

①

Nechť $\Omega = (0,1)^2$ a $\tilde{\Omega}$ jeho triangulace. $\tilde{\Omega}$ oblasti Ω sekvují se obdélníkem T také, že libovolné dva vrcholy obdélníku T mají buď stejnou vzdálost, nebo jejich průsečík je společný vrchol a společná hranice. Ważnyj je jinak

$$V_h = \{ v \in L^2(\Omega) : v|_T \in \text{span}\{1, x, y, x^2 - y^2\} \quad \forall T \in \mathcal{T}_h \},$$

v je spojitej ve středech vnitřních hran $\tilde{\Omega}$.

Definujme operator $\tilde{\pi}_h : C(\bar{\Omega}) \rightarrow V_h$ tak, že

$$\forall v \in C(\bar{\Omega}) : \tilde{\pi}_h v = v \quad \text{ve středech vnitřních hran } \tilde{\Omega}.$$

Vráťte, že tento podmínka operator $\tilde{\pi}_h$ jednoznačně definuje $\forall v \in C(\bar{\Omega})$.

Dokážte, že platí odhad celyby interpolace

$$\|v - \tilde{\pi}_h v\|_{0,\Omega} \leq Ch^2 \|v\|_{2,\Omega} \quad \forall v \in H^2(\Omega),$$

pro celou triangulaci $\tilde{\Omega}$ splňují určitý požadavek.

(2)

Nechť $\Omega = (0,1)^2$ a máme: Hlavní

$-\Delta u = f$ na Ω , $u = 0$ na $\partial\Omega$,

že $f \in L^2(\Omega)$. Tato holen' diskretizace konformního Ω sestává
koncových prvků s lineární projekcí na hranici. Koncové prvky.
Dohadte, že diskretní řešení má splňující odhad

$$\|u - u_h\|_{0, \Omega} \leq C h^2 \|u\|_{2, \Omega}.$$

Přitom lze diskretizaci provést pro pravidly směřující. Koncové prvky na regulérné systém triangulec' lagrangovským interpolacním operatorem r_h splňují

$$\|v - r_h v\|_{0, \Omega} \leq C h \|v\|_{2, \Omega}, \quad \|v - r_h v\|_{1, \Omega} \leq C h \|v\|_{2, \Omega} \text{ Voitěj}$$

(3)

Nechť je daná na referenčním konečném prvku $(\hat{T}, \hat{P}, \hat{\Sigma})$ kvadraturu!

$$\text{Vzorec } (*) \quad \sum_{e=1}^L \hat{w}_e \hat{\varphi}(\hat{b}_e)$$

pro aproximaci integrálnu $\int_{\hat{T}} \hat{\varphi} d\hat{x}$, kde $\hat{b}_e \in \hat{T}$ a $\hat{w}_e > 0, e=1, \dots, L$.

Uvažujme triangulaci T_h , jejíž povrch je affine ekvivalentní \hat{T} , a $T \in T_h$ definujme kvadraturu vzorec $\sum_{e=1}^L w_{e,T} \varphi(b_{e,T})$, kde $w_{e,T}$ a

$b_{e,T}$ jsou deformační pomocí \hat{w}_e a \hat{b}_e na základě affine ekvalence

mezi T a \hat{T} . Nechť $\hat{P} \subset P_m(\hat{T})$ a kvadraturu vzorec $(*)$ je

řízena pro polynomy stupně $2m-2$. Na každém $T \in T_h$ uvažujme

konečný prvek (T, P_T, Σ'_T) affine ekvivalentní $(\hat{T}, \hat{P}, \hat{\Sigma})$ a

definujme odpovídající prostor konečných prvků V_h . Nechť

Ω je vnitřek množiny $\bigcup_{T \in T_h} T$ (předpokládáme $\Omega \subset \mathbb{R}^n$)

a uvažujme funkce $a_{ij} \in C(\bar{\Omega})$, $i, j = 1, \dots, m$, splňující

$$\exists \Theta > 0 : \sum_{i,j=1}^m a_{ij}(x) \xi_i \xi_j \geq \Theta \sum_{i=1}^m \xi_i^2 \quad \forall x \in \bar{\Omega}, \xi \in \mathbb{R}^m.$$

Nechť

$$a(u, v) = \sum_{i,j=1}^m \int_{\Omega} a_{ij} u_{x_i} v_{x_j} dx = \sum_{i,j=1}^m \sum_{T \in T_h} \int_T a_{ij} u_{x_i} v_{x_j} dx$$

a definujme bilineární formu a_h tak, že integrálně

řízena množinou T způsobíme pomocí výběru uvedeného kvadra-

tureho vzorce. Vzorek, že bilineární formu a_h je stejnometráž.

V_h -eliptické, t. j. že $\exists \alpha > 0 : a_h(v_h, v_h) \geq \alpha \|v_h\|_{V_h}^2 \quad \forall v_h \in V_h \quad \forall h > 0$.

(Předp. 1.1.1.2 je norma na V_h .)

(4)

Nechť $\Omega \subset \mathbb{R}^2$ je nezávěratelná oblast s polygonální hranicí a T_h její triangulace sestávající z trojúhelníků. Uvažujme rci

$$-\nu \Delta u + cu = f \quad \text{v } \Omega, \quad u = 0 \quad \text{na } \partial \Omega,$$

dele $c, f \in C^0(\bar{\Omega})$, $c \geq 0$ v Ω . Šídel formulace

$$u \in H_0^1(\Omega): \quad \int_{\Omega} \nu \nabla u \cdot \nabla v \, dx + \int_{\Omega} cu v \, dx = \int_{\Omega} f v \, dx.$$

$V_h = \{v_h \in H_0^1(\Omega); v_h|_T \in P_2(T) \quad \forall T \in T_h\}$. Pro T_h splývají podmínky regularity a kompatibilitě paralelogramovského interpolace Π_h splývají $\|v - \Pi_h v\|_{0,1,\Omega} + h \|v - \Pi_h v\|_{1,1,\Omega} \leq C h^{m+1} \|v\|_{m+1,1,\Omega}$

$$\forall v \in H^{m+1}(\Omega) \cap H_0^1(\Omega), \quad m=1, \dots, 2.$$

$\forall T \in T_h$ definujme $r_T: C(T) \rightarrow P_1(T)$ tak, že $r_T v = v$ ve všeobecně $\forall v \in C(T)$. Definujme diskrétní problém

$$u_h \in V_h : \quad \nu \int_{\Omega} \nabla u_h \cdot \nabla v_h \, dx + \sum_{T \in T_h} \int_T (r_T c) u_h v_h \, dx = \sum_{T \in T_h} \int_T (r_T f) v_h \, dx$$

Vyžadujte podmínky konvergence alespoň $\|u - u_h\|_{1,1,\Omega}$.

$\forall v_h \in V_h$.

(5)

Necht $\Omega = \{(x,y) \in (0,1)^2; x > \frac{1}{2} \text{ nebo } y > \frac{1}{2}\}$, tedy $\Omega = \square \setminus \square$.
 Pak slabe' řešení nízky

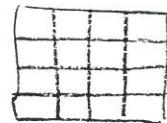
$-\Delta u = f \text{ v } \Omega, u = 0 \text{ na } \partial\Omega$,
 fde $f \in L^2(\Omega)$, obecně některá $v \in H^2(\Omega)$. Na Ω definujme
 triangulaci sestávající ze stepních výšek ch čtverců () a
 approximujme u metodou řešení ch problemu s pravou stranou

$$V_h = \{v \in C(\bar{\Omega}) \cap H_0^1(\Omega); v|_K \in Q_1(K) \quad \forall K \in \mathcal{T}_h\}$$

Uvážte, že $\lim_{h \rightarrow 0} \|u - u_h\|_{1,\Omega} = 0$.

(6)

Nechť $\Omega = (0,1)^2$ a nechť T_h je triangulace Ω sestávající ze stejně velkých čtvercových elementů T . Pro každý element T definujme operator $\Pi_T: C(T) \rightarrow Q_2(T)$ následujícími podmínkami:



$$(\Pi_T v)(x) = v(x) \quad \forall \text{ vrchol } x \in T$$

$$\int_E \Pi_T v \, d\sigma = \int_E v \, d\sigma \quad \forall \text{ hranu } E \subset \partial T$$

$$\int_T \Pi_T v \, dx = \int_T v \, dx,$$

Je $v \in C(T)$ je libovolná funkce. Je operator Π_T definovaný jednoznačně?

Pro $v \in C(\bar{\Omega})$ definujme $\Pi_h v \in L^2(\Omega)$ takové, že

$$(\Pi_h v)|_T = \Pi_T v \quad \forall T \in T_h.$$

Je funkce $\Pi_h v$ spojitá na $\bar{\Omega}$?

Vyšetřete interpolaci vlastnosti operátoru Π_h , tj. pro dostatečně regulární funkci v odvozit odhad interpolaci chyb v L^2 -normě a H^1 -normě.

(2)

Nechť $\Omega = (0,1)^2$ a uvažujme úlohu naší fci $u: \bar{\Omega} \rightarrow \mathbb{R}$ splňující

$$(*) \quad -\Delta u + u_x + 3u = 1 \quad \text{v } \Omega, \quad u = g \quad \text{na } \partial\Omega,$$

- kde g je zadána funkce. Na Ω definujme románové trojúhelníky T_h sestavující ze stejných trojúhelníků o průměru h splňující obecné předpoklady. Nechť $h \in \mathbb{N}$ a $V_h = \{v \in C(\bar{\Omega}); v|_T \in P_2(T) \quad \forall T \in T_h\}$

Odvoďte diskretizaci užívající (*) metodou konvexních pravidel založenou na protorech V_h , tj. diskrétní řešení u_h náleží do V_h .

Odvoďte nejlepší možný odhad pro členku $\|u - u_h\|_{1,2}$.

(9)

Nechť $\Omega \subset \mathbb{R}^2$ je omezený oblast s polygonální hranicí a T_h je jí triangulace sestávající z trojúhelníků. Uvažujme slabou formulaci

vajíť $u \in H^1_0(\Omega)$: $\sum_{i,j=1}^2 \int_{\Omega} a_{ij} u_{x_i} v_{x_j} dx = \int_{\Omega} f v dx \quad \forall v \in H^1_0(\Omega)$,

zde $a_{ij}, f \in C(\bar{\Omega})$, $\exists \theta: \sum_{i,j=1}^2 a_{ij}(x) \xi_i \xi_j \geq \theta |\xi|^2 \quad \forall x \in \bar{\Omega}$.

Nechť $V_h \subset H^1_0(\Omega)$ je prostor počátečně lineárního homogenního
problému a definujme diskrétní problém

vajíť $u_h \in V_h$: $\sum_{i,j=1}^2 \sum_{T \in T_h} \int_T a_{ij}(c_T) (u_h)_{x_i} (v_h)_{x_j} dx = \sum_{T \in T_h} \int_T f(c_T) v_h dx \quad \forall v_h \in V_h$,

zde c_T je tříčíta trojúhelníku T . Uvážte, že je určitým
předpokladem platí $|u - u_h|_{H^1} \leq C_h$,

zde c nezávisí na h a specifikuje předpoklady, které
jsou pro to potřeba.

(10)

Nechť $\Omega \subset \mathbb{R}^d$, $d \in \{2, 3\}$, je omezená oblast s polyédrovým hranicí a nechť $\{\tilde{T}_h\}$ je systém regulárních triangulací Ω sestávající se z simplexů. Na referenčním simplexu \hat{T} definujme kvadraturu vzorec $\sum_{e=1}^L \hat{w}_e \hat{q}(\hat{b}_e)$ pro aproximaci integrálu $\int_{\hat{T}} \hat{q} d\hat{x}$ a předpokládejme, že je přesný pro polynomy stupně $2k-2$, kde $k \in \mathbb{N}$. Pro libovolný simplex $T \in \mathcal{V}\tilde{T}_h$ nechť $E_T(q)$ je chyba kvadratury formulí indukované formulí na \hat{T} pro aplikaci na fci q . Dohlede, že existuje konstanta C taková, že $\forall T \in \mathcal{V}\tilde{T}_h$ platí

$$|E_T(a \cdot u \cdot v)| \leq Ch_T^k \|a\|_{k,\infty,T} \|u\|_{k-1,T} \|v\|_{0,T} \quad \forall a \in W^{k,\infty}(T), \quad u, v \in P_{k-1}(T),$$

kde $h_T = \text{diam}(T)$.

(11)

Nechť $\Omega = (0,1)^2$ a T_h je triangulace Ω sestárající z trojúhelníků.

Na každém trojúhelníku T máme funkci v pro (T, P_T, Σ_T) ,

tede

$$P_T = \text{span} \{ \lambda_1, \lambda_2, \lambda_3, \lambda_1^2, \lambda_2^2, \lambda_3^2, \lambda_1 \lambda_2 \lambda_3 \},$$

při čemž $\lambda_1, \lambda_2, \lambda_3$ jsou barycentrické sítadnice uzlů vzhledem k vrcholu T , a

$$\Sigma_T = \left\{ v(a), \int_{E_i} v \, d\sigma, \int_{T} v \, dx \right\}, \quad i=1,2,3$$

tede a_1, a_2, a_3 jsou vrcholy T a E_1, E_2, E_3 jsou hrany T .

Vypočítejte, zda se jedná o funkci v sítadnicí pro T , a napište definici příslušného pravorného funkci pro T .

Definujte odpovídající interpolaci operator $\Pi_h: C(\bar{\Omega}) \rightarrow V_h$ a odvodte pro něj nejlepší možný odhad chyby interpolace.

(12)

Necht $\Omega = (0,1)^2$ a T_h je triangulace Ω sestupaj'a' a trojúhelník a definite diskretizaci

uholu $-\Delta u = f$ v Ω , $u = g$ na $\partial\Omega$,

de f a g jsou dané funkce. Dostate, se pro diskretizaci
také u plati ohraničení

$$\|u - u_h\|_{0,\Omega} \leq Ch \|u - u_h\|_{1,\Omega},$$

de C nezávisí na h .

7. Consider the equation $-\Delta u + au = f$ in Ω with homogeneous Dirichlet boundary conditions. Here $f \in L^2(\Omega)$, $a \in W^{k,\infty}(\Omega)$, $a \geq 0$. Formulate weakly and discretise this equation using the space

$$V_h = \{v \in \bar{\Omega} : v|_T \in P_k(T)\}.$$

We approximate $\int_{\Omega} au_h v_h dx$ by a quadrature formula of order $2k - 1$. Show that

$$\|u - u_h\|_{1,2,\Omega} \leq Ch^k(|u|_{k+1,2,\Omega} + \|a\|_{k,\infty,\Omega} \cdot \|u\|_{k-1,2,\Omega}).$$

13. Nechť $\hat{E}(\varphi) = 0 \forall \hat{\varphi} \in \hat{P}_{2k-2}(\hat{T})$. Nechť $k > n/q$. Dokažte, že existuje $C > 0$, že

$$|E_T(fp)| \leq Ch_T^k |T|^{\frac{1}{2} - \frac{1}{q}} \cdot \|f\|_{k,q,T} \cdot \|p\|_{1,T} \quad \forall f \in W^{k,q}(T), p \in P_k(T).$$

Let T be a triangle with the vertices a_1, a_2, a_3 . Let $\lambda_1, \lambda_2, \lambda_3$ be the barycentric coordinates with respect to the vertices of T . Denote

$$P_T = \text{span}\{\lambda_1, \lambda_2, \lambda_3, \lambda_1 \lambda_2 \lambda_3\}, \quad \Sigma_T = \{\Phi_i\}_{i=1}^4,$$

where Φ_i are linear forms defined by

$$\Phi_i(v) = v(a_i), \quad i = 1, 2, 3, \quad \Phi_4(v) = \frac{1}{|T|} \int_T v \, dx$$

For any $v \in C(T)$. Prove that the triple (T, P_T, Σ_T) is a finite element.

Let \mathcal{T}_h be a triangulation of $\Omega := (0, 1)^2$ consisting of triangles satisfying the assumptions $(\mathcal{T}_h 1)$ – $(\mathcal{T}_h 5)$ introduced during the FEM1 course. Let the finite element (T, P_T, Σ_T) introduced above be assigned to each element of the triangulation \mathcal{T}_h and formulate the corresponding finite element space X_h and the set Σ_h of the degrees of freedom of X_h . Characterize the dimension of X_h and describe the basis functions of X_h . Find out whether $X_h \subset C(\bar{\Omega})$.

Let $\Pi_h : C(\bar{\Omega}) \rightarrow X_h$ be the interpolation operator. Assuming that the triangulations are regular, derive estimates of the interpolation error with respect to the L^2 norm and H^1 norm.

Consider the Poisson equation in Ω with homogenous Dirichlet boundary conditions:

$$(1) \quad -\Delta u = f \quad \text{in } \Omega, \quad u = 0 \quad \text{on } \partial\Omega,$$

where $f \in L^2(\Omega)$ is a given function. Formulate a discretization of (1) based on the space X_h and prove estimates of the error of the discrete solution with respect to the L^2 norm and H^1 norm.