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1 Lecture

1.1 Q

Define the prediction function of a linear regression model and write down Ls-regularized mean
squared error loss. [5]

Answer: Prediction function of linear regression:

D
y(x;w,b) = xyw1 + xowe + ...+ xpwp+b= inwi—i—b: zTw+b
i=1
The w are usually called weights and b is called bias.

Alternatively via matrix:
Using an explicit bias term in the form of y(z) = 27w + b.

T T2 wiz1y + w1z + b

T T w] wy Ty + waTan + b
ue - .

Tnl  ITn2 W1Lp1 + Walpy + b

With extra 1 padding in X and an additional b weight representing the bias.

zp %2 1 w1 + w2 +b
Ty &y 1 W W Tg) + Walay +b
== :
: b =
Tnl Tz 1 W Tp1 + Wakn2 + b

Lo-regularized mean squared error loss, MSE:
L, regularization (also called weighted decay) penalizes models with large weights:

1 i D i2 i 9
13 () 4)° + Dl

Alternatively via matrix:

31X w — ¢]* + 3lew]|®.

1.2 Q

Starting from the unregularized sum of squares error of a linear regression model,show how the
explicit solution can be obtained, assuming (X7 X) is regular. [10]

In order to find a minimum of 3 Zg’v(m?w — £;)?, we can inspect values where the derivative
of the error function is zero, with respect to all weights w;.

91 1Y N

it 2 T i
B3 2 (@ w—t) =3 D (2@ w —ti)ay) =Y il w —t:)

i i i
Therefore, we want for all j that sz zij(2fw — t;) = 0. We can write all the equations
together using matrix notation as X (X — ) = 0 and rewrite to

X' Xw=X"t.

The matrix XT X is of size D x D. If it is regular, we can compute its inverse and therefore

w=(X"X)'x"¢.
Answer:



2 Lecture

2.1 Q

Define expectation E(f(z)) and variance Var[f(x)] of a discrete random variable. Then define the
bias of an estimator and show that estimating an expectation using a single sample is unbiased.

[5]

Answer:
Definition 2.1 (Expected value). E(f(z)) with respect to discrete probability distribution
P(x):
Ex~plf(x)]=)_P(x) f(x)
xT

Linearity:
ElaX + Y] = aE[X] + SE[Y]

Definition 2.2 (Variance). Definition of Var[f(x)]:

Variance measures how much the values of a random variable differ from its mean p = E[z].
Var(z) = E [(:1: - IE[:E])Q] , or more generally,
¥ 2
Var(f(2)) £ E [(f(x) - Elf(@))’]

&

Show that estimating an expectation using a single sample is unbiased:
An estimator is a rule for computing an estimate of a given value, often an expectation of
some random value(s)

For example, we might estimate mean of random variable by sampling a value according to its
probability distribution.

Bias of an estimator is the difference of the expected value of the estimator and the true value
being estimated:

bias = [E[estimate] — true estimated value.

If the bias is zero, we call the estimator unbiased, otherwise we call it biased.

As an example, consider estimating Ep[f ()] by generating a single sample = from P and
returning f(z). Such an estimate is unbiased, because E[estimate] = Ep[f(z)], which is
exactly the true estimated value.

2.2 Q

Describe standard gradient descent and compare it to stochastic (i.e., online) gradient descent
and minibatch stochastic gradient descent. [5]

Assuming we are minimizing an error function 20 . . . - :

N ’
- 1.5F N Global minimum at = = 0. 7z 1
arg min E(w), N Sinco f*(z) = b, gradiont_ "
3 1ol S descent halts here > 1
N s
e ”
- o5f 4
we may use |gradient descent: - Y e
o x
S5l i Lt J
0 For @ < 0, we have f'(x) s, For @ > 0, we have f{x) =]0,
¢ _ s0 we can decrease f by s0 we can decrense f by
w w avwE(w) 0.5F  moving rightward. moving leftward 4

The constant « is called a learning rate and

specifies the “length” of a step we perform in ’ —

o : B L s R
eVery iteration OF the gradlent descent 2.0 1.5 Lo 0.5 0.0 0.5 1.0 1.5 2.0

Answer:



Consider an error function computed as an expectation over the dataset:
VuwE(w) = VwE(m’t)mﬁdmL(y{m; w), t).

* (Regular) Gradient Descent: We use all training data to compute V,, E(w) exactly.

¢ Online (or Stochastic) Gradient Descent: We estimate V,, Z(w) using a single random
example from the training data. Such an estimate is unbiased, but very noisy.

VwE(w) ~ VuL(y(e; w),t) for randomly chosen (z,t) from Paata.

¢ Minibatch SGD: The minibatch SGD is a trade-off between gradient descent and SGD —
the expectation in V., F(w) is estimated using m random independent examples from the
training data.

1 m
VwE(w) ~ - ZVwL(y(:ni;w),ti) for randomly chosen (@;,¢;) from fata-

i=1

2.3 Q

Formulate conditions on the sequence of learning rates used in SGD to converge to optimum
almost surely. [5]

Assume that we perform a stochastic gradient descent, using a sequence of learning rates aj,
and using a noisy estimate J(’w] of the real gradient VwE('w):

Wiy & W; — alJ('w;,)

It can be proven (under some reasonable conditions; see Robbins and Monro algorithm, 1951)
that if the loss function L is convex and continuous, then SGD converges to the unique

optimum almost surely if the sequence of learning rates o; fulfills the following conditions:
Vi:a; >0, E 0 — %, E af<oo.
i i

Note that the third condition implies that a; — 0.

For non-convex loss functions, we can get guarantees of converging to a local optimum only.
Answer: However, note that finding a global minimum of an arbitrary function is at least NP-hard.

2.4 Q

Write an Lo-regularized minibatch SGD algorithm for training a linear regression model, including
the explicit formulas of the loss function and its gradient. [5]

Answer: Loss function and gradient:
To apply SGD on linear regression, we usually minimize one half of mean squared error:

E(w) = Eg piua [30(@ W) = )] = Bz t)puna [5 (& w = 2)°].
If we also include Lo regularization, we get
A
E(w) = E)pu. [3 (2w —)°] + 30|,

We then estimate the expectation by a minibatch b of examples as

> (3w =) + 2lwl?,

ich

which gives us an jestimate of a gradient

VwE(w) ~ Z ﬁ ((m?w - ti)m,;) + Aw.
ieb

Algorithm:



The computed gradient allows us to formulate the following algorithm for solving linear
regression with minibatch SGD.

Input: Dataset (X € RV*P ¢ € RN), learning rate a € R, Ly strength A € R.
Output: Weights w € R” which hopefully minimize regularized MSE of linear regression.

e w0

® repeat until convergence (or until our patience runs out):
o sample a batch b (either uniformly randomly; or we may want to process all training

instances before repeating them, which can be implemented by generating a random
permutation and then splitting it to batch-sizes chunks)
owew—aY,, w(@lw-t)z;) - adw
icb o] \\ T3 i)Ti

3 Lecture

31 Q

Define binary classification, write down the perceptron algorithm and show how a prediction is
made for a given example. [5]

Answer: Binary classification:
Binary classification is a classification in two classes.

To extend linear regression to binary classification, we might seek athreshold and then classify
an input as negative/positive depending whether y(@; w) = & w + b is smaller/larger than a
given threshald.

Zero value is usually used as the threshold, both because of symmetry and also because the

bias parameter acts as a trainable threshold anyway. =
* Consider two points on the decision y>0 g

boundary. Because y(@1; w) = y(z2; w), =0 -

we have (21 —@2)Tw =0, andsowis =" N\

orthogonal to every vector on the decision
surface — w is a normal of the boundary.

. x
* Consider @ and let &, be orthogonal - e s
projection of z to the boundary, so we can £ Tl
write z =2, + ruz—“. Multiplying both s
sides by w’ and adding b, we get that the i
distance of @ to the boundary is r = %. -

* The distance of the decision boundary from
origin is therefore %

Perceptron algorithm:

The perceptron algorithm is probably the oldest one for training weights of a binary
classification. Assuming the target value t € {—1, +1}, the goal is to find weights w such that
for all train data,

sign(y(wi;w)) = sign(eFw) = £,
or equivalently,

tiy(@i;w) = tixl w > 0.

Note that a set is called linearly separable, if there exists a ‘ »
weight vector w such that the above equation holds. | Hm .

The perceptron algorithm was invented by Rosenblat in 1958.

Input: Linearly separable dataset (X € R¥*P t € {—1,+1}Y).
Output: Weights w € R? such that t,—z?w > 0 for all 4.

* w0

* until all examples are classified correctly, process example i:
oy z?w
© if £,y < 0 (incorrectly classified example):

" w e wA L

We will prove that the algorithm always arrives at some correct set of weights w if the training
set is linearly separable.



Consider the main part of the perceptron algorithm:

LR a:;r'w
® if t;y < 0 (incorrectly classified example):
o w+ w+tx;
We can derive the algorithm using on-line gradient descent, using the following loss function

—tefw iftelw <0

. = max(0, —tz" w) = ReLU(—tz" w).
0 otherwise

Ly(; w), t) = {

In this specific case, the value of the learning rate does not actually matter, because multiplying
w by a constant does not change prediction and does not change the loss derivative. Note that

the second condition is crucial; the first holds also for logistic regression, but there learning rate
matters. B=

3.2 Q

Show that the perceptron algorithm is an instance of stochastic gradient descent. Why are the
learning rates not needed (i.e., why does not the result of the training depend on the learning
rate)? [5]

Consider the main part of the perceptron algorithm:

sy zlw
e if t;y < 0 (incorrectly classified example):
O w+— w+t;x;

We can derive the algorithm using on-line gradient descent, using the following loss function

—teTw ifteTw <0

- = max(0, —t&"w) = ReLU(—tz" w).
0 otherwise

Liy(z;w),t) = {

In this specific case, the value of the learning rate does not actually matter, because multiplying
w by a constant does not change prediction and does not change the loss derivative. Note that

the second condition is crucial; the first holds also for logistic regression, but there learning rate
Answer:  matters. =

3.3 Q

Define entropy, cross-entropy, Kullback-Leibler divergence, and prove the Gibbs inequality (i.e.,
that KL divergence is non-negative). [5]

Entropy

Amount of surprise in the whole distribution.

H(P) £ E,.p|I(z)] = —Fx-p[log P(z)]

* for discrete P H(P) = - 2: P(:ﬂ) 1Qg P(:{:) ) POF of a Normal D\stnnmlf
* for continuous P: H(P) = — fP(x)]og P(..'i:) Az o Low entropy

— High entropy

Note that in the continuous case, the continuous entropy § .,
(also called differential entropy) has slightly different
semantics, for example, it can be negative.

From now on, all logarithms are natural logarithms with
base e.

Answer: S I
Cross-Entropy

H(P,Q) = —E..p[log Q(z)]



Gibbs Inequality
* H(P,Q) = H(P)
* HF)=H(P,Q)& P=Q

Proof: Consider H(P) — H(P,Q) =3, P(z)log %.

Using the fact that logz < (z — 1) with equality only for & = 1, we get
Q(z) Q(z) . . -
;P(z) log Pa) < ;P(m) (% = 1) = ;Q(m) ;P(m) =0.

For the equality to hold, % must be 1 for all &, ie, P=Q.

Kullback-Leibler Divergence (KL Divergence)

Sometimes also called relative entropy.
Dxw(P|Q) = H(P,Q) — H(P) = Ex-p[log P(z) - log Q(z)]

® consequence of Gibbs inequality: D1, (P||Q) = 0
e generally Dy, (P|Q) # DxnL(Q||P) =

budeme to pouzivat vicemene jako
metriku, prestoze neni symetricka, but well,
what can u do

34 Q

Define data distribution, empirical data distribution and likelihood. [5]

Definice 2.5 (Rozdéleni ndhodné veliginy). Bud X : 2 — R ndhodnd veli¢ina. Prav-
dépodobnostni mira Py na borelovskjch podmnozinach R spliujici pro kazdé a € R
rovnost Py(—oo, a| = P[X < a] se nazyva rozdéleni ndhodné veliciny X .

Pokud se nechceme trapit teorii miry, staci nam vedet, Zze Py je definovana pro
kazdy interval typu (a, b), [a, b], (a, b] i [a, b) a spliiuje vlastnosti pravdépodobnostni
miry, ¢ili se dd rozsifit na viechna spogetnd sjednocent i primiky intervali (a ddle na
borelovské mnoziny, coz uz nas pro zaéatek tolik nepali).

Ceho si viak viimneme je

* P je pravdépodobnost definovand na zdkladnim prostoru (£, 7).

e Py je obrazem miry P v zobrazeni X a jde o pravdépodobnost definovanou na

rostoru (R, #8). Hodnoty Py (A) pro A € # jsou ddny identitou Py(A)=P[X € A].
Answer: p (R, ) ty Py(A) p J y x(A)=P[ ]

Let X = {@1,@2,..., &N} be training data drawn independently from the data-generating
distribution pdata.

We denote the empirical data distribution as p,.... where

paca () = 22 =,

Let Pmodel (2; w) be a family of distributions.

® If the weights are fixed, pmodel(® ') is a probability distribution.
® |f we instead consider the fixed training data X, then

L(w) = puoaa(X;w) = ]| P ()

is called the likelihood. Note that even if the value of the likelihood is in range [0,1], it is
not a probability, because likelihood is not a probability distribution.

Pozn.: explicitly mentioned Gauss/normal distribution
Normal (or Gaussian) Distribution

Distribution over real numbers, parametrized by a mean g and variance o2

2
For standard values 1 = 0 and o = 1 we get N(z;0,1) = 4/ 2—17reféf.

35 Q

Describe maximum likelihood estimation, as minimizing NLL, cross-entropy and KL divergence.
[10]



Let X = {@1,®2,..., @} be training data drawn independently from the data-generating
distribution paata. We denote the empirical data distribution as Paata and let Pmodel (2; w) be a
family of distributions.

The maximum likelihood estimation of w is:

N
WMLE = AIg Max Pumodel (X3 w) = arg max 1_L_=l Pumodel (i3 W)

= argmin > 108 P w)

= ﬂfg'fﬂj-ﬂ B [~ 108 Prnoder (25 w)]

= H(faata(Z), Pmoder (25 w))

= a'rg"?]jnDKL(ﬁdata(m)”pmadel(m; w)) + H(pyara)

Answer:
MLE can be easily generalized to a conditional case, where our goal is to predict t given @x:

WL = arg Imax Puode (H X w) = arg max 1, Pucaattilz:; w)
= argwmjn Zl] — 10g Pmodel (£ |21 w)
= argmin Ex)op,, [—10g Pradet (£|22; )]
= arg;nin H (Patas Pmodel (|23 w))

= arg min Dk, (Baata [|Pmodel (£ w)) + H (Haars)
g

where the conditional entropy is defined as H(Y|X) = H((X,Y)) — H(X), so H(p) =
Efxt)~p — logp(t|z) and H(p, q) = Ex)~p — log(a(tlz; w)) = Ex-p H(p(t|), q(t]z)).
The resulting loss function is called negative log likelihood, or cross-entropy or Kullback-
Leibler divergence.

3.6 Q

Considering binary logistic regression model, write down its parameters(including their size) and
explain how is prediction performed (including the formula for the sigmoid function). Describe
how we can interpret the outputs of the linear part of the model as logits. [5]

An extension of perceptron, which models the conditional probabilities of p(Col|e) and of
p(Ci ). Logistic regression| can in fact handle also more than two classes, which we will see
on the next lecture.

Logistic regression employs the following parametrization of the conditional class probabilities:

p(Ci|z) = o(z"w +b)
p(Colz) =1 —p(Cr|=),

where ¢ is a sigmoid function

1

i e

AIISWGI‘: It can be trained using the SGD algorithm.

We denote the output of the “linear part” of the logistic regression as

§(w;w) = 2w,

and the overall prediction as

y(z; w) = o(f(x; w)) = o(xw).

The logistic regression output y(x;w) models the probability of class C1, p(C1|a).

To give some meaning to the output of the linear part g(m; w), starting with

P(Cil2) = o(§(e)) = Ty
we arrive at
et — 1o [ _P(CR) \ _ (P(Cile)
stasn) =g (20005 ) =1 (p(CnEm))’

which is called a logit and it is a logarithm of odds of the probabilities of the two classes.

10



3.7 Q

Write down an Lo-regularized minibatch SGD algorithm for training a binary logistic regression
model, including the explicit formulas of the loss function and its gradient. [10]

To train the logistic regression, we use MLE (the maximum likelihood estimation). Its
application is straightforward, given that p(C) |@; w) is directly the model output y(x; y).

Therefore, the loss for a batch X = {(z,1,), (22, t2), ..., (TN, tn)} is

B(w) = 1 3 ~log(p(C, fei; w))

Input: Input dataset (X € RV*D ¢ € {0, +1}"), learning rate a € R~

* w0
® until convergence (or until patience is over), process batch of IV examples:
0 g4+ %3, —Vu log (p(Cy i3 w))

o W w—ag

Answer:
Name Activation Distribution Loss Gradient
linear regression | identity Normal NLL o MSE (u(=z) —t)=
logistic regression | o(y) Bernoulli NLL x E — log(p(t|2)) | (y(z) —t)e Pozn.: primym vypoctem

4 Lecture

41 Q

Define mean squared error and show how it can be derived using MLE. [5]

During regression, we predict a number, not a real probability distribution. In order to generate
a distribution, we might consider a distribution with the mean of the predicted value and a fixed
variance o — the most general such a distribution is the normal distribution.

Answer:
Therefore, assume our model generates a distribution p(t|e; w) = N (¢; y(z; w), o2).

Now we can apply MLE and get
N
arg max p(t| X; w) = a.rgm.i.u Z —log p(t;|@:; w)
e 3,1

_{u yfI sw))”

—a.rgmm—ZIOgv —

:a.rgm.in —N log( (2767)

i (t; — y(zi; w))?

202
= argmmz 7@ = yz(:z,;w) = argmm N Z(t =yl w))’.

4.2 Q

Considering K-class logistic regression model, write down its parameters(including their size) and
explain how is prediction performed (including the formula for the softmax function). Describe
how we can interpret the outputs of the linear part of the model as logits. [5]

To extend the binary logistic regression to a multiclass case with K classes, we:
® generate K outputs, each with its own set of weights, so that for W € RDxK
i ST : 5l on: =gl
y(z; W) = ' W, orinother words, g(z; W), =’ (W.;)
® generalize the sigmoid function to a softmax function, such that

oY

Eje":"

softmax(y); =
Answer:

11



Using the softmax function, we naturally define that

@),

p(Ci|e; W) = y(z; W); = softmax(g(z; W)); = softmax(a’ W); = ————.
5, =Wy

Considering the definition of the softmax function, it is natural to obtain the interpretation of
the linear part of the model §j(a; W) as logits:

gl W); = log(p(Ci|z; W)) +c.

The constant ¢ is present, because the output of the model is overparametrized (the probability

of for example the last class could be computed from the remaining ones). This is connected to
the fact that softmax is invariant to addition of a constant:

etite e¥i e
T softmax(y);.

ZJ- evite Ej eli

softmax(y + c); =
Pozn.:maybe add explanation for the logits

43 Q

Write down an Ls-regularized minibatch SGD algorithm for training a K-class logistic regression
model, including the explicit formulas of the loss function and its gradient. [10]

AT softmax(y) |categorical |NLL oc E — log(p(t|x)) (y(a:) - lt)mr

logistic regression

Answer:
To train K-class classification, analogously to the binary logistic regression we can use MLE
and train the model using minibatch stochastic gradient descent:
Input: Input dataset (X € R¥*P ¢t e {0,1,..., K — 1}V), learning rate a € R*.
Model: Let w denote all parameters of the model (in our case, the parameters are a weight
matrix W and maybe a bias vector b).
* w0
® until convergence (or until patience is over), process batch of N examples:

© g+ 5 2; Vu —log (p(Cy |:; w))
Q w+ w—ag

Ly-regularization for the update:

weights = wetghts — args.learning_rate- gradient

44 Q

Prove why are decision regions of a multiclass logistic regression convex. [5]

Note that the decision regions of the binary/multiclass
logistic regression are convex (and therefore connected).
To see this, consider 4 and &g in the same decision
region Ry.

Any point & lying on the line connecting them is their

linear combination, ® = Az + (1 — A)@p, and from
the linearity of F(®) = @” W it follows that

U(x) = Ag(xa) + (1 = Ay (za).

Given that §(x 4);, was the largest among F(x4) and also given that F(xp)) was the largest
Answer: among §(xp), it must be the case that (), is the largest among all ().

45 Q

Considering a single-layer MLP with D input neurons, H hidden neurons, K output neurons,
hidden activation f and output activation a,list its parameters (including their size) and write
down how is the output computed. [5]

12



Assume we have an MLP with input of size D, weights w" e RIH
b" c BH  hidden layer of size H and activation f with weights W¥ €
RE<K bY ¢ RE and finally an output layer of size K with activation a.

i ho | Eiiile tot 1 ikt

trrorder—tocomputethegradient—of
Answer: & 2 g 2
We now extend the model by adding a fhidden layer with activation f.

* The computation is performed analogically: Input layer Hidden layer Output layer
activation f activation a
- h h
e f(E Sl +b,.),
w=a(d b +#),
or in matrix form

e f(mTwh + b"),

= a(hTWy 4 hv),

and for batch of inputs H = f(XWh + bh) and ¥ = a(HW”' +by).

46 Q

List the definitions of frequently used MLP output layer activations (the ones producing
parameters of a Bernoulli distribution and a categorical distribution).Then write down three
commonly used hidden layer activations (sigmoid, tanh, ReLU). [5]

Output Layer Activation Functions

* regression:
O identity activation: we model normal distribution on output (linear regression)
© lexp(z)s we model Poisson distribution on output (Poison regression)

* binary classification:
o @(x): we model the Bernoulli distribution (the model predicts a probability)

1
def
o) =7 —
(=) 1+4+e*
* K-class classification:
o softmax(a): we model the (usually overparametrized) categorical distribution

En
softmax(z) o« ®, softmax(z); = =
=,

Answer:
Hidden Layer Activation Functions
® no activation (identity): does not help, composition of linear mapping is a linear mapping
* @ (but works suboptimally — nonsymmetrical, % (0) = 1/4)

e tanh 2o From Sigmolid Function alx) to Tanh
© result of making & symmetrical = |
K . i e — 20oix) —T"
and making derivation in zero 1 — 20(x)-1 ==
o tanh(z) = 20(2z) — 1 o MO — 2o@x-1mtanhia |~
2 05
g
* RelLU 0.0
o max(0, z) ol
© the most commen non-linear S
activation used nowadays =3 =2 = 0 1 7 3
x
4.7 Q

Considering a single-layer MLP with D input neurons, a ReLLU hidden layer with H units and
softmax output layer with K units, write down the formulas of the gradient of all the MLP
parameters (two weight matrices and two bias vectors), assuming input x, target ¢ and negative
log likelihood loss. [10]

Answer: General steps to calculate the gradient:

13



Assume we have an MLP with input of size D, weights W" c RP*H,
b" € R hidden layer of size H and activation f with weights W¥ €
R¥*K p¥ € RE and finally an output layer of size K with activation a.

In order to compute the gradient of the loss L with respect to all weights,
you should proceed gradually:

® first compute %,
® then compute %, where g, are the inputs to the output layer (i.e., before applying
activation function a; in other words, y = a('ym)),
dy dy - i 8L _ 3L By Oy
® then compute zyf and 5., which allows us to obtain zpm = Oy " Dy, OWY and
analogously %,

® followed by %y,;ﬂ and F?hh_
® and finally using %;} and %}’: to compute % and gﬁ,

In our case we just substitute our given activation functions (code with the same activation
functions just to check, on paper much easier):

I [11,

[1]) - one

48 Q

Formulate the Universal approximation theorem. [5]

Let @(z) be a nonconstant, bounded and nondecreasing continuous function.
(Later a proof was given also for ¢ = ReLU and even for any nonpolynomial function.)

For any £ > 0 and any continuous function f : [0,1]7 — R, there exists H € N, v € R¥ |
beRH and W € RP*H  sich that if we denote

H
Fz)=v'o(z'W +b) = Z”ﬁ‘ﬁ(mTW»,z‘ +bs),

i=1

where ¢ is applied elementwise, then for all & € [0, I]D:

Answer: |F(z) - (=) <&

Proof not required, sketch of it added for fun:

14



Sketch of the proof: 5
® |f a function is continuous on a closed interval, it can be approximated by a sequence
of lines to arbitrary precision.

ny(z) = Relu(—3x - 7.7)

i 3
/ ,{'i naiz) = Relu(br - 5)
y /

| + na(z) 4+ nslz) + nof)

® However, we can create a sequence of k linear segments as a sum of k& ReLU units — on
every endpoint a new RelU starts (i.e., the input ReLU value is zero at the endpoint), with
a tangent which is the difference between the target tangent and the tangent of the
approximation until this point.

Sketch of the proof for a squashing function @(z) (i.e., nonconstant, bounded and

nondecreasing continuous function like sigmoid): @

® We can prove ¢ can be arbitrarily close to a hard threshold by compressing it horizontally.

T, wa,

_ 1
V= T

® Then we approximate the original function using a series of straight line segments

5 Lecture

51 Q

How do we search for a minimum of a function f(z):R” — R subject to equality constraints

Let f(e) : R? — R be a function, which has a minimum (or a maximum) in @ subject to
equality constraints gy (&) = 0,. .., gn(x) = 0. Assume that f, g1,...,9m have continuous
partial derivatives and that the gradients Va1 (&), ..., Vagm (@) are linearly independent.

Then there exist Ay € B, ..., A € R, such that the Lagrangian function
L@, A) £ f(=) = > Nigi(x)
i=1

has zero gradient in both @ and A.

Answer: This strategy of finding constrained minima is known as the method of Lagrange multipliers, Example:

Assume we want to find a categorical distribution py, ..., pn with maximum entropy.
Then we want to minimize —H (p) under the constraints

& p; >0 for all £,
s Yiam=1

Ignoring the first constraint for the time being, we form a Lagrangian
(5= (Zp] lugp,-) - A(Zpi - 1).

Computing the derivative with respect to p; and setting it equal to zero, we get

oL 1
0=_"=1-log(p;)) +pi- — —A=log(p:)+1— A
o g(pi) +p ~ & (pi)

Therefore, all p; = e*~! must be the same, and the constraint E?:l pi = 1 yields p; = i

52 Q

Prove which categorical distribution with N classes has maximum entropy. [5]
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Answer: Softmax

Let X = {(z1,t1), (@2,t2), ..., (&N, tn)} be training data of a K-class classification, with
x; €RP and t; € {1,2,...,K}.

We want to model it using a function 7 : R? — RK so that 7(2) gives a distribution of
classes for input .

We impose the following conditions on r:

e V1<k<K:w(z) >0,

K

. Zﬂ(m)k =il;
k;l "

Ik <K: Zﬂ'(m,—)km, = E [t, == k]m,—.
=i i=1

There are many such 7, one particularly bad is

1, ifthereexistsi:@; =,
(=) =

1o otherwise,

where 1; is a one-hot encoding of ¢ (vector of zeros, except for pesition &, which is equal to 1).
Therefore, we want to find a more general  — consequently, we turn to the principle of
maximum entropy and search for  with maximum entropy.

We want to minimize — E:\=1 H(m(z;)) given

s Ml<i< N,VI<k<K:n{e); =0

s Yi<i< N :YE w(@) =1,

s V1<ji<DV1<k<K:Y! ml@ha;=Y", [t==1k=y;

We therefore form a Lagrangian (ignoring the first inequality constraint):

N K

_Z’ﬁ'(zﬂ-(m‘)k —1).

i=1 k=1
We now compute partial derivatives of the Lagrangian, notably the values @
a

om (@)
We arrive at

a =
mﬁ =log(m(@i)r) + 1 — x; Ak — fi.

Setting the Lagrangian to zero, we obtain
@ Apthi—1

m(x: ) =€

Such a forms guarantees 77(.1':1-);; > 0, which we did not include in the conditions.

In order to find out the 3; values, we turn to the constraint @
ok
Z’T(mi)k hl Zezi Apthi—1 _ i
k k
from which we get
; 1
et = Ta. ’
Spetint
yielding
T, Sy em?,\u
- T *, T —
() = % Aethiml = W = softmax(e; ).
K :

53 Q

Consider derivation of softmax using maximum entropy principle, assuming we have a dataset
of N examples (x;,t;),z; € RP t; € {1,2,...,K}. Formulate the three conditions we impose on
the searched 7 : R” — R¥ | and write down the Lagrangian to be maximized. [10]
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Let X = {(x1,%1), (@2,t2),..., (&N, Etx)} be training data of a K-class classification, with
=z eRP and t; € {1,2,...,K}.

We want to model it using a function 7 : BRP? — RX so that () gives a distribution of
classes for input 2.

We impase the following conditions on 7r:

e V1<k<K:wx)k=>0,

K
* Zﬂ(m)i‘=la

k;l e
eVISk<K:Y m@ha=Y [f.i ==k]m,-.

Answer:
There are many such 7, one particularly bad is

(@) 1, ifthereexistsi:z; =,
x) =
1p otherwise,

where 1; is a one-hot encoding of 1 (vector of zeros, except for position , which is equal to 1).

Therefore, we want to find a more general m™ — consequently, we turn to the principle of

maximum entropy and search for = with maximum entropy.

We want to minimize — Z:;l H(x(z;)) given

* V1<i<NV1I<k<K:am(z:)r =0,

e Y1<i< N :Ei_ilﬂ'(:c,)k:l‘

s Vg < DVI<ESR T inlmhag= Y, [==klzys

We therefore form a Lagrangian (ignoring the first inequality constraint):

=

M;
Mx

m(a; ), log( (7))
i=1 k=1
D K N i
ZZAJ* (Z?r e — [t == k];z:”)
=1 k=1 i=1
JN K
B: (@) —1).
=1 (;’Ta’ & )

54 Q

Define precision (including true positives and others), recall, F; score and Fj score (we stated
several formulations for F; and Fg scores; any of them will do). [5]

Predictsd e Positive (TB) | False Positive (FP)
positive
Predicted

i E?t False Negative (FN) True Negative (TN)
negative

Answer: - e
In some cases, we are mostly lnterested in poswtwe examples

We ‘_jefme PI’SCISIDN (percentage of correct predwctwons n How many selected How many relevant
predicted examples) and recall (percentage of correct Hhents e relevant? B e s ea
predictions in the gold examples) as
TP i
£ Precision =
recision = ————-
k! TP+ FP’
TP

TP+ FN

Recall = ——

recall =

The precision and recall go “against each other”: Ao cune
increasing the classifier threshold usually increases
recall and decreases precision, and vice versa.

We therefore define a single Fyrscore as a
harmonic mean of precision and recall:

Ly

2 ki
precision™! + recall™!
2 precision - recall

P =

" precision + recall

__ TP + TP
T TP+ FP+ TP+ FN

17



The F} score can be generalized to Fjg score, which can be used as a metric when recall is 8

times more important than precision; F favoring recall and Fiy 5 favoring precision are
commonly used.

The formula for Fy is

144
Fp = T ep— 2 =T
precision” " + F?recall
_ (14 %) - precision - recall
~ B2 - precision + recall
RN BATP
" TP+ FP+ B3 (TP+ FN)’

55 Q

Explain the difference between micro-averaged and macro-averaged F score. [5]

To extend Fi-score to multiclass classification, we expect one of the classes to be negative and
the others different kinds of positive. For each of the positive classes, we compute the same

confusion matrix as in the binary case (considering all other labels as negative ones), and then
combine the results in one of the following ways:

* ‘micro-averaged F (or just micro F1): we first sum all the TP, FP and FN of the

individual binary classifications and compute the final F'-score (this way, the frequency of
the individual classes is taken into account);

® macro-averaged F) (or just macro F}): we first compute the F)-scores of the individual

binary classifications and then compute an unweighted average (therefore, the frequency of
the classes is ignored).
Answer:

56 Q

Describe k-nearest neighbors prediction, both for regression and classification. Define L, norm
and describe uniform, inverse and softmax weighting. [5]

Regression

To perform regression when k nearest neighbors have values £; and weights w;, we predict

w;
t=22j“’i.tj'

Classification

For uniform weights, we can use voting during prediction — the most frequent class is predicted
(with ties broken arbitrarily).

Otherwise, we weight the categorical distributions £; € RE (with the training target classes
represented using one-hot encoding), predicting a distribution

w;

;ijj k.

The predicted class is then the one with largest probability, i.e., arg max, } . wit; .
Answer: k2 s
Several hyperparameters influence the behaviour of the

t=

A A
prediction phase: n L ene -~ A
* k: consider k most similar training examples (higher k& ’,"‘ u \\‘
usually decrease variance, but increase bias); i
* metric: a function used to find the nearest neighbors; L i

common choices are metrics based on LP norms (with
|

usual values of p being 1, 2, 3, 00). For &,y € R?, )
;

the distance is measured as HﬂE = y”p' where ;

1/p '\‘ _."
el = (3, JesP) s _ e

* weights: optionally, more similar examples can be considered with bigger weights:
o |niformi all k nearest neighbors are considered equally;

O linverse. the weight of an example is proportional to the inverse of distance;
© [softmax: the weights are proportional to softmax of negative distances.
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6 Lecture

6.1 Q

Define a kernel based on a feature map ¢ : RP — R and write down the formulas for
1. a polynomial kernel of degree d,
2. a polynomial kernel of degree at most d,

3. an RBF kernel. [5]

We define a kernel corresponding to a feature map ¢ as a function

K(=,2) £ o) o(2).
Answer:
* Polynomial kernel of degree d, also called homogenous polynomial kernel
K(z,2) = (ya'2)",
corresponds to a feature map returning all combinations of exactly d input features.
* Polynomial kernel of degree at most id, 2lso called nonhomogenous polynomial kernel
K(2,2) = (va"z + 1),
corresponds to a feature map generating all combinations of up to d input features
* Gaussian Radial basis function (RBF) kernel
2
K(z, z) = e Ml===I,

corresponds to a scalar product in an infinite-dimensional space; it is a combination of
polynomial kernels of all degrees. Assuming v = 1 for simplicity, we get

6.2 Q

Define a kernel and write down the mini-batch SGD training algorithm of dual formulation of
kernel linear regression. Then describe how predictions for unseen data are made. [10]

We can formulate an alternative linear regression algorithm (a so-called dual formulation):
Input: Dataset (X = {@1,®2,...,&x} € RY*D ¢ € RY), learning rate e € R,

® set B; 0
* compute all values K ; = w(x:)T ()
* until convergence (or patience runs out), process a minibatch of examples with indices b:
© simultaneously for all ¢ € b (the 3; on the right side must not be modified during the
batch update):

L iR = ‘aﬁ(zj (8, K:;) — ti)
The predictions are then performed by computing

u(z) = p(z)"w=7_ (=) o(z:).
Answer:

6.3 Q

Derive the primary formulation of hard-margin SVM (the value to minimize,the constraints to
fulfill) as a maximum-margin classifier. [5]
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Let us return to a binary classification task. The perceptron algorithm guaranteed finding some
separating hyperplane if it existed (but it could find quite a bad one).

We now consider finding the one with maximum margin.

g=1 y==1
y=0 y=0

=-1
margin /
Answer:

Assume we have a dataset X € RY*D ¢ € {—1,1}V, a feature map ¢ and a model
def T
y(e) £ o) w +b.
We already know that the distance of a point @; to the decision
boundary is
i lassifies
ly(ae:)| ™ alle, core

all ®; correctly tiy(mi)
[[ll [[eoll ~

We therefore want to maximize

arg max ”—;“ m‘_jn [t,— (gp(m,—)Tw + b)] .

w,b

However, this problem is difficult to optimize directly.

Because the model is invariant to multiplying w and b by a constant, we can decide that for the
points closest to the decision boundary, it will hold that

tiy(e;) = 1.
Then for all the points we will have ;y(@;) > 1 and we can simplify
1
arg max —— min [f.i (tp(mf)Tw + b)]

ws  |lw]

1
a.rgl:uj.u§||1.u||2 given that t;y(x;) > 1.
wb

6.4 Q

How do we search for a minimum of a function f(z): R” — R subject to an inequality constraint
g(x) > 0?7 Formulate both the variant with KKT conditions and the variant with the A
maximization, and prove that they are equivalent. [10]

Given a function f(), we can find its minimum with respect to a
vector & € R4, by investigating the critical points Ve f(z) =0. wnnm

We can even incorporate constraints of form g(@) = 0 by forming
a Lagrangian

[EERR o

Lz, A) = f(x) — Ag(=)

and again investigating the critical points V) L(z, A) = 0.

Answer' The )\ maximization: We now describe how to include inequality constraints g(a) > 0.

Our goal is to find a minimum of f(2) subject to a constraint
g(x) = 0. X
We start by again forming a Lagrangian f(xz) — Ag(x).

Vix)

The optimum can either be attained for g(z) > 0, when the
constraint is said to be inactive, or for g(m) = 0, when the

constraint is said to be active. In the inactive case, the minimum is
again a critical point of the Lagrangian with the condition A = 0.

alx) =0

glx) =0

When the minimum is on a boundary, it corresponds to a critical
point with A # 0 — but note that this time the sign of the multiplier
matters, because the minimum is attained only when the gradient of
f(@) is oriented into the region g(x) > 0. We therefore require
Vf(x) = AVg(z) for A > 0.

In both cases, Ag(x) = 0.

20



The KKT conditions variant:
Let f(=) : R — R be a function, which has a minimum in @ subject to an inequality
constraint g(a) > 0. Assume that both f and g have continuous partial derivatives and that
B #0.

Then there exists a A € I, such that the Lagrangian function

l wle) >0

L(x,A) = f(z) - Ag(x)

has zero gradient in @ and the following conditions hold:

gl@) =0,
A0,
Ag(z) = 0.

These conditions are known as Karush-Kuhn-Tucker (KKT) conditions.

It is easy to verify that if we have the minimum @ and A fulfilling the KKT conditions g(a) >
0, = 0, Ag(z) = 0, the Langrangian £ has a maximum in X:

e if g(z) = 0, then £ does not change when changing A,

¢ if g(z) > 0, then A = 0 from the KKT conditions, which is a maximum of £

On the other hand, if we have the minimum @, A > 0 and £ has a maximum in A, all the KKT
conditions must hold:

e if g(z) < 0, then increasing A would increase L,
* if g(z) > 0, then decreasing X increase £, so A = (.

Maximizing Given f(z)
If we instead want to find the constrained maximum of f(a:)‘ we can search for the minimum

of —f(a), which results in the Lagrangian f(z) + Ag(z), which we minimize with respect to

A

6.5 Q

Starting from primary hard-margin SVM formulation, derive the dual formulation(the Lagrangian
L, the required conditions, the KKT conditions). [10]

Answer: Hard margin model formulation:
We already know that the distance of a point @; to the decisio
boundary is

sumi lassifi
Iy(ﬂ!,)l mi:lllﬂ;?gcgrieﬁ?yms tiy(mz)

[l [l

We therefore want to maximize
1 : T
argmax—rmn[t—qpa: w+b].
Lt s el

Because the model is invariant to multiplying @ and b by a constant, we can decide that for the
points closest to the decision boundary, it will hold that

:,—y(ml—) =l

Then for all the points we will have £;y(@;) > 1 and we can simplify
1
arg max ;—— min [ti-{:p(m,-)Tw + b)] :
w,b =

[[eo]]

to

1
arg min §|[w|i2 given that ¢;y(z;) > 1.
wh

The Lagrangian, conditions, KKT conditions:
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In order to solve the constrained problem of

arir;]m %”w"2 given that tiy(mi) > 1,
we write the Lagrangian with multipliers @ = (0,1, o ,aN) as
5= %kuz - Zai[t.—y(m,—) -1].
i
Setting the derivatives with respect to w and b to zero, we get
w=> " atip(x:),
i
0= Z a;t;.
i

Substituting these to the [Lagrangian, we want to maximize

1
L= Zi a; — E i Ej a,a_itgi,K(mi, a:j)

with respect to a; subject to the constraints @; = 0 and Z‘- a;t; = 0, using the kernel
i

K(z,z) = po(z)" ¢(z).

The solution will fulfil the KKT conditions, meaning that

a; >0, tiy(z:) =1 >0, ai (tiy(z:) = 1) = 0.

Therefore, either a point @; is on a boundary, or a; = 0. Given that the prediction for @ is
y(e) = 3, ait: K (@, ;) + b, we only need to keep the training points @; that are on the
boundary, the so-called Support vectors. Therefore, even though SVYM is a nonparametric
model, it needs to store only a subset of the training data.

6.6 Q

Considering hard-margin SVM, define what a support vector is, and how predictions are
performed for unseen data. [5]

The solution will fulfil the KKT conditions, meaning that
ai >0, tiy(xi) —1 > 0, a,g(t,'y(a:;) — 1} =

Therefore, either a point @; is on a boundary, or a; = 0. Given that the prediction for @ is
y() =3, ait: K (@, 2;) + b, we only need to keep the training points @; that are on the
boundary, the so-called Support wectors. Therefore, even though SVM is a nonparametric

Answer' model, it needs to store only a subset of the training data.

7 Lecture

71 Q

Write down the primary formulation of soft-margin SVM using the slack variables (the value to
minimize, the constraints to fulfil). [5]

Until now, we assumed the data to be linearly separable — the
hard-margin SVM variant. We now relax this condition to arrive at
Is arg WI.| The idea is to allow points to be in the margin
or even on the wrong side of the decision boundary. We introduce
slack variables £; > 0, one for each training instance, defined as

0 for points fulfilling t;y(z;) > 1,

& = 3
|t: —y(x;)| otherwise.

Therefore, & = 0 signifies a point outside of margin, 0 < & < 1 denotes a point inside the

margin, & = 1 is a point on the decision boundary, and & > 1 indicates the point is on the

opposite side of the separating hyperplane.

Therefore, we want to optimize

arg min C' ng + %”w”2 given that t;y(z;) > 1—&and & > 0.
Answer: A
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7.2 Q

Starting from primary soft-margin SVM formulation, derive the dual formulation(the Lagrangian
L, the required conditions, the KKT conditions). [10]

Until now, we assumed the data to be linearly separable — the
hard-margin SVM variant. We now relax this condition to arrive at
soft-margin SVM. The idea is to allow points to be in the margin
or even on the wrong side of the decision boundary. We introduce
slack variables £; > 0, one for each training instance, defined as

g 0 for points fulfilling #,y(z;) > 1,
"7 ||t — y(e:)| otherwise. =0

Therefore, & = 0 signifies a point outside of margin, 0 < & < 1 denotes a point inside the
margin, & = 1 is a point on the decision boundary, and & > 1 indicates the point is on the
opposite side of the separating hyperplane.

Therefore, we want to optimize

15
arg min C' ZE,- + E||1.v||2 given that t;y(x;) > 1— & and & > 0.
Answer: S i
To solve the soft-margin variant, we again create a Lagrangian, this time with two sets of
multipliers @ = (a1, ...,ax) and pp = (p1,- .., 1n):

L= %Hw”? T CZ& = Zfﬁ [ty(m:) — 1+ &] - ZM’E:.

Solving for the critical points and substituting for w, b and £€ (obtaining an additional
constraint pt; = C' — a; compared to the previous case), we obtain the Lagrangian in the form

1

L= Za,— ~ EZagajtgth(mi,mj),
i i J

which is identical to the previous case, but the constraints are a bit different:

Vi:C>ai >0 and Za.gt,*:l].

73 Q

Write down the primary formulation of soft-margin SVM using the hinge loss. [5]

Until now, we assumed the data to be linearly separable — the
hard-margin SVM variant. We now relax this condition to arrive at
soft-margin SVM. The idea is to allow points to be in the margin
or even on the wrong side of the decision boundary. We introduce
slack variables & > 0, one for each training instance, defined as

£ 0 for points fulfilling t;y(z;) > 1,
P Tt — y(@)|  otherwise.
Answer:

Note that the slack variables can be written as

& = max (0, 1-— tiy(a:,-)},
so we can reformulate the soft-margin SVM objective using the hinge loss
Liinge(t,y) = max(0,1 — ty)

to
1
argr;lj_nCZﬁhmge(tn y(z)) + 5”“’“2

Such formulation is analogous to a regularized loss, where C' is an inverse regularization
strength, so C' = oo implies no regularization, and C' = 0 ignores the data entirely.

74 Q

Describe the high-level overview of the SMO algorithm (the test whether the KKT conditions
hold, how do we select the a; and a;to update,what is the goal of updating the a; and a;, how
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do we detect convergence; but without the update of a;, aj, b themselves). [5]

At its core, the SMO algorithm is just a coordinate descent.

It tries to find @; maximizing £ while fulfilling the KKT conditions — once found, an optimum
has been reached, given that for soft-margin SVM the KKT conditions are sufficient conditions
for optimality (for soft-margin SYM, the loss is convex and the inequality constraints are not
only convex, but even affine).

However, note that because of the Z a;t; = 0 constraint, we cannot optimize just one a;,
because a single a; is determined from the others. Therefore, in each step, we pick two a;,a;
coefficients and try to maximize the loss while fulfilling the constraints.

* loop until convergence (until Vi :a; < C = ty(x;) > 1and a; > 0 = tiy(x;) < 1)
o ford in £1,2,..., N}:
® choose j #1in {1,2,...,N}
" ;,q; ¢ argmax, L(a1,as,-..,ay), while respecting the constraints:
2 0<a;<C,0<q;<C 3 ,ait; =0
Answer:
Maximizing £(@) with respect to a; and a; then amounts to maximizing a quadratic function
of a;, which has an analytical solution.

75 Q

Describe the part of the SMO algorithm which updates a; and a; to maximize the Lagrangian.
If you explain how is the update derived (so that ifl followed the instructions, I would come up
with the update rules), you do not need to write explicit formulas. [10]

At its core, the SMO algorithm is just a coordinate descent.
It tries to find a; maximizing £ while fulfilling the KKT conditions — once found, an optimum
has been reached, given that for soft-margin SVM the KKT cenditions are sufficient conditions

for optimality (for soft-margin SVM, the loss is convex and the inequality constraints are not
only convex, but even affine).

However, note that because of the Z a;t; = 0 constraint, we cannot optimize just one a;,
because a single a; is determined from the others. Therefore, in each step, we pick two a;, a;
coefficients and try to maximize the loss while fulfilling the constraints.

® loop until convergence (until Vi:a; < C = tiy(a;) = 1and a; > 0 = tiy(e;) < 1)
o fordin {1,2;...;N}:
® choose j #1iin {L,2,...,N}
" g;,0; ¢+ argmax,, , L(ai,as,...,ay), while respecting the constraints:
#0<a;<C 0<g;<C Y, a;t; =0
Answer:
In soft-margin SVM, we try to maximize

E= ZGL,‘ - % Z;a,—ajigtﬂ{(m,-,mj)

Maximizing E(u) with respect to @; and a; then amounts to maximizing a quadratic function
of a;, which has an analytical solution.

There we have to have a negative second derivative (we want the maximum):
We already know that a; = ti (¢ — ajt;).

To find @; maximizing L, we use the formula for locating a vertex of a parabola

aL/Ba;
PL[0aT’

o By

37—y —

which is in fact one Newton-Raphson iteration step.

Denoting E; = y(@x;) — t;, we can compute the first derivative as

aL
e t(E: — Ej),
and the second derivative as
L
BT = 2K (@;, ;) — K(@;,®;) — K (a5, 2;).
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If the second derivative is negative, we know that the vertex is really a maximum, in which case
we get
_,— ;

2K(ml=mj) = K(mnmi) = K(m_rrmj)

new et
(Ij = (5}

However, our maximization is constrained — it must hold that 0 < a; < C and 0 < a; < C.
Recalling that a; = —¢;¢;a; + const, we can plot the dependence of

a; and aj. If for example —t;t; = 1 and a?ew > (', we need to find

the “right-most” solution fulfilling both @; < C and a; < C. Such a
solution is either:

® when a?m

® when a;,-‘“’ is clipped so that af*¥ = C (the purple case in the
example), in which case a;-’“" =a; + (C - cr.g-)

is clipped to C, as in the green case in the example,

76 Q

Describe the part of the SMO algorithm which updates b to maximize the Lagrangian. If you
explain how is the update derived (so that if I followed the instructions, I would come up with
two b candidates and a rule how to utilize them), you do not need to write explicit formulas. [10]

Answer: After updating a;,a; (if we updated them at all), we proceed to update the bias
(that is the same for all values a and needs to be updated so that the conditions still hold with

the new a updates):
To arrive at the bias update, we consider the KKT condition that for 0 < a7V < C, it must
hold that 1 = t;y(x;) = &;[( 35, ai~t, K (2;, @,)) + b"]. Combining it with the fact that
(2! a.;th(a:j, :n;)) +b= Ej + t;, we obtain

B =b— E; — t:(a] — a;) K (zi, 25) — t;(a}"™ — ;) K (z;, ;).
Analogously for 0 < af*™ < C' we get
b = b — By — ti(a;™ — a;) K (@i, @) — t5(a;"™ — a;) K (=j, ).

Finally, if a*",a;*" € {0,C}, we know that all values between b; and b; fulfil the KKT
conditions. We therefore arrive at the following update for bias:

by if 0 <af*¥ <C,
b = e if 0<a}™ <C,
(7™ + b5°") /2 otherwise.

77 Q

Describe the one-versus-one and one-versus-rest schemes of constructing a K-class classifier by
combining multiple binary classifiers. [5]

There are two general approaches for building a K-class classifier by combining several binary
classifiers:
* [gne-versus-rest scheme: K binary classifiers are constructed, the i-th separating instances
of class @ from all others; during prediction, the one with highest probability is chosen
© the binary classifiers need to return calibrated probabilities (not SVM)

* jone-versus-one scheme: (‘z) binary classifiers are constructed, one for each (z,7) pair of
class indices; during prediction, the class with the majority of votes wins (used by SVM)
However, voting suffers from serious difficulties,
because there usually exist regions which are

ambiguous.

Answer:
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8 Lecture

81 Q

Explain how is the TF-IDF weight of a given document-term computed. [5]

We already know how to represent images and categorical variables (classes, letters, words, ..).
Now consider a problem of representing a whole document.

We usually represent a document as a bag of words — we create a feature space with a
dimension for every unique word (or for character sequences), called erml

AHSWGI‘: However, there are many possible ways how the values of the terms might be set.

Commonly used ways of setting the term values:
® binary indicators: 1/0 depending on whether a term is present in a document or not;

¢ term frequency (TF): relative frequency of a term in a document;

number of occurrences of £ in the document d

TF(t;d) =

number of terms in the document d

* linverse document frequency (IDF): we could also represent a term using self-information
of a probability of a random document containing it (therefore, terms with lower document
probability have higher weights);

number of documents

IDF(t) = log =I(P(d > t))

number of documents containing ¢ (optioua]ly +1)

® [TEIDF: empirically, product TF- IDF is a feature reflecting quite well how important is a
term to a document in a corpus (used by B3% text-based recommender systems in 2015).

8.2 Q

Define conditional entropy, mutual information, write down relation between them, and finally
prove that mutual information is zero if and only if the two random variables are independent
(you do not need to prove statements about Dgr,). [5]

Consider two random variables x and y with distributions x ~ X and y ~ Y.

The [conditional entropy H (Y| X) can be naturally considered an expectation of a self-
information of Y| X, so in the discrete case,

H(Y|X) = Exy [I(y|2)] = = P(x,y)log P(y|x)-

In order to assess the amount of information shared between the two random variables, we
might consider the difference

HY)-H{Y|X)= Er-y[_ log P(y)] —E., [ - logP(y\a:)} — il [log %} .

We can interpret this value as

Answer: How many bits of information will we learn about Y when we find out X7
Let us denote this quantity as the mutual information I(X;Y):  #o HOY
Plz,y)
T(X- Y= [logi’ :
' "1 P(z)P(y)

HOLY)
* The mutual information is symmetrical, so

I(X;Y)=IY;X)=H(Y)-H(Y|X) = H(X) - HX|Y).
® |t is easy to verify that
I(X;Y) = Dy, (P(X,Y)|[P(X)P(Y)).
Therefore,

o I(X;Y) >0,
o I(X;Y)=0iff P(X,Y) = P(X)P(Y) iff the random variables are independent.

8.3 Q

Show that TF-IDF terms can be considered portions of a suitable mutual information. [5]
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Let D be a collection of N documents and T collections of terms.

Qur assumption is that whenever we need to draw a document, we do it uniformly randomly.
Therefore,

* P(d) =1/|D| and I(d) = H(D) = log |D|,
e Pd|t)=1/|{deD:ted}| and I(d|t) = H(D|T =t) =log|{d € D: t € d}|,

o I(d) — I(d|t) = H(D) — H(D|T = t) = log m = IDF(t).

Finally, we can compute the mutual information I(D; T) as

I(D;T) =Y P(d)- P(tld) - (I(d) - I(d]t)) = % > TR(t;d) - IDF(t).
dit dit

Therefore, summing all TF-IDF terms recovers the mutual information between D and T, and
AIISWGI" we can say that each TF-IDF carries a "bit of information” attached to a document-term pair.

84 Q

Show that Ly-regularization can be obtained from a suitable prior by Bayesian inference (from
the MAP estimate). [5]

Frequently, the mean is assumed to be zero, and the variance is assumed to be o2. Given that
we have no further information, we employ the maximum entropy principle, which provides us
with p(w) = M (w;0,6?). Then
wyap = arg max p(X [w)p(w)
w
N
= argmax [[_ p(ailw)p(w)
N
= o Zi=l (= log p(;|w) — log p(w)).
By substituting the probability of the Gaussian prior, we get

[[w]*

202’

N 1 2
WyAp = arg min Zi=1 - logp(mi|w)—3 log(2ma”) +

AIISWGI‘: which is in fact the La-regularization.

Pozn.: normal distribution
Normal (or Gaussian) Distribution
2

Distribution over real numbers, parametrized by a mean y and variance o*:

=) 2

3

For standard values g = 0 and ol =1we get N(z; 0,1) =4/ %e_T.

8.5 Q

Write down how is p(C|x) approximated in a Naive Bayes classifier, explicitly state the Naive
Bayes assumption, and show how prediction is performed. [5]

Answer: Context:
So far, our classifiers were so-called discriminative and had a form

P(Ci|x) = p(Cr|z1, 23, - - ., 2D).

Instead, we might use the Bayes' theorem and rewrite to

p(2|Ci)p(Cr) }

ACHR == o)

Then, classification could be performed as
when maximizing with respect to k, p(x) is

independent of k and acts only as a constant
p(=|Cr)p(Ch)

arg max p(Ci|x) = arg max = arg max p(z|Ci)p(Ck).
k k P(E) k

Therefore, instead of modeling p(Ci|z), we model

e the prior p(Ck) according to the distribution of classes in the data, and
® the distribution p(z|Cy).
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Our p(Cy|x) approximated by Naive Bayes and the assumption + prediction:

Modeling the distribution p(a|C%) is however difficult — @ can be high-dimensional high-
structured data.

Therefore, the so-called Naive Bayes classifier assumes that
all ¢4 are independent given Cj.,

SO we can rewrite

p(z|Ch) = p(z1|Ch)p(22|Cr, 1)p(23|Cy, 21, 22) - - - p(2D|Ch, 21, 22, - - )

pliCi) = [ pledlCh).

Notice that modeling p(z4|Cy) is substantially easier because it is a distribution over a single-
dimensional quantity.

8.6 Q

Considering a Gaussian naive Bayes, describe how are p(x4|C)) modeled(what distribution and
which parameters does it have) and how we estimate it during fitting. [5]

Gaussian Naive Bayes
In Gaussian naive Bayes, we expect a continuous feature to have normal distribution for a given
Ci. and model p(x4|Cy) is modeled as a normal distribution N (gt 1., 03 1)

Assuming we have the training data X together with K-class classification targets ¢,
the “training” phase consists of estimating the parameters f4) and Gi,; of the distributions
N(iak,05,) for 1 <d < D, 1<k < K, employing the maximum likelihood estimation.

Now let feature d and class k be fixed and let @, ®2,..., 2y, be the training data
corresponding to the class k. We already know that maximum likelihood estimation using N}
samples drawn from a Gaussian distribution N(#d,k,ﬂg‘k) amounts to

(Ii,d = .u.:i,k)2

N, 2l
3 k 2

arg min — log(27o o

g g d‘k) E 201::

Hd Tk im1

Answer:
Setting the derivative with respect to 4k to zero results in

2

e Z”k —2(@ia — pdk)

G 2
i=1 20'!12 k

. £ Ni
which we can rewrite to g = ;Tk i=‘1 Tid.
Similarly, zeroing out the derivative with respect to "'3.1: gives

N, 1 Ni
0= - Y (Tia — pak)®
203, 2(03,)? z‘:1 ’

from which we obtain a’ik = NLk Ef&l (zia — ﬁd‘k)zA

However, the variances are usually smoothed (increased) by a given constant « to aveid too
sharp distributions (in Scikit-learn, the default value of e is 107 times the largest variance of
all features).
The choice among the Gaussian, Bernoulli and multinomial naive Bayes depends on the feature
values.

® |f we expect the individual feature values to be roughly normally distributed, Gaussian NB is

an obvious choice.

® To use multinomial NB, the features should roughly follow the multinomial distribution —
i.e., they must be non-negative, be interpretable as “counts” and “compete” with each
other.
© Note that the feature can be real-valued (the multinomial distribution can be extended
to real-value observations using the I' function).

® |n order to use Bernoulli NB, the features must be binary. However, an important difference
is that contrary to the multinomial NB, the absence of features is also modeled by the
(1 — pa) term; the multinomial NB uses pﬂ)k =1 in such case.

8.7 Q

Considering a Multinomial naive Bayes, describe how are p(x|C) modeled (what distribution
and which parameters does it have) and how we estimate it during fitting. [5]
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The last variant of naive Bayes we will describe is the multinomial naive Bayes, where
T; probability of each term to the

p(2|Ct) is modeled to be multinomial distribution, p(|Ck) oc [T, Pi% pouer of its sppeazances
,

Similarly to the Bernoulli NB case, we can write the log likelihood as
log p(Ci|®) + ¢ = log p(Ci) + zqlogpa = by + =" wy.
Answer: i) @+,

As in the previous cases, we turn to the maximum likelihood estimation in order to find out the
values of pg . We start with the log likelihood

Z:: log ( Hd P:?:‘) - Zi‘ , Tid 108 Pac-

To maximize this quantity with respect to a probability distribution Edp,j,k = 1, we need to
form a Lagrangian

L= Zidfi,d log pa . + )\(1 - ded,k)-

Ne Tia

i=1 pax — A so

Setting the derivative with respect to pyy. to zero results in 0 = E

Iy EE1B | e\ s set to falf S 1
Pak =~ )  &Tig= —p————, where \is set to par=1.
A il Ei:l Ed T4 e

Denoting nak as the sum of features x4 for a class Cl, the probabilities par could be therefore

estimated as
N,k
Pk = .
E,‘ Nk

However, for the same reasons as in the Bernoulli NB case, we also use the [Laplace smoothing,
i.e., utilize a Dirichlet prior Dir(e + 1), and instead use

i N4 + o ngk + o
k= =
Z, (nje + ) (ZJ nj.‘k) +aD

with pseudo-count a > 0.

The choice among the Gaussian, Bernoulli and multinomial naive Bayes depends on the feature
values.

* |f we expect the individual feature values to be roughly normally distributed, Gaussian NB is
an obvious choice.

® To use multinomial NB, the features should roughly follow the multinomial distribution —
i.e., they must be non-negative, be interpretable as "counts” and "compete” with each
other.
© Note that the feature can be real-valued (the multinomial distribution can be extended

to real-value observations using the I" function).

* |n order to use Bernoulli NB, the features must be binary. However, an important difference
is that contrary to the multinomial NB, the absence of features is also modeled by the
(1 — pa) term; the multinomial NB uses pg,k = 1 in such case.

8.8 Q

Considering a Bernoulli naive Bayes, describe how are p(z4|C)) modeled(what distribution and
which parameters does it have) and how we estimate it during fitting. [5]

When the input features are binary, the p(z4|Cr) might be modeled using a Bernoulli
distribution

(24| Ch) = P, - (1 = pas) .
We can therefore write

p(Cule) o ([T, 5t (1= pa) == )p(Ch),

and by computing a logarithm we get

log p(Cy|x) + ¢ = log p(Cy) + Zd (zd log lf’;"_k +log(1— Pd‘k)) = b + 2" wy,
where the constant ¢ does not depend on C} and is therefore not needed for prediction

Answer: arg max, log p(Cj|2) = arg max, by + & w;.
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To estimate the probabilities p4k, we turn again to the maximum likelihood estimation. The log
likelihood of Nj. samples drawn from Bernoulli distribution with parameter pg is

i : N
D log (R (1= pan) ™) = 37" (2ialogpar + (1= 2ia) log(1 ~ ps)).-

Setting the derivative with respect to py to zero, we obtain

N T l—mid) 1 Ni
0=) . : =~ | = : (1— k) Eid — P,k l—l‘:,cz)
Zt=1( pd,k(l_pd,k)z‘=1 (1= pan) pak( )

pik  1—pax

- N,
giving us puk = - Yoo Tig.
We could therefore estimate the probabilities pax as

>< 5 number of documents of class k with nonzero feature d
ik =

number of documents of class k

However, if a feature d is always set to one (or zero) for a given class k, then par = 1 (or 0).

That is impractical because the resulting classifier would give probability zero to inputs with the
opposite value of such feature.

Therefore, L

is used, and the probability p4 ) estimated as

number of documents of class k with nonzero feature d + a
number of documents of class k + 2a

here we have it twice (the documents

where there is the term and where there
for some pseudo-count e > 0. 1en't)

Pdr =

Note that even if this technique has a special name, it corresponds to using a
estimate, using Beta(a + 1,a + 1) as a prior distribution.

The choice among the Gaussian, Bernoulli and multinomial naive Bayes depends on the feature
values.
* |f we expect the individual feature values to be roughly normally distributed, Gaussian NB is
an obvious choice.
® To use multinomial NB, the features should roughly follow the multinomial distribution —
i.e., they must be non-negative, be interpretable as “counts” and “compete” with each
other.
o Note that the feature can be real-valued (the multinomial distribution can be extended
to real-value observations using the I' function).

® In order to use Bernoulli NB, the features must be binary. However, an important difference
is that contrary to the multinomial NB, the absence of features is also modeled by the

1 — pg) term; the multinomial NB us&Tp" =1 in such case.
d, dk

8.9 Q

Describe the difference between a generative and a discriminative model,the strengths of these
models, and explain why is logistic regression and multinomial /Bernoulli naive Bayes called a
generative-discriminative pair.[5]

So far, all our classification models (but naive Bayes) have been d modeling a
conditional distribution p(t|a) (predicting some output distribution).

On the other hand, the Is estimate joint distribution p(t, @), often by
employing Bayes' theorem and estimating p(@|t) - p(t). They therefore model the probability of

Answer: the data being generated by an outcome, and only transform it to p(t|a) during prediction.
Goal Estimate P(t|x) Estimate P(t, &) = P(z|t)P(t)
¥hats Decision boundary Probability distribution of the data
learned
’
7
’
/
/!
’
Illustration 7
’
/
72
g f/ 5 1 tions
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* Empirically, discriminative models perform better in classification tasks, because modeling
the decision boundary is often much easier than maodeling the data distribution.
* On the other hand, generative models can recognize anomalies/outliers/out-of-distribution
data (when the input example has low probability under the data distribution).
® The term generative comes from a (theoretical) possibility of “generating” random instances
of @ and ¢. However, just being able to evaluate p(@[t) does not necessarily mean there is
an efficient procedure of actually sampling (generating) .
© |n recent years, generative modeling combined with deep neural networks created a new
family of deep generative models like VAE or GAN, which can in fact efficiently generate
samples from p(a).

Given that

* multinomial/Bernoulli naive Bayes fits log p(Cy, @) as a linear model, and
® 2 logistic regression also fits log p(Cy|2) as a linear model,

multinomial /Bernoulli NB and logistic regression form a so-called generative-discriminative
pair.

Several theorems are known about this generative-discriminative pair (for proofs see the 2002
paper On Discriminative vs. Generative Classifiers: A comparison of logistic regression and naive

Bayes by NG and Jordan):

® |f the assumed model in naive Bayes is correct, then both logistic regression and naive Bayes
converge to the same performance.
® Asymptotically, logistic regression is always better or equal to the naive Bayes.

® Let £ > 0 be given and let the model contain D features. ;::ﬁz* :’;“)‘5’:":“mgﬂu’;:“':”“
o Logistic regression can reach the optimal error up to & with H(Ds training examples.

© naive Bayes can reach the optimal error up to & with 2(log(D)) examples.

9 Lecture

9.1 Q

Prove that independent discrete random variables are uncorrelated. [5]

We define icovariance of two random variables x, y as

cov(x,y) = E[(x - Elx) (v - Ely]) |
Answer:
Two random variables x, y are uncorrelated if cov(x,y) = 0; otherwise, they are lcorrelated.

Note that two independent random variables are uncorrelated, because
the x and y happen indepandently

ccv(x, y) =E [(x = ]E[x]) (y = ]E[y])] hence on average bath x and y are their respactive

Plcy) for xy mean value and we get 0

PN =Pl P | T Z P(z,y)(z - Elz]) (y — E[y])

~, =¥

=" P(z)(z —E[z]) P(y) (v — E[y])

=" P(z)(= ~ Ele)) 3 Pv) (v ~ E)

E N \z ko \ v

=Ex[x ~ E[]E, [y — E[y]] = 0.

However, dependent random variables can be uncorrelated — random uniform x on [—1, 1] and
¥ = |x| are not independent (y is completely determined by x), but they are uncorrelated.

9.2 Q
Write down the definition of covariance and Pearson correlation coefficient p, including its range.

[5]
We define covariance of two random variables x, y as

cov(x,y) =E|(x - E[x —F )
Answer: (x,¥) = E[(x - Ei) (v - Ely])
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There are several ways to measure correlation of random variables x, y.

Pearson correlation coefficient, denoted as p or 7, is defined as

e ovlxy)
/Var(x) /Var(y)

ek 2ilzi — ) (3 — 7)
W () i

where:

* pis used when the full expectation is computed (population Pearson correlation coefficient);

* 7 is used when estimating the coefficient from data (sample Pearson correlation coefficient);
O F and § are sample estimates of mean.

The value of Pearson correlation coefficient is in fact normalized covariance, because its
value is always bounded by —1 < p < 1 (and the same holds for 7).

Pearson correlation coefficient quantifies linear dependence of the two random variables.
1 0.8 0.4 0 -0.4 -0.8 -1

Pozn. (X,not fortheexam):
Alternatively, the desired inequality can be obtained by applying the Cauchy-Schwarz inequality

(u,0) < +/Tu,u) /{v,0) on {2, y) = Elzy].

9.3 Q

Explain how are the Spearman’s rank correlation coefficient and the Kendall rank correlation
coefficient computed (no need to describe the Pearson correlation coefficient). [5]

To measure also non-linear correlation, two common coefficients are used.

Spearman'’s rank correlation coefficient p
Spearman's p is Pearson correlation coefficient measured on ranks of the original data, where a

rank of an element is its index in sorted ascending order.

Speamman comelation=1 Spearman corelation=035 Spearmian correlation=0 84 _ __Spaaman comelation=0.92 Spearmian complation=10.91
stion=0,37 Pearson tign =067 B

Prearson comelation=068 a
= | cad ® 2 10f 7 EF
; A gt i g SETTLERE
o /_—" 3 s&ﬁv,‘-ﬂr. i 1.2 o E
A NI L SN & :
-u! ity @ i - L -7 °'n L

Answer: x
Kendall rank correlation coefficient )|
Kendall's T measures the amount of concordant pairs (pairs where y increases/decreases when
x does), minus the discordant pairs (where y increases/decreases when x does the opposite):

yo pairsi #5225 > 21,95 > yi}| — [{pairsi # 5 : 25 > 21, y; < i}
()
_ Ei-(j sign(z; — ;) sign(y; — ;)
= = 5
()
There is no clear consensus whether to use Spearman's p or Kendall's 7, but | believe Kendall's

T is a bit more preferred. First, I%T can be interpreted as a probability of a concordant pair,
and Kendall's T converges to a normal distribution faster.

As defined, the range of Kendall's 7 € [—I, 1]. However, if there are ties, its range is smaller —
therefore, several corrections (not discussed here) exist to adjust its value in case of ties.

9.4 Q

Considering an averaging ensemble of M models, prove the relation between the average mean
squared error of the ensemble and the average error of the individual models, assuming the
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model errors have zero mean and are uncorrelated. [10]

Answer: Context (we want to ultimately 'cancel out’ the errors):

Ensembling is combining several models with a goal of reaching higher performance.

The simplest approach is to train several independent models and then combine their outputs
by averaging or voting.

The terminology varies, but for classification:

o voting (or hard voting) usually means predicting the class predicted most often by the
individual models,

» averaging (or soft voting) denotes averaging the returned model distributions and
predicting the class with the highest probability.

The main idea behind ensembling is that if models have uncorrelated errors, then by averaging
model outputs the errors will cancel out.
The averaged MSE:

If we denote the prediction of a model y; on a training example (z,t) as yi(x) = t + &i (),
so that £;(x) is the model error on example @, the mean square error of the model is

E[(y:() —1)*] =E[](=)].

Considering M models, we analogously get that the mean square error of the ensemble is

E{(% ¥ E,(m))z:l.

Because .

1 1
and hence the error of the ensemble is the average of the individual errors. The MSE is then

2
1
B|(4 Sat)’].
Finally, assuming that the individual errors £; have zero mean and are uncorrelated, we get that
JE[E;(.’L')&'J (z)] =0 for i # §, and therefore,

=[] 2[5 X tomto] i D)

so the average error of the ensemble is ﬁ times the average error of the individual models.

9.5 Q

In a regression decision tree, state what values are kept in internal nodes, define the squared
error criterion and describe how a leaf is split during training (without discussing splitting
constraints). [5]

Assume we have an input dataset X € BRV*D ¢ & BN At the beginning, the decision tree is
just a single node and all input examples belong to this node. We denote I the set of training
example indices belonging to a node T,

For each leaf, our model predict the average of the training examples belonging to that leaf,

F I |

b = iy Loy b

We use a lcriterion c7 telling us how uniferm or homogeneous are the training examples
belonging to a node T — for regression, we employ the sum of squares error between the
examples belonging to the node and the predicted value in that node; this is proportional to the
variance of the training examples belonging to the node T, multiplied by the number of the
examples. Note that even if it is not mean squared error, it is sometimes denoted as MSE.

d - o 1
s (T) = Z(f,.: —ir)?, where iy = =] Zt,—.

icly il

Answer:
To split a node, the goal is to find a feature and its value such that when splitting a node T
into 7L and 7}; the resulting regions decrease the overall criterion value the most, i.e., the

i s i lit by brute fi b il fealures 1 ‘all’ val In reality we 1t to start in a node
difference CT;, + CTa et is the |Wegt.:f;:‘l"\’\cy HUE foree rying all fealures and 'all’ values. In reality we want to start in a node

omogeneity of examples and increase it while decreasing the overall criterion
T T e e e et Sl St e e RN N o e et L e S
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9.6 Q

In a K-class classification decision tree, state what values are kept in internal nodes, define
the Gini index and describe how a node is split during training (without discussing splitting
constraints). [5]

For multi-class classification, we predict such class most frequent in the training examples
belonging to a leaf T

To define the criterions, let us denote the average probability for class k in a region 7T as
pr(k).
For classification trees, one of the following two criterions is usually used:

* |Gini index, also called Gini impurity, measuring how often a randomly chosen element
would be incorrectly labeled if it was randomly labeled according to pr

ccui(T) Z Ir] Y _pr(k) (1~ pr(k)),
Answer: .
The Gini index is the minimized value of the square loss £=73",./ (p—t;)%. (see 'For binary
classification, derive the Gini index from a squared error loss. [10]” card)

9.7 Q

In a K-class classification decision tree, state what values are kept in internal nodes, define the
entropy criterion and describe how a node is split during training (without discussing splitting
constraints). [5]

For multi-class classification, we predict such class most frequent in the training examples
belonging to a leaf T.

To define the criterions, let us denote the average probability for class k in a region T as
pr(k).

For classification trees, one of the following two criterions is usually used:

Answer:
* Entropy Criterion

Centropy (T) = |Ir| - H(pr) = —|Ir| Y pr(k)logpr(k).

k
pr(k)#0

9.8 Q

For binary classification, derive the Gini index from a squared error loss. [10]

Recall that I denotes the set of training example indices belonging to a leaf node T, let

nr(0) be the number of examples with target value 0, mg(1) be the number of examples with
1 = _ nr(l)
tar%%f%ﬁ—'ﬁ‘—;%,-%”q_'?t.f’f = 1] Diery b ar(@)+nr{l)

Consider sum of squares loss L(p) = ¥, (p — t:)*.
By setting the derivative of the loss to zero, we get that the p minimizing the loss fulfils
|Irlp= szh— L. ie.p=pr. fihe probabilty of |

i hoosir @l
The value of the loss is then fchoosing zero

L(pr) =Y (pr —t:)* = nr(0)(pr — 0) + nr (1) (pr —1)?
ik
nr(0)nr(1)? nr(Dnr(0) (nr(1) + 27 (0)nr(0)nr(1)

- (n7(0) + m-{l))2 (nr(0) + ny (1))2 (n7(0) + ng (1)) (nr(0) + ny (1))
= (n7(0) + 27 (1)) (1 - pr)pr = Irlpr(1 — pr)-

Answer:

9.9 Q

For K-class classification, derive the entropy criterion from a non-averaged NLL loss. [10]

Answer: lecture 9, 1:28:00 cca, TODO
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9.10 Q

Describe how is a random forest trained (including bagging and random subset of features) and
how is prediction performed for regression and classification. [5]

Bagging of data combined with random subset of features (sometimes called feature bagging).

sample and feature bagging

Trae 1

mean in regression or majority vote i chssification

(predeton)
Answer:

Bagging

Every decision tree is trained using bagging (on a bootstrapped dataset).

Random Subset of Features
During each node split, only a random subset of features is considered, when finding the best
split. A fresh random subset is used for every node.

Extra Trees

The so-called extra trees are even more randomized, not finding the best possible feature value
when choosing a split, but considering uniformly random samples from a feature's empirical
range (minimum and maximum in the training data).

10 Lecture

10.1 Q

Write down the loss function which we optimize in gradient boosting decision tree during the
construction of ¢ tree. Then define g; and h; and show the value ws of optimal prediction in
node 7. [10]

Answer: Context:
Considering a regression task first, we define the overall loss as

2

3

T
LW) = 3 t(ts,y(as W) + 3 0w

where
* W = (W,,...,Wr) are the parameters (leaf values) of the trees;

o 2(ti, yl@:; W)) is an per-example loss, (t; — y(a;; W))? for regression;
® the A is the usual Ly regularization strength
To construct the trees sequentially, we extend the definition to

1
LOW G Wiama) = 3 60t 8 (@6 Wrems) + weles W) | + 2| W

i

Answer: In each update we are creating a new tree, so traditional SGD update would be too
expensive and Newton’s (or modified) method is used in our approach:
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However, a more principled approach was later suggested. Denoting

9ty (i)
%= T ey ()

and

_ 8(ti " V(=)
¥= oyt (z;)2

we can expand the objective Lo using a second-order approximation to

1 1
LOW W)=y [f(ii,y(i_“(zz)) + giye () + Eh,-yf(z,-)} A 5"”“’:”2-

where the loss can be rewritten with g;, h; as:

Recall that we denote the indices of instances belonging to a node T as I, and let us denote
the prediction for the node 7" as wy. Then we can rewrite

1 I
LOWWii1) =Y, [o(ms) + ghivd(@:)] + N[ Wi|* + const

~ ; [( Zg,)w1-+ (A+ Zh,)wq-] + const.

By setting a derivative with respect to w7t to zero, we get

_ach
T dur = Znel g+ (A 2 E:eh— h‘.)wT

Therefore, the optimal weight for a node T is

o Xici i

SIS Yier hi

10.2 Q

Write down the loss function which we optimize in gradient boosting decisiontree during the
construction of t*! tree. Then define g;and h; and the criterion used during node splitting. [10]

Answer: In each update we are creating a new tree, so traditional SGD update would be too
expensive and Newton’s (or modified) method is used in our approach:
However, a more principled approach was later suggested. Denoting
_ 9ty V(i)
and
8(t:, y" V(1))
By[!—l)(mi)z 4

we can expand the objective £ using a second-order approximation to

By =

i 1 1
LWL Wi, ,)~ Z [f(ia',y(t V) + gie () + éh'iytz(mi)] i §A||W:H2-

Recall that we denote the indices of instances belonging to a node T as I7, and let us denote
the prediction for the node T~ as w7 . Then we can rewrite

LOW W)~ Za {g;y;(z.:) + %hqyf(m;)] + %A”WtHz + const
= Z [( ZQ‘&)WT+ %(A+ Zh,)w%—] + const.
17 ielr il

By setting a derivative with respect to wy to zero, we get

3,5“) 5
T Buwy Zse_' i ( i, erlr h)w
Therefore, the optimal weight for a node T is

+ Pier, 9

Y __A"“ziefrh".
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Substituting the optimum weights to the loss, we get

LO(W) = — Z S E" g, - + const,
zEIT

which can be used as a splitting criterion.

10.3 Q

How is the learning rate used during training and prediction of a gradient boosting decision
tree? [5]

Answer: Furthermore, gradient boosting trees frequently use:

o data subsampling: either bagging, or (even more commonly) utilize only a fraction of the
original training data for training a single tree (with 0.5 being a common value),

o feature subsampling;

o shrinkage: multiply each trained tree by a learning rate «, which reduces influence of
each individual tree and leaves space for future optimization.

If one model is responsible for most of the work, in case it was wrong, the small corrections of
subsequent (or other) models wouldn’t have the strength to correct it, hence we limit it to only
eliminate a certain amount of the errors. So we still train it to correct as much as possible and
then we take this correction and scale it (e.g. by 0,1):

= Zayi

104 Q

For a K-class classification, describe how to perform prediction with a gradient boosting decision
tree trained for 7' time stamps (how the individual trees perform prediction and how are the
K -T trees combined to produce the predicted categorical distribution). [5]

Answer: In multiclass classification it is easier to generate K trees, each for one logit (one
class), so tree 1 will be tasked with saying whether the example belongs to class one or not,
not to which other class it belongs in case it doesn’t belong to class one. This is the decision
capacity we want to maximize for each tree.

For multiclass classification, we need to model the full categorlqa[ output distribution.
Therefore, for each “timestep” t, we train K trees W, ko each predlctlng a smgle value of the
linear part of a generalized linear modek—) |~ ‘\ R e f”? \ T

Then, we perform prediction by

T i L.r
softmax (y(z;)) = softmax (thlyu (25 W), -, Zr,,l Yok (25 Wt,K)) ;

&

Our trees form 2D matrix’ where the final prediction is performed as the softmax of the sums
of the columns (sums for each class - logits for each class). These sums are the input of softmax,
that gives us a distribution.

105 Q

Considering a K-class classification, describe which individual trees (and in which order) are
created during gradient boosted decision tree training,and what per-example loss is used for
training every one of them (expressed using predictions of the already trained trees). You do
not need to describe the training process of the individual trees themselves. [10]
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Answer: In the first step we train K trees, one for each class and these try to decide the
predictions. These predictions are then used in softmax to generate the distribution which we’ll
try to correct. In ¢t =2 we create K more trees, each one of which will try to correct the logits
for their given class so that the sums help the final distribution the most, si at every ¢ we create
K trees that we train in parallel (gradient is different for every part of the model, that work
together after each timestamp).

For multiclass classification, we need to model the full categorical output distribution.
Therefore, for each “timestep” £, we train K trees W, each predicting a single value of the

linear part of a generalized linear model.

Then, we perform prediction by
T 4 &
softmax (y(=;)) = softmax (Zt=l Y1 (®; Wea)s. .., Zt=1 Yo (35 W;l_;{)) ’

and the per-example loss is defined analogously as

£(t;, y(x;)) = —log ( softmax (y(m,-))f‘.) ;

Tree 1 for clazs 1 “Tree 1 for claxs 2 Tree 1 for class 3
coloe_imensity <= 38 Ravancids <= 12
Cgh==12 c_gh=+11
imsances = 126 imsiances = 136
prediction=01.3 prediction=d.3
. cgh=-i11 cgh=-115 gh=-268 cgh=-101
i =5 imstances = 4% instamces = 87 imtances = 36 insmamcrs = 101
P 8 1 o 6 !
“Tree 2 for class 2 Tree 2 forclass 3
proline <= 7550 colar_jmemsity <= 38 Tlavancids <= 14
=01 c_gh=15 =06
insfances = 136 imsiances = 136 insEnms = 136
predicton=a0.0 predicrion=). prediciina=0.2
cgh=-111 c_gh=-121 gh=-197 =7 c_gh=-124 c_gh=-140
inzances = 84 imstances = & insiances = 53 inmances = 43 immances = 4 Instances = 42
m 12 m 4 7 1 P 6 m 3
11.1 Q

When deriving the first principal component, write the value of the variance we aim to maximize,
both without and with the covariance matrix(and define the covariance matrix). [5]

Answer:

11.2 Q

When deriving the first M principal components, write the value of the reconstruction loss we
aim to minimize using all but the first M principal components, both without and with the
covariance matrix (and define the covariance matrix). [10]

Answer:

11.3 Q

Write down the formula for whitening (sphering) the data matrix X ,and state what mean and
covariance does the result has. [5]

Answer:
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114 Q

Explain how to compute the first M principal components using the SVD decomposition of the
data matrix X, and why it works. [5]

Answer:

115 Q

Write down the algorithm of computing the first M principal components of the data matrix X
using the power iteration algorithm. [10]

Answer:

11.6 Q

Describe the K-means algorithm, including the kmeans++ initialization. [10]

Answer:

12 Lecture
12.1 Q

Define the multivariate Gaussian distribution of dimension D. [5]

Answer:

12.2 Q

Show how to sample from a multivariate Gaussian distribution N (p,X) with a full covariance
matrix, by using random samples from A(0,I) distribution. [5]

Answer:

12.3 Q

Describe the constant surfaces of a multivariate Gaussian distribution with(1) o?I covariation,
(2) a diagonal covariation matrix,(3) a full covariation matrix. [5]

Answer:

13 Lecture

13.1 Q

Considering a Gaussian mixture with K clusters, explain how we represent the individual clusters
and write down the likelihood of an examplex for a given Gaussian mixture. [5]

Answer:
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132 Q

Write down the log likelihood of an N-element dataset for a given Gaussian mixture model with
K components. [5]

Answer:

13.3 Q

Considering the algorithm for Gaussian mixture clustering, write down the E step (how to
compute the responsibilities) and the M step (how to update the means, covariances and priors
of the individual clusters). [10]

Answer:

134 Q

Write down the MSE loss of a regression problem, and formulate the bias-variance trade-off, i.e.,
the decomposition of expected MSE loss(with respect to a randomly sampled test set) into bias,
variance and irreducible error terms. [10]

Answer:

135 Q

Considering statistical hypothesis testing, define type I errors and type II errors (in terms of the
null hypothesis). Finally define what a significance level is. [5]

Answer:

13.6 Q

Explain what a test statistic and a p-value are. [5]

Answer:

13.7 Q
Write down the steps of a statistical hypothesis test. [5]

Answer:

13.8 Q

Explain the differences between a one-sample test, two-sample test and a paired test. [5]
Answer:

139 Q

When considering multiple comparison problem, define the family-wise error rate, and formulate
the Bonferroni correction, which allows to limit the family-wise error rate by a given «a. [5]
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Answer:

13.10 Q

For a trained model and a given test set with N examples and metric F/,write how to estimate
95% confidence intervals using bootstrap resampling.[5]

Answer:

13.11 Q

For two trained models and a given test set with N examples and metric F, explain how to
perform a paired bootstrap test that the first model is better than the other. [5]

Answer:

13.12 Q

For two trained models and a given test set with N examples and metric E, explain how
to perform a random permutation test that the first model is better than the other with a
significance level a. [5]

Answer:
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