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1.[8] Operator and its properties

On the space L2((0, 1)) over R, consider the operator L defined through

(Lf)(x) :=

∫ 1

0

k(x, s)f(s) ds,

where k ∈ C([0, 1]× [0, 1]) is a continuous real map satisfying

k(x, y) = k(y, x) for all x, y ∈ [0, 1] . (1)

(a) Prove that L : L2((0, 1))→ L2((0, 1)) is a compact selfadjoint linear bounded operator. If you apply any theorem,
write down its formulation and verify its assumptions.

(b) As a special case verify that the assumption (1) is satisfied by the integral kernel k of the form

k(x, y) :=

{
(1− y)x if 0 ≤ x ≤ y ,
(1− x)y if y ≤ x ≤ 1.

(2)

(c) Provided that f is continuous on (0, 1) show that function u(x) = (Lf)(x) with k given by (2) solves the problem

u′′(x) + f(x) = 0 , u(0) = u(1) = 0 .

(d) Referring to the course on classical partial differential equations, do you know what is the name of the kernel k?

Solution:

(a) L is clearly linear. To establish the boundedness we first estimate using Hölder’s inequality:∣∣∣∣∣
∫ 1

0

k(x, s)f(s) ds

∣∣∣∣∣
2

≤
∫ 1

0

|k(x, s)|2 ds

∫ 1

0

|f(s)|2 ds = ‖f‖22
∫ 1

0

|k(x, s)|2 ds.

This implies that

‖Lf‖22 =

∫ 1

0

∣∣∣∣∣
∫ 1

0

k(x, s)f(s) ds

∣∣∣∣∣
2

dx ≤ ‖f‖22
∫

(0,1)2

|k(x, s)|2 dsdx.

The integral of k over the unit square is finite as k is continuous on [0, 1]2, so L is bounded. (In fact, we can
see that k ∈ L2

(
(0, 1)2

)
would be enough for boundedness of L.)

In the sequel (·, ·) denotes the inner product on L2(0, 1), i.e., (f, g) =
∫ 1

0
f(x) g(x) dx. For arbitrary f , g ∈

L2(0, 1) we have

(Lf, g) =

∫ 1

0

(Lf)(x) g(x) dx =

∫ 1

0

(∫ 1

0

k(x, s) f(s) ds
)
g(x) dx

=

∫
(0,1)2

k(x, s) f(s) g(x) dsdx =

∫
(0,1)2

k(s, x) f(s) g(x) dx ds

=

∫ 1

0

f(s)
(∫ 1

0

k(s, x) g(x) dx
)

ds =

∫ 1

0

f(s) (Lg)(s) ds = (f, Lg),

where we applied Fubini’s theorem twice and on the middle line we used the symmetry k(x, s) = k(s, x). Thus
L is self-adjoint.
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To show that L is compact, it suffices, given an arbitrary bounded sequence {fn}∞n=1 ⊂ L2(0, 1), to show
that {Lfn}∞n=1 is precompact in L2(0, 1). Precompactness in Lebesgue spaces is characterized by the Fréchet–
Kolmogorov–M. Riesz criterion. {Lfn} is bounded by virtue of continuity of L, equitightness is moot on
a bounded domain, so it remains to establish equicontinuity ‖Lfn(· − h)− Lfn‖2L2(R) → 0 as h→ 0 uniformly

in n, where Lfn is extended by zero outside of (0, 1). But this follows easily:

‖Lf(· − h)− Lf‖2L2(R) =

∫
R

∣∣∣∣∣
∫ 1

0

k(x− h, s)f(s) ds−
∫ 1

0

k(x, s)f(s) ds

∣∣∣∣∣
2

=

∫
R

∣∣∣∣∣
∫ 1

0

(
k(x− h, s)− k(x, s)

)
f(s) ds

∣∣∣∣∣
2

≤ ‖k(· − h, ·)− k‖2L2(R×(0,1))‖f‖
2
2,

where k has been extended to R × (0, 1) be zero and the inequality follows from Hölder’s inequality and
Fubini’s theorem. As the right-hand side is uniform in ‖f‖2, the equicontinuity follows from limh→0 ‖k(· −
h, ·)−k‖L2(R×(0,1)) = 0. This is indeed true by, say, Lebesgue’s dominated convergence theorem and continuity
of k, or it follows from the uniform continuity of k on [0, 1]2.

(b) Computing explicitly k(y, x) using (2) gives

k(y, x) =

{
(1− x)y if 0 ≤ y ≤ x ≤ 1,

(1− y)x if 0 ≤ x ≤ y ≤ 1,

which is clearly equal to k(x, y).

(c) Inserting (2) in the definition of L we obtain

u(x) = (1− x)

∫ x

0

s f(s) ds+ x

∫ 1

x

(1− s) f(s) ds.

Evaluating both terms at the boundary shows that u(0) = u(1) = 0. For the first derivative we have

u′(x) = −
∫ x

0

s f(s) ds+(1−x)x f(x)+

∫ 1

x

(1−s) f(s) ds−x (1−x) f(x) = −
∫ x

0

s f(s) ds+

∫ 1

x

(1−s) f(s) ds

and in turn for the second derivative

u′′(x) = −x f(x)− (1− x) f(x) = −f(x).

As f , and in turn all the integrands in the expressions for u(x) and u′(x), are now continuous, the last equality
holds everywhere in (0, 1).

(d) Green’s function.

2.[7] Spectrum

Let X :=
(
C([0, 1]), ‖ · ‖∞

)
. Consider L : X → X defined through

(Lf)(x) := f(0)2(1− x)( 1
2 − x) + f( 1

2 )4(1− x)x+ f(1)2x(x− 1
2 ).

(a) Is the operator L (i) linear, (ii) bounded, (iii) compact?

(b) Give the definition of the spectrum of L (denoted σ(L)) and the point spectrum of L (denoted σp(L)), and determine
them for the above operator.

(c) For each eigenvalue, if any, determine the corresponding eigenspace.

Solution:



NMMO302, SS 2023–2024 Exam May 23, 2024

(a) The operator is clearly linear. To show boundedness, we estimate

‖Lf‖∞ = max
x∈[0,1]

∣∣f(0)2(1− x)( 1
2 − x) + f( 1

2 )4(1− x)x+ f(1)2x(x− 1
2 )
∣∣

≤ max
x∈[0,1]

(
|f(0)2(1− x)( 1

2 − x)|+ |f( 1
2 )4(1− x)x|+ |f(1)2x(x− 1

2 )|
)

≤ max{|f(0)|, |f( 1
2 )|, |f(1)|} max

x∈[0,1]

(
|2(1− x)( 1

2 − x)|+ |4(1− x)x|+ |2x(x− 1
2 )|
)

≤ ‖f‖∞ max
x∈[0,1]

(
|2(1− x)( 1

2 − x)|+ |4(1− x)x|+ |2x(x− 1
2 )|
)
,

which shows that the operator is bounded due to maxx∈[0,1]
(
|2(1−x)( 1

2 −x)|+ |4(1−x)x|+ |2x(x− 1
2 )|
)
<∞.

Now observe that the range of L is a subspace of P2, the space of polynomials of degree at most 2, and hence
it is at most three-dimensional. Compactness of L then follows from the fact that a bounded linear operator
with finite-dimensional range is compact.

(b) For a bounded linear operator T on a Banach space, its spectrum σ(T ) is defined as the set of all complex
numbers such that T − λI is not invertible and its point spectrum σp(T ) is defined as the set of all complex
numbers such that T − λI is not injective.

As the operator is compact, we have σ(L) = {0} ∪ σp(L) with σp(L) at most countable, with only limit
point being possibly zero. Moreover, the elements of σp(L) \ {0} are eigenvalues of finite algebraic multiplicity.
Nevertheless, for the solution of this exam problem we only need the relation σ(L) = {0} ∪ σp(L). It remains
to find the eigenvales σp(L).

Let us first investigate whether 0 belongs to σp(L). It would mean that there is a non-trivial solution of the
equation Lf = 0. This is indeed the case: kerL = {f ∈ C([0, 1]), f(0) = f( 1

2 ) = f(1) = 0}, an infinite-
dimensional space.

As of non-zero eigenvalues, the eigenequation Lf = λf , λ 6= 0, reads

f(0)2(1− x)( 1
2 − x) + f( 1

2 )4(1− x)x+ f(1)2x(x− 1
2 ) = λf(x) for all x ∈ [0, 1]. (3)

This, in particular, implies that f needs to be a polynomial of degree at most two. Evaluating (3) at 0, 1
2 , and

1 we obtain equations f(0) = λf(0), f( 1
2 ) = λf(1), and f(1) = λf(1). This implies that the equation can only

be satisfied with λ = 1. With f an arbitrary polynomial of degree at most 2 and λ = 1, the equation (3) is
satisfied at three distinct points, namely 0, 1

2 , and 1, and both sides of the equation are polynomials of degree
at most 2. Hence, the equation is satisfied everywhere.

Altogether σ(L) = σp(L) = {0, 1}.

(c) We have shown above that kerL = {f ∈ C([0, 1]), f(0) = f( 1
2 ) = f(1) = 0}. We have also shown that (3) is

satisfied for arbitrary f ∈ P2, the space of polynomials of degree at most 2, and λ = 1. Hence ker(L− I) = P2.
It was not possible to fulfill (3) in any other way, so these are all eigenspaces.

The solution is now complete but we would like to mention it was worth noticing that L is Lagrange interpolation
at equidistant nodes x0 = 0, x1 = 1

2 , and x2 = 1. Denote `0(x) = 2(1 − x)( 1
2 − x), `1(x) = 4(1 − x)x, and

`2(x) = 2x(x − 1
2 ). Then {`0, `1, `2} is the Lagrange basis of P2, i.e., span{`0, `1, `2} = P2 and `i(xj) = δij . The

operator can be expressed as Lf(x) =
∑
i=0,1,2 f(xi)`i(x). We easily observe that the range of L equals P2 and that

the operator is idempotent (a projection), i.e., L2f = Lf for all f ∈ X. (Recall that the Lagrange interpolant with
3 nodes of a function from P2 is the same function.) This yields immediatelly that ker(L− I) = P2. This way, the
eigenvalue problem (3) has been solved much easier.

Note that the inequality, which we obtained above, ‖L‖ ≤ maxx∈[0,1]
∑
i=0,1,2 |`i(x)| is actually an equality and ‖L‖

is called the Lebesgue constant (for the nodes x0, x1, x2). It requires tedious but simple calculation to show that
‖L‖ = 5

4 for the given nodes x0, x1, x2.

3.[8] Duals

Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be Banach spaces over the scalar field K.

(a) Define L(X,Y ), L(X) and X∗. Prove that X∗ is a Banach space.

(b) Show that the mapping φ→
∫ 1

0
u(x)φ(x) dx is, for a given u ∈ Lp′((0, 1)), p′ = p/(p− 1), element of [Lp((0, 1))]∗?

(c) If 1 < p <∞, can you give an example of an element of [Lp((0, 1))]∗ that is of a different form than that given in
the above point?

(d) Prove the following.
Proposition 1. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be normed spaces such that X ⊂ Y and there exists C > 0 such that
‖x‖Y ≤ C‖x‖X for every x ∈ X. Then it holds that Y ∗ ⊂ X∗ and ‖F‖X∗ ≤ C‖F‖Y ∗ for every F ∈ Y ∗.

https://en.wikipedia.org/wiki/Lagrange_polynomial
https://en.wikipedia.org/wiki/Lebesgue_constant
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Next, by means of Hölder’s inequality, show that L4((0, 1)) ⊂ L2((0, 1)). What kind of relation between the spaces
L2((0, 1)) and L4/3((0, 1)) can one conclude using Proposition 1 and the characterization of duals of Lebesgue
spaces?

(e) Give a dual description of ‖x‖X and prove that this description holds.

Solution:

(a) For normed spaces X and Y over K, we denote by L(X,Y ) the set of all continuous linear mappings from X
to Y . Then we set L(X) = L(X,X) and X∗ = L(X,K).

It is straightforward to verify that the set X∗ is a vector space with addition and multiplication by scalars
defined naturally pointwise, i.e., for f , g ∈ X∗, and α ∈ K, we define a map f + αg : X → K by

(f + αg)(x) = f(x) + αg(x) for all x ∈ K.

Clearly f +αg is linear and continuous, which ensures that f +αg is an element of X∗, and thus X∗ is a vector
space. For every f ∈ X∗ we define its norm ‖f‖X∗ := supx∈X, ‖x‖≤1 ‖f(x)‖X . It can be verified that this renders
X∗ a normed space. It remains to verify its completeness.

Consider a Cauchy sequence {fn}∞n=1 ⊂ X∗. For an arbitrary x ∈ X, the number sequence {fn(x)}∞x=1 is
Cauchy too, which follows from the estimate |fn(x)− fm(x)| ≤ ‖fn − fm‖X∗‖x‖X . As long as K is complete,
the sequence {fn(x)} converges and we denote its limit as f(x). By the arithmetic of limits, x 7→ f(x) is
a linear map and as {fn(x)} is Cauchy uniformly on {x ∈ X, ‖x‖X ≤ 1} and fn is continuous, it is obtained
by the standard 3ε argument that f is continuous, i.e., f ∈ X∗. As the limit fn(x) → f(x) is uniform on
{x ∈ X, ‖x‖X ≤ 1}, it is easily established that ‖fn − f‖X∗ → 0. (Note that this proof actually needs no
modification in order to show that, for Y Banach, L(X,Y ) is Banach. Instead of (K, | · |) take (Y, ‖ · ‖Y ).)

(b) Denote the mapping φ 7→
∫ 1

0
uφ by Tu. It is clearly linear. Let us show that it is defined on all Lp(0, 1) and is

bounded:

|Tuφ| =
∣∣∣∫ 1

0

uφ
∣∣∣ ≤ ∫ 1

0

|uφ| ≤ ‖u‖Lp′ (0,1)‖φ‖Lp(0,1),

where the inequality follows from Hölder’s inequality. We have that ‖Tu‖(Lp(0,1))∗ ≤ ‖u‖Lp′ (0,1).

For φu := |u|p′−2u, it is |Tuφu| = ‖u‖p
′

Lp′ (0,1)
and ‖φu‖Lp(0,1) = ‖u‖p

′−1
Lp′ (0,1)

. Hence ‖Tu‖(Lp(0,1))∗ = ‖u‖Lp′ (0,1).

(c) No such functional exists. It has been carefully shown at the exercise.

(d) Let F ∈ Y ∗ be arbitrary. The mapping F : Y → K can be restricted to X and F |X is now a linear mapping
from X to K. We need to show that it is bounded. We have

‖F‖X∗ = sup
x∈X
x6=0

|F (x)|
‖x‖X

≤ C sup
x∈X
x 6=0

|F (x)|
‖x‖Y

≤ C sup
x∈Y
x 6=0

|F (x)|
‖x‖Y

= C‖F‖Y ∗ ,

where we have used continuity ‖x‖Y ≤ C‖x‖X of the embedding in the first inequality and the inclusion X ⊂ Y
in the second inequality. Proposition 1 is thus proved.

We say X is continuously embedded in Y and we write X ↪→ Y if X ⊂ Y and ‖x‖Y ≤ C‖x‖X for all x ∈ X and
a suitable C > 0. With this definition, Proposition 1 can be rephrased as follows: if X ↪→ Y then Y ∗ ↪→ X∗.

Using Hölder’s inequality we have

‖f‖2L2(0,1) =

∫ 1

0

|f |2 ≤
∥∥|f |2∥∥

L2(0,1)
‖1‖L2(0,1) = ‖f‖2L4(0,1),

which shows that L4(0, 1) ↪→ L2(0, 1). This implies, using Proposition 1, that
(
L2(0, 1)

)∗
↪→
(
L4(0, 1)

)∗
. As the

mapping u 7→ Tu, as defined above, is an isometric isomorphism between Lp
′
(0, 1) and (Lp(0, 1))∗, we obtain

that L2(0, 1) ↪→ L4/3(0, 1).

(e) We claim that ‖x‖X = sup
φ∈X∗
‖φ‖X∗≤1

|φ(x)|.

For a φ ∈ X∗ with ‖φ‖X∗ ≤ 1 we have

|φ(x)| ≤ ‖φ‖X∗‖x‖X ≤ ‖x‖X ,

which shows that ‖x‖X ≥ sup‖φ‖X∗≤1 |φ(x)|. It remains to get the opposite inequality. If x = 0 this follows
trivially, so assume the converse. By the Hahn–Banach theorem there exists f ∈ X∗ with ‖f‖X∗ = 1 and
f(x) = ‖x‖X . Hence

‖x‖X = f(x) ≤ sup
φ∈X∗
‖φ‖X∗≤1

|φ(x)|.
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4.[7] Convergences

(a) Consider a bounded sequence of functions fn ∈ L2((0, T )). Give definition of {fn}∞n=1 converges to f weakly in
L2((0, T )). Show, as n→∞, that the following equivalence holds:

fn converges to f weakly in L2((0, T )) ⇐⇒
∫ b

0

fn(x) dx→
∫ b

0

f(x) dx for every b ∈ (0, T ).

(b) Prove that any weakly converging sequence in a Hilbert space H is necessarily bounded.

(c) Consider in L2((0,∞)) the sequence of functions

fn(x) =

{
n2/3 if x ∈ [0, 1/n]

0 otherwise

Is it true that fn → 0 weakly in L2((0,∞))?

Solution:

(a) We say that {fn}∞n=1 converges weakly to f in L2(0, T ) if G(fn)→ G(f) as n→∞ for every G ∈ (L2(0, T ))∗.
By the Riesz representation theorem this is equivalent to (fn, g) → (f, g) as n → ∞ for every g ∈ L2(0, T ),

where (u, v) =
∫ T
0
u v is the inner product on L2(0, T ).

If fn converges weakly to f in L2(0, T ), then, by definition and the Riesz representation theorem, (fn−f, g)→ 0
for every g ∈ L2(0, T ). Hence for arbitrary b ∈ (0, T ), g := χ(0,b) ∈ L2(0, T ), the characteristic function of the

interval (0, b), we have
∫ b
0

(fn − f)→ 0. As b ∈ (0, T ) was chosen arbitrarily, the right implication is clear.

Now assume that
∫ b
0

(fn − f)→ 0 for every b ∈ (0, T ). Equivalently, (fn − f, χ(0,b))→ 0 for every b ∈ (0, T ). It
is straightforward to show by continuity of b 7→ ‖χ(0,b)‖L2(0,T ) and Lebesgue’s dominated convergence theorem
that (fn−f, χ(0,T ))→ 0 for every b ∈ [0, T ] (by taking the limits b→ 0 and b→ T ). Consider the space of step
functions S = span{χ(0,b), b ∈ [0, T ]} ⊂ L2(0, T ), i.e., the space of finite linear combinations of characterisic
functions. By linearity of the inner product, we thus have that (fn − f, h) → 0 for every h ∈ S. Now for an
arbitrary g ∈ L2(0, T ) and ε > 0, we can approximate g by a suitable gε ∈ S such that ‖g − gε‖L2(0,T ) < ε.
Hence,

|(fn − f, g)| ≤ |(fn − f, g − gε)|+ |(fn − f, gε)| ≤ ‖fn − f‖L2(0,T )‖g − gε‖L2(0,T ) + |(fn − f, gε)|,

where we have used Hölder’s inequality. The second term on the right-hand side tends to zero as n → ∞ for
any but fixed gε ∈ S. As the sequence {‖fn − f‖L2(0,T )} is bounded as we will prove below, the first term
can be made arbitrarily small independently of n by choosing suitable gε ∈ S. Thus (fn − f, g)→ 0 for every
g ∈ L2(0, T ) and the proof is finished.

(b) Suppose that yn ⇀ y weakly in H. Equivalently, F (yn−y)→ 0 for every F ∈ H∗. Equivalently Gn(F )→ 0 for
every F ∈ H∗, where Gn = J(yn−y) ∈ H∗∗, the image of yn−y ∈ H under the canonical embedding J . Recall
that J is an isometry, i.e., ‖Gn‖H∗∗ = ‖yn−y‖H . So it remains to show that {Gn}∞n=1 ⊂ H∗∗ is bounded in H∗∗

to finish the proof. As the number sequence Gn(F )→ 0 for arbitrary fixed F ∈ H∗, {Gn(F )} is bounded. By
the uniform boundedness principle, {Gn} is thus bounded in H∗∗ and the proof is finished.

Note that this proof works even for arbitrary normed space H. We invoked the uniform boundedness principle
for {Gn} ⊂ H∗∗, linear bounded operators from H∗ to R (or C). The space H∗ is Banach even when H is only
normed, so using the uniform boundedness principle is justified even in this case.

(c) As ‖fn‖2L2(0,∞) =
∫ 1/n

0
n4/3 dx = n1/3, the sequence {fn} is unbounded in L2(0,∞) and thus cannot converge

weakly therein by virtue of the previous task.


