
Chapter 4

Matroid Intersection Theorem —
Corollaries

The Matroid Intersection Theorem provides another view on several classical
results in combinatorics and graph theory. We now survey some of such results.
Let us start with the one already mentioned — matchings in bipartite graphs.

Theorem 4.1. Let G be a connected bipartite graph. The maximum size of a
matching of G is equal to the minimum size of a vertex cover of G, i.e., the
minimum size of s subset W of vertices of G such that each edge has at least one
end-vertex in W .

Proof. We apply the Matroid Intersection Theorem. Let V1 and V2 be the two
vertex parts of G. The matroid Mi, i = 1, 2, is defined to be the matroid with
ground set formed by edges E of G and a subset E ′ ⊆ E being independent
if no two edges of E ′ share a vertex in Vi. Both M1 and M2 are matroids
and a maximum-size set E ′ independent in both M1 and M2 is a maximum-
size matching of G. By Theorem 3.4, the set E can be partitioned into sets
E1 and E2 such that rM1

(E1) + rM2
(E2) = |E ′|. Since rM1

(E1) equals to the
number of vertices of V1 incident with edges of E1, there exists a subset U1 ⊆ V1,
|U1| = rM1

(E1), such that each edge of E1 has an end-vertex in U1. Similarly,
there exists a subset U2 ⊆ V2, |U2| = rM2

(E2), such that each edge of E2 has an
end-vertex in U2. Hence, the set W = U1 ∪ U2 is a vertex cover of size equal to
the size of E ′. On the other hand, if E ′ is a matching of G, then the size of E ′ is
bounded by |W | for any vertex cover W of G since each edge of E ′ have at least
one end-vertex in W .

4.1 Analogoues of Nash-Williams Theorems

We continue with corollaries in the favor of the classical theorems of Nash-
Williams on the existence of disjoint spanning trees in connected graphs and
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edge-covers by forests. The next theorem gives a necessary and sufficient condi-
tion for the existence of k disjoint bases in a matroid.

Theorem 4.2. A matroid M with ground set E contains k disjoint bases if and
only if the following holds for every subset S of its elements:

|E \ S| ≥ k(rM(E) − rM(S)) .

Proof. We again apply the Matroid Intersection Theorem. Let E0 be the ground
set of M. We define two matroids M1 and M2 with ground set E0 = E ×
{1, . . . , k}. A subset E ′ ⊆ E0 is independent in M1 if each of the set E ′∩(E×{i})
is independent in M, i.e., M1 can be viewed as a union of k disjoint copies of
M. On the other hand, a subset E ′ is independent in M2 if for each element
e ∈ E there is at most one index i such that [e, i] ∈ E ′, i.e., M2 is a transversal
matroid with parts formed by the elements with the same second coordinate.

We observe that M has k disjoint bases if and only if there exists a set of
k · rM(E) elements independent in both M1 and M2. If M has k disjoint bases,
say, B1, . . . , Bk, then the set {[e, i], e ∈ Bi, i = 1, . . . , k} is a set independent in
both M1 and M2. On the other hand, if there is a set E ′ of size k · rM(E) that is
independent in both M1 and M2, then the elements of E ′ with the same second
coordinate form k bases of M that are disjoint as E ′ is independent in M2.

We are now ready to prove the statement of the theorem. If M contains k
disjoint bases, say B1, . . . , Bk, then the following holds for every S ⊆ E:

|E \ S| ≥
k
∑

i=1

|Bi ∩ (E \ S)| =

k
∑

i=1

(rM(E) − |Bi ∩ S|)

≥
k
∑

i=1

(rM(E) − rM(S)) = k · (rM(E) − rM(S)) .

We next prove the converse implication.
Assume that the inequality from the statement of the theorem holds for every

S ⊆ E. By Theorem 3.4, we have to show that for every partition of E0 into two
sets E1 and E2, the following holds:

rM1
(E1) + rM2

(E2) ≥ k · rM(E) (4.1)

If [e, i] ∈ E2, then adding an element [e, i′] to E2 does not increase the rank
of E2 in M2. Hence, we can assume that there exist E ′ ⊆ E such that E2 =
E ′ × {1, . . . , k}. Consequently, E1 = (E \ E ′) × {1, . . . , k}.

By the definitions of the matroids M1 and M2, rM1
(E1) = k · rM(E \ E ′)

and rM2
(E2) = |E ′|. Setting S = E \ E ′, the assertion of the theorem implies:

rM1
(E1) + rM2

(E2) = k · rM(S) + |E \ S| ≥ k · rM(E) .
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We conclude that the equation (4.1) holds for every partition E1 and E2 of E.
Hence, there exists a subset of size k · rM(E) independent both in M1 and M2

and thus the matroid M has k disjoint bases by Theorem 3.4.

A direct consequence of Theorem 4.2 is a theorem of Nash-Williams on the
existence of disjoint spanning trees in graphs.

Theorem 4.3. Let G be a connected (multi)graph. The graph G contains k edge-
disjoint spanning trees if and only if for every partition V1, . . . , V` of its vertex
set the number of edges between distinct parts, i.e., the number of edges uv with
u ∈ Vi and v ∈ Vj, i 6= j, is at least k(`− 1).

Proof. Assume first that G contains k disjoint spanning trees T1, . . . , Tk. Let
V1, . . . , V` be any partition of the vertex set of G. Consider the graph T ′

j obtained
from Tj by shrinking each of the sets of Vi, i = 1, . . . , `, to a single vertex. Since
Tj is a spanning tree of G, T ′

j is connected and thus it contains at least ` − 1
edges. Since the trees T1, . . . , Tk are edge-disjoint, we conclude that there are at
least k(`− 1) edges between the parts V1, . . . , V` of the partition.

In order to prove the converse implication, we apply Theorem 4.2. The ma-
troid M is the graphic matroid corresponding to G and we aim to show that M
contains k disjoint bases. Let S be a subset of edges of G and let V1, . . . , V` be
the vertex sets of the components of the spanning subgraph of G with edge-set
S. Note that the rank rM(S) is equal to n − ` and the rank rM(E) is equal to
n − 1 where n is the order of G. Hence, rM(E) − rM(S) = ` − 1. Since E \ S
contains all the edges between distinct parts V1, . . . , V` (and it can additionally
contain some edges inside the parts V1, . . . , V`), we infer that

|E \ S| ≥ k(`− 1) = k (rM(E) − rM(S)) .

The statement now follows from Theorem 4.2.

In the opposite direction compared to Theorem 4.2, one can ask how many
independent sets are needed to cover the ground set of a given matroid. Again,
it is possible to obtain a necessary and sufficient condition for the existence of a
cover by k independent sets:

Theorem 4.4. A matroid M with ground set E can be covered by k independent
sets, i.e., there exist independent sets E1, . . . , Ek such that E = E1 ∪ · · · ∪ Ek, if
and only if the following holds for every subset S of its elements:

|S| ≤ k · (rM(S)) .

Proof. If M can be covered by k independent sets, say, E1, . . . , Ek then the
following holds for every S ⊆ E:

|S| ≤
k
∑

i=1

|Ei ∩ S| ≤
k
∑

i=1

rM(S) ≤ k · rM(S) .
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For the proof of the converse implication, we apply the Matroid Intersection
Theorem to the same matroids as in the proof of Theorem 4.2, i.e., the ground
set E0 of M1 and M2 is E×{1, . . . , k}, a subset E ′ is independent in M1 if each
of the set E ′ ∩ (E × {i}) is independent in M, and E ′ is independent in M2 if
for each element e ∈ E there is at most one index i such that [e, i] ∈ E ′. Observe
that the matroid M can be covered by k independent sets if (and only if) there
exist a subset E0 with |E| elements that is independent both in M1 and M2.

Assume that the inequality from the statement of the theorem holds for every
subset S ⊆ E. By Theorem 3.4, we have to show that for every partition of E0

into two sets E1 and E2, the following holds:

rM1
(E1) + rM2

(E2) ≥ |E| (4.2)

As in the proof of Theorem 4.2, if [e, i] ∈ E2, then adding an element [e, i′] to E2

does not increase the rank of E2 in M2. Hence, we can assume that there exist
E ′ ⊆ E such that E2 = E ′×{1, . . . , k}. Consequently, E1 = (E \E ′)×{1, . . . , k}.

By the definitions of the matroids M1 and M2, rM1
(E1) = k ·rM(E \E ′) and

rM2
(E2) = |E ′|. By the assumption of the theorem, |E \E ′| ≤ k ·rM(E \E ′), i.e.,

|E ′| ≥ |E|−k·rM(E\E ′). Plugging this inequality in the sum rM1
(E1)+rM2

(E2),
yields the following:

rM1
(E1) + rM2

(E2) = krM(E \ E ′) + |E ′| ≥ |E|; .

We conclude that the inequality (4.2) holds for every partition E1 and E2 of E
and thus the matroid M can be covered by k independent sets.

A graph-theoretic analogue of Theorem 4.4 is another theorem of Nash-
Williams. We state the theorem and omit its proof as it follows the lines of
the proof of Theorem 4.3.

Theorem 4.5. Let G be a (multi)graph. The edges of the graph G can be covered
by k forests if and only if for every subset W of the vertices of G the subgraph
G[W ] induced by W contains at most k(|W | − 1) edges.

Another corollary of the Matroid Intersection Theorem is a necessary and
sufficient condition on the existence of a rainbow spanning tree in a graph.

Theorem 4.6. Let G be a graph with colored edges. G contains a rainbow span-
ning tree, i.e., a spanning tree with edges of mutually distinct colors, if and only
if G \ E ′ has at most t components for every set E ′ of edges with at most t − 1
colors.

Proof. We will apply Theorem 3.4. The matroid M1 is the graphic matroid of G.
The matroid M2 is the partition matroid where a set of edges E ′ is independent
if the edges of E ′ have mutually distinct colors, i.e., M2 is a transversal matroid
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with respect to the color classes of edges. The existence of a rainbow spanning
tree is now equivalent to the existence of a set of n−1 edges independent both in
M1 and M2 where n is the order of G. The latter is equivalent by Theorem 3.4
to the assertion that the following equality holds:

min
E′⊆E

rM1
(E ′) + rM2

(E \ E ′) = n− 1 (4.3)

where E is the set of all edges of G.
Assume that the number of components of G \E ′ does not exceed t for every

set E ′ of edges with at most t−1 colors. Consider a subset E ′ ⊆ E, let E ′′ = E\E ′

and let t − 1 be the number of the colors of the edges of E ′′. Our assumption
implies that the number of components of G \E ′′ is at most t and thus rM1

(E \
E ′′) = rM1

(E ′) ≥ n − t. On the other hand, the definition of M2 implies that
rM2

(E \ E ′) = rM2
(E ′′) = t − 1. This yields that the minimum in (4.3) is at

least n − 1. As rM1
(E) = n − 1 and rM2

(∅) = 0, the equality (4.3) holds and a
rainbow spanning tree exists by Theorem 3.4.

In the reverse direction, if T is a rainbow spanning tree and E ′ is a set of
edges with t− 1 colors, then G \E ′ has at most t components as the components
of G\E ′ must be interconnected by edges of E ′∩T ; since T is rainbow, there are
at most t− 1 edges contained in E ′ ∩ T which can interconnect the components.
This finishes the proof of the theorem.

4.2 Maximum average degree of graphs

We now present another (more algorithmic) application of Theorem 4.4. An im-
portant graph-theoretic parameter is the maximum average degree of a subgraph
of G which is equal to the following quantity:

mad(G) = max
G′⊆G

2||G′||

|G′|

where |G′| is the order and ||G′|| is the size of G′. Observe any graph G with
mad(G) ≤ d is d-degenerate, i.e., every subgraph of G has a vertex of degree at
most d, and any d-degeneated graph G has mad(G) ≤ 2d. Somewhat surprisingly,
the maximum average degree of a given graph G can be computed in polynomial
time. Before we do so, we need an auxiliary lemma.

Lemma 4.7. Let G be a graph with edge set E and let I be the family of subsets
E ′ of E such that the subgraph of G formed by the edges in E ′ contains at most
one cycle. The pair (E, I) forms a matroid. Moreover, the rank of E ′ is equal to
rM(G)(E

′) if E ′ is acyclic, and to rM(G)(E
′) + 1, otherwise.

Proof. In order to show that (E, I) is a matroid, it is enough to establish that
the function r(E ′), E ′ ⊆ E, defined to be rM(G)(E

′) if E ′ is acyclic, and to
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rM(G)(E
′) + 1, otherwise, satisfies the properties (R1), (R2) and (R3) given in

Lemma 1.9. Since (R1) and (R2) are obvious, we focus on (R3). Let E ′ and E ′′

be two subsets of E. We have to show that

r(E ′ ∩E ′′) + r(E ′ ∪E ′′) ≤ r(E ′) + r(E ′′) .

If neither E ′ nor E ′′ is acyclic, then r(E ′) + r(E ′′) = rM(E ′) + rM(E ′′) + 2.
Since r(E ′ ∩E ′′) + r(E ′ ∪E ′′) ≤ rM(E ′ ∩E ′′) + rM(E ′ ∪E ′′) + 2, the inequality
holds. If one of E ′ and E ′′ is acyclic and the other is not, then r(E ′) + r(E ′′) =
rM(E ′)+rM(E ′′)+1. Since E ′∩E ′′ is a subset of both E ′ and E ′′, E ′∩E ′′ is acyclic
and thus r(E ′ ∩ E ′′) = rM(E ′ ∩ E ′′). Consequently, r(E ′ ∩ E ′′) + r(E ′ ∪ E ′′) ≤
rM(E ′ ∩E ′′) + rM(E ′ ∪ E ′′) + 1 and the inequality holds.

We now assume that both E ′ and E ′′ are acyclic. Hence, r(E ′) + r(E ′′) =
rM(E ′) + rM(E ′′) = |E ′| + |E ′′| and r(E ′ ∩ E ′′) = rM(E ′ ∩ E ′′) = |E ′ ∩ E ′′|. If
r(E ′∪E ′′) = rM(E ′∪E ′′), the inequality holds. Otherwise, E ′∪E ′′ must contain a
cycle which implies that r(E ′∪E ′′) = rM(E ′∪E ′′)+1 ≤ |E ′∪E ′′|−1+1 = |E ′∪E ′′|.
Since |E ′| + |E ′′| = |E ′ ∩E ′′| + |E ′ ∪E ′′|, the inequality follows.

Denote the matroid introduced in Lemma 4.7 by M+(G). The easiest way to
show that the maximum average degree of a graph can be computed in polynomial
time is to employ Lemma 4.7 and the theory on matroid polytopes. Here, we
present a less direct argument which however uses the theory we have developed
so far.

Theorem 4.8. There is a polynomial-time algorithm for computing the maximum
average degree of a graph.

Proof. Let n and m be the order and the size of an input graph G. By the
definition, the maximum average degree is equal to 2k/` for some 0 ≤ k ≤ m and
1 ≤ ` ≤ n. As the number of such fractions 2k/` is at most O(nm), it is enough
to present a polynomial-time algorithm for testing whether mad(G) ≤ 2k/` for
every such fraction 2k/`.

Let H be a graph obtained from G by replacing each edge by ` parallel edges.
Theorem 4.4 yields that M+(H) can be covered by k independent sets if and
only if |F | ≤ krM+(H)(F ) for every subset F of edges of H . Observe rM+(H)(F )
does not exceed the number of vertices of the subgraph of H spanned by F by
Lemma 4.7. In particular, if mad(G) ≤ 2k/` which is equivalent to mad(H) ≤ 2k,
then |F | ≤ k|V (H [F ])| = krM+(H)(F ) for every subset F containing a cycle. If
F is acyclic then |F | = rM+(H)(F ) and the inequality |F | ≤ krM+(H)(F ) holds.
Thus the ground set of M+(H) can be covered by k sets independent in M+(H).
In the other direction, if M+(H) can be covered by k sets independent in M+(H),
then every n′-vertex subgraph of H contains at most n′ edges of each of these
k sets by Lemma 4.7. In particular, its average degree does not exceed 2k and
thus mad(H) ≤ 2k which is equivalent to mad(G) ≤ 2k/`. We conclude that
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mad(G) ≤ 2k/` if and only if M+(H) can be covered by k independent sets.
Since this is a particular case of the Matroid Intersection Theorem as outlined in
the proof of Theorem 4.4, there is a polynomial-time algorithm to decide whether
the inequality ||G′|| ≤ k|G′|/` holds for every subgraph G′ of G. Since the number
of choice of k and ` is polynomial in O(nm), we conclude that the average degree
of a graph can be computed in polynomial time.

4.3 Common transversals

As our final application of the Matroid Intersection Theorem, we establish a
necessary and sufficient condition for the existence of a common transversal of
two set systems.

Theorem 4.9. Let X1, . . . , Xm and Y1, . . . , Ym be two set systems with the same
ground set. The two set systems have a common transversal, i.e., a set Z =
{x1, . . . , xm} = {y1, . . . , ym} of m elements such that xi ∈ Xi and yi ∈ Yi, i =
1, . . . , m, if and only if the following holds for every I ⊆ {1, . . . , m} and every
J ⊆ {1, . . . , m}:

∣

∣

∣

∣

∣

(

⋃

i∈I

Xi

)

∩

(

⋃

j∈J

Yj

)∣

∣

∣

∣

∣

≥ |I| + |J | −m .

Proof. The condition in the statement of the theorem is clearly necessary: if a
set Z of m elements that is transversal of both the set systems exist, then the
intersection Z ∩

⋃

i∈I Xi contains at least |I| elements of Z and the intersection
Z ∩

⋃

j∈J Yj contains at least |J | elements of Z. If |I| + |J | > m, then the
two intersections must have at least |I| + |J | −m elements in common. Hence,
the condition is necessary for the existence of a common transversal of the set
systems.

To establish the sufficiency, we will apply the Matroid Intersection Theorem.
If the sets X1, . . . , Xm and Y1, . . . , Ym were disjoint, they would form partitions of
the ground set and it would be easy to apply the Matroid Intersection Theorem
to the corresponding transversal matroids. However, the sets need not be disjoint
and we will have to define a matroid in a less direct way.

Let us start with the definition of a matroid MX which corresponds to the set
system X1, . . . , Xm. The rank rMX

(Z) of a subset Z of the ground set is equal
to the maximum cardinality of an index set I ⊆ {1, . . . , m} such that Z contains
a transversal of the set system Xi, i ∈ I. We have to verify that the just defined
rank function satisfies the properties (R1), (R2) and (R3) given in Lemma 1.9.
(R1) and (R2) are straightforward to verify. We now focus on establishing that
the function rMX

is submodular, i.e., we have to show that any two sets Z1 and
Z2 satisfy the following inequality:

rMX
(Z1 ∩ Z2) + rMX

(Z1 ∪ Z2) ≤ rMX
(Z1) + rMX

(Z2) (4.4)
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Let I∩ be a maximum index set such that Z1 ∩ Z2 contains a transversal of Xi,
i ∈ I∩, and let z∩i ∈ Z1 ∩ Z2 be one of the transversals, i.e., z∩i ∈ Xi. Similarly,
the set I∪ and the elements z∪i are defined with respect to Z1 ∪ Z2. Finally, let
Z∩ = {z∩i , i ∈ I∩} and Z∪ = {z∪i , i ∈ I∪}. Observe that we can assume without
loss of generality that I∩ ⊆ I∪ (this is non-trivial and requires revisiting Hall’s
theorem!).

Define an auxiliary bipartite graph H with parts Z∩ and Z∪ that has two
types of edges:

• for every i ∈ I∩ ∩ I∪ = I∩, the elements z∩i ∈ Z∩ and z∪i ∈ Z∪ are joined
by an edge, and

• for z ∈ Z∩ ∩ Z∪, the two copies of z are joined by an edge.

Clearly, H consists of isolated vertices, paths and cycles. Moreover, for every
component P of H that is a path, at most one of its ends lies in Z∩: if P contains
a single edge, there is nothing to prove. If P has more edges, the two types of
edges alternate on P . If P ends at a vertex of the part corresponding to Z∩,
the edge incident with this vertex is of the first type (because each vertex of Z∩

contains one edge of this type). Hence, both ends of P cannot lie in the part of
H corresponding to Z∩ as claimed.

We now color the vertices of H with two colors in such a way that a vertex
corresponding to an element z can get a color i only if z ∈ Zi and the coloring is
a proper coloring of Z. Let us examine whether each component C of H can be
colored in this way. If C is a cycle, then half of its edges are of the second type
and thus all vertices on C correspond to elements in Z1 ∩ Z2; in particular, any
proper coloring of the vertices of C with colors 1 and 2 satisfies our requirements.
If C is a path, all the vertices of C with a possible exception for one end-vertex
of C can get both colors 1 and 2. We first color the exceptional end-vertex of C
(if it does not exist, any end-vertex of C) and then extend the coloring to C.

Let I1 be the set of indices such that z∩i or z∪i (if they exist) are colored with
the color 1 and I2 the set of indices such that one of these two vertices is colored
with the color 2. Because of the edges in H of the first type, the sum |I1|+ |I2| is
equal to |I∪|+|I∩|. On the other hand, the elements corresponding to the vertices
of H colored with the first color are mutually distinct because of the second type
of edges in H and thus they form a transversal of the set system Xi, i ∈ I1.
Similarly, the elements corresponding to the vertices colored with the color 2
form a transversal of the set system Xi, i ∈ I2. This implies that rMX

(Z1) ≥ |I1|
and rMX

(Z2) ≥ |I2| which yields (4.4). This finishes the proof that the function
MX is a rank function and thus the matroid MX is well-defined. In an analogous
way, we define a matroid MY for the set system Y1, . . . , Ym.

We can now apply the Matroid Intersection Theorem for the matroids MX

and MY . To this end, we have to show that for every subset Z of the ground set
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that the sum rMX
(Z) + rMY

(

Z
)

is at least m where Z is the complement of Z.
Assume that there is a subset Z such that

rMX
(Z) + rMY

(

Z
)

< m (4.5)

If rMX
(Z) = m − dX and rMY

(

Z
)

= m − dY , then Hall’s theorem yields the
existence of subsets I ⊆ {1, . . . , m} and J ⊆ {1, . . . , m} such that

∣

∣

∣

∣

∣

⋃

i∈I

(Xi ∩ Z)

∣

∣

∣

∣

∣

= |I| − dX and

∣

∣

∣

∣

∣

⋃

j∈J

(Yj ∩ Z)

∣

∣

∣

∣

∣

= |J | − dY .

This consequently implies that

∣

∣

∣

∣

∣

Z ∩

(

⋃

i∈I

Xi

)∣

∣

∣

∣

∣

= |I| − dX and

∣

∣

∣

∣

∣

Z ∩

(

⋃

j∈J

Yj

)∣

∣

∣

∣

∣

= |J | − dY .

Finally, we obtain that

∣

∣

∣

∣

∣

Z ∩

(

⋃

i∈I

Xi

)

∩

(

⋃

j∈J

Yj

)∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

Z ∩

(

⋃

i∈I

Xi

)∣

∣

∣

∣

∣

= |I| − dX (4.6)

and that
∣

∣

∣

∣

∣

Z ∩

(

⋃

i∈I

Xi

)

∩

(

⋃

j∈J

Yj

)∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

Z ∩

(

⋃

j∈J

Yj

)∣

∣

∣

∣

∣

= |J | − dY . (4.7)

Since Z and Z form a partition of the ground set, the inequalities (4.6) and
(4.7) combine to the following estimate (last inequality follows from (4.5) and
the choice of dX and dy):

∣

∣

∣

∣

∣

(

⋃

i∈I

Xi

)

∩

(

⋃

j∈J

Yj

)∣

∣

∣

∣

∣

≤ |I| + |J | − dX − dY ≤ |I| + |J | −m− 1 (4.8)

By the assumption of the theorem, the just obtained inequality cannot hold and
thus there is no set Z satisfying (4.5). Hence, the Matroid Intersection Theorem
yields the existence of the common transversal of the set systems X1, . . . , Xm and
Y1, . . . , Ym.


