
Realtime Computer Graphics on GPUs
Exam Notes by Jakub Kos

Disclaimer: These notes are based on the lecture series by Jan Kolomaznik. They are intended as a concise summary for revision
purposes. For a complete understanding, I highly recommend reviewing all original lecture slides and materials.

COURSE BRIEF

GPU Architecture, History
simplified programmable pipeline (vertex, fragment shaders)
basic primitives, rasterisation, 2D rendering
historical background - 3D rendering - wireframe, flat, basic lighting, Gourand vs. Phong shading
Phong model

Math
2D linear transformation, rotation by formula, matrix, complex numbers
3D transformations - affine, perspective space
3D rotations - euler angles, gimbal lock, matrices
Normal matrices
Quaternions
lerp, slerp
easing/tweening
animation curves

Textures
coordinates
aliasing vs. filtering
mip-maps
multitexturing
bump mapping
3D textures

Curves and Surfaces
Framebuffer

render to texture
deferred shading
antialiasing
stencil buffer - shadow-map, shadow volume, mirrors
effects in screen space (ambient occlusion, DOF, . . . )

Generating geometry
datastructures
tesselation shaders
geometry shaders
mesh shaders

Speedup techniques
near/far clipping
occlusion culling
instancing
billboards, decals
LOD
triangle fan, strip

Advanced techniques, Effects
bindless textures
megatextures
volume rendering
CAD visualization
scientific visualization

Other technologies
OGL ES
WebGL
Vulkan
DX11, DX12
Optix + raytracing

GPGPU
compute shaders
OpenCL
CUDA

terminology
OGL interoperability
computation model
memory types

Deep learning



Realtime Raytracing
CSG, Depth peeling, Trasform feedback
Animation

Introduction
Realtime algorithms

Time Constrains:
Hard limit
Soft limit

Optimal algorithm (time complexity ?)
Approximations vs. precision requirements
Tuning for specific hardware
Specialized tools for hot spots - GPUs

Programmable Pipeline

OpenGL

Open standard
OpenGL Architecture Review Board (ARB) 1992-2006
Khronos Group 2006

Current version 4.6 (released in 2017)
Multiplatform, language-independent
Additional functionality possible by HW vendor extensions
Open source implementation - Mesa

Acting as both a driver and translation layer to other graphics APIs.
Concepts

API formed by set of functions and integer constants
Asynchronnous calls (queries) for efficient CPU/GPU parallelism
GL context - internal global state owning OGL objects

Multiple contexts possible (data sharing, etc.)
API calls make modification to current context

OGL objects (textures, buffers, framebuffers, shader programs, . . . )
Gen/Delete paradigm - glGen(GLsizei n, GLuint objects), glDelete(GLsizei n, const GLuint *objects)
Bind before usage - glBind*(GLenum target, GLuint object)

float vertices [] = {
-0.5f , -0.5f ,
0.5f , -0.5f ,
0.0f , 0.5f ,
};
unsigned int VBO, VAO;
glGenVertexArrays(1, &VAO);
glGenBuffers(1, &VBO) ;
// bind the Vertex Array Object first,
// then bind and set vertex buffer(s), and then configure vertex attribute(s).
glBindVertexArray(VAO);

glBindBuffer(GL_ARRAY_BUFFER, VBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);

// index, size, type, normalized, stride, pointeroffset
glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, 2*sizeof(float), (void*) 0);
glEnableVertexAttribArray(0);



VBO is basically an array of data thats stored for every vertex.
EBO is an array of data thats describes how every element (aka triangle) is constructed.
VAOs bundle together all these buffers (like a container of pointers) and allow you to utilize them easier.

Draw calls

Rasterizer

Decomposition of vector primitives into fragments
Fragment:

Raster element - potentialy attributes to pixel color
Size: same or smaller (antialiasing) then the target pixel

Interpolation of vertex attributes - linear, barycentric coordinates
Triangles sharing two vertices - no overlap, no gap

OpenGL shading language (GLSL)

C based programming language
Programmable pipeline customization

Vertex shader

Fragment shader

Obligations (VS <-> FS)

glUseProgram(shaderProgram);
glBindVertexArray(VAO);
glDrawArrays(GL_POINTS, 0, 3)
glDrawArrays(GL_LINE_LOOP, 0, 3);
glDrawArrays(GL_TRIANGLES, 0, 3);

// vertex shader
int vertexShader = glCreateShader(GL_VERTEX_SHADER);
glShaderSource(vertexShader, 1, &vertexShaderSource, NULL);
glCompileShader(vertexShader);
// fragment shader
int fragmentShader = glCreateShader(GL_FRAGMENT_SHADER);
glShaderSource(fragmentShader, 1, &fragmentShaderSource, NULL);
glCompileShader(fragmentShader);
// link shaders
int shaderProgram = glCreateProgram();
glAttachShader(shaderProgram, vertexShader);
glAttachShader(shaderProgram, fragmentShader);
glLinkProgram(shaderProgram);

#version 430

in vec3 in_vert;

void main() {
    gl_Position = vec4(in_vert, 1.0);
}

#version 430
// Same color for all fragments and all draw calls (Use same color for all fragments)
const vec3 color = vec3(1.0, 0.0, 0.0);
// Same color for all fragments per draw call + default <- value (Customize color from CPU side)
uniform vec3 color = vec3(1.0, 0.0, 0.0);

out vec4 out_color;
void main() {
    out_color = vec4(color, 1.0);
}



VS obligation: vertex coordinates in “clip space”
for 3D primitive rasterizing
other output varying data are optional (texture coordinates, normals, primary and secondary color, etc.)

VS-FS cooperation
GPU is not aware of data semantics:
rasterizer unit usually interpolates all the data (perspective correct interpolation)
flat option (prevents the interpolation)

OpenGL FFP - Lighting Model

Gouraud shading
Blinn-Phong reflection model
Hardcoded maximum number of available lights

The code?

OPENGL CALLS

GLSL DATA TYPES

Math
Vector Operations

Scalar (Dot) Product

Definition:

Value:

Matrix notation:

Vector Projection

Projection onto another vector:
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Matrix notation :

Cross Product

Definition:

As formal determinant:

Matrix formulation:

Perpendicularity

Magnitude

Orientation
Follows the right-hand rule.

Rotations

2D Rotation

Basic expression:

Matrix notation:

Complex exponential:

- Rotate by multiplying  by 
- Inverse rotation via the complex conjugate of 

Elementary Rotations in 3D

Rotation Around an Arbitrary Axis
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Assume Axis , angle , point , rotated point  and .

Project  onto the axis

Perpendicular component

Cross product with the axis

Final rotated position:

Matrix representation:

where

Final matrix form:
Let , , and  be a unit axis. Then the rotation matrix is

Euler angles

arbitrary rotation decomposed into three components
Leonard Euler (1707-1783)
3 angles - 3 elementary rotations
order of rotations important (x-y-z, roll-pitch-yaw, z-x-z, …)

intrinsic vs. extrinsics
Disadvantages:

Problematic interpolation between two orientations
Gimbal lock - not as severe in SW as in HW (Apollo)

Quaternions

generalization of complex numbers in 4D space
usage in graphics since 1985 (Shoemake)

imaginary part 

It’s better to watch some video to understand, for example Quaternions and 3d rotation, explained interactively.

Summary

rotational matrix
 HW support, efficient point/vector transformation
 memory (float[9]), other operations are not so efficient

rotational axis and angle
 memory (float[4] or float[6]), similar to quaternion
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 inefficient composition and interpolation
quaternion

 memory (float[4]), composition, interpolation
 inefficient point/vector transformation

Affine and projective spaces

Affine space: - Set  of vectors and set  of points - Affine transformations can be represented by matrix

Projective space: - Homogeneous coordinates - All lines intersect (space contains infinity) - Affine and projective transformations can be
represented by matrix

Homogenneous coordinates

homogeneous coordinate vector 
transformation: multiplying by a  matrix
homogeneous matrix is able to translate and to do perspective projections
from homogeneous coordinates  into Cartesian coordinates:

by division 
coordinate vector  point in infinity
from Cartesian coordinates to homogeneous:

trivial extension 

Transformation Matrix

 defines translation
 defines:

rotation:

where

together

> I would recommend praying to god that the matrix will be Identity
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(and any combination of the above)

Normal Vector Transformation

Only orientation change is valid transformation for normals

Tangents ( ) remain valid:

Transforma

Transformations for rendering pipeline

LookAt Camera Matrix

Given camera eye position , look-at point , and up vector :

The  transform that moves the camera to its position and orientation is

World view needs to be transformed by its inverse:

Which multiplies out to:

Perspective Projection (Frustum)

Point  projection:
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Frustum projection matrix:

Note: Perspective-correct interpolation requires dividing by the clip-space  (here ) after this transform.

Textures
Appearance enhancement:

color modulation with raster images (“bitmap”)
bump-mapping to fake geometric detail
possible modulation of transparency, reflectance, environment light

Texture definition:
1D or 2D data array (“bitmap texture”)

widely used, broad hardware support
3D data array (“volume texture”)
procedural - callback algorithm in every fragment (programmable GPU)

Texture access

Texturing API

Texture handle creation: cpp   unsigned int texture;   glGenTextures(1, &texture)
Texturing unit activation and texture binding: cpp   glActiveTexture(GL_TEXTURE0);   glBindTexture(GL_TEXTURE_2D, texture);
Data upload: cpp   glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, data);
Texturing parameters: cpp   glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);   ...

Texture mapping

2D textures have to be mapped to an object surface
texture coordinates  (  in OpenGL) defined in every vertex
GPU interpolates them correctly into individual fragments
bitmap data need to be interpolated (among adjacent texture pixels = “texels”)

Texture unwrap

Cut along seam edges
Flatten geometry to minimize distortion (prevent stretched faces)
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Texture repetition

Standard texture-coordinates domain: 
Handle out-of-range values?

Cyclic repetition (GL_REPEAT)
Mirroring (GL_MIRRORED_REPEAT)

Every other tile is flipped -> better continuity
Clamping (GL_CLAMP, GL_CLAMP_TO_EDGE)

Optional explicit border color (GL_CLAMP_TO_BORDER)
Can be used for debugging (special color)

Texture combination

Modern GPUs (since TNT) can combine more textures in one fragment (“multitexturing”)
global (low-frequency) basis + detail texture
pre-computed lighting (“light-map”)
“environment maps” - reflection of a surround scene

Legacy combination operators:
REPLACE (source is ignored)
MODULATE (multiplication - values are abated)
DECAL (semi-transparent texture on an original surface)
INTERPOLATE (lerp, 2 sources)
DOT3_RGB[A] (inner product, for 3D)
ADD, ADD_SIGNED, SUBTRACT, …

programmable GPU (in “fragment shader”): arbitrary formula

Texture mapping units

Hardware component for processing texels
One texture mapping unit (TMU) handles one bitmap source
Two jobs:

Texture Addressing: texture coordinates -> texels -> fragments (pixels)
Texture Filtering: interpolation, filtering

Modern hardware - multiple texture units (one texture processed by multiple HW units)
More TMUs -> higher fill rate
Spatial caching - neighboring fragments access texel from small neighborhood

Samplers

Sampling parameters for a texture access inside of a shader
glBindSampler() + glBindTexture() - bind to a texture unit

Examples

Most frequently used approaches:

gloss mapping (glossy reflection)

light mapping (alt: dark mapping) - lighting, shadow mapping - pre-computed shadow, ambient occlusion

Precompute lighting effects
Bake into light/shadow map
Static lighting - light source cannot be moved

bump mapping (normal-vector modulation)

special texturing technique - impression of a bumpy surface
replaces complicated macro-geometry
modifies (modulates) normal vector in every pixel
Phong shading (normal interpolation) is recommended
human observer thinks that a surface is actually bumpy (much of the impression is inferred from specular
reflections)

[0, 1]D

# version 330

in vec2 v_tex;
out vec4 f_color;

uniform sampler2D u_texture;

void main () {
    f_color = texture(u_texture, v_tex);
}



parallax mapping (texture coordinates modulation)

simulate parallax
modulate texture coordinates based on displacement map
used together with bump mapping

environment mapping (environment reflection)

reflection vector R converted to
spherical coordinates - more complicated
six cube faces - “cube mapping”

Filtering

Aliasing

Reconstruction of original signal from discrete samples
Problem when sampling frequency ( ) below Nyquist limit:

Shannon theorem
Aliasing examples and preventions:

Moire pattern (interference), rasterization
high speed rotation + camera, rolling shutter
fluorescent light + lathe
CD-quality audio sampling frequency

Aliasing prevention

Higher sampling frequency
Preprocess signal - correctly remove high frequencies (low-pass filtering)
Hide artefacts behind another (less disturbing phenomenon) - random noise

Texture filtering

texture “seen from a distance” should be filtered (raster image sub-sampling)
otherwise “alias” will appear (especially disturbing in motion)

pre-processing techniques
MIP-map (“multum in parvo”), most popular (HW)
RIP-map, anisotropic miniatures
anisotropic filtering - dynamic method, MIP-map + number of linear samples
summary tables - pre-computed upper-left rectangle sums

MIP-Mapping

texture subsampling in advance - binary fractional resolutions (1/4, 1/16, etc. - HW supported)
high quality sub-sampling with averaging
3-component color (RGB) - convenient arrangement in memory
glGenerateMipmap()

MIP-map utilization
compute level (according to required texture scaling)
either single texel fetch (speed)
or interpolation between two adjacent MIP-map levels or even bi-linear interpolation in the levels (at most 8 fetches =
quality)

Anisotropic filtering

back-projected screen pixel = deformed quadrangle
MIP-map level according the higher sub-sampling (shorter size)
multi-sampling (averaging) along the longer side

f  sampl

f  <sampl 2f  max



Custom filtering

Arbitrary filtering implemented in shader
Integral images (summary tables)
Multiple texture accesses

Incorporate perspective (anisotropy):
Derivatives between fragments: dFdx(), dFdy():

Example: flat normal

3D Textures

Trilinear interpolation
Modeling material properties (marble, wood, clouds)
Z-direction interpreted as time - animation
Precomputed lighting effects: normal -> texture coordinates
Scientific applications

Tomography
Vector fields - fluid simulations,…

Application (Medical data visualization)
Maximum intensity projection
Density integration
Isosurfaces
1D transfer function

Curves and Surfaces
Curve and surface definition

Explicit:

Implicit:

Parametric:

Parametric curves and surfaces

Parameter(s) have specified range ( )
Same curve (surface)can have multiple parametrizations

Arc length parametrization - animation, uniform sampling,…
In general case cannot be expressed analyticaly

Sampling the parameter space -> discrete points in space
Approximating by polyline or polygonal mesh

Cubic curves

Basic parametric cubic curve equation:

Rewrite in matrix form:

normalize(cross(dFdx(pos), dFdy(pos)));

y = sin(x), z = x +2 y2

0 = x +2 y, 0 = x +2 y +2 z2
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Compact notation:

where

Simple derivative:

Geometrical constraints

Certain curves can be defined as weighted sum of four geometrical constraints.

 - blending functions:

Rewrite in a matrix form:

Compact matrix form:

where  geometry matrix,  basis matrix.

Hermite curves

Endpoints 
Tangents at those points 

Catmull-Rom splines
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Control points 
Tangent at point

Catmull-Rom -> Hermite

Bézier Curves

P. de Casteljau (Citroën) — numerically stable algorithm using linear interpolations
P. Bézier (Renault) — Bernstein polynomials as blending functions

Four control points per cubic segment

Basis matrix

de Casteljau algorithm
Repeated linear interpolation
Each lerp uses same weight

Surfaces

Bicubic surfaces

Extension of bilinear interpolation concept
Tensor product surfaces
16 geometrical constraints -  coefficients

Tensor‐product form:

Matrix form:

Bezier triangle
de Casteljau extension for triangles - barycentric coordinates instead of lerp
10 control points

Simplification for triangle meshes with vertex normals - PN-triangles
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Subdivision surfaces

Recursive algorithms
Two steps:

Refine mesh topology
Adjust vertex positions

Interpolating vs approximating

Catmull-Clark scheme

Produces quad mesh - keeps clean topology
Vertices inserted into edges and face centers

Loop scheme

Defined for triangle meshes
Spliting edges
New position - weighted average of vertices from incident triangles

Framebuffer and Offscreen Rendering Techniques
Double buffering

Single frame buffer problems:
screen tearing
flickering
render artefacts

Double buffering - also known as page flipping
Front buffer - currently visible
Back buffer - currently rendered off-screen

Requires fast buffer swap

Framebuffer Structure

Default framebuffer created with window creation
Custom off-screen framebuffer:

Can choose resolution
Arbitrary attachments
Render to texture
Filtering, postprocessing
Interoperability with other APIs (CUDA, OpenCL, …)

Framebuffer attachments

2D rendering target
Almost any object containing image or image array
For complex objects specify what part to attach:

Cube map select face
3D texture z-slice
Mipmap choose a level…

Specify semantics - how it will be used in the rendering pipeline
Color attachments



Should match fragment shader outputs
Color:

1-4 channels
Integer (8-32), float
Special storage types: GL_R3_G3_B2, GL_RGB10_A2, …

Color updated on successful pass through all fragment tests

Depth buffer (Z-buffer)

Contains depth information for each pixel
Solves visibility problem

Geometry can be streamed
Works only for opaque objects

Precision depends on:
z-buffer element type
projection - decreasing precision with increasing distance (choose proper near/far clipping planes)

Stencil buffer

Additional buffer with integer elements
Usually shares memory with z-buffer
Limits area for rendering - stenciling
Often used for shadow computation
Can be updated by results of stencil and depth test
Behavior setup:

glStencilFunc: what the test does
glStencilOp: what happens on test pass/fail

Operations and tests on fragments

Scissor test
Alpha test
Depth test
Stencil test
Blending
Dithering
Logical operations (only integer based colors)

Depth test

Different conditions for different objects (e.g. outline hidden objects)
glDepthFunc()

GL_NEVER, GL_ALWAYS
GL_LESS, GL_EQUAL, GL_LEQUAL, …

Z-fighting - z-buffer precision
glPolygonOffset()

Modulate z-value for specified primitives
Early depth test optimization

Alpha test

RGBA mode - fragment accepted/rejected by the alpha test
void glAlphaFunc(GLenum func, GLclampf ref);
Comparison function and reference value
By default, ref is zero, func is GL_ALWAYS
func: GL_ALWAYS, GL_NEVER, GL_LESS, GL_EQUAL, GL_LEQUAL, GL GEQUAL, GL_GREATER or GL_NOTEQUAL
glEnable(GL_ALPHA_TEST);

Color blending

How the color of the pixel is updated by fragment shader output
Render transparent objects -

disable depth test, painters algorithm (order primitives)
order independent transparency - depth peeling

glBlendFunc() mixing colors based on their respective alpha values
The source color: the color of the fragment be drawn
The destination color: the color already present in the color buffer

Antialiasing



Supersampling (SSAA)
Render in higher resolution
Show downsampled image - smoothing

Multisampling (MSAA)
Multiple depth/stencil tests per pixel
Estimates fragment coverage - smoothing on edges

Render buffer vs. texture

Best buffer for framebuffer attachments? - Render buffer object: - contains image, which will not be sampled (read) - optimized as render
target - support MSAA - Textures: - optimized for read access - can be used later in the rendering pipeline

Triple buffering and V-Sync

V-Sync: new frame is rendered in sync with monitor refresh frequency (60-100 Hz)
Double buffering + V-Sync - small interval when none of the buffers can be touched - delay, idle GPU
Second backbuffer - no delays, highest possible framerate
Meaningful only when refresh rate lower than maximal possible rendering framerate

Shadows

Shadow casting

Static Shadows: baked light/shadow map
Dynamic shadows:

single shadow-receiving plane
simple approach, not generally usable

shadow mapping
shadow depth-buffer, supported in HW - shadowmap sampler

shadow volumes
precise but very computationally intensive

sharp shadows (one pass)
soft shadows (more passes, accumulation of results)

Shadow receiving plane

sharp shadows - point light source
use of stencil buffer and multiple scene passes

stencil prevents shadow duplication
single shadow-receiving plane
shadow could be opaque (destroying the original surface color) or transparent (only reducing the amount of light)

Procedure

1. the whole scene rendered using ordinary projection
shadow-receiver sets stencil to 1
other objects zero this bit

2. potential shadow-casters rendered to the shadow-receiving plane
depth-test is off
special projection matrix
shadows are drawn only to the (stencil==1) pixels

Face culling

From the point of view of camera
GPU can filter (face cull) according to vertex order:

glEnable(GL_CULL_FACE);



glFrontFace(GL_CCW);
glCullFace(GL_BACK); // draw front faces only

Speed optimization

Shadow volume - depth pass

shadow-caster - infinite shadow volume from countour (shadow solid)
lateral faces of a shadow solid are considered, but invisible
virtual ray from the camera is tested against these faces
GPU can rasterize the virtual faces and “draw” them into the stencil buffer

Front faces increase stencil
Back faces decrease stencil

stencil buffer values define shadows in the scene
has to be done separately for each point light source

Shadow volume - depth fail

Carmack’s reverse
camera can be placed anywhere
shadow solid sealed using “caps”: one is illuminated part of an object, the second one in infinity
second phase: lateral shadow faces and both “caps”

Front faces - decrement on depth fail
Back faces - increment on depth fail

third phase: stencil==0 means “light”

Shadow mapping

1. scene is rendered from the light-source viewpoint
no need to modify frame buffer, only depth-buffer has to be updated

2. depth-buffer is moved into a texture (“shadow map”)
regular projection according to the camera
use of projective texture coordinates
test actual distance of a fragment from the light source (in the world space) against shadow-map texture



Problems
Shadow acne
Perspective aliasing
Sharp shadows
Hard to choose optimal size of shadow maps

Solution: cascaded shadow maps

Deffered Shading

Bottlenecks in rasterization pipeline
Processing lots of lights
Complicated materials
Lots of fragments shaded and not used

Deffered shading
Decouple geometry and light processing
Two stages:

1. Render geometry to textures - multiple render targets (G-buffer)
2. Posprocessing - apply light computations

Compositing step
Compute shader or draw one fullscreen quad
Apply lighting for only visible fragments
All shading parameters come from uniforms and textures
Modern engines do postprocessing

Motion blur
Depth of field
Screen space ambient occlusion
Screen space decals
Bloom
HDR processing

Disadvantages
Cannot handle transparency (depth peeling)
Complicated usage of multiple material types
Memory intensive
MSAA does not work:

Supersampling
Smoothing trick (small scale, rotate with linear interpolation,…)
Postprocessing - edge detection and masked smoothing, morphological AA (MLAA)

Effects
Surface details

Tangent space

Local coordinate space
Z axis - normal N
X axis - tangent T (direction in which  coordinate changes)
Y axis - bitangent B (direction in which  coordinate changes)

TBN matrix - transformation local tangent space to world space
Orthonormal in texture space
In general not othonormal in world space (only in special cases)
Mesh preprocessing

Tangent space computed for each vertex

u

v



Triangle , relative coordinates , , relative texture coordiantes :

Solve for tangent & bitangent:

Then average  and  over all incident triangles (just like normals).
Approximation by orthonormal space:

Easy inverse matrix computation
Less data transferred to GPU - just  and a 4D tangent .
Passing normal and 4D tangent (w used for handedness determination)

> where  applies the chosen handedness sign .
Computation in fragment shader

Current HW fast enough for on-the-fly computation
Fast enough to also compute inverse matrix (no need for orthogonalization)
How to compute differences from position and texture coordinates:

Bump mapping

Modulated normals in tangent space - normal map
normal  mapped to RGB 

Use TBN matrix to transform into world space for lighting computation

Parallax mapping

Bump map - no parallax for surface displacement
Effect can be simulated by modifying texture coordinates using displacement map
Basic

Computation in local tangent space
Scale eye vector into  by 
Crude estimation of texture offset 
Problematic for steep displacements and low viewing angles

Steep parallax
Better estimation of the texture offset
Check multiple layers to detect intersection more precisely

P  ,P  ,P  1 2 3 Q  2 Q  3 [s  , t  ], [s  , t  ]2 2 3 3

Q  =i P  −i P  , [s  , t  ] =1 i i [u  −i u  , v  −1 i v  ], i =1 2, 3.

Q  =i s  T +i t  B, i =i 2, 3.

T B

N (T,w)

B = T  (N×w T),

T  w w ∈ {±1}

vec3 dp1 = dFdx(p);
vec3 dp2 = dFdy(p);
vec2 duv1 = dFdx(uv);
vec2 duv2 = dFdy(uv);

[0, 0, 1] [1/2, 1/2, 1]
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Ambient Occlusion

constant ambient term not good enough
does not consider occlusion (even self-occlusion)
ridges are equally lighted as valleys

pre-computed average (potential) contribution of surround light to the surface point
for every surface point compute:

percentage of unoccluded rays from an environment (self-occlusion elimination) - accessibility coefficient
dominant light direction (best lit from) - B
technique: ray-casting from each point, counting rays without collision

Accessibility map utilization
accessibility coefficient

multiplication factor for ambient light approximation (instead of the  constant)
dominant vector 

addressing for the environment light map
map should be blurred in advance
texture data are multiplied by the accessibility coefficient as well

Non-realistic rendering

X-Ray Vision

Highlight invisible objects (occluded by different object)
CAD system - invisible components
VR, Games - highlight objects of interest
Possible approaches:

Select occluded objects, render without depth test after everything else
Selection by different means
Problematic partial occlusion

Second render pass for highlighted objects, inverted depth test
Works with partial occlusion

Cartoon (Cel) Shading

goal: results similar to human 2D graphics
contour emphasis
pen-and-ink drawing simulation (hatching)
imitation of painting techniques (oil, watercolor)
cartoon-style shading

approaches (techniques)
special textures (coarse shading tones, ..)
procedural textures (fragment shader)
post-processing (for specific painting techniques)

 combinations

k  A

B

+



Contour rendering

No need for explicit definition of contours
Solids have to be regular (closed)
Two phases:

1. front-facing faces only
no special rendering style
back-face culling

2. edges of back-facing faces only
more thick line (glLineWidth()) - contour lines will stick out
alternative - render backfaces of blown-up mesh (no scaling)

Cartoon light model

light model similar to “Blinn-Phong”
diffuse term 
optional specular term 

diffuse term indexes simple ramp texture, or quantize the intensity
only small number of color tones
no texture filtering for sharp outlines
CAD applications - determination of plane orientation

optional specular term with priority
thresholding for white-color highlight

Postprocessing

Basic postproccessing operators

Process outputs from deffered shading stage
Texture coordinate transformation
Spatial filtering - operations on pixel (texel) neighborhood

Linear filtering - convolution
Edge detection
Smoothing
Bluring
Bloom

Non-linear:
Morphological operations
Median filtering

Coordinate transform

Transform input  coordinates ( )
Warping
Optical Effects

Fish eye lens
Barrel distortions

Extreme stretching limited by number of texels
Higher order interpolation - bicubic,…

Spatial filtering

Value of the pixel is updated by some function over the neighboring pixels
Linear combination - convolution

Mask containing weights (kernel)
Nonlinear operations - min, max, median, …
Implementation

Fragment shader:
,  - single texel offset in normalized texture space

texelFetch() - access via non-normalized coordinates
Compute shader:

Better optimization options

Gaussian smoothing

Gaussian distribution (normal) - result of combined random processes
Used for smoothing (bluring), noise reduction

 determines kernel radius -  rule

cosα

cos βh

u, v f : [0, 1] →2 [0, 1]2

u  step v  step

σ 68 − 95 − 99.7



Separable filter:
Equivalent to two pass filtering with horizontal and vertical 1D kernel

 instead of  texture reads

Contour (edge) detection

Edges in image - sharp changes in value
Places with high gradient
Alternative for cartoon shading
Numerical differentiation

Finite difference:

Symmetric (central) difference:

Higher-order schemes improve numerical stability but at the cost of wider stencils > Note: Differentiation amplifies high-
frequency noise
Discrete gradient kernels (3-point stencil):

Sobel filter
Numerical partial derivations with small smoothing
Gradien magnitude - edge strength
Threshold small values - filter out small fluctuations

Discontinuities in G-Buffers
Z-buffer

Boundary between objects
Different parts of objects

Normals
Strong edge without normal interpolation
Boundary between objects

ID-buffer (stencil)
Boundaries only between different objects

Combined contours
Detected discontinuities in normals and depth
Summ together - all important contours together

Advanced texturing

Bottlenecks of modern renderers

Memory transfers between CPU (RAM) and GPU
Communication with driver:

Fixed pipeline:
Lots of API calls to manage state

OpenGL 3.0+:
Bind operations
Setting shader uniforms
Draw calls

Multi-material scene/object
Changing shader programs + repeated uniform setup
Bind new textures on material switch
Multiple draw calls

Uniform buffer objects
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Advantages:
Same uniforms in multiple shader programs:

Single buffer cointaining the data
Larger uniform storage
Faster switching for uniform blocks
Switch to uniform block in GLSL

C++ counterpart:

Create uniform buffer:

Update data:

Connect UBO and GLSL program:

Bindless textures

How to prevent texture binding?
Generate integer handle for each texture:

from texture object alone
from texture object and sampler
from specific image within texture

Texture state becomes immutable (can update contents)
Access texture by handle from shaders

cannot be used until made resident
Safety: errors may crash the GPU, program, OS
Extensions: ARB_bindless_texture, NV_bindless_texture

Sparse virtual texture

Also known as megatextures (Idsoft - Rage)
Different approach to binding prevention - one large texture for whole scene
Texture may be larger than GPU memory (over-subscription)

Similar to virtual address space and physical memory
Pages are texture tiles
Page table for translation of texture coordinates

Each object in scene uniquely textured
Artist less limited by technical aspects

Page mapping

uniform vec4 camera_position;
uniform vec4 light_position;
uniform vec4 light_diffuse;

uniform shader_data
{
vec4 camera_position;
vec4 light_position;
vec4 light_diffuse;
};

struct shader_data_t
{
    float camera_position [4];
    float light_position [4];
    float light_diffuse [4];
} shader_data ;

GLuint ubo = 0;
glGenBuffers(1, &ubo);
glBindBuffer(GL_UNIFORM_BUFFER, ubo);
glBufferData(GL_UNIFORM_BUFFER, sizeof(shader_data), &shader_data, GL_DYNAMIC_DRAW);
glBindBuffer(GL_UNIFORM_BUFFER, 0);

glBindBuffer(GL_UNIFORM_BUFFER, gbo);
GLvoid*
p = glMapBuffer(GL_UNIFORM_BUFFER, GL_WRITE_ONLY);
memcpy(p, &shader_data, sizeof(shader_data))
glUnmapBuffer(GL_UNIFORM_BUFFER);

block_index = glGetUniformBlockIndex(program , "shader_data");
GLuint binding_point_index = 2;
glUniformBlockBinding(program, block_index, binding_point_index);
...
glBindBufferRange(GL_UNIFORM_BUFFER, binding_point_index, gbo, 0, sizeof(shader_data_t));



Access the page table with original texture coordinates (nearest neighbor)
No special coordinate mapping
Within-page offset:

Depends on mip-map level
Feedback analysis

Separate pass - render page IDs (low resolution)
Determine pages + mip-map levels
Loading missing pages - delay before used (mip-map fallback)

Decals, Billboards

Runtime interaction with the scene
Additional details:

Bullet holes
Graffiti
Local material weathering
Footsteps

Approaches

Megatextures:
Draw decals directly in the scene texture
Maybe permanent without increased overhead

Special geometry rendered in front of the object
Z-fighting, depth offset
Simple scene - textured quad
Geometry projection in general case
Adding decals increases scene complexity - only few latest/important kept

Screen space decals - deferred shading

Projecting geomtry

Oriented bounding box:
projector along z-axis
x,y are mapped to u,v coordinates

Intersection with scene geometry
select intersecting triangles
cut triangles - project to projector space, uv-mapping

Screen space

Deffered shading
Render projector box

Reject fragments which project outside the box (use z-buffer + view direction)
Flattened box - projected on the geometry

Normal mapping:
Normal buffer may contain modulated normals
Underlying geometry normal - partial derivatives in the z-buffer

Problems:
Clipping the projector box
Projection on 90 degree corners

Billboards

Billboard - semitransparent texture showing more complicated object/scenery
texture is usually mapped on a rectangle
often perpendicular to view direction
… following the viewer - special transform matrix
rotation around vertical axis only (unsightly from above)

usage
trees and bushes (even unoriented billboards, multi-billboards)
complex inscriptions, 2D graphics, HUD, lens flare..

Impostors

Impostor - billboard created dynamically (as necessary) in a rendering engine
cache of complex scenery (not very dynamic)
complex object/scenery (geometric or color complexity)
for distant objects mostly
hierarchy, LoD, multiple instances of the (almost) same object…



trees, bushes
impostors might be oriented along main branches..

technique: HW render-target textures

Noise functions

Critical for realistic textures and models
Simplifies creation of natural variations
Applications: terrain, procedural texturing, simulations
Key for realism in visual effects and games

Functions

Generate pseudo-random
Smooth gradients - frequency limited
Controlled randomness mimics natural forms
Types:

Value
Gradient (Perlin, Simplex)
Cellular (Worley)
Fractal Noise

Perlin noise

Developed by Ken Perlin, 1983
Algorithm:

Gradient vectors computed at grid points
Interpolated across grid to produce smooth transitions

Properties:
Visually isotropic in 2D and 3D
Repeats over large scales, which can be controlled

Applications: Terrain, clouds, fire textures

Simplex noise

Ken Perlin, 2001
Algorithm:

Similar to Perlin but with simplex grid (triangular/hexagonal)
Reduces computational complexity, especially in higher dimensions

Properties:
Faster computation and lower complexity than Perlin
Scales more efficiently to higher dimensions (4D and beyond)

Avoids square-grid artifacts of Perlin noise

Worley noise

Steven Worley, 1996
Algorithm:

Points randomly distributed, partitioned into cells
Noise generated based on proximity to nearest points

Properties:
Produces a voronoi diagram-like appearance
Can simulate phenomena like cracked surfaces, sponge textures

Applications: Stone, water effects, organic textures

Compositing noise functions

Combines multiple noise types to increase texture complexity
Techniques:

Layering different scales and amplitudes
Masking layers to control influence areas

Example: Mix Perlin (base texture) + Worley (detail enhancement)
Enhances detail and realism in procedural content

Volumetric effects

Light usually passes through some medium (air, water, . . . )
Intensity, color (polarization) may be modulated:

Attenuation (fog)
Scattering (sunbeams, blue sky)



Simulated by:
Ray traversal
Blending billboard slice planes

Ray casting

Space traversal along light ray
Integrating properties along the ray:

Discrete samples:
Regular voxel grid
Procedural description

Numerical integration:
Piece-wise constant
Interpolation (linear, polynomial)
…

Sunbeams

Also known as crepuscular rays, god rays, …
Scattering on particles under direct light:

Sun + clouds
Point light source + dusty room

Implementation
Deffered shading
Ray casting from viewer to each pixel

Ray sampling
Check if sample illuminated - shadow map test
Apply light scattering (physical model) to illuminated points
Aggregate the effect and apply to color buffer

Heavy computation
Downsampled g-buffer
Bluring result to prevent aliasing

Other approaches
Create light volume geometry from shadow map and light source

Solve the rendering integral in intervals defined by light mesh
Screen space approach:

Directional light source bluring (decreasing alpha)
Ligth source must be in the image

Generate Geometry on GPU
Geometry instancing

Lots of models, same vertex data
Particle systems
Forrests
Armies
. . .

Different transformations, texture data, . . .
Many draw calls - bottleneck

Rendering - fast
Issuing draw commands - slow

Instancing - draw multiple objects by single call
Replace standard draw calls by instanced versions (extra count parameter)

glDrawArraysInstanced()
glDrawElementsInstanced()

In shaders build-in variable gl_InstanceID
From interval 
Used for indexing arrays of offsets, shifting texture coords, . . .

Tessellation shaders

ν =  f(s) ds∫
ray  start

ray  end

[0, count)



Why

Adaptive subdivision based on a variety of criteria (size, curvature, etc.)
Coarser models, but finer ones displayed (geometric compression)
Detailed displacement maps without supplying equally detailed geometry
Adapt visual quality to the required level of detail

Patch primitives

New PATCH primitive
Fixed number of vertices:

glPatchParameteri( GL\_PATCH\_VERTICES, num );
Structure defined by shader implementor

Shader organization

Tessellation Control Shader (TCS)
Computes tessellation levels (fixed, distance to eye, screen space, hull curvature, . . .)
One invocation per output vertex

Tessellation Primitive Generator (TPG)
Fixed-function
Generates predefined patterns in u-v-w barycentric coordinates

Tessellation Evaluation Shader (TES)
Evaluates the surface in uvw coordinates
Interpolates attributes
Applies displacements

Lots of technical details, it just makes new LODs…

Geometry shaders

last optional shader stage before rasterizer
similar to tesselation

generating new geometry
similar results by different principles
new primitives are generated directly in shader (no fixed primitive generator)

Input

assembled primitives (no strips, loops, or fans)
points . . . 1
lines . . . 2
lines_adjacency . . . 4
triangles . . . 3
triangles_adjacency . . . 6

Access to information about the whole primitive
New primitives with adjacency information

Output

possible output primitives:
points
line_strip
triangle_strip

types of input and output primitives are independent
input forgotten after shader execution

output 0 or more primitives (up to implementation defined limit)

Application

Shadow volume



Use triangles with adjacency:
1. Render front cap

Pass through illuminated faces
2. Render back cap

Same polygons projected to infinity (depth clamping)
3. Render extruded silhouette

extrude edges separating illuminated and shadowed faces (compare )

Mesh shaders

Flexible and scalable geometry processing
Replaces Vertex + Geometry Shaders
Works with small meshlets instead of individual triangles
Improves GPU parallelism and reduces draw calls
Converges towards compute shader-like workflow
Supported by NVIDIA Turing/RTX and AMD RDNA2 GPUs
Available in DirectX 12 Ultimate and Vulkan 1.2+

Why

Tessellation and geometry shaders are limited:
Tessellation in function
Geometry in speed

Mesh shaders - convergence to compute shaders
Better hardware saturation
More flexible

Scientific Visualization
Volumetric data

Data representation

Regular, 3-dimensional grid of samples (voxels)
Scalar values - density, absorption coefficients, event counting
Vectors
Color

3D texture:
Trilinear filtering
Easy slicing in general direction

2D texture:
Set of textures
Texture atlas
Manual filtering in Z-direction

Volume Rendering Integral

: entry point
: exit point (camera position)

: emission at point 
: initial intensity at  (background emittance)

: absorption coefficient

Viewport aligned slices

Generate proxy geometry
Viewport aligned slices (billboards)
Limited by volume bounding box - limit fragment count
Convex - easy to triangulate

Enable framebuffer blending
Color attachment with float precision

Ray-casting

dot(N ,L)

I(D) = I  exp(−  κ(t) dt) +0 ∫
s  0

D

 q(s) exp(− κ(t) dt) ds∫
s  0

D

∫
s

D
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D
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I  0 s  0
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Generate rays from camera through each pixel
Fragments generated by rendering bounding volume

Discrete samples along the ray
Numerical computation of the rendering integral

Volume compositing schemes

In Direct Volume Rendering, compositing accumulates color and opacity along the viewing ray.
Two main compositing orders:

Front-to-back: processes samples from the eye toward the volume.
Back-to-front: processes samples from deep in the volume toward the eye.

Compositing equations

Color bleeding

Maximum intensity projection

Direct volume rendering

Combined geometry rendering

Opaque geometry
Rendered before volume
Rays terminated by value in z-buffer

Transparent geometry
Checking for geometry/ray intersections during ray traversal
Color computed together with volume sampling

Transfer functions

1D Transfer functions

Runtime fuzzy classification
Transfer function 
Ray sample: 
Maps scalar value to RGBA color.
Implementation:

1D RGBA texture with interpolation
Final sample color - access TF texture

Gradient

1D Transfer functions + light

Better surface shape perception.
Compute shading for opaque regions (  channel over some threshold)
Normalized gradient as surface normal.

2D Transfer functions

Gradient magnitude

Can be computed on the fly.
Ability to separate borders from homogeneous regions.

Improvements

Lighting
Jittering
Speedup techniques

Isosurfaces

Polygonal mesh representing level set
Volume preprocessing:

Cuberille (+filtering)

g(v) : R → R4

g(f(x)

α



Marching cubes, tetrahedra, . . .
Use normal rasterization pipeline for rendering
Ray-casting

Search for isovalue crossings
Fine search in subintervals for intersection point
Gradient for surface normal

Vector fields

Data sources

Physical simulations:
Fluid dynamics
Particle simulations
Electromagnetic fields (Maxwell)

Numerical integration

Simulate motion under vector field influence
Numerical integration

Euler method - low numerical stability, fast
Higher order Runge-Kutta methods

Glyphs, icons, probes

rendering glyphs
Large number of similar geometries
Instanced rendering

Impostors for complicated geometries
Geometry shader:

From point samples generate glyph geometry

Line integral convolution

Underlying texture blurred along vector directions
Multiple texture accesses in fragment shader - integration

on surface (Compute in object fragment shader)

Points clouds

Data sources

Surface points:
3D scanner output
Scene reconstruction:

Stereo cameras
Camera + depth sensor (Kinect)
Single moving camera

Random spatial samples:
Unstructured vector field
Unstructured volume

Rendering

Glyph for each point
Colored/textured facets

Glyph for group of points
Size, shape - properties of point group

Unstructured volume samples:
Datastructure for fast queries (octree, . . . )
Ray sample - weighted average of points in certain radius

Surface reconstruction:
Distance field
Isosurface rendering

Speedup Techniques, Other APIs
Lots of stuff, read the slides



Occlusion culling

Do not render objects hidden behind others
Helper objects - occluders
CPU processing

Analyze scene graph + occluders to filter rendered geometry
GPU processing

Z-buffer pre-render
Render occluders to Z-buffer
Occlusion queries
Temporal consistency - Z-buffer reprojection ## LODs

GPGPU
parallelizable tasks on GPU

code size and memory are the only limits
many core computing

CUDA (Compute Unified Device Architecture)

CUDA GPU: group of highly threaded streaming multiprocessors (SM)
each SM has a set of streaming processors (SP) - CUDA cores
SP within one SM share control circuits, instruction decoder and instruction cache
SIMT (Single Instruction Multiple Threads) - warp

Program structure

GPU code = kernel
deployed on thousands of threads
GPU threads are much more light-weighted (thread creation, ctxsw a couple of machine cycles)

Keywords __global__, __host__, __device__
where the code can run
from where it can be called

Kernel execution
MyKernel<<<gridSize , blockSize , dynamicSharedMemorySize , streamID>>>(arg1 , arg2 , . . . ) ;

gridSize
int or dim3
Specifies 3D structure of thread blocks

blockSize
int or dim3
Specifies 3D structure of threads in block

dynamicSharedMemorySize
amount of dynamically allocated shared memory
0 is default

streamID



Which stream is used for execution
0 is default

Usual approach - map grid and blocks on input data
Block:

Executed on single SM
Cannot be removed until finished

Threads in warp:
Set of threads that all share the same code
Follow the same execution path (masking execute on branching)

Streams

CUDA Stream - queue of commands (kernel execution, memory transfers, event)
Commands in stream serialized
Different streams - possible concurrency
Default stream 0 always exists (can be per thread)
cudaStreamCreate()
Synchronization:

cudaStreamSynchronize(stream)
Event system

Memory types

Host (RAM)

Normal memory RAM
By default cannot be accessed from device

Must be copied to device memory

Global memory

Actual GPU memory
Used as normal linear memory - pointer arithmetics
Management:

cudaMalloc(), cudaMallocPitch(), cudaMalloc3D()
cudaMemcpy(), cudaMemcpyToSymbol()

Read from kernel can take hundreds of cycles

Texture memory

Allow usage of texturing HW:
Spatial caching
Filtering

Limited by predefined element types (colors)
No custom structures

Shared memory

Same space as L1 cache
Division is customizable

__shared__ keyword
Shared by threads in block
Use when same value access is multiple times in block execution (not necessarily by same thread)

Registers

32-bit registers
Divided between active warps
Shared memory + registers limit occupancy:

Number of active warps vs. max possible warps on SM
Limiting number of registers may lower performance

May be necessary to run at least 1 block on SM

Advanced features

Unified memory

Dynamic parallelism



Kernels can be executed from kernels on device
Parent kernel waits until children finishes
Allows adaptive thread execution

Parallel algorithms

Algorithms for massively parallel architectures:
Often bottom up design
Shallow datastructures
Memory access patterns considered first

Try to make all operations local only
Problem reformulation:

Search for possible constrains
Solve dual problem
Cellular automata
. . .

Compute shaders

Usage

Write compute shader in GLSL
Define memory resources
Write main() function

Initialization
Allocate GPU memory (buffers, textures)
Compile shader, link program

Run it
Bind buffers, textures, images, uniforms
Call glDispatchCompute(...)

Deep neural networks

Another neural networks renaissance
Large neural networks with lots of layers

Convolutional networks
Large numbers of identical neurons - highly parallel by nature
Backpropagation

Millions of parameters
Large training set

Training vs. inference

OpenCL

Code structure similar to shader programming

Realtime raytracing
Terminology

Whitted’s raytracing

Extending raycasting by using recursion
New reflected/refracted rays are generated and color is recursively propagated back
Perfect reflections/refractions
Simple shadow computation - ray to light source

Distributed raytracing

Modeling soft effects:
Soft shadows
Depth of field
Soft reflections

Shooting multiple rays
Sampling the domain (angle, lens)
Weighted average of the payloads
Suppression of alias



Path raytracing

Systematic approach to solving global illumination problem
Rendering equation:

Integral equation in which the radiance leaving a point is given as the sum of emitted plus reflected radiance under a
geometric optics approximation

Raytracing using Monte-Carlo method for the rendering equation solving
Bidirectional path tracing - faster convergence

Shaders

Ray tracing engines utilize various specialized shaders to achieve realistic rendering. The primary shaders used are: - Ray Generation
Shader - Intersection Shader - Any-Hit Shader - Closest-Hit Shader - Miss Shader - Callable Shader

Nvidia RTX

Bounding Volume Hierarchy (BVH) Traversal
Ray/Triangle Intersection Testing
Parallel Processing

Shaders

New GLSL shader types:
Any hit
Intersection
Miss
Closest hit

All shaders must be available - ray may intersect any object

BLAS (Bottom-Level Acceleration Structures)

Purpose:
Represent individual objects or meshes in the scene.

Structure:
Consist of geometric primitives like triangles.
Optimized using a Bounding Volume Hierarchy (BVH).

Usage:
Built once and reused for multiple frames.
Can be updated if the geometry changes.

TLAS (Top-Level Acceleration Structures)

Purpose:
Represent the entire scene, including instances of BLAS.

Structure:
Contains instances of BLAS with their transformations.
Organized in a BVH for efficient traversal.

Usage:
Built from instances of BLAS.
Updated when the scene layout changes.

Optix

OptiX is not just a raytracer
OptiX is framework for creating application using raytracing, independent from any specific method
Build on CUDA architecture
Most of the components programmable
Usable not only for CG, but also for:

collision detection
visibility determination
sound propagation simulation
volume estimation of complicated objects
. . .

Abstract model of generic raytracer
Future-proofed - build to scale with future development of powerful GPUs
Similar abstraction to OpenGL/DirectX/Vulcan
Mechanism for execution of custom CUDA C code

Shading + recursive rays
Camera model, ray generator
Ray payload



Intersection with arbitrary geometry (e.g. exact sphere without tesselation)
. . .

Programs

8 types of GPU programs supported by OptiX
Ray Generation - Launch entry point, invoked per-pixel/sample
Exception - Called on invalid state (e.g., stack overflow)
Closest Hit - Executed on closest geometry hit (used for shading)
Any Hit - Invoked on all intersections (used for early-out, transparency, shadows)
Intersection - User-defined geometry intersection logic (procedural primitives)
Miss - Executed when ray misses the scene (e.g., skybox sampling)
Direct Callable - Fast inlined function calls via SBT (e.g., shading models)
Continuation Callable - May trigger new ray traces or shading logic

Execution

All informations and data passed to context instance
Specify dimensions and execution parameters
Ray generator is executed, once for each element(pixel)
Results stored into output buffer

Denoising

CSG, Depth peeling, Transform feedback
Transform feedback

Captures output from Vertex/Tessellation/Geometry Shaders
Bypasses the rasterizer
Writes data directly into GPU buffer objects

When to use

Particle systems
GPU-based simulations
Geometry manipulation and reuse
General-purpose GPU computation

Depth peeling

An Order-Independent Transparency (OIT) technique
Renders transparent objects correctly without sorting
Captures multiple depth layers via multiple rendering passes

Why

Traditional alpha blending is order-dependent
Geometry sorting fails for intersecting or dynamic shapes
Depth peeling ensures visual correctness in transparency

Workings

Pass 1: Capture nearest depth layer
Pass 2+: Use previous depth to discard closer fragments
Final: Blend all layers for final image

Requirements

Multiple framebuffers (for color and depth)
Shaders to compare and discard previous depth
Blending enabled (typically premultiplied alpha)

CSG (Constructive solid geometry)

Used by CAD applications
Set operations on geometry primitives



Union
Intersection
Subtraction

Animation
Vertex Animation

Vertex animation involves the manipulation of individual vertices to create movement and deformation of 3D models.
Typically used for animating complex deformations and morphing effects.
Unlike skeletal animation, vertex animation directly modifies the positions of vertices.

Keyframe interpolation

Morph targets (Blend shapes)

Skinning

Skinning is a method used for character animation where a mesh (skin) is deformed based on the movement of an underlying
skeleton (bones).
Essential for creating realistic character movements.
Allows for complex deformations driven by skeletal structures.

Linear blend skinning (LBS)

Dual quaternion skinning (DQS)

Rigid skinning

Physics based animation

Physics-based animation uses physical laws to simulate realistic movements and interactions in real-time.
Adds realism to animations by mimicking real-world physics.
Commonly used for particles, rigid bodies, fluids, cloth, and hair.

Particle systems

Simulate phenomena like fire, smoke, and explosions.
Each particle represents a small part of the effect.
Behavior governed by forces such as gravity, wind, and collision.
Efficiently handled on the GPU for real-time performance.

Rigid body dynamics

Simulate the motion of solid objects.
Objects can move, rotate, and collide with each other.
Governed by Newton’s laws of motion.
Used for simulating objects like bouncing balls, falling debris, etc.

Fluid simulations

Create realistic water, liquid, and other fluid animations.
Techniques include SPH (Smoothed Particle Hydrodynamics) and grid-based methods.
Computationally intensive but can be optimized for real-time using the GPU.

Cloth simulation

Simulate the behavior of fabric as it moves and interacts with objects.
Techniques include mass-spring systems and finite element methods (FEM).
Used for realistic clothing, curtains, and other fabric materials.

Hair simulation

Simulate individual strands or clumps of hair.
Techniques include particle-based methods and volumetric approaches.
Ensures realistic movement and interactions with wind, gravity, and collisions.



Animation blending

Ensures smooth transitions between animations, enhancing realism.
Prevents abrupt changes in movement that can break immersion.
Allows for dynamic and responsive character behaviors.

Linear blending

Non-Linear blending

Additive blending

Inverse kinematics

Inverse Kinematics (IK) is a technique used to calculate the necessary joint angles to achieve a desired position for a part of a
character, such as a hand or foot.
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