,E)e ?F-1NgN dE

partition function 2D Laplace transform. of state density

9 +i00 S
o(N, E) = (gm) JI 28, p) e PN 3 dpdp
9 +i00 s
— (ﬁ) ﬂ e Z(Bm)+A(E-pN) g dpdp
state density inverse 2D Lapiace transform. of partition function
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= The grand-canonical partition function of a many-body system enables one
to calculate the density of energy eigenstates for each particle number.

» The saddle-point approximation

To perform the exact Laplace inversion of the partition function is a difficult
task even for system as simple as the Bose or Fermi gases. The commonly
used method is the saddle-point approximation. We first introduce it for the

canonical partition function Z(3) = >, e 7% = [dE o(E)e PF| for which the

Bo+ioco [50+zoc
Laplace inversion reads: o(E)=5- [dBZ(B)et?F=L [ dBZ(B)emZH+FE
Bo—ico Bo 100
where ()€ R is an adjustable constant. The complexified variable § we denote
+00 ) )
as f = x+iy and [y=xg, so: o(E) = 5= [ idy eln Z(zo+iy)+(wo+iy) E
— 00

The function f(z,y) = InZ(x+iy)+ (x+iy)E in the exponent is generally
a fast-varying complex function, so the contributions of the whole exponential
have a tendency to cancel each other. Only in a vicinity of a stationary point
(x0,y0) satisfying %kmyo) = %‘(myo) =0 the contributions add coherently. We
find a stationary point on the real axis, (xo, yo) (x0,0), and associate it with

. o Z(@o+i0)+a Bl 22| oy
the value 5. So we can write: f dy 0Fi0) a0t 3 555 b+ y

We know that 88—;Re InZ +59—;2Re InZ=0 (Cauchy—Riemann condition) and also

%Re In Z|z0ri0={E?) s, >0. Hence the real part of the quadratic term in the
exponential of the above formula is (semi)negative and we can use the familiar
Gauss integral, arriving at:

Q(E) ~ L eln Z(Bo)+BoE o

Note that the energy dependence 2 |6‘d—;1n Z(ﬁ0)|

is hidden also in z¢g=Fy=Fo(F).

The Laplace inversion of the grand-canonical partition function is evaluated
in a similar way (not reviewed here), resulting in an analogous formula:

where we use the Hessian _ L I Z(r0) Ao E—roN 2y
2z 92z Q(N; E) ~ )2 & ' T
ORI & ]
V)= 92z %z
oyop (?'y2

» Level density of the Fermi gas

We express the above-derived Fermi-gas partition function as
InZ(5 In[1 + e Alen—er)] = Ooda €) In[1 + e-Ale=er)
(B, 1) = Z [ d { g(e) In ]

; ie—er) single-particle level density

F 400
= [deg(e) n[14+ePC=0)] 4 [ deg(e) In[1+e 7))
0

EF
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The first term can be written as: In{efle- P+ )] }
EF
=B [deg(e)(e—er +fd5g ln[1+e+ﬁ(5 SF)]
So we have:
EF 400
InZ (B, u)= —ﬁfdsg (e— EF)—i—/dag(s)ln[l—i—eW(EEF)} +/d€g(s)ln[1—l—eﬁ(€”)}
0 EF

(& J/
~

oo +oo
T delger—a) +a(er-+)] nfLre~57] ~ 2g(er) | dolofl+e]
We obtain an approximation: °

12

TI;

2 v/B

@g(&fp) = —ﬁbfdsg(E)(a—%)‘F%g(%)

This can be used in the above saddle-point formula of the grand-canonical

Laplace inverse. First we evaluate all the needed derivatives: ~0 (sce below)
o v/B v/B ,2—7\“
G 6fd59<5)(5 deeg % -tz 593 %

InZ(B,p) ~ —ﬁ/dsg(a)(e—sp) +
0

~0 (seebelow)

FZ(5,3) %ﬁbfdsg(ff)%wtg—ﬁg/(%)% | ~ bfdég(&‘)
~0 (see below
0 7 WY 7 (Y w2 ¥, v
20 Z(8,3 ) ~59(3)
55% an(ﬁa_) 9798 55 InZ(B, u) ~ —%g(%)

= the Hessian determinant: Det F'(5,v) ~ % g(%)Q
= determination of the stationary point (8y,7o):

Y0/Bo
%28, 5)+BE—-N], =0 = —N+[deg(e)=0 = [r0=/Foer]
W—/
num.of particles withe€[0 "’U] .
%[IHZ(B’%HBE_’VN](@),%):O = E_gdgg(g)g—mg( F) =|fo= TE{—(;)

—_——
Eo= the ground-state energy

The above-assumed neglect of terms with ¢'() = “g(e) is based on a required

condition %gl(ép) < g(ep)| which can be expected to hold for N > 1.

Putting all partial results together, we arrive at the final expression:

) 62\/ 7rgg(ep)(E — Ey) where the dependence
o(N,E) ~ Bethe formula { on N is hidden
VAB(E — Eo) in |ep = ep(N)
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This formula is very close to the one used to approximate the density of discrete
energy spectra of atomic nuclei. However, the nuclear Bethe formula is slightly
different as it follows from a two-component Fermi gas, composed of N neutrons
and Z protons. Deviations from the nuclear Bethe formula are of course due
to mutual interactions of nucleons, so the formula can only be used with some
phenological corrections (e.g., the inclusion of the pairing gap).

» Bethe and Ramanujan-Hardy formulas

In the number theory, the so-called Ramanujan-Hardy formula estimates the
number of partitions p(n) of an integer n to smaller positive integers.
For instance, p(4)=5 since 4 = 3+1 =242 =24+1+1 =1+14+1+1.

The Ramanujan-Hardy formula holds for n > 1 o2 =n
and reads as follows:  |p(n) =

This is equivalent to the Bethe formula: VA8n

Assume that the single-particle E d —o—
levels €5 near the Fermi energy - —
er are approximately equidistant, - — & @ —— ——
the gap between levels being Pe— - o — —
given by Aszﬁ. Excitations  5Ae /! o @ —— —@ —~FF
of the whole system above its 4Ae 5 _@— & — — o
ground state are created by 3A¢ 3  &— o - —o
lifting individual particles above 2A¢ 2 o o -0 -0

the Fermi energy. For excited 1As

1 o 90 0 o o

states involving only single-
5 HIVOIVING ONY SIEC™ 0 o 1 _g @ —@— —@— —@—
particle excitations in a vicinity
4 = 1+1+1+1 2+1+1 2+2 3+1 4

of the Fermi energy, the total

excitation energy is given by F — Ey = n Ae, where the integer n is the number
of energy gaps crossed by one or more fermions. The number of partitions
p(n) coincides with the number of ways in which a given total excitation nAe
can be decomposed to different single-particle excitations, so it determines the
degeneracy d of the given excited level. The total level density is therefore given

by: p(n= 2V " g(ep) (B-Ep)

_E-Ey
o(E) = A—EAS) = 9(5F)m = Bethe formula

<« Historical remark

1878: J.W. Gibbs introduces the notion of statistical ensembles

1918: S. Ramanujan & G.H. Hardy derive the asymptotic partition-number formula
1924-5: S.Bose & A. Einstein derive the statistical distribution for bosons

1926: E. Fermi and P. Dirac derive the statistical distribution for fermions

1937: H. Bethe presents the Fermi-gas level-density formula and applies it to nuclei
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CONCLUDING WORDS

It’s time to close. There is no doubt that we could continue for long, gathering more
and more results and explanations. So this is really a random place to stop. But,
at the same time, perhaps it is not so bad place as the last example gives us a very
important lesson on physics in general, which we may see as a kind of climax. It
shows that physics is like a garden where the paths do not diverge but converge.
Taking any of the many different paths, one may reach the same point with the
same result. Physics, unlike many other human endeavors, is consistent.

In 2025, when I am writing these lines, quantum physics is celebrating its 100th
birthday. Indeed, the first proper form of quantum theory, the so-called matrix
mechanics, was created by Werner Heisenberg in 1925 on the North-Sea island Hel-
goland. What have we learned in the first century of studying matter at the sub-
atomic level? First of all, we have learned that the world down there — even though
everything around us grows out of it —is completely different from the world of our
common experience. People are still quite confused when they try to define what the
word ‘“reality” actually means in the quantum realm. We have nevertheless found
that the elusive quantum world is governed by rather simple laws, which are for-
mulated in an elegant, though highly abstract mathematical language. Perhaps the
most surprising finding is that despite its apparent strangeness, we can understand
this language perfectly. The fact that behind the physical phenomena around us
there is a beautiful and still comprehensible for us mathematical order is probably
the most amazing message that science brings.

The first quantum century also taught us a more practical lesson. We have
learned that understanding quantum processes can multiply our technological pos-
sibilities. Quantum physics turned out essential in the development of tools such as
the transistor, laser, superconductor, electron microscope, atomic clock and others.
But now it seems that a new era of quantum technologies is downing. Quantum
physics promises to produce new materials with incredible properties, to construct
measuring devices with extremely high sensitivity, and to establish quantum infor-
mation procedures transcending classical limitations. All of this can be of crucial
importance in solving the challenging problems facing humanity. I hope that some
of you, the readers of this book, will actively participate in this ongoing adventure.
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