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Video 1
● Distribuované algoritmy jsou základech jakéhokoliv cloudu
● Distribuovaný systém propojení množiny nezávislých uzlů, který poskytuje uživateli

dojem jednotného systému
○ Uzly jsou nezávislé počítače s vlastním procesorem a pamětí
○ Komunikují pomocí síťového rozhraní

● Celá škála provedení distribuovaných systémů
○ Cloud (dnes moderní)
○ Množina počítačů v rámci racku

● 199x distribuované operační systémy
○ Amoeba
○ T4 (vznikl na MFF UK)
○ Podpora pro komunikaci přímo součástí jádra OS

■ Neexistoval rozdíl mezi lokální a distribuovanou aplikací
■ Přímo jádro OS komunikaci a synchronizaci řešilo samo bez aplikací

○ Neosvědčilo, složité komplexní problémy → nedotaženo do použitelného stavu
■ Skončilo to jako akademický proof-of-concept

○ Vývoj těchto OS skončil a šel jiným směrem
● 200x distribuované frameworky a aplikace

○ Distribuovanost se přesunula vně jader
○ Nad jádrem OS byla vrsta middleware, nad ním fungovaly distribuované aplikace

■ Lokální aplikace
● Přímo přistupuje k nativnímu rozhraní OS

■ Distribuovaná aplikace
● Přistupuje k middlewaru

● 201x cloud computing
○ Service-oriented computing (SaaS, PaaS, IaaS)
○ Spojení virtualizace + aplikace distribuovaných algoritmů + webové rozhraní

● HPC (High Performance Computing)
○ Velmi častá aplikace distribuovaných systémů
○ Výpočty, kde by jeden uzel nestačil nebo neměl dostatečnou výkonnost
○ Cluster Computing

■ Cluster = množina uzlů, které jsou jednotné z hlediska HW a OS
● Propojeny standardní sítí

■ Často se používá sdílená paměť, RDMA
■ V jednom datovém centru nebo laborce
■ Těsné propojení sítí s nízkou latencí

● Vysoká spolehlivost
○ Grid Computing

■ Rozvolnění vazeb mezi uzly
● Širší geografické rozprostření
● Odlišný HW a SW

■ Žádné těsné vazby
■ Daleko větší latence
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○ Cloud Computing
■ Využívá oba dva koncepty (Cluster Computing i Grid Computing)
■ Propojuje je

● Rozsáhlejší informační systémy
○ Distribuovaný není výpočet ale data
○ Více info viz předmět NDBI040

● Pervasivní systémy
○ “Chytré domácnosti”
○ Velký počet rychle se měnících malých uzlů

■ Senzory, IoT
● Proč vlastně děláme distribuované systémy?

○ Když víme, že to je komplikované
○ Peníze

■ Síť běžných PC může nabídnout srovnatelný výkon se superpočítačem
za mnohem menší peníze (souvisí s vertikální a horizontální
škálovatelností viz předmět NSWI150)

○ Rozšiřitelnost
■ Nejdřív nám náš počítač dostačoval, protože jsme si ho koupili s nějakou

rezervou
■ Už nám ale nestačí
■ Vyhodit a koupit nový?

● Finančně náročné
■ Vedle tohoto počítače si koupit další

● Jak rozložit zátěž?
● Distribuované systémy

○ Spolehlivost
■ Máme jeden počítač, ten vypadne, je konec
■ Když máme 100 uzlů a 2 vypadnou, tak se sice sníží výkon, ale přežijeme

to
○ Výkon

■ Způsob, kterým můžeme porazit technologické limity
■ Je možné dosáhnout většího výkonu než nejvýkonnější technologický

možný počítač
○ Distribuovanost

■ “Inherentní” distribuovanost problému
■ Některé problémy jsou sami od sebe svojí povahou distribuované

● Cíle návrhu
○ Transparentnost

■ Aby na vyšších vrstvách SW distribuovanost nebyla vidět
○ Přizpůsobivost

■ Každý uzel je schopný samostatné funkčnosti
● Nespolehlivé sítě, HW, …
● Složitý problém, více si povíme v kapitole o distribuovaném

konsensu
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■ Každý uzel vykonává rozhodnutí nezávisle na ostatních
● Jakákoliv komunikace s ostatními uzly je o mnoho řádu pomalejší

než jakákoliv operace v rámci uzlu
■ Otevřenost

● Specifikovat rozhraní, ale implementace může být na každém uzlu
jiná

● Podpora různých OS napříč distribuovaným systémem
■ Migrace procesů a prostředků

● Z uzlu na uzel
● Transparentně
● Hodí se, když potřebujeme odstavit nějaký uzel

○ Spolehlivost
■ Mnoha desetiletí palčivý problém
■ S počtem uzlů by spolehlivost měla růst

● Dlouho spíše opačně
■ V poslední dekádě zlepšení spolehlivost díky Cloud Computingu a

nasazení a implementaci algoritmů pro distribuovaný konsensus
○ Škálovatelnost

■ Je jiné vymyslet systém pro desítky nebo stovky uzlů oproti systému pro
sto miliony uzlů

● Některé algoritmy techniky, které jsou použitelné pro rozumný
počet uzlů často nejsou aplikovatelný nad nějaký limit

■ Vyhnout se čemukoliv centralizovanému
● Neexistují přesné globální hodiny
● Výpadek jednoho uzlů nesmí způsobit nefunkčnost celého

systému
○ Výkonnost

■ Teorie: více uzlů → vyšší výkon
■ V praxi výkon nestoupá lineárně

● Výrazně vzrůstá komunikace a synchronizace mezi uzlu
● U spousty distribuovaných systémů můžeme narazit na hranici,

kdy v rámci jeho technologií přidání dalšího uzlu už nepřinese
žádný další výkon

● Vyhnout se algoritmům, které vyžadují synchronizace všech uzlů,
pokud máme rozsáhlý distribuovaný systém

● Chyby návrhu distribuovaných systémů
○ Síť je spolehlivá
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○ Síť je zabezpečena
○ Nulová latence
○ Topologie se nemění
○ Jeden administrátor
○ Neomezená kapacita sítě

● Paralelní architektury
○ Budeme dělit podle jejich těsnosti spřažení
○ Těsně spřažené

■ Mají nějakou sdílenou paměť
■ Říká se jim multiprocesory

○ Volně spřažené
■ Uzly mají vlastní paměť
■ Nemáme žádnou sdílenou paměť
■ Říká se jim multicomputery

○ Hrubé dělení, protože mezi jima existuje šedá zóna, kde nějaká sdílená paměť je
■ S kým je ale sdílena? (ne se všemi uzly)

○ Multiprocesory (bus – sběrnicová architektura)
■ Nejběžnější z čeho můžeme vyrobit distribuovaný systém
■ Máme několik procesorů, které jsou sběrnicí připojeny k paměti
■ Když procesor potřebuje přístup, tak po sběrnici pošle požadavek a

paměťový modul po ní vrátí data
■ Když máme více než jeden procesor, tak velkou roli v efektivitě hraje

cache
● Redukuje potřebu příliš častého přístupu ke sběrnici
● V jednom čase totiž může na sběrnici být pouze jeden požadavek

■ Vyniká velice malou škálovatelností
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○ Multiprocesory (switched – přepínačová architektura)
■ Procesory jsou umístěny nezávisle na sobě jako paměťové moduly
■ Od každého procesoru i paměťového modulu vede část sběrnice
■ Na všech křižovatkách jsou crosspoint switche, které umožňují přepnout

na příslušnou odbočku
■ Pokud nedochází k častému promíchání toků (přepínání) tak je to o dost

efektivnější než sběrnicová architektura
■ Hodně finančně náročné

● Místo jedné sběrnice máme sběrnic a kvadratický𝐶𝑃𝑈 · 𝑀𝐸𝑀
počet switchů

● Není sériová výroba → dražší
■ Problémy v SW

● Přicházíme o transparentnost (musíme mít na paměti, že vyvíjíme
SW pro tuto architekturu se znalostí její konfigurace)

■ Omega network
● Místo kvadratického počtu crosspoint switchů existuje řešení

používající switchů𝑛 · 𝑙𝑜𝑔 𝑛
● Je to levnější
● Zvýšení latence při vyšším počtu úrovní
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○ Obecně specializované multiprocesorové architektury jsou dost drahé a
nezvyšují míru škálovatelnosti výrazně, v praxi se nepoužívají

○ Spíše se používají různé hybridní architektury, které umožňují přístup do paměti
jiných uzlů → NUMA

○ Multicomputery (bus – sběrnicová architektura)
■ Základem typických distribuovaných systémů
■ Uzel má svůj vlastní procesor a lokální paměť, která je výhradně

přístupná tomu procesoru
■ Uzly komunikují pomocí sítě
■ Levné a výrazně více škálovatelné

● “Normální” počítače
● Blady v DC

○ Multicomputery (switched – přepínačová architektura)
■ Mřížková architektura

● Vhodné pro řešení dvourozměrných problémů
○ Grafy, analýza obrazu

■ Hyperkrychle
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● -rozměrná krychle (obvykle ale 4)𝑛
● Většina současných superpočítačů

○ NUMA (Non Uniform Memory Access)
■ Vracíme se do šedé zóny (viz první obrázek Paralelní architektury)
■ K menší množině procesorů je připojen paměťový modul

● Těchto bloků je několik
● Všechny jsou propojeny sítí/sběrnicí

■ Nebudeme se o nich bavit → NPRG042, NSWI143

○ GPGPU
■ Obecné počítání na grafických kartách
■ Dost odlišné od běžného paralelního počítání

● CPU má “pár” jader, každé jádro můžeme separátně ovládat
● GPU má tisíce jader, tisíce jader ovládáme jedním kódem

○ Programování není jednoduché a dost se odlišuje
○ NPRG058

Video 2
● Neexistence sdílené paměti

○ Předávání informací pomocí zasílání zpráv
■ Nízkoúrovňové primitivum

○ Dnes existují mechanismy vyšší úrovně (RPC)
● Klienti nerozlišují lokální a distribuovaný přístup

○ Komunikaci řeší middleware, jádro nebo něco jiného
○ Je nutné ale počítat s latencí, případně vzdálená komunikace může selhat
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● TCP
○ Spolehlivý
○ Komplikovaný (velká režie komunikace)
○ V prostředí, kde nepotřebujeme řešit nespolehlivou komunikace nevýhodné

■ V rámci racku, kde máme spolehlivou a rychlou síť mezi servery
■ Výpadek je velmi výjimečný

○ Obecně není vhodný
■ Nemá limit na max dobu doručení zprávy

● Některé algoritmy vyžadují, aby existovala spolehlivá metoda na
detekci toho, jestli zpráva přišla, nebo ne

● Specializované protokoly
○ Snaží se redukovat systémové a synchronizační zprávy

■ Výrazné navýšení rychlosti
■ Snížení latence

○ Často se používá piggybacking
■ Různé systémové a synchronizační zprávy jsou přilepeny k užitečným

zprávám
■ (Normálně by tyto zprávy byly samostatně)

○ Příklad: TCP/FO (TCP Fast Open)
● Zajištění spolehlivosti komunikace

○ Přímo síťovým HW
○ Na SW úrovni

■ Duplicita nebo předbíhání zpráv
● Všechny zprávy mezi každým odesílatelem a příjemcem jsou

postupně očíslovány
● Když příjemce vidí zprávu se stejným číslem, tak ji zahodí
● Když se zprávy předběhly tak je zahodí nebo bufferuje

■ Nepřijatá zpráva
● Klient vyslal žádost a čeká …
● Mohla se ztratit zpráva se žádost/odpovědí
● Nebo se nic neztratilo a kanál je zahlcen a zpráva ještě nedorazila
● Základní ošetření tohoto je (timeout, ACK, repeat)

○ Nastavím si timeout a pokud nedostanu do timeoutu ACK,
tak pošlu zprávu znova

○ Obvykle je vhodné na SW úrovni zajistit spolehlivost a škálovatelnost
jednoduchostí nějakého řešení než vytvářením teoreticky dokonalým protokolem,
který by mohl být příliš komplikovaný

● Přenos dlouhých zpráv
○ Doposud jsme považovali za jednotku přenosu zprávu

■ Když se zpráva pošle, tak potvrzení na celou zprávu
○ Když je zpráva příliš dlouhá (přeposlání celé DB, celého videa)

■ Rozdělíme zprávu na packety
■ Co ale potvrzovat?

○ Potvrzování každého packetu
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■ Neúměrně vzroste režie
■ Na spolehlivých lokálních sítí zbytečné

● Režie při správném přenosu!
○ Potvrzování celé zprávy

■ Režie při špatném přenosu!
○ Dávky (blast, burst, buřty)

■ Budeme potvrzovat dávky (definovaný počet packetů)
■ Po úspešného přeposlání dávky se pošle potvrzení
■ Při špatném přenosu se opakuje pouze dávka (záleží ale na protokolu –

některé mohou být chytřejší a opakovat pouze část dávky)
● Dostanu neočekávaný packet
● timeout

■ Jak správně určit velikost dávky?
● Pevné dávky

○ Jednoduché ale neadaptibilní
■ Když je síť pod větší zátěží může mít větší

chybovost
■ Když je nezahlcena, tak může mít lepší spolehlivost

● Dynamické dávky
○ Velikost dávky je upravována podle aktuální situace
○ -krát správný přenos → zvětšení𝑛
○ Špatný přenos → zmenšení
○ O kolik zmenšovat a zvětšovat je implementačně závislé

■ Zmenšení obvykle výrazné (na polovinu)
■ Zvětšení obvykle postupně pomalé

○ Složitější implementovat, je potřeba jasný konsensus mezi
oběma stranami o velikosti dávky

● Nespolehlivost serveru / služeb
○ Nespolehlivost nemusí být pouze na komunikačním kanálu, ale i na konkrétní

uzlu
○ Klient odešle zprávu, čeká a nic se nestane

■ Komunikační problém nenastal
■ Problém je, že klient neví jestli havárie přišla před zpracováním zprávy

nebo až po

○ Obecně nejde zjistit, zda se operace provedla
■ I když lze, tak to pro některé služby je příliš náročné (transakce)

○ Abychom se s tím mohli vypořádat, tak je důležitý koncept idempotentních služeb
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● Idempotentní služby
○ Nevadí opakované provedení služby
○ Sečti 1+1 👍

■ Ztratíme jenom trochu výpočetního výkonu, protože operaci server
provede vícekrát

○ Vyber $1 000 000 z mého účtu 👎
■ (u mě je idempotentní, protože se mi z účtu stejně nic nevybere, když tam

milion nemám🤣)
○ Exactly once sémantika

■ Ideální
■ Každý požadavek se provede právě jednou
■ Pro některé služby to nejde

○ At-least-once sémantika
■ Služba se určitě alespoň jednou provede
■ Negarantujeme, že provede právě jednou
■ Nevadí, pokud jsou služby idempotentní služby

● Při velké chybovosti ztrácíme maximálně výkon
○ At-most-once sémantika

■ Nutné, pokud nemáme k dispozici idempotentní služby
■ Služba se určitě neprovede vícekrát
■ Sem patří výběr z účtu
■ Nelze zajistit, že se provede

● Havárie klienta
○ Kromě serveru mohou havarovat i klienti
○ Klient odešle požadavek a umře
○ Server počítá a počítá a dělá výpočet pro mrtvého klienta
○ Typicky to, že umřel klient nějaké běžící služby se neřeší

■ Obvykle se nejedná o dlouhotrvající výpočty
○ Toto by mohl být problém v distribuovaných systémech, kde se provádějí

dlouhotrvající výpočty
■ Kdyby nikdo neodebíral výpočet, tak by to byl problém (finanční)

○ Pokud to stojí za řešení v našem distribuovaném systému tak řešení existují
■ Exterminace

● Zodpovědnost klienta
● Klient má persistentní log
● Když se zrovna narodí, tak prozkoumá svůj log, jestli náhodou

neměl rozpracovaný job
● Rozhodne se, jestli mu služba k něčemu bude nebo ne

○ Případně zruší službu
■ Reinkarnace

● Založeno na pojmu epocha
● Zodpovědnost klienta i serveru

○ Evidence (epocha, služba) je na straně serveru
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○ Klient má evidenci epochy a spolehlivou inkrementaci na
starost

○ Jednoduché celé číslo
● Klient po svém narození inkrementuje svoji epochu
● S každým požadavkem klient zároveň posílá i svoji epochu
● Když server přijme žádost od klienta, kde je vyšší číslo epochy

než je u služeb, které ještě zpracovává, tak zruší všechny služby,
které spadají do předchozích epoch

■ Expirace
● Klient nemusí mít představu jak dlouho výpočet bude trvat, tak

výpočtu přidělí tolik, kolik je ochoten utratit
● Každá úloha má přidělené quantum času
● Server počítá jenom pokud má quantum času
● Když vyprší, tak server vrátí zprávu, že žije a že počítá, ale že to

nestihl a vyžádá si pro další výpočet další quantum času
● Klient si vyžádá pokračování výpočtu se specifikací nového

quanta času
● Komunikace pomocí zpráv je z pohledu programátorského rozhraní komplikovaná

○ RPC (Remote Procedure Call)
■ Populární, užitečné a prakticky používané
■ Idea: Přizpůsobit mechanismus na volání funkcí/metod
■ Dvě části stub a skeleton

● Stub u klienta
● Skeleton u serveru
● Oboje automaticky vygenerované části

○ Zajišťují komunikaci mezi klientem a serverem
■ Jak to probíhá

● Klient zavolá běžně lokální funkci
● Tím se zavolá klientský stub
● Zabalí se parametry zprávy
● Zpráva se pošle
● Server přijme zprávu, zpráva se dostane do skeletonu
● Skeleton zavolá výkonou funkci na serveru
● Po zpracování server vrátí výsledek do skeletonu
● Ze skeletonu se zpráva pošle
● Klient přijme zprávu, zpráva se dostane do stubu
● Stub ji rozbalí a vrátí ji klientovi
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■ Spojení
● Jiný uzel uchovává tabulky serverů a služeb, které jsou

poskytovány
○ Tzv. directory server

● Nově nastartovaný server vždy
○ Vytvoří endpoint do své tabulky
○ Zaregistruje si svoji službu na directory serveru

● Když klient potřebuje nějakou službu
○ Zeptá se directory serveru, kdo poskytuje službu, kterou

potřebuje, directory server mu odpoví
○ Spojí se serverem, který poskytuje službu, a požádá ho o

endpoint, server mu odpoví
○ (Potom může klient provádět RPC)

■ Rozhraní
● Obvykle se definuje v IDL (Interface Description Language)

○ Jazyk nezávislý na programovacích jazycích sloužící k
popisu rozhraní

■ Problémy
● Transparentnost

○ Stále musíme mít na paměti, že tato funkce není lokální
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○ Neexistuje sdílená paměť → žádné globální proměnné
○ Žádné předávání ukazatelů
○ (Možné řešení DSM – distribuovaná sdílená paměť,

těžkopádné)
● Reprezentace dat

○ Problém pokud máme distribuovaný systém na bázi gridu
○ Big-endian vs Little-endian

● Komunikační chyby
○ Každý klientu by měl být připravený na to, že jakákoliv

služba může být nedostupná
● Skupinová komunikace (jeden odesílatel, více příjemců)

○ Nepodporuje
■ RPC systémy

● Vznikali někde od roku ‘87 až do teď
● Cisco RPC/XDR (‘87)
● Google FlatBuffers (‘14)

● Skupinová komunikace
○ Jeden odesílatel, více příjemců
○ Atomicita

■ Doručení všem členům, nebo nikomu
● Není vůbec triviální
● Uzly vznikají a zanikají, mají havárie

■ Jak řešit → virtuální synchronie (Přednáška 7)
○ Synchronizace

■ Pořadí doručení je důležité zachovat podle pořadí odesílání
● Co když jeden uzel pošle serveru a druhý𝑥 += 2 𝑥 *=  2

■ Na straně příjemce je nutné rozlišovat mezi příjmem zprávy a doručením
zprávy

● Příjem zprávy
○ Nějaká spodní komunikační vrstva fyzicky přijme zprávu a

zařadí ji do bufferů
● Doručení zprávy

○ Zpráva se z interních komunikačních bufferů dostane do
SW, který na tuto zprávu čeká

■ Doručovací protokoly
● Určují podmínky pro doručení přijatých zpráv

○ Definují sémantiku, jak komunikace funguje
○ Budeme se bavit o celé řadě

■ Kauzální sémantika
■ Sekvenční doručování
■ …

○ Organizace skupin
■ Uzavřená skupina
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● Všechny uzly, které se mají účastnit komunikace, jsou někde
registrovány

● Vhodné pro kooperativní algoritmy
○ Množina uzlů spolupracuje na řešení distribuovaného

výpočtu
● Mohou do ní odesílat zprávy pouze její členové

■ Otevřená skupina
● Definovaná příjemci
● Zaslat zprávu může kdokoliv (i někdo vně skupinu)
● Vhodné pro distribuované služby a replikované servery

■ Překrývající se skupiny
● V rámci samostatných skupin je doručování zpráv

synchronizované
● Zprávy, které jsou zasílány uzlům, které jsou součástí i jiných

skupin, tak mohou být nesesynchronizovány

○ Budeme si povídat o doručovacích protokolech pro skupinové komunikace
mnohem podrobněji (Přednáška 6), nejprve ale potřebujeme probrat
synchronizační algoritmy

Video 3
● Proč je synchronizace potřeba a proč je tak důležitá

○ Nemáme ani bit sdílené paměti
■ Veškerá komunikace pomocí zpráv

○ Neexistuje možnost mít na jednom místě všechny informace ohledně
distribuovaném systémů → rozprostřené informace mezi uzly

○ Vyloučení havarijních komponent
■ Umět se vypořádat s tím, že nějaký uzel odesílá i nesmysly

○ Neexistence společných hodin
● Synchronizace hodin s fyzickým časem

○ Jak sesynchronizovat lokální hodiny každého uzlu
○ Jak sesynchronizovat hodiny mezi sebou

● Fyzické hodiny (obecně)
○ Astronomické měření

■ Původně se čas měřil podle zdánlivého pohybu Slunce okolo Země
■ 1 solární sekunda = solárního dne1/86400
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■ Dlouho to stačilo (až do 2. sv. války)
○ 1948 - atomové hodiny

■ 1s ≈ 9 mld přechodů atomu cesia 133
○ 1950 – TAI (temps atomique international)

■ Atomové hodiny mohou mít nějakou drobnou nepřesnost
■ průměr z 50 (dnes 200) laboratoří

● Každá laboratoř má svoje atomové hodiny
● 1 sekunda je průměr z naměřených hodnot (s vyloučením

extrémů)
■ 1 TAI den je cca o 3 ms kratší než solární den

○ UTC (Universal Coordinated Time)
■ Když rozdíl napočítaného TAI času oproti pozorovatelnému

astronomickému času založenýmu se odchýlí o více než 600ms, tak se v
určitý čas vloží/odebere do TAI času přestupná sekunda

● Synchronizace fyzických hodin (co to znamená)
○ Každý uzel má hw hodiny , fyzický čas𝐶 𝑡
○ Hodiny na počítači v čase je𝑝 𝑡 𝐶

𝑝
(𝑡)

○ Přesné hodiny (tikající podle TAI sekund): 𝐶
𝑝
(𝑡) = 𝑡    ∀𝑡

■ tedy (derivace hodin podle času je )∂𝐶
∂𝑡 = 1 1

○ Bohužel tak jednoduché to není, protože HW má v sobě nepřesnost danou
výrobní technologií

■ Míra nepřesnosti :ρ 1 − ρ ≤ ∂𝐶
∂𝑡 ≤ 1 + ρ

● je odchylka od standardního časuρ

○ Dvoje hodiny se za nějaký čas můžou rozsynchronizovat maximálně o 2ρ∆𝑡
■ My bychom chtěli, aby se nám žádné dvoje hodiny nerozsynchronizovali

o maximální tolerovatelnou odchylku δ
■ Potom musíme zařídit, aby se nám všechny hodiny, které chceme

seřizovat sesynchronizovávaly max v intervalu δ
2ρ

● Ukážeme si několik algoritmů pro synchronizaci času
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● Cristianův algoritmus
○ Když uzel potřebuje zjistit, jak moc se jeho hodiny odlišují od aktuálního času, tak

pošle zprávu jednomu time serveru (považovaný za časovou autoritu – typicky
napojen na UTC čas)

○ Server mu vrátí skutečný čas
○ Když se klientovi hodiny odlišují o více než nějakou maximální odchylku, tak si

hodiny upraví
■ Je potřeba uvažovat dobu přenosu zpráv a dobu zpracování žádosti

○ 𝑇 = 𝑇
𝑈𝑇𝐶

+
𝑇

1
−𝑇

0
−𝐼

2

○ Nikdy nepřeřizovat najednou
■ Zrychlovat nebo zpomalovat lokální čas

● Berkeley algoritmus
○ Synchronizace hodin vůči (aktivnímu) serveru, který ale nemá přesný zdroj času
○ V pravidelných intervalech se aktivní server zeptá všech ostatní uzlů kolik mají

hodin (zároveň jim pošle svoje hodiny)
■ Zase se nějak uvažuje doba přenosu a zpracování zpráv

○ Server potom co dostane odpovědi tak zahodí extrémy (nesmysly) a spočítá
průměr

○ Spočítá pro jednotlivé uzly (včetně sebe) rozdíly o kolik by se měli upravit hodiny
○ Odešle zprávu se změnou jednotlivým uzlům, které si hodiny zas upraví (zpomalí

nebo zrychlí)
● Intersection algoritmus

○ Zajímavý a často používaný koncept v distribuovaných systémech je, že čas se
nechápe jako jeden přesný bod → je to interval

■ Čas od do (nebo střední hodnota a nějaká odchylka)
○ Upravená verze se používá pro NTP
○ Funguje čistě distribuovaně, žádný centrální server
○ Všechny uzly v pravidelných intervalech rozesílají informace o jejich času a jakou

si evidujou odchylku
○ Jakmile přijdou na uzel zprávy o čase, tak zahodí extrémy a spočítá průměr mezi

časy a vnitřní hodiny si přeřídí
● Použití intervalového času

○ Celá řada frameworků a knihoven
○ DCE (Distributed Computed Environment) – 33 knihovních funkcí
○ Google TrueTime (2012)
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● Logické hodiny
○ Fyzické hodiny není možné dostatečně přesně sesynchronizovat
○ Důležité ale je pořadí událostí, nikoliv přesný čas
○ Nekomunikující procesy nemusí být sesynchronizovány
○ Na základě tohoto Leslie Lamport zadefinoval kauzální závislost

○ 𝑒
1
→𝑝𝑒

2

■ Uspořádání událostí v rámci procesu/uzlu 𝑝
■ Událost se udála dříve/před událostí na procesu/uzlu𝑒

1
𝑒

2
𝑝

○ , je odeslání/příjem zprávy𝑠𝑒𝑛𝑑(𝑚) 𝑟𝑐𝑣(𝑚) 𝑚
○ 💀 Kauzální závislost (značíme )→

■ Jestliže potom∃𝑝:  𝑒
1
→𝑝𝑒

2
𝑒

1
→ 𝑒

2

■ ∀𝑚:  𝑠𝑒𝑛𝑑(𝑚) → 𝑟𝑐𝑣(𝑚)
■ Jestliže potom𝑒

1
→ 𝑒

2
  ∧   𝑒

2
→ 𝑒

3
𝑒

1
→ 𝑒

3

○ Říkáme: kauzálně vázané, kauzálně závislé, kauzálně předchází
○ V distribuovaných systémech je typicky mnoho událostí, které nejsou kauzálně

vázané, jsou tzv. konkurentní
○ Konkurentní události značíme: 𝑒

1
↛ 𝑒

2

○ Def logických hodin
■ Jednoduchý čítač
■ Musí platit následující
■ Událost , čas𝑎 𝐶(𝑎)
■ Jestliže pak𝑎 → 𝑏 𝐶(𝑎) < 𝐶(𝑏)

● Hodiny musí být porovnatelné
● Synchronizace logických hodin

○ Synchronizace podle přijímání zpráv
■ Všechny události na každém uzlu mají přiřazenou časovou značku
■ V okamžiku, kdy komunikují, tak přilepí časovou značku odeslání zprávy
■ Pokud proces vysílá v čase zprávu tak potom𝑖 𝐶

𝑖
(𝑎) 𝑚 𝑇

𝑚
= 𝐶

𝑖
(𝑎)

● je značka zprávy𝑇
𝑚

■ Synchronizace přichází v okamžiku příjmu zprávy
■ Pokud proces přijme zprávu v čase tak potom𝑗 𝑚 𝐶

𝑗
(𝑏)

𝐶
𝑗

= 𝑚𝑎𝑥(𝐶
𝑗
(𝑏), 𝑇

𝑚
+ 1)

● Proces si upraví hodnotu svých logických hodin
● je technický detail+ 1

■ Tady narozdíl od seřizování fyzických hodin dochází k přenastavení času
ihned

● Na hodnotu logického času není nic jiného navázaného
● Vždycky pouze dopředu

○ Zúplnění
■ Někdy se tomu říká “byrokratické uspořádání”
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■ Pro účely některých algoritmů (zejména synchronizačních algoritmů) je
důležité, aby dvě události, které jsou odlišné, měli dvě různé hodnoty
logických hodin

■ Nesmí platit, že časové značky dvou různých událostí se mohou shodovat
■ Událost v procesu , událost v procesu𝑎 𝑖 𝑏 𝑗
■ 𝐶(𝑎) = 𝐶(𝑏)  ∧   𝑃

𝑖
< 𝑃

𝑗
  ⇒   𝐶'(𝑎) < 𝐶'(𝑏)

● Logické hodiny a kauzalita
○ Platí

■ Jestliže pak𝑎 → 𝑏 𝐶(𝑎) < 𝐶(𝑏)
○ Neplatí

■ Jestliže pak by bylo hezké aby𝐶(𝑎) < 𝐶(𝑏) 𝑎 → 𝑏
■ Přitom tohle by se nám hodilo, protože potřebujeme detekovat kauzalitu,

víme jenom hodnotu logických hodin

Video 4
● Vzájemné vyloučení procesů = jakým způsobem zajistit exkluzivní přístup k něčemu

○ Nemáme paměť, takže žádný semafor
● Je třeba vzít v úvahu

○ Havárie, výpadky, prodlevy v komunikaci
● Složitý problém
● Způsoby řešení
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○ Centralizované řešení
■ Nějaký server řeší přístup k prostředku

○ Permission-based
■ Distribuovaně každý uzel kontroluje podmínku
■ Když je podmínka splněna, tak potom algoritmus povolí vstup

konkrétnímu procesu
■ Všechny uzly musí důsledně dodržovat onu podmínku
■ Algoritmy

● Lamport ( )3𝑛
● Ricart-Agrawala ( )2𝑛
● 前川 ( )𝑛

○ １９８５年

● Agrawal-ElAbadi ( )𝑙𝑜𝑔 𝑛
○ Token-based

■ Existuje něco jako token (pešek)
■ Jenom ten, kdo má token může vstoupit do kritické sekce
■ Algoritmy

● Suzuki–Kasami
● Raymond

● Centralizovaný algoritmus
○ Na každou kritickou sekci bude server, který přijímá žádosti od klientů a eviduje

si je ve frontě a prvního pustí do kritické sekce
○ Když vystoupí klient z kritické sekce, tak tam pošle dalšího
○ Několik různých obdobných implementací
○ Ideově nevhodné → centrální komponenta

■ Single-point-of-failure
■ Špatně se škáluje

○ Zmíníme jeden z hromady problémů
■ Havárie klienta potom, co se klient dostal do kritické sekce

● Možné řešit např. pomocí časových kvót a timeoutů

● Lamportův algoritmus
○ Čistě distribuovaný algoritmus, všechny uzlu jsou si rovny
○ Proces když chce vstoupit do kritické sekce, tak pošle zprávu všem ostatním a

čeká jednak až
■ dorazí odpovědi od všech ostatních
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■ a všechny žádosti v jeho frontě mají větší časovou značku
● (každá zpráva má časovou značku a vstup do kritické sekce je

řízen časovými značkami)
○ Časové značky

■ Forma logických hodin, synchronizují se při příjmu zprávy
■ Když přijde zpráva s vyšší časovou značkou než jakou mám, tak

přijímající proces si nastaví své lokální logické hodiny na alespoň takovou
hodnotu jako je časová značka přijaté zprávy

○ Existují tři typy zpráv
■ 𝑟𝑒𝑙𝑒𝑎𝑠𝑒

● Uvolnění kritické sekce
■ 𝑟𝑒𝑞𝑢𝑒𝑠𝑡

● Požadavek na vstup do kritické sekce
■ 𝑎𝑐𝑘

● Potvrzení pro vstup do kritické sekce
○ Existují tři akce se zprávami

■ 𝑠𝑒𝑛𝑑
● Odeslání zprávy

■ 𝑎𝑑𝑑
● Přidání zprávy do své prioritní fronty (prioritní dle značek)

■ 𝑑𝑒𝑙
● Smazání zprávy z mé fronty

○ Jak to funguje

○ je procesů, ze kterýma každá žadatel komunikuje𝑛 − 1
○ jsou zprávy3

■ Zpráva se žádostí
■ Zpráva zpátky s potvrzením
■ Zpráva o uvolnění kritické sekce
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○ je hodně, tak byly publikovány různé algoritmy, které komunikační3(𝑛 − 1)
složitost optimalizují

● Ricart & Agrawala
○ Hlavní rozdíl je ve významu potvrzení

■ U Lamporta potvrzení znamená – jo vidím tvoji zprávu, potvrzuji, že jsem
dostal zprávu se žádostí

■ Tady znamená – ano souhlasím s tím, aby si vstoupil do kritické sekce
○ Zprávy s žádostí i potvrzením existují také
○ Jak to funguje

■ Proces chce vstoupit do kritické sekce
● Zašle žádost s časovou značkou a čeká na odpovědi s potvrzením

■ Proces přijme zprávu ze žádostí
● Není v kritické sekci a ani do ní nechce vstoupit → pošle potvrzení
● Je v kritické sekci → neodešle potvrzení, požadavek zařadí do své

fronty
● Není v kritické sekci, chce ale vstoupit

○ Porovná časovou značku s vlastní žádostí
■ Vlastní žádost má menší časovou značku (je starší)

→ neodešle potvrzení a zařadí odesílatele do fronty
■ Žádost odesílatele má menší časovou značku

(vlastní je mladší) → pošle potvrzení

● Princip voleb (stále vyloučení procesů)
○ Základní princip (stejný pro všechny algoritmy)

■ Každý proces má jeden hlas
● Může ho dát sobe (když touží po vstupu do kritické sekce)
● Nebo ho dá jinému žadateli

■ Procesy se snaží získat hlasy ostatních procesů
● Když chci vstoupit do kritické sekce, tak si požádám o hlasy

■ Když proces dostane více hlasů než ostatní, tak můžu vstoupit do kritické
sekce, jinak čekám tak dlouho než dostanu dostatečný počet

○ Jednotlivé algoritmy se liší v tom
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■ Jak se pozná zda nějaký proces dostal více hlasů než jiný
■ Jak hlasovat a počítat výsledky
■ Kdy proces ví, že vyhrál

○ Naivní algoritmus
■ Při žádosti jiného proces dá proces hlas (pokud ještě nehlasoval)
■ Odolný proti výpadkům

● Vydrží výpadek až poloviny procesů
■ Komunikační složitost 𝑂(𝑛)

● Není jinak lepší než algoritmy, které jsou založené na porovnání
značek

■ Rychle může dojít k deadlocku
● Více procesů může dostat stejný počet hlasů

● 前川 (１９８５年)
○ Každému procesu je přidělený volební okrsek𝑝 𝑆

𝑝

■ je nějaká dobře definovaná množina ostatních procesů𝑆
𝑝

○ V okamžiku, kdy nějaký proces dostane všechny hlasy vlastního okrsku, tak
může vstoupit do kritické sekce

○ Podmínky pro volební okrsky
■ Korektnost

● procesy∀𝑝,  𝑞  :  𝑆
𝑝

∩ 𝑆
𝑞

≠ Ø

○ Každá dvojce kandidátu musí mít alespoň jednoho
společného voliče

○ Při remíze, alespoň jeden společný volič rozhodne →
každý proces může volit pouze jednou

■ Spravedlnost
● procesy∀𝑝,  𝑞  :  |𝑆

𝑝
| = |𝑆

𝑞
| = 𝐾

○ Velikost volebních okrsků je stejná
■ Zodpovědnost

● procesy , kde a∀𝑝,  𝑞  :  #𝑆
𝑖

= #𝑆
𝑗

= 𝐷 𝑝 ∈ 𝑆
𝑖

𝑞 ∈ 𝑆
𝑗

○ je obsažen ve stejném počtu volebních okrsků𝑝 𝐷
○ Každý proces má stejnou zodpovědnost za to jakým

způsobem jednotlivé procesy vstupují do kritické sekce
○ Důsledek (podmínek)

■ Komunikační složitost algoritmu, který respektuje podmínky je 𝑂(|𝑆
𝑝
|)

■ Proces nepotřebuje komunikovat se všemi ostatními procesy, pouze s
vlastním volebním okrskem, kde sbírá hlasy

■ Potřebujeme minimalizovat volební okrsky, abychom minimalizovali
komunikační složitost

○ Značení
■ … počet okrsků𝑁
■ … velikost okrsků𝐾
■ … počet procesů𝑀
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■ … v kolika okrscích je každý proces členem𝐷
○ Rozdělení okrsků

■ Jak velké okrsky?
■ V kolika okrscích má být každý proces?

○ 𝑁 · 𝐾 = 𝐷 · 𝑀
○ Proces okrsek~

■ Každý proces musí získat všechny hlasy vlastního okrsku
■ 𝑁 = 𝑀 ⇒  𝐾 = 𝐷
■ Velikost okrsku počet okrsků, ve kterých je proces členem~

○ Každý proces z okrsku je obsažen v jiných okrscích𝑝 𝑆
𝑞

𝐷 − 1

■ Tím pádem max počet okrsků je (𝐷 − 1)𝐾 + 1
○ 𝑀 = 𝐾(𝐾 − 1) + 1 ⇒  𝐾 = 𝑂( 𝑀)

■ Komunikační složitost
○ Jak ale skládat okrsky?

■ Optimální algoritmus, který by přesně využíval je𝑀 = 𝐾(𝐾 − 1) + 1
složitý

● Vyžaduje restrukturalizace při změně počtu členství
■ Existuje suboptimální algoritmus pro 𝐾 = 𝑂( 𝑀)

● Prakticky použitelný
● Jednoduchý

■ Všechny procesy uspořádáme do “čtverce”
■ Volební okrsek každého procesu je sjednocení vertikály a horizontály
■ Na obr. je zvýrazněný volební okrsek procesu 14
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○ Může se stát, že bude volit a bude volit𝑃
5

𝑃
3

𝑃
21

𝑃
23

○ i oba dostanou potřebných hlasů a čekají v deadlocku𝑃
3

𝑃
23

𝑁 − 1

○ Zachrání nás logické hodiny – prevence deadlocku
■ Každá žádost je označována logickými hodinami jejího odesílatele
■ V okamžiku, kdy přijde zpráva se žádostí procesu s (časovou𝑟 𝑇𝑆

𝑟

značkou procesu )𝑟
● Má volný hlas

○ Odešle potvrzení procesu𝐴𝐶𝐾 𝑝
● Dal již hlas jinému procesu 𝑞

○ Pokud tak zařadí do fronty𝑇𝑆
𝑞

< 𝑇𝑆
𝑟

○ Pokud tak pošle zprávu procesu𝑇𝑆
𝑞

> 𝑇𝑆
𝑟

𝑅𝐸𝐽𝐸𝐶𝑇 𝑞

■ Pokud již je v kritické sekci, tak ho ignoruje a𝑞
pracuje dál a až opustí kritickou sekci tak zpátky dá
potvrzení a funguje to jako v předchozím případě

■ Pokud ještě nemá všechny hlasy, vrátí hlas𝑞
procesu a ten ho předá procesu𝑝 𝑟

● TOHLE JE REGULERNÍ RACE
CONDITION

■ Jak race condition vyřešil 前川
● Je to race condition, protože záleží jestli se proces stihne nebo

nestihne vrátit do kritické sekce
● Nevadí nám to, cílem algoritmu není přesný deterministický

postup, v kterém procesy mají v jakém pořadí jít do kritické sekce

— 25 —



● Jediným cílem porovnávání časových značek je, aby nedošlo k
deadlocku

● V okamžiku, kdy je nějaký proces (byť neoprávněně) je zvolený a
je schopný se dostat do kritické sekce, tak potom už nemůžeme
být v deadlocku a to nám stačí

● Agrawal & El Abbadi (1991)
○ Lepší komunikační složitost než 前川
○ Složitost 𝑂(𝑙𝑜𝑔 𝑛)
○ Volební okrsky jsou uspořádány podél stromu
○ Procesy jsou organizovány binárním stromem
○ Každý proces potřebuje získat cestu od kořene k listu

■ Potřebuje komunikovat s logaritmickým počtem uzlů
○ Speciálně navržený pro dosažení fault tolerantnosti

■ V případě kdy vypadne jakýkoliv uzel, tak hlas jednoho uzlu je možné
nahradit dvěma cestami

○ Quorum = cesta od kořene k listu
○ Nikdy nenašel praktické uplatnění

■ Nesplňuje podmínku symetrie
■ Jak vypadají quora?

● Kořen je obsažen ve všech volebních okrscích
● Účastní se všech voleb, je maximálně přetížen

○ Existují různé vylepšení tohoto algoritmu
■ Strom je postupně otáčí…
■ Spíš obskurní

● Raymond (1989)
○ Všechny předchozí algoritmy, které jsme rozebírali byly permission-based

■ Založené na podmínce, kdy uzel zkoumá podmínku a když je splněna, tak
může vstoupit do kritické sekce

○ Tento algoritmus je token-based
■ Založen na předávání tokenu

○ V celém systému je jedna speciální entita, která se přesouvá mezi uzly
○ Pouze ten uzel, který má tuto entitu (token), tak může vstoupit do kritické sekce
○ Všechny procesy jsou organizovány do orientovaného stromu
○ Uzel, který má token je v kořenu, všechny orientované hrany vedou k tomuto

kořenu
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○ Když jakýkoliv proces potřebuje zažádat o vstup do kritické sekce, tak žádost
přepošle podél orientovaných hran blíže k uzlu ke kořeni, až zpráva dojde do
kořene

○ Zároveň uzel s tokenem (kořen) udržuje frontu žádostí na vstup do kritické sekce
○ Když uzel s tokenem vystoupí z kritické sekce, tak se podívá na frontu a prvnímu

ve frontě pošle token a celou frontu
■ Nepošle mu to přímo, ale proti směru orientovaných hran sousednímu

vrcholu
■ V každém kroku se obrátí orientace hrany
■ Takhle se token s frontou budou přeposílat a otáčet hrany než se dostane

ke správnému vrcholu, z kterého se udělá nový kořen

● Suzuki–Kasami
○ (Token-based algoritmů byla publikována celá řada)
○ Tohle je jeden z prvních publikovaných
○ Vyžaduje broadcast zprávu všem uzlům

■ Nepoužitelné pro rozsáhlé distribuované systémy
■ Hodí se spíše do clusterového prostředí

○ Broadcast se posílá, když proces vyžaduje vstup do kritické sekce
○ Proces, který drží token, broadcast zpracuje (vloží si žádost do fronty), ostatní ho

ignorují
○ Až proces bude chtít opustit kritickou sekci, tak přepošle token s frontou tomu

procesu, který je na prvním místě
○ Umožňuje prioritně řadit do fronty (s každým požadavkem může být evidována

cena)
● Token ring

○ Jiný typ token-based algoritmů

○ Logický kruh, který nevyžaduje broadcast pro funkčnost
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○ Komunikace pouze mezi dvojicí uzlů
○ Token postupně putuje mezi procesy po kruhu
○ Když proces dostane token tak se podívá, jestli chce vstoupit do kritické sekce

■ Pokud ano, tak si token nechá
■ Pokud ne, tak ho pošle dál

○ Dost vytěžuje síť i když nikdo nechce vstoupit do kritické sekce (speciálně když
chráníme spoustu kritických sekcí)

■ Dokola budou lítat prázdné tokeny

● Zprávy
○ Nejlépe na tom je centralizovaný algoritmus

● Havárie
○ U centralizovaného velký problém havárie koordinátora
○ Agrawal & El Abbadi

■ (ten stromový algoritmus)
■ Jediný navržený pro dosažení funkčnosti při haváriích
■ Zvětšuje se ale quorum
■ (jak víme není ale symetrický)

○ Havárie uzlu u všechny ostatních výjma Raymond algoritmu způsobí totální
nefunkčnost

● Chtěli jsme nevyhovující centralizovaný algoritmus nahradit něčím distribuovaným
● Výsledek je, že všechny distribuované algoritmy jsou horší než centralizované řešení
● Jak je možné, že něco distribuovaného je horší než centralizované řešení, když jsme si

říkali, že právě centralizované řešení jsou původem veškerého zla
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● Problém není v implementaci, ale v problému samotném
● V distribuovaném systému bychom neměli mít nic takového jako kritická sekce
● Kritická sekce je příkladem centralizované služby
● V distribuovaným algoritmech/systémech vyhnout se potřebě centralizované

komponenty i v podobě kritické sekce
● Kritická sekce výrazně snižuje škálovatelnost řešení
● Není vhodné řešit centralizovaný problém distribuovaným algoritmem →

centralizovanost zůstane, jenom se přesune

Video 5
● Budeme se zabývat algoritmy pro výběr koordinátora (leader election)
● Velice častý a běžný problém
● Koordinátor / leader je důležitý pro celou řadu distribuovaných algoritmů

○ Distribuovaný konsensus, load balancing
● Implementace algoritmu pro výběr koordinátora je typickou součástí cloudových

frameworků
● Důležitá korektnost → nemůže být více než jeden leader
● Dva přístupy k řešení tohoto problému

○ Detekce extrému
■ Uzly jsou víceméně rovnoprávné, ale nějak rozlišitelné být musí →

obvykle jsou očíslovány
■ Algoritmy se snaží v rámci identifikátorů najít takový, který má

nejmenší/největší identifikaci a zároveň není havarovaný
○ Race-condition (+ randomizace)

■ RAFT
■ Založeno na náhodě
■ Zjednodušeně: Uzel, kterému se něco povede stihnout dříve, tak se stává

koordinátorem
● Bully algoritmus

○ Má netriviální předpoklady
■ Nejdelší možná doba přenosu zprávy je omezena konstantou
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■ To samé pro dobu zpracování a přípravu odpovědi
■ Říkáme, že předpokládá synchronní systém

○ Uzel pošle zprávu se žádostí a očekává odpověď
○ Když odpověď nedojde do doby 2x čas přeposílání zprávy + čas na její

zpracování, tak ví, že je něco špatně
■ Nefunguje komunikace
■ Uzel havaroval

○ Nejde používat např. na síti, která využívá TCP/IP protokol
○ Použitelné v rychlých a spolehlivých sítích v clusterovém prostředí s použitím

vlastního lokálního protokolu pro komunikaci
○ Když se proces rozhodne volit koordinátora

■ Typicky se děje na začátku výpočtu, nebo když komunikace se stávajícím
koordinátorem selže

■ Proces zašle zprávu všem procesům s vyšší identifikací a čeká na
odpověď

■ Když od nich přijde odpověď tak proces skončí (prohrál)
■ Když nepřijde nic, proces vyhrál a stává se novým koordinátorem, pošle

zprávu všem ostatním
○ Když proces přijme zprávu o volbě

■ Vrátí zpět odpověď a vyšle tu samou žádost všem procesům s vyšším
číslem identifikace

■ Toto druhé kolo rozhodne o vítězi
● Druhé kolo rozhodne, rozdíl mezi prvním a druhým kolem volby je

v tom, kdy se o volbě dozví nový koordinátor (ten co se ním stane)
● V prvním běhu nějaký uzel zjistí, že je zapotřebí nová volba
● Obeznámí všechny kandidáty
● Pokud dostane odpověď, tak ví, že někdo vhodnější je naživu, už

se o to nezajímá
● V druhém kole už budoucí výherce už o volbě ví (z prvního kola).

V druhém kole nedostane žádnou odpověď
● Invitation algorithm

○ Předpokládá asynchronní systém
■ Nelze předpokládat nic o délce událostí

○ Bully algoritmus nebude fungovat, protože při překročení časových limitů budeme
mít více koordinátorů

○ Mnohem lépe odpovídá požadavkům reálného prostředí
○ Vhodnější více pro gridové prostředí než clusterové

■ Rozsáhlejší distribuované systémy na nespolehlivých sítích
○ Všechny uzly jsou rozděleny na segmenty, které mezi sebou komunikují
○ Když se přeruší komunikace s nějakým uzlem nebo množinou uzlů, tak se

segmenty rozpojí a každý segment funguje nezávisle na sobě
○ V rámci každého segmentu se ustanoví koordinátor, který pravidelně komunikuje

s ostatními uzly v segmentu
○ Jak funguje
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■ Koordinátor posílá heartbeaty
● V pravidelných krátkých subsekundových intervalech posílá

zprávu všem ostatním v segmentu
● Pokud přijme zprávu někdo, kdo si sám myslí, že je

koordinátorem, tak dojde k propojení (dříve rozdělených)
segmentů

● Novým koordinátorem se stane ten kdo má větší identifikaci
■ Pokud uzel neobdrží do timeoutu heartbeat

● Uzel odvodí, že už není ve stejném segmentu jako jeho původní
koordinátor

● Neřeší jestli koordinátor havaroval nebo jestli nejde spojení k
němu

● Sám za sebe vytvoří nový segment (jednoprvkový) a prohlásí se
za koordinátora (a posílá všem ostatním heartbeaty)

● Le Lann, Chang & Roberts (1979)
○ Zástupce tzv. kruhových algoritmů
○ Tenhle je jeden z těch jednodušších
○ Uzly nemusí znát identifikaci všech ostatních členů skupiny, dokonce ani nemusí

vědět, kdo všechno je ve skupině
■ Vhodnější pro rozsáhlejší distribuované systémy
■ Stačí, aby uzel znal svého následníka a existovala možnost jak zjistit

následovníka havarovaného uzlu

○ V okamžiku, kdy uzel detekuje havárii (na obr. uzel 3) tak iniciuje volbu
○ Pošle ve směru následníka zprávu, ve které bude

■ Jeho vlastní identifikace (aby se poznalo, že zpráva obkroužila kolečko)
■ Aktuální nejlepší kandidát na koordinátora

● V okamžiku odeslání tam dá sebe sama
■ Až zpráva obkrouží kolečko bude obsahovat číslo nového koordinátora

○ Detekci havarovaného uzlu může najednou provést více uzlů, takže těchto zpráv
tam může probíhat více (maximálně , což je počet uzlů)𝑛

○ Zpráva proběhne krát𝑛
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○ Celková složitost 𝑂(𝑛2)
○ Existuje celá vylepšení tohoto kruhového algoritmu

● HS algoritmus
○ Hirschberg & Sinclair (1980)
○ Vylepšení předchozího
○ Když nějaký uzel zasílá zprávu o nové volbě, tak tato zpráva neobkrouží celé

kolečko, ale okolí se exponenciálně zvětšuje
○ Do dalšího kola postoupí jenom ten kandidát, který v rámci lokálního okolí vyhrál
○ Celková složitost je 𝑂(𝑛 𝑙𝑜𝑔 𝑛)
○ Velmi implementačně náročný
○ Velká konstanta schovaná uvnitř 𝑂

● Randomizované protokoly
○ V předchozích algoritmech se deterministicky hledal uzel, který má největší

hodnotu identifikace
○ Tady je úplně jedno, který kandidát zvítězí, podstatné je, aby zvítězil pouze jeden
○ Typickou používané v prostředí, kde je rychlá lokální síť s malou latencí a

poměrně malým počtem aktivním uzlů
○ Velmi často se používá pro protokoly distribuovaného konsensu

■ 3, nebo 5 uzlů se účastní
○ Pro randomizovanou volbu leadera jsou jednotlivé uzly ve třech různých rolích
○ Dosavadní koordinátor se nazývá leader

■ Posílá heartbeat v pravidelných intervalech
○ Když nějaký uzel nedostane heartbeat po dosažení timeoutu

■ Prohlásí sám pro sebe dosavadního leadera za havarovaného a ziniciuje
novou volbu → stává se kandidátem

○ V rámci každého kola voleb má každý uzel jeden hlas (uzel, který inicioval volbu
tak volí sám sebe), všem ostatním uzlům pošle zprávu 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑉𝑜𝑡𝑒

○ Když jiný uzel dostane tuto zprávu a ještě nehlasoval, tak svůj hlas odevzdá
tomuto kandidátovi

○ Když jakýkoliv kandidát dostane nadpoloviční počet hlasů, tak se další zprávou
prohlásí za nového leadera

○ Stejný zisk hlasů (potencionální deadlock) se řeší pomocí timeoutu a nové volby
■ Ukázalo se jako lepší řešení než u 前川

○ Když do timeoutu neobdrží kandidát příslušný počet hlasů, tak všechny uzly
randomizovaně počkají čas [𝑇, 2𝑇]

■ Kde (nejdelší) doba přenosu zprávy𝑇 ≫
■ Když je vhodně zvoleno, tak se algoritmus chová dobře𝑇

○ Pokud uzly mají implementovaný 2-fázový commit, tak je možné provést volbu
jiným způsobem, např. pomocí generátoru náhodných čísel

■ 2-fázový commit zajistí, že volbu vyhraje jen jeden
■ Apache Zookeeper
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Video 6
● Budeme se zabývat doručovacími protokoly skupinové komunikace
● Ideální stav je globální uspořádání

○ Zprávy jsou doručovány v pořadí odesílání
○ Již víme, že nelze – neexistence globálních hodin

● Sekvenční uspořádání
○ (slabší forma doručování)
○ Všechny zprávy jsou pomyslně seřazeny do jednoho rozvrhu, všechny uzly

doručí zprávy v rámci tohoto rozvrhu
○ Doručení nezávisí nutně na času odesílání
○ Důležité je pouze dodržení sekvenčnosti

■ Všechny uzly dodržují stejný rozvrh
○ Ukážeme si dva algoritmy

■ Distribuovaný a centralizovaný (total-order protokol, sekvencer)
● Pokud bychom sekvenční doručování doplnili o zaručení spolehlivost → říkáme tomu

atomický multicast
● Teď si budeme povídat o kauzálním doručováním

○ Ne vždycky je potřeba, aby všechny zprávy byly seřazeny do jedné sekvence
○ Obvykle stačí uspořádání, kde ve správném pořadí jsou doručovány na všech

uzlech jen ty zprávy, které jsou na sebe kauzálně vázané
○ Ostatní (konkurentní) zprávy mohou být doručeny v libovolném pořadí

● Kauzální uspořádání doručovaných zpráv
○ … množina uzlů, kterým je zaslána zpráva𝑑𝑒𝑠𝑡(𝑚) 𝑚
○ … je událost doručení zprávy uzlem𝑑𝑒𝑙𝑖𝑣𝑒𝑟

𝑝
(𝑚) 𝑚 𝑝

○ 𝑚
1

→ 𝑚
2
  ⇒   ∀𝑝 ∈ 𝑑𝑒𝑠𝑡(𝑚

1
) ∩ 𝑑𝑒𝑠𝑡(𝑚

2
) :  𝑑𝑒𝑙𝑖𝑣𝑒𝑟

𝑝
(𝑚

1
)→𝑝𝑑𝑒𝑙𝑖𝑣𝑒𝑟

𝑝
(𝑚

2
)

■ Jestliže je je zpráva kauzálně závislá na potom na všech uzlech,𝑚
2

𝑚
1

kterým budou doručeny obě tyto zprávy, bude zachováno pořadí doručení
○ Problém: jak poznat, že 𝑚

1
→ 𝑚

2

■ Navíc když ještě nebyla doručena𝑚
1

■ Řešení: vektorové hodiny
● Vektorové hodiny

○ Složitější forma logických hodin
○ Vektor je organizovaný podle všech procesů
○ Každý proces má svůj vektor, složky odpovídají jednotlivým procesům ve skupině

■ Vektor délky , kde je počet procesů ve skupině𝑛 𝑛
○ … časová značka procesu𝑉𝑇(𝑝)
○ … časová značka zprávy𝑉𝑇(𝑚)
○ S každou zprávou jde přibalený vektorový čas (značka)
○ Pravidla aktualizace časových značek

■ Při startu je nulový𝑉𝑇(𝑝
𝑖
)

■ Po každé když proces odešle zprávu , tak ++𝑝
𝑖

𝑚 𝑉𝑇(𝑚) = 𝑉𝑇(𝑝
𝑖
)[𝑖]
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■ při doručení upraví své ) takto:𝑝
𝑗

𝑚 𝑉𝑇(𝑝
𝑗

● ∀𝑘 ∈ 1... 𝑛 :  𝑉𝑇(𝑝
𝑗
)[𝑘] = 𝑚𝑎𝑥(𝑉𝑇(𝑝

𝑗
)[𝑘], 𝑉𝑇(𝑚)[𝑘])

○ Po složkách maxima ze stávajícího a přijatého vektoru
■ , ,∀𝑚

𝑖
 𝑚

𝑗
𝑖 ≠ 𝑗 :  𝑉𝑇(𝑚

𝑖
) ≠ 𝑉𝑇(𝑚

𝑗
)

○ Porovnávání časových značek
■ 𝑉𝑇

1
≤ 𝑉𝑇

2
  ⇔   ∀𝑖:  𝑉𝑇

1
[𝑖] ≤ 𝑉𝑇

2
[𝑖]

■ 𝑉𝑇
1

< 𝑉𝑇
2
  ⇔  𝑉𝑇

1
≤ 𝑉𝑇

2
  ∧   ∃𝑖:  𝑉𝑇

1
[𝑖] < 𝑉𝑇

2
[𝑖]

● Kauzální doručovací protokol
○ V okamžiku odeslání zprávy uzlem𝑚 𝑝

𝑖

■ ++𝑉𝑇(𝑝
𝑖
)[𝑖]

■ 𝑉𝑇(𝑚) ← 𝑉𝑇(𝑝
𝑖
)

○ V okamžiku přijetí zprávy uzlem od odesílatele𝑚 𝑝
𝑗

𝑝
𝑖

■ Přijetí = zpráva fyzicky přijde ze síťového rozhraní
■ Proces pozdrží doručení dokud neplatí oboje𝑝

𝑗
𝑚

● 𝑉𝑇(𝑚)[𝑖] = 𝑉𝑇(𝑝
𝑗
)[𝑖] + 1

○ Právě přijatá zpráva musí být nejbližší vyšší
○ Předchozí zprávy musí být přijaté

● pro𝑉𝑇(𝑚)[𝑘] ≤ 𝑉𝑇(𝑝
𝑗
)[𝑘] 𝑘 ≠ 𝑖

○ Přijímající vektor musí být alespoň tak velký jako jsou
hodnoty příslušných složek vektoru v přijímané zprávě

○ Příjemce musí od ostatních procesů mít alespoň takové
informace, které měl odesílající proces při odesílání
původní zprávy

■ Příjemce v okamžiku doručení musí mít přijaté
alespoň ty zprávy od všech ostatních procesů,
které předcházely odeslání nyní přijímané zprávy

○ Po doručení zprávy uzlem𝑚 𝑝
𝑗

■ Doručení = po splnění všech podmínek daných protokolem je zpráva
schválena pro další zpracování

■ ∀𝑘 ∈ 1... 𝑛:  𝑉𝑇(𝑝
𝑗
)[𝑘] = 𝑚𝑎𝑥(𝑉𝑇(𝑝

𝑗
)[𝑘], 𝑉𝑇(𝑚)[𝑘])

● Po složkách se vemou maxima
● Kauzální doručování a překrývající se skupiny
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○ I když máme sesynchronizované doručování v rámci jedné skupiny, tak když
posíláme zprávy na procesy, které jsou v průniku, tak zprávy vzájemně (vůči
červené a zelené) skupině nejsou sesynchronizovány

■ Může i nemusí nám to vadit
○ Jedna možnost co s tím dělat

■ Všechny skupiny, které mají neprázdný průnik, tak bychom sjednotili do
jedné velké skupiny

■ Kauzalitu doručování bychom zaručili v jedné velké skupině
■ Výhoda je, že protokol je stejně jednoduchý jako předtím
■ Takhle tranzitivně by se nám při sjednocování skupin mohli dostat do

jedné skupiny procesy, které spolu vůbec nesouvisí
● Mohlo by docházet ke ztrátě výkonu, kvůli synchronizaci zpráv,

které spolu nesouvisí
○ Pokud nám záleží na synchronizace mezi procesy, které jsou součástí několika

skupin, tak se to dá dělat následujícím způsobem
● Kauzální doručovací protokol pro překrývající se skupiny

○ Vektorové hodiny si rozšíříme na maticové hodiny
○ Matice má tolik vektorů, kolik je skupin
○ … časová značka skupiny𝑉𝑇

𝑎
𝑔

𝑎

○ … počet zpráv uzlu do skupiny𝑉𝑇
𝑎
[𝑖] 𝑝

𝑖
𝑔

𝑎

○ S každou zprávou, kterou proces odesílá pošle časovou značku všech skupin,
kterých je členem

○ Když uzel odesílá do skupiny𝑝
𝑖

𝑔
𝑎

■ ++𝑉𝑇
𝑎
(𝑝

𝑖
)[𝑖]

■ 𝑉𝑇(𝑚) =  ∪
𝑔

𝑏
: 𝑝

𝑖
∈𝑔

𝑏

𝑉𝑇
𝑏
(𝑝

𝑖
)

● Do zprávy přibalí všechny vektory, jejichž je odesílající proces
členem

○ Přijetí zprávy uzlem (od do )𝑚 𝑝
𝑗

𝑝
𝑖

𝑔
𝑎
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■ Uzel pozdrží dokud neplatí (první dvě jsou úplně stejné jako v𝑝
𝑗

≠ 𝑝
𝑖

𝑚

případě jedné skupiny)
● 𝑉𝑇

𝑎
(𝑚)[𝑖] = 𝑉𝑇

𝑎
(𝑝

𝑗
)[𝑖] + 1

○ Vektorové hodiny odpovídající skupině, do které je zpráva
odeslána mají na složce vektoru, která odpovídá
odesílajícímu procesu nejbližší vyšší hodnotu

● ∀𝑘(𝑝
𝑘

∈ 𝑔
𝑎
 ∧  𝑘 ≠ 𝑖):  𝑉𝑇

𝑎
(𝑚)[𝑘] ≤ 𝑉𝑇

𝑎
(𝑝

𝑗
)[𝑘]

○ Kauzalita vzhledem ke skupině, do které byla zpráva
zaslána

● ∀𝑏(𝑝
𝑗

∈ 𝑔
𝑏
):  𝑉𝑇

𝑏
(𝑚) ≤ 𝑉𝑇

𝑏
(𝑝

𝑗
)

○ Kauzalita vzhledem k ostatním skupinám, kterých je
příjemce členem

○ Příjemce musí v okamžiku doručení zprávy mít doručení
zprávy od ostatním skupin, kterých je sám členem

○ Nová podmínka
○ Po doručení zprávy si uzel upraví všechny𝑚 𝑝

𝑗
𝑉𝑇

𝑎
(𝑝

𝑗
)

■ 𝑉𝑇
𝑎
(𝑝

𝑗
) = 𝑚𝑎𝑥(𝑉𝑇

𝑎
(𝑝

𝑗
),  𝑉𝑇

𝑎
(𝑚))         ∀𝑎 :  𝑝

𝑗
∈ 𝑔

𝑎

● To bylo povídání o kauzálních protokolech, teď si ukážeme dva protokoly pro sekvenční
doručování

○ Sekvenční doručování spočívá v tom, že všechny uzly respektují jeden rozvrh,
kde nemusí nezbytně platit, že doručení zpráv odpovídá fyzickému času

○ U sekvenčního doručování nepotřebujeme detekovat kauzalitu
○ Stačí nám jedna časová řada, nepotřebujeme vektorové ani maticové hodiny →

jednoduché skalární hodiny
● Distribuovaný total-order protokol

○ Funguje dvou fázově
○ Každý odesílatel nejprve odešle zprávu všem příjemcům, ty ji přijmou ale zatím

nedoručují
○ Na každou přijatou zprávu odpoví zprávou s potvrzením, která obsahuje𝑇𝑆(𝑅

𝑖
)

časovou značku přijmu zprávy, kterou potvrzují
■ Při přijmu zprávy se logické hodiny sesynchronizují

○ Ve chvíli kdy odesílatel dostane zpátky všechny potvrzení, tak odešle finalizační
zprávu s finalizační časovou značkou 𝑇𝑆𝐹 = 𝑚𝑎𝑥(𝑇𝑆(𝑅

𝑖
))

■ Maximum ze všech časových značek
○ Po přijmu finalizační zprávy doručí příjemce zprávu podle 𝑇𝑆𝐹
○ Časový značky příjemců určují pořadí doručení zpráv

■ Nutnost jednoznačných časových značek → byrokratické uspořádání
○ Komunikační složitost: 3𝑛

■ Datová zpráva, potvrzení, finalizační zpráva
■ Nešlo by to udělat elegantněji? → sekvencer

● Jiný způsob pro sekvenční doručování je použití sekvenceru
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○ Sekvencer je nějaký uzel, který poslouchá jak se mu doručují zprávy
○ Jakýkoliv uzel, který chce rozeslat skupinovou zprávu, tak pošle jenom jednu

zprávu sekvenceru
○ Sekvencer podle toho v jakém pořadí mu dojdou zprávy, tak jim postupně dává

vyšší a vyšší číslo a zprávy přeposílá všem příjemcům
○ Forma centralizovaného řešení

■ Stejné jako u protokolů pro vzájemné vyloučení
■ Vylepšení pomocí distribuovaných řešení jsou jenom horší
■ Nyní je centralizovanou komponentou rozvrh – sekvenčnost doručování,

na kterým se musí všichni shodnout
● Sekvenční doručování je jedna z forem centralizované komponenty → pokuste se ji

vyhnout
○ Pokud ho nutně potřebujeme, tak nejjednodušší implementace je pomocí

centralizované komponenty → sekvencer

Video 7
● Doposud jsme neřešili spolehlivost, předpokládali jsme, že zpráva bude doručena
● Spolehlivost na úrovni komunikačních kanálu se dá vyřešit na síťové vrstvě vhodným

HW (Fibre Channel, …)
● Daleko větší problém jsou výpadky uzlů

○ Může vypadnout příjemce
○ Může vypadnout odesílatel (to je ještě horší)

■ Který mohl odeslat zprávu polovině příjemců (druhou polovinu nestihl a
umřel)

● Výpadek může být dočasný, nebo trvalý
● Distribuované transakce

○ Jedna z možností jak to řešit
○ Doručení zprávy doběhne až po commitu
○ Příliš striktní pro účely skupinové komunikace
○ Chtěli bychom něco slabšího/jednoduššího

● Spolehlivé kauzální doručování
○ Záplavový algoritmus

■ Když příjemce přijme zprávu, kterou neviděl, tak ji přepošle všem
ostatním ve skupině

■ Všichni zprávu dostanou krát, pokud nedošlo k havárii𝑛
■ Robustní a spolehlivé
■ Velmi neefektivní

■ Potřebujeme počet zpráv𝑛2

○ Idea algoritmu s potvrzováním
■ Přeposílat zprávy by se nemělo automaticky všem, ale jenom těm

potřebným
■ odesílatel zprávy, ostatní členové skupiny (příjemci), je𝑝

𝑖
𝑝

𝑗
𝑝

𝑥

havarovaný uzel
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■ odešle zprávu všem členům skupiny a zprávu si uchová do té doby,𝑝
𝑖

než obdrží potvrzení od všech uzlů skupiny, nebo zjistí od jiných uzlů, že
havaroval𝑝

𝑥

■ při příjmu zprávy pošle potvrzení uzlu a přijatou zprávu si uchová do𝑝
𝑗

𝑝
𝑖

té doby než zjistí, že zprávu přijali všechny uzly ve skupině
■ Pokud zjistí, že havaroval, tak zprávu odešle všem uzlům, o kterých𝑝

𝑗
𝑝

𝑖

neví, že zprávu přijaly
■ Jak uzel zjistí, které uzly zprávu přijaly?𝑝

○ Trans algoritmus
■ Protokol pro spolehlivé kauzální doručování
■ Na každém uzlu implementován graf závislostí

● Pro účely potvrzování zpráv ( )𝐴𝑐𝑘(𝑚)
■ Invariant

● Když rozesílá , tak ním potvrzuje všechny kauzálně𝑝 𝐴𝑐𝑘(𝑚)
předcházející zprávy (tomuto se říká transitive acknowledgment)

○ Nemusí potvrzovat každou individuální zprávu zvlášť
■ Stabilní zpráva = zpráva, která je přijata všemi členy skupiny
■ Graf závislostí (někdy též graf kauzality)𝐺

● Jedná se o DAG
● Je grafem kauzality celé skupiny
● Každý uzel si graf vytváří sám
● Různé uzly si ho můžou vytvářet v odlišném pořadí, ale ve

výsledku je distribuovaně stejný
● Pokud nějaká zpráva potvrzuje pak𝑚 𝑚' (𝑚, 𝑚') ∈ 𝐸(𝐺)

○ Orientace ve směru potvrzování, ne kauzality
● Umožňuje zachytit i nepřijaté zprávy

■ 3 komponenty
● Příjem potvrzení a výpočet vlastních potvrzení
● Detekce nepřijatých zpráv
● Ukládání zpráv a detekce stabilních zpráv

■ Jak zjistí, které uzly zprávu přijaly?𝑝
𝑗

● Flooding
○ Rozesílání potvrzení všem uzlům ve skupině

○ Neefektivní, mnoho potvrzení zbytečných → 𝑂(𝑛2)
● Využití kauzality zpráv a piggybackingu potvrzení

○ Piggybacking
■ Místo speciální individuální zprávy jenom s

potvrzením, se k běžné datové zprávě přidají
dodatky, které označují potvrzování už nějakých
existujících zpráv
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■ Při korektním kauzálním doručování jsou potvrzení zpráv tranzitivní
■ Implementace

● Každý uzel má
○ … seznam zpráv, které přijal, ale musí na ně ještě𝑎𝑐𝑘_𝑙𝑖𝑠𝑡

odeslat 𝐴𝐶𝐾
○ … seznam zpráv, které uzel nepřijal, ale z𝑛𝑎𝑘_𝑙𝑖𝑠𝑡

přijatých potvrzení od ostatních uzlů ví, že existují
○ … seznam přijatých zpráv, které ale ještě𝑢𝑛𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑_𝑙𝑖𝑠𝑡

nejsou doručeny
■ Typicky proto, že jsou kauzálně vázané a

předchůdce ještě nepřišel
● Navíc si každý uzel ještě eviduje v rámci grafu

○ Které zprávy jsou kauzální
○ Které jsou stabilní

● Zprávu uzel vždy odesílá včetně jeho u a u𝑎𝑐𝑘_𝑙𝑖𝑠𝑡 𝑛𝑎𝑘_𝑙𝑖𝑠𝑡
● Odeslání zprávy 𝑚

● Příjem zprávy (jenom zhruba)𝑚
○ Nejdřív se podívá na y přilepené s𝑛𝑎𝑘 𝑚
○ Pokud tyto zprávy má, tak je odesílateli zašle
○ Potom se podívá na y přilepené s𝑎𝑐𝑘 𝑚
○ Pokud mezi nima vidí zprávu, kterou nemá ve svém grafu

závislostí, tak si ji přidá do u𝑛𝑎𝑘_𝑙𝑖𝑠𝑡
○ Pokud zprávu má v u, tak ji z něho odebere𝑚 𝑛𝑎𝑘_𝑙𝑖𝑠𝑡
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○ Zatím zprávu nedoručuje → nevíme jestli máme přijaté𝑚
a doručené všechny kauzální předchůdce

○ Zprávu si přidá do svého grafu a u𝑚 𝑢𝑛𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑_𝑙𝑖𝑠𝑡
○ Teď řeší, kdy je možné doručit zprávy z u𝑢𝑛𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑_𝑙𝑖𝑠𝑡

■ Každou zprávu je možné doručit, pokud byly
všechny kauzálně předcházející zprávy doručeny

■ V okamžiku, kdy všechny kauzálně předcházející
zprávy jsou doručeny, tak zprávu doručí a vyhodí z

u𝑢𝑛𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑_𝑙𝑖𝑠𝑡
○ Každou zprávu z , která nebyla potvrzena, ale všechny𝐺

kauzální předchůdci byli doručeni, přidá do u𝑎𝑐𝑘_𝑙𝑖𝑠𝑡
○ Všechny stabilní zprávy smaže z 𝐺

■ Stabilní zpráva = od všech ostatních uzlů na ni
dostal potvrzení

■ Pozorování
● Každý uzel postupně posouvá kauzální a stabilní hranici
● Různé uzly mohou dělat posuny v různém pořadí
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● Každá nově příchozí zpráva je mimo kauzální hranici a v případě,
že jsou doručeny všechny její kauzální předchůdci, tak ji je možné
doručit

● Když zprávu doručíme spolehlivému uzlu, tak potom pomocí 𝐴𝐶𝐾
a je zpráva nakonec doručena každému nezhavarovanému𝑁𝐴𝐾
uzlu

● rozesílá informace o tom, které zprávy jsou k dispozici𝐴𝐶𝐾
● slouží k tomu, aby si příjemci, který daný zprávy nepřijali, si o𝑁𝐴𝐾

ně mohli říct
● Zprávy jsou doručovány v kauzálním pořadí
● Jestliže uzel havaruje, tak paměťová náročnost protokolu je

neomezená
○ Každý uzel si schovává zprávy, které nebyly doručeny

všem uzlům
○ Slabina, pro praktické použití musí být trans protokol

doplněn protokolem pro změnu členství ve skupinách
○ Když je nějaký uzel dostatečně důvěryhodně nařčený z

toho, že havaroval, tak ostatní uzly si musí příslušný uzel
vyřadit z evidence

● Virtuální synchronie
○ Abychom mohli podrobněji zkoumat chování doručovacích protokolu v prostředí,

kde dochází v výpadku uzlům, tak se seznámíme s virtuální synchronií
○ Aktuální množina uzlů ve skupině = group view (nebo pouze view)

■ Česky pohled
○ Značení

■ 𝐿
■ Spodní index – jak pohled vnímá konkrétní proces
■ Horní index – verze konkrétního pohledu

○ Definice

■ procesy𝑝,  𝑞 ∈  𝐿𝑥,  𝐿𝑥+1

● i jsou součástí dvou po sobě následujících pohledů𝑝 𝑞

■ 𝑖𝑛𝑠𝑡𝑎𝑙𝑙 𝐿
𝑝

𝑥 < 𝑑𝑒𝑙𝑖𝑣𝑒𝑟
𝑝
(𝑚) < 𝑖𝑛𝑠𝑡𝑎𝑙𝑙 𝐿

𝑝
𝑥+1 ⇒ 𝑖𝑛𝑠𝑡𝑎𝑙𝑙 𝐿

𝑞
𝑥 < 𝑑𝑒𝑙𝑖𝑣𝑒𝑟

𝑞
(𝑚) < 𝑖𝑛𝑠𝑡𝑎𝑙𝑙 𝐿

𝑞
𝑥+1

● Pokud nějaká zpráva je na uzel doručena v rámci pohledu𝑝 𝐿
𝑝

𝑥

(po instalaci pohledu , ale před instalací z pohledu uzlu𝐿
𝑝

𝑥 𝐿
𝑝

𝑥+1 𝑝

), tak potom to samé platí pro všechny ostatní procesy, které jsou
součástí dvou následujících pohledů

○ Takováto komunikace se nazývá synchronní vůči pohledu

○ Pokud je zpráva odeslána skupině s před změnou na𝑚 𝐿𝑥 𝐿𝑥+1

■ Buď doručí všechny uzly z před provedením změny na𝑚 𝐿𝑥 𝐿𝑥+1

■ Nebo žádný uzel z který provede změnu na zprávu nedoručí𝐿𝑥 𝐿𝑥+1 𝑚
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○ Všechny definice (i různé alternativní) dodržují podmínku vzájemné
konzistence

■ (musí platit pro všechny procesy, které jsou členem𝑝 ∈ 𝐿
𝑞

⇒ 𝑞 ∈ 𝐿
𝑝

nějakého konkrétního pohledu)
● Všechny uzly ve skupině udržují stejný pohled 𝐿
● Instalují si nové pohledy ve stejném pořadí (a jsou v nich

vzájemně obsaženi)
○ Pokud havaruje odesílatel zprávy, tak že havárie bude rychlejší než jeho

odeslání, tak se nic nestane → nejde rozeznat havárii při “snaze o odeslání
zprávy” se stavem beze snahy

○ Pokud se to povede odeslat zprávu alespoň jednomu uzlu a pak umře,
komunikační mechanismu potom musí zařídit, že zprávu musí doručit všem
ostatním přeživším uzlům pohledu

○ Je nepřípustné
■ Aby zpráva po havárii odesílatele byla doručena v následujícím pohledu

● V následujícím pohledu už havarovaný odesílatel není přítomný
■ Aby jedna zpráva byla doručena některým uzlům v jednom pohledu a

jiným v následujícím pohledu
○ Transis algoritmus

■ Spolehlivý kauzální multicast
■ Rozšiřuje protokol Trans o detekci havarovaných komponent a reakci na

zprávy o jejich detekci
■ Navíc oproti Trans algoritmu podporuje členství ve skupinách
■ Monotónnost protokolu

● Vynucena nemožností dosažením spolehlivého
distribuovaného konsensu

● Paranoia
○ V Socialistickém/komunistickém zákonodárství už jenom

podezření a spáchání trestního činu proti režimu stačilo ke
zbavení všech funkcí, výhod a zařazení (i když se potom
nic neprokázalo)

○ Funguje podobně, stačí jenom podezření jednoho uzlu, že
nějaký uzel je havarovaný a ostatní uzly toto podezření
musí respektovat

○ K jejímu vyvolání stačí pouze jedna zpráva, která je
zpožděná nad timeout (nerozeznatelné od havárie)

● Jednosměrnost
○ Procesy, které jsou paranoicky vyloučené, se zpátky

automaticky nevrací, ale mohou se explicitně připojit
(stejným způsobem jako úplně nové procesy)

■ Idea protokolu
● Kauzální hranice pohledu

○ Doručení předcházejících zpráv
○ Pozdržení zpráv kauzálně následujících
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● Všechny uzly si postupně instalují pohledy
● Všechny zprávy jsou doručovány v rámci konkrétního pohledu
● Pohledy jsou instalovány na jednotlivé uzly ve stejném pořadí
● Při detekci havárie (ať už faktické nebo domnělé)

○ Každý proces posílá všem zprávu 𝐹𝐴𝑈𝐿𝑇
○ Po detekci zpráv si uzly instalují takové hranice,𝐹𝐴𝑈𝐿𝑇

aby
■ Všechny zprávy, které přišly před em𝐹𝐴𝑈𝐿𝑇

kauzálně předcházely změně hranice pohledu
■ Všechny zprávy, které přišly po u kauzálně𝐹𝐴𝑈𝐿𝑇

následovaly na informaci o změně pohledu
○ Pokud uzel obdržel y od všech procesů, tak𝐹𝐴𝑈𝐿𝑇

■ Instaluje nový pohled
■ Doručí zprávy, které kauzálně následují změně

hranici pohledu
● Detekcí havárií může být zároveň nekolik v rámci jednoho pohledu

■ Scenario
● Uzel je označený uzlem jako havarovaný ( je prvním, který𝐸 𝐴 𝐴

zjistil havárii)
● Zprávu o havárii přepošle ostatním
● Když uzel přijme zprávu o havárii, tak okamžik přijmu je pro něho

hranice pohledu
○ Každý uzel si takto nastaví svoji lokální hranici

● Zprávy, které uzel přijal před okamžikem přijmu zprávy o havárii,
které kauzálně předcházejí doručí v původním pohledu

● Zprávy, které kauzálně následují doručení zprávě o havárii, jsou
pozdrženy do dalšího pohledu → po instalaci jsou doručeny
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■ Implementace (detekci havárie)
● … graf kauzálních závislostí (stejný jako u Trans algoritmu)𝐺
● … aktuální pohled – množinu uzlů𝐿
● … množina uzlů označených za havarované𝐹
● … zpráva s detekcí havárie uzlu𝐹𝐴𝑈𝐿𝑇(𝑞) 𝑞
● … blokované zprávy (k doručení v následujícím pohledu)𝑏𝑙𝑜𝑐𝑘𝑒𝑑
● … uzly označené procesem za havarované𝐿𝑎𝑠𝑡[𝑖] 𝑖

■ Detekce havárie

■ Doručení
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○ ISIS protokol
■ Základem protokolů Trans a Transis je kauzální potvrzování zpráv
■ Tento protokol funguje jinak a používá maticové hodiny ( )𝑀𝑇
■ (Opakování) vektorové hodiny

● … vlastní odeslané zprávy uzlu𝑉𝑇
𝑝

𝑖

[𝑖] 𝑝
𝑖

● pro … zprávy přijaté od ostatních uzlů𝑉𝑇
𝑝

𝑖

[𝑘] 𝑘 ≠ 𝑖

■ S každou zprávou je odeslán vektor
● odešle𝑝

𝑖
𝑀𝑇

𝑝
𝑖

[𝑖][*]

■ Každý uzel udržuje matici, která je složena ze všech vektorů všech
ostatních uzlů

■ Každý uzel zná poslední informace, které mu přišly zároveň se zprávou
od všech odesílatelů

■ … co uzel ví o doručení zpráv uzlu od𝑀𝑇
𝑝

𝑖

[𝑗][𝑘] 𝑝
𝑖

𝑝
𝑗

𝑝
𝑘

● Jeho vlastní vektor je 𝑀𝑇
𝑝

𝑖

[𝑖][*]

■ při přijmu zprávy od aktualizuje𝑝
𝑖

𝑝
𝑗

● 𝑀𝑇
𝑝

𝑖

[𝑖][𝑗] = 𝑉𝑇
𝑚

[𝑗]
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○ Aktualizuje si vlastní hodiny
● 𝑀𝑇

𝑝
𝑖

[𝑗][*] = 𝑉𝑇
𝑚

[*]

○ Aktualizuje hodiny odesílatele
■ Podle maticových hodin mohou být detekovány stabilní zprávy

● Na každý uzel jsou doručeny vektorové hodiny všech členů
skupiny, které odpovídají odeslané zprávě

■ Členství ve skupinách – jak funguje
● Cíl: Před instalací nového pohledu musí být doručeny všechny

zprávy, které byly doručeny alespoň jednomu přeživšímu procesu
● Každý uzel v si udržuje všechny zprávy, které zatím nejsou𝐿

stabilní (pozná podle maticových hodin)
● Potom co uzel dostane zprávu o instalaci nového pohledu

○ Typicky potom co nějaký jiný uzel zdetekuje havárii
● Tak přepošle všechny nestabilní zprávy všem ostatním uzlům
● Potom pošle speciální zprávu𝐹𝐿𝑈𝑆𝐻

○ Tímto oznamuje, že je připraven přejít na nový pohled
○ Zatím neinstaluje

● Čeká na přijetí zpráv od všech ostatních uzlů𝐹𝐿𝑈𝑆𝐻
● Až dostane zprávy od všech uzlů může instalovat nový𝐹𝐿𝑈𝑆𝐻

pohled
● Zprávy od havarovaných uzlů

○ Každý uzel si udržuje svůj seznam “havarovaných uzlů”
○ S každou zprávou rozesílá jejich seznam, při příjmu

sjednotí s vlastním
○ Zprávy od havarovaných uzlů se zahazují

■ Reálně tento protokol byl nasazen
○ Porovnání ISIS a Trans

■ Trans algoritmu je možné považovat za určitou formu komprimace𝐴𝐶𝐾
maticových hodin

● Ale vyžaduje složitější datové struktury a složitější doručovací
algoritmus

● Shrnutí doručovacích protokolů
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● Pro sekvenční doručování jsme si ukazovali dva protokoly, jeden distribuovaný za použití
skalárních hodin a druhý centralizovaný se sekvencerem.

● Pro kauzální doručování jsme si uváděli několik protokolů, pokud jsme neřešili
překrývající se skupiny, stačili nám vektorové hodiny, jinak jsme používali maticové
hodiny.

● Pro zajištění komunikace v nespolehlivém prostředí a pro detekci stabilních zpráv jsme
si ukázali algoritmus Trans

● Pro implementaci virtuální synchronie jsme si ukázali Transis a ISIS

Video 8
● Budeme si povídat o globálním stavu v distribuovaných systémech a o dosažení

konsensu
○ Tyto dvě témata spolu úzce souvisí

● Konsensus = něco na čem se všechny uzly distribuovaně dohodnou
● Diffusing Computation

○ Jednoduchý model pro distribuované výpočty
○ Uzly jsou vzájemně propojeny jednosměrnými komunikačními kanály
○ Dvousměrný se namodeluje dvěma komunikačními kanály na obě strany
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○ V opačném směru oproti datovým kanálům jsou signální kanály
■ Nejsou určeny pro aplikační data
■ Pouze pro signály v rámci synchronizačních protokolů (pro synchronizaci

uzlů)
○ Ukážeme si jak se počítá dynamická kostra (počítá se dynamicky během

výpočtu)
■ Děje se to elegantně během distribuovaného výpočtu
■ Uzel předá první zprávu uzlu𝑢 𝑣

● označí za svého otce v rámci kostry𝑣 𝑢
○ Každý uzel je v aktivním nebo pasivním stavu
○ Aktivní stav

■ Něco počítá
■ Během výpočtu může pomocí komunikačních kanálů posílat zprávy

dalším uzlům
■ Příjemci mohou být v aktivním nebo pasivním stavu → po příjmu zprávy

se uzel dostane do aktivního stavu
○ Pasivní stav

■ Dostane se do něho, když nějaký výpočet skončil a už nemá, co by
počítal

● V diffusing computation se dají dělat různá zjištění
○ Kdy celý distribuovaný výpočet skončí?

● Problém ukončení distribuovaných procesů
○ Protokol pro detekci ukončení distribuovaného výpočtu by měl detekovat konec

výpočtu v konečném čase po tom, co všechny uzly jsou v pasivním stavu
● Dijkstra-Scholten (DS) algoritmus

○ Detekce ukončení distribuovaného výpočtu
○ Pokud vlastní graf výpočtu je strom

■ Triviální
■ Každý listový proces při přechodu do pasivního stavu pošle signál otci
■ Pokud mezilehlý uzel dostane signály od všech svých synů, tak také

pošle signál svému otci
■ Celý výpočet běží tak dlouho, než se signály dostanou ke kořenu

○ Pokud graf výpočtu je DAG
■ Původní stromový algoritmus se dá vylepšit drobným vylepšením →

přidáme deficit
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■ Deficit je jednoduchý čítač asociovaný s každou hranou
● Rozdíl mezi počtem zpráv, které došly touto hranou a počtem

signálů poslaných signálním kanálem zpět
■ Proces, který je v pasivním stavu počká než jeho výstupní kanály mají

deficit nulový = přišly všechny signály
■ V okamžiku, kdy je deficit nulový na výstupních kanálech, tak pošle tolik

signálů, aby na vstupních kanálech byl deficit nulový
■ (Funguje to, protože v DAGu existuje vrchol, který nemá žádné výstupní

hrany → to bude ten, který bude ukončen jako první)
■ Zesložitění oproti stromové variantě spočítá v tom, že jeden uzel může

mít několik otců a deficity se řeší to, kolik kterými kanály přišlo zpráv,
abychom zpátky poslali stejný počet zpráv (v obráceném směru)

○ Pokud graf výpočtu je obecný orientovaný graf
■ Nemáme listové uzly
■ Přijde nám vhod dynamicky vytvářená kostra

● Otcem v rámci kostry je uzel, od kterého přišla první zpráva
■ Každý proces

● Pošle signál všemi signálními kanály kromě kanálu k otci
● Počká na signály od všech komunikačních kanálů (výstupních

hran)
● Potom co dostane příslušný počet signálů tak pošle signál otci

■ Když se signály dostanou od všech synů kořene, tak konec výpočtu
● Huangův algoritmus

○ Využívá váhy
○ Každá zpráva má váhu
○ Iniciátor má celkovou váhu (nějaké velké číslo)
○ Ostatní procesy mají na začátku váhu nulovou
○ Když nějaký proces (iniciátor) chce po jiném něco počítat, pošle mu zprávu a do

zprávy dá část své váhy
○ Při přijmu zprávy si každý příjemce přičte váhu zprávy ke své váze
○ Proces, když je ukončen, tak pošle iniciátoru zprávu s celou vlastní vahou
○ Pokud se iniciátor dostane na svoji původní váhu → konec výpočtu
○ Problémy

■ Dělitelnost vah
■ Havárie procesu = ztráta váhy

● Značkový (TM) algoritmus (detekce ukončení výpočtu)
○ Kromě běžných zpráv je zde speciální zpráva odlišitelná od běžných zpráv →

značka
○ V okamžiku, kdy iniciační uzel má podezření na ukončení distribuovaného

výpočtu, tak pošle značku na všechny výstupní kanály
■ Trochu obdobné protokolu ISIS

○ Příjem první značky
■ Prohlásí kanál za kostru

● Využívá principy dynamické kostry
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■ Uzel je aktivní
● Pošle negativní signál

■ Uzel je pasivní
● Propaguje značku všemi výstupními kanály

○ Příjem další značky
■ Pošle signál zpátky příchozímu kanálu, když mu ze všech výstupních

kanálů přišly signály
■ Jinak pošle negativní signál zpátky příchozímu kanálu

○ Příjem negativního signálu
■ Pošle negativní signál první žádosti

○ Když uzel přijme všechny signály na svoje značky
■ Pošle signál své první žádosti

○ Když se signály dostanou zpátky k iniciátorovi, tak konec výpočtu
○ Tento algoritmus je pouze aplikace obecnějšího (značkového) algoritmu na

detekci globálního stavu
● Konzistentní stav

○ Nejprve si povíme, co to vlastně konzistentní stav je
■ Budeme ho chtít zjišťovat

○ … množina událostí v systému𝐸
○ Řez je rozdělení na dvě disjunktní množiny a (past, future)𝑐 𝐸 𝑃

𝑐
𝐹

𝑐

■ Řez je právě hranice mezi minulostí a budoucností
○ (Kauzálně) konzistentní řez 𝑐

■ Splňuje 𝑎 → 𝑏 ∧ 𝑎 ∈ 𝐹
𝑐

⇒ 𝑏 ∈ 𝐹
𝑐

● Minulost nemůžeme ovlivnit jakoukoliv událostí v budoucnosti
○ Stav distribuovaného výpočtu je množina událostí, které se během výpočtu udály
○ (Kauzálně) konzistentní stav , kde je (kauzálně) konzistentní řez𝑆 = 𝑃

𝑐
𝑐

■ (Kauzálně) konzistentní stav odpovídá nějakému (kauzálně)
konzistentnímu řezu

○ Využití
■ Detekce deadlocku
■ Garbage collection
■ Detekce globálních vlastností

● Konzistentní řez
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● Značkový algoritmus detekce globálního stavu
○ Jeho výsledkem je zaznamenání stavu uzlu a kanálů

■ Stavu uzlu a kanálů dohromady definuje kauzálně konzistentní stav
systému

■ = stav, který odpovídá kauzálně konzistentnímu řezu
○ Stav uzlu

■ Množina přijatých a odeslaných zpráv
○ Stav kanálu
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■ Množina zpráv, které byly do kanálu odeslány v minulosti, ale přijaty
budou až v budoucnosti (ještě nebyly doručeny)

○ Jak funguje
■ Existuje speciální zpráva (značka)
■ Iniciátor, když se rozhodne detekovat globální stav, tak všemi výstupními

kanály pošle značku
■ Každý uzel v okamžiku přijmu první značky ze svých vstupních kanálů si

zapamatuje svůj aktuální stav (okamžik řezu)
■ Dále si uzel označí všechny vstupní kanály jako prázdné a čeká na příjem

značky z těch kanálu, ze kterých ještě nepřišla
■ Uzel propaguje značku podél všech výstupních kanálů
■ Čeká dokud mu ze vstupních kanálů nepřijdou další zprávy se značkou
■ Když mu přijde zpráva (ne značka) z kanálu, ze kterého ještě značka

nepřišla
● Zapamatuje si tuto zprávu (bude ji potřebovat pro stav kanálu)

■ Když mu přijde značka z kanálu, ze kterého ještě nepřišla
● Definuje stav tohoto kanálu jako zprávy došlé mezi příjmem první

značky a této značky
■ Když ze všech vstupních kanálů dostal značku, tak pro tento uzel

algoritmus skončil, takže svému otci (v proti směru) pošle svůj stav
○ Množina zaznamenaných stavů uzlů a kanálů definuje kauzálně konzistentní stav

systému
○ Aplikace

■ Obecně detekce libovolných globálních vlastností
■ Deadlock, garbage collection, …

● Modely distribuovaných výpočtů
○ Většinou jsme si ukazovali kauzální časové diagramy

■ Každý proces má svoji časovou osu
■ Jednotlivé události jsou na časové ose znázorněny

○ Používají se ale i jiné modely než kauzální časové diagramy
■ Pro zkoumání distribuovaných algoritmů a jejich vlastností
■ Umožňuje znázornit přechody mezi stavy
■ Každý stav je identifikovaný
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Video 9
● Armádní tématika
● Budeme se věnovat distribuovanému konsensu
● Problém dvou armád

○ Jsme generálem větší armády B
○ Armáda je rozdělena na půlku na dvou místech
○ Bojujeme proti armádě W
○ W je menší, ale je koncentrována na jednom místě
○ Nedokážeme porazit W pouze jednou částí naší armády, víme, že vyhrajeme

pouze pokud synchronně obě naše armády zaútočí

○ Zajímavý vojenský strategický problém
○ Jediná možná komunikace mezi armádou je pomocí tajných kurýrů přes území

nepřítele
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■ Nepřátelské území je hlídané a chráněné
■ Pokud by nepřítel přišel na našeho kurýra, tak ho zajme…
■ Zpráva nebude doručena druhé části naší armády

○ Jaké vymyslet řešení “protokol”, aby se obě armády dohodly
■ Že buď obě armády zaútočí společně
■ Nebo neútočit

○ V řeči informatiky
■ Máme dvě komponenty, které komunikují pomocí zasílání zpráv
■ Zasílání zpráv je nespolehlivé
■ Potřebujeme protokol, kde obě části budou spolehlivě vědět

● Že zpráva byla doručena
● Druhá komponenta bude vědět o tom, že první komponenta ví o

tom, že zpráva byla doručena

○ Celá řada důsledků
■ Např. paranoia u Transis algoritmu

○ Praktická řešení
■ Agresivní strategie

● První generál vyšle větší množství zpráv oznamující čas útoku
○ Bude doufat, aby alespoň jeden kurýr dorazil

● A zaútočí
● (druhý generál nemusí ani odpovídat)

■ Pravděpodobnostní strategie
● Spočívá ve zkoumání prostředí a propustnosti terénu
● První generál vyšle větší množství zpráv a každému kurýrovi

kromě zprávy předá ještě informaci o tom, kolik kurýrů bylo
posláno

● Když alespoň jeden kurýr dojde na druhou stranu, tak to samé
udělá druhá strana zpátky a když se kurýr dostane zpátky k první
armádě (pokud se dostane), tak oba generálové vědějí nějakou
pravděpodobnost, že se zpráva dostane do cíle

○ Tohle je problematika spolehlivých uzlů, ale nespolehlivé komunikace
● Problém Byzantských generálů

○ Jednotlivé uzly nejsou spolehlivé = někteří generálové jsou zrádci
○ Název pochází z historie → důvěryhodnost byzantských generálů byla nízká

■ Nepřestane plnit rozkazy, ale začne se chovat zákeřně
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○ Bezpečnost distribuovaného systémy oproti úmyslným škůdcům
○ Všichni loajální generálové se musejí rozhodnout stejně
○ Každý generál se rozhoduje na základě informací obdržených od ostatních

generálů
○ BÚNO se problém dá zjednodušit

■ Pouze 1 generál a ostatní jsou důstojníci
■ Generál i důstojníci mohou být zrádci
■ Generál vydá rozkaz, důstojníci ho předají ostatním
■ Každý velitel vydá rozkaz, který bude vydán na základě většiny

○ Cíl protokolu
■ C1

● Všichni loajální důstojníci vydají stejný rozkaz
● (Uzly se shodnou na jedné hodnotě)

■ C2
● Je-li generál loajální, pak každý loajální důstojník vydá rozkaz

generála
● (Pokud hodnota navrhl nehavarovaný uzel, uzly se shodnou na

této hodnotě)
○ Zrádce generál

■ 1 generál a 2 důstojníci
■ Různé rozkazy důstojníkům

● Důstojníci si předají zprávu a z jedné strany je útok a z druhé
ústup

■ Pokud by generál dal stejný rozkaz, tak by se jeho neloajálnost
neprojevila

○ Zrádce důstojník
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■ Generál zavelí na obě strany útočit a zrádce důstojník by přeposlal ústup
■ Zase jeden důstojník by z každé strany dostal jinou informaci

● Z jeho pohledu opět nerozhodnutelné

○ Zrádce generál (zvětšíme počet uzlů)

■ To nejhorší co generál může udělat je vydat na každou stranu rozdílný
rozkaz

● Důstojníci se shodnou, že generál je zrádce
■ Pokud vydá alespoň dva stejné rozkazy (důstojníci se zařídí podle

většinového rozkazu)
○ Zrádce důstojník (zvětšíme počet uzlů)
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■ Nejhorší co důstojník může udělat je předání falešného rozkazu všem
ostatním důstojníkům

● Ostatní důstojníci si vzájemně pošlou zprávu co dostanou od
generála

● Snadno odvodí, že důstojník se špatnou zprávou je zrádce
○ Řešení pro 4 uzly s jedním zrádcem existuje
○ Obecně: Pro zrádců existuje řešení pro uzlů𝑚 𝑛 ≥ 3𝑚 + 1

■ Existuje algoritmus, který tento problém řeší
■ Podle počtu zrádců ale exponenciálně roste počet zpráv

● Jeho nevýhoda je tedy exponenciální složitost
■ Vzájemně si důstojníci přeposílají všechny informace, co jim přisly

○ Praktické řešení problému
■ Předchozí popsané řešení se (už jenom z hlediska efektivity) nepoužívá
■ Řešíme pomocí kryptografie, digitální podpis

Video 10
● Nyní se budeme zabývat protokoly pro dosažení distribuovaného konsensu, které jsou

použitelné v reálném prostředí
● Reálné prostředí

○ Nespolehlivá síť
○ Neomezená doba doručení zprávy
○ Ztráta zprávy, duplikace, pořadí
○ Nespolehlivé uzly, náhlé havárie
○ Nepředpokládají se byzantské uzly, všichni dodržují protokol

● Paxos
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○ Klasika mezi konsensuálními protokoly
○ Celá rodina protokolů
○ Výpadek není výjimka, ale běžný stav
○ Když chceme tolerovat výpadek uzlů, tak potřebujeme uzlů celkově𝐹 2𝐹 + 1
○ Základ moderních distribuovaných systémů (cloudů)
○ Autor: Leslie Lamport

■ 1989 odmítnut
● Napsal článek o zákonodárcích na ostrově Paxos
● Článek byl pojat jako pohádka se spoustou řeckých názvů v

řečtině
● Velmi obtížné číst

■ Naštval se a článek schoval do šuplíku
■ Na univerzitě bylo celá řada spolupracujících kolegů a o článku věděli a

na jeho základě dělali různé experimentální systémy → akorát je nemohli
publikovat, protože si nikdo nedovolil vydat článek

■ 1998 se Lamport nechal přemluvit a vydal speciální vydání v původním
znění

■ 2001 Paxos Made Simple (přepsaný článek)
● In ‘plain’ English
● Podle Zavorala to není úplně jednoduché čtení

● Co vlastně znamená distribuovaný konsensus?
○ Typické využití je pro replikovaný stavový automat
○ Klient komunikuje se serverem a potřebuje, aby server byl absolutně spolehlivý
○ Uzly, které implementují funkčnost služby jsou replikované (neběží jeden uzel ale

3 uzly, nebo více podle úrovně služby)
○ Klient komunikuje s jedním uzlem, který je označen jako primární (leader)

■ Předá mu nějaký pokyn
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○ Pokyny postupně mění stav celého systému
○ Cílem je tyto pokyny replikovat na jednotlivých uzlech

■ Všechny uzly budou mít stejnou posloupnost příkazů a stejný stav
○ Distribuovaný stavový automat (jak funguje)

■ Klient kontaktuje primární repliku, ta si jeho pokyn zapíše do logu a pošle
zprávu o změně stavu ostatním replikám

■ Ty si zapíšou taky změnu do svého stavu a zpátky potvrdí primární
replice, že zprávu dostali

■ Potom co primární replika dostane dostatečný počet shodných odpovědí
(více jako ½), tak záznam, který má v logu považuje za schválený a na
základě něho si může upravit svůj vnitřní stav

■ Aplikace
● Cluster management systémy (Borg u Googlu)

○ Cílem protokolů je z pohledu klienta, aby klient komunikoval s celou množinou
distribuovaných uzlů jako s jedním spolehlivých stavovým automatem

● Part-Time Parliament

○ Vrátíme se k Lamportově článku na úrovni pohádky
○ Poslanci

■ Schvalují zákony
○ Poslíčci

■ Doručují zprávy mezi poslanci
○ Poslanci i poslíčci jsou nespolehliví

■ Mohou na čas i na trvalo odejít
○ Poslíčci jsou důvěryhodní

■ Když doručí, tak nemění zprávu
○ Poslíček může doručit zprávu několikrát
○ Poslanci nejsou ochotni zůstat na celé jednání
○ Poslanci si zapisují nesmazatelným inkoustem všechny zákony, o kterých jednali

■ (V informatice perzistentní datové úložiště)
● Paxos

○ Role (jednotky v rámci algoritmu, nejsou to uzly, jeden uzel má obvykle více rolí)
■ Client
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● Zadává požadavky na změnu (primárně komunikuje s
proposerem)

■ Proposer
● Navrhuje nové stavy
● Řeší konflikty
● Jsou replikované
● V každém okamžiku je jeden proposer primární

○ Primary proposer = Leader
○ Řeší, které návrhy jsou právě platné

■ Acceptor
● Přijímají nebo odmítají návrhy
● Jsou sdruženi v quoru (viz níže)

■ Learner
● Reprezentují repliky, které provedou změnu dle zadaného příkazu

○ Quorum
■ Libovolná nadpoloviční podmnožina Acceptorů
■ Libovolná zpráva je platná až po přijmu celým quorem

○ Ballot numbers
■ Pro detekci konfliktů a uspořádání příkazů jsou použité sekvenční čísla
■ Jedná se o dvojici [𝑛𝑢𝑚,  𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑖𝑑]

● Hlasovací číslo, proposal number
● [𝑛

1
, 𝑝

1
] > [𝑛

2
, 𝑝

2
]

○ 𝑛
1

> 𝑛
2
 ∨ (𝑛

1
= 𝑛

2
∧ 𝑝

1
> 𝑝

2
)

● Jednoznačně definované globální uspořádání
■ Volba Ballot

● Každý uzel si eviduje poslední známý Ballot [𝑛, 𝑝]
● Pak proces volí𝑝 [𝑛 + 1, 𝑝]

■ Procesy akceptují pouze zprávy s nejvyšším Ballotem
○ Každá role si udržuje (lokálně) několik údajů

■ Poslední známý Ballot ( )𝐿𝑎𝑠𝑡𝐵𝑎𝑙𝑙𝑜𝑡
● (návrh)

■ Poslední akceptovaný Ballot ( )𝐴𝑐𝑐𝑒𝑝𝑡𝐵𝑎𝑙𝑙𝑜𝑡
● (potvrzen quorem acceptorů)

■ Poslední akceptované hodnota ( )𝐴𝑐𝑐𝑒𝑝𝑡𝑉𝑎𝑙𝑢𝑒
● (udržuje se s posledním akceptovaným Ballotem)

○ Základní Paxos protokol
■ Tohle je made simple of made simple
■ Rozdělen na dvě fáze
■ V první fáze jde hlavně o zvolení leadera
■ V druhé fázi jde o propagaci hodnoty
■ Každá fáze má dvě části

● Každá část zhruba znamená zaslání zprávy
■ 1. Fáze
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● Proposer
○ Zvolí si nový ballot 𝐵𝑎𝑙𝑙𝑜𝑡 ← [𝐵𝑎𝑙𝑙𝑜𝑡. 𝑛𝑢𝑚 + 1,  𝑚𝑦𝐼𝑑]
○ Pošle zprávu s všem acceptorům (stačí𝑃𝑟𝑒𝑝𝑎𝑟𝑒 𝐵𝑎𝑙𝑙𝑜𝑡

odeslat alespoň quoru)
● Když acceptor přijme zprávu 𝑃𝑟𝑒𝑝𝑎𝑟𝑒

○ Tak se podívá podle ballotu jestli to není zastaralá zpráva
→ když jo, tak mu vrátí 𝑅𝑒𝑗𝑒𝑐𝑡

■ Zpráva je zastaralá, pokud 𝑏𝑎𝑙 < 𝐿𝑎𝑠𝑡𝐵𝑎𝑙𝑙𝑜𝑡
○ Zapamatuje si ballot číslo ( )𝐿𝑎𝑠𝑡𝐵𝑎𝑙𝑙𝑜𝑡 ← 𝑏𝑎𝑙
○ Vrátí zpátky proposeru zprávu s hodnotami𝑃𝑟𝑜𝑚𝑖𝑠𝑒

𝑏𝑎𝑙,  𝐴𝑐𝑐𝑒𝑝𝑡𝐵𝑎𝑙𝑙𝑜𝑡,  𝐴𝑐𝑐𝑒𝑝𝑡𝑉𝑎𝑙𝑢𝑒
● Cílem je, aby proposer, který pošle několik zpráv , dostal𝑃𝑟𝑒𝑝𝑎𝑟𝑒

alespoň quorum → prohlásí se za vítěze voleb a𝑃𝑟𝑜𝑚𝑖𝑠ů
pokračuje druhou fází

■ 2. fáze
● Akceptace hodnoty
● Proposer potom, co dostane dostatečný počet , tak pošle𝑃𝑟𝑜𝑚𝑖𝑠ů

zprávu s a všem acceptorům𝐴𝑐𝑐𝑒𝑝𝑡 𝐵𝑎𝑙𝑙𝑜𝑡 𝑚𝑦𝑉𝑎𝑙
○ Musí respektovat nejvyšší návrh

■ s nejvyšším𝑚𝑦𝑉𝑎𝑙 ← 𝐴𝑐𝑐𝑒𝑝𝑡𝑉𝑎𝑙𝑢𝑒 𝐴𝑐𝑐𝑒𝑝𝑡𝐵𝑎𝑙𝑙𝑜𝑡
○ Pokud žádný návrh od acceptorů na hodnotu není, tak

může použít vlastní návrh na hodnotu
● Acceptoři když dostanou takovu zprávu 𝐴𝑐𝑐𝑒𝑝𝑡

○ Zapamatují ballot i hodnotu v ní poslanou 𝑏𝑎𝑙,  𝑣𝑎𝑙
○ Dále tyto hodnoty přepošlou všem proposerům a

learnerům ve zprávě , pokud𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝑏𝑎𝑙 ≥ 𝐿𝑎𝑠𝑡𝐵𝑎𝑙𝑙𝑜𝑡
(ballot přijmutý ve zprávě není zastaralý)𝐴𝑐𝑐𝑒𝑝𝑡
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■ Výpadky
● Když vypadne jeden acceptor tak se neděje vůbec nic
● Běh algoritmy by byl pozastaven, pokud acceptoři by nebyli

schopni dát dohromady quorum
● Úplně stejně se chová výpadek learnera

○ Dokud je k dispozici alespoň jeden learner
● Když vypadne primární proposer

○ Zvolí se nový leader, který bude mít ballot o jedna větší
● Ještě je problém, kdyby se starý proposer, který dostal quorum

probudil potom co nový dostal také quorum (ani𝑃𝑟𝑜𝑚𝑖𝑠ů 𝑃𝑟𝑜𝑚𝑖𝑠ů
jeden z nich nestihl odeslat 𝐴𝑐𝑐𝑒𝑝𝑡

○ Viz obr. níže
○ Algoritmicky není zaručena konečnost při nejhorším

možném způsobu prokládání
○ Konečnost není deterministická, ale dochází k

randomizaci, takže to někdy prostě skončí
○ Prakticky to je OK
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■ Pozorování
● Fáze 1

○ Neslouží k zasílání hodnot
○ Slouží k detekování leadera

● Fáze 2
○ Leader navrhuje hodnoty s nejvyšším Ballotem z fáze 1

● Aby celý protokol fungoval je nutné po dobu výpadku zachovat
stav rolí

○ Perzistentní úložiště (nesmazatelný inkoust)
● Jakým způsobem posílat zprávy learnerům𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑

○ Dvě možnosti
■ Každý learner má přiděleného acceptora
■ Každý acceptor posílá zprávu každému𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑

learnerovy (kvadratická komunikační složitost)
○ Existuje formální důkaz v TLA basic varianty Paxosu
○ Je potřeba znát princip algoritmu a chování při výpadcích jednotlivých rolí

na zkoušku i státnice
○ Použití v distribuovaném plánovači

■ Implementujeme cluster management system
■ Umožňuje spouštění jobů
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■ Máme několik replik
● Každá zastává všechny role (proposer, acceptor, learner)

○ Základní verze Paxosu je velmi málo použitelná → nepoužívaná
■ Slouží ke konsensu pouze jedné hodnoty
■ Pro jiného klienta musí celý protokol proběhnout znovu

○ Vylepšení Paxosu
■ Multi-Paxos

● Kontinuální opakování
● Základ typické implementace
● 2. fáze se opakuje tak dlouho, dokud nedojde k nějaké havárii
● Založen na pozorování, že první fáze je nutná jenom v případě

havárie
● Rozhodli se v Googlu implementovat

○ Místo 1 až 2 týdnu jim to trvalo roku3/4
● 2008 Paxos Made Live

○ článek o tom, jak je reálná implementace odlišná od
abstraktního popisu

● 2015 Paxos Made Moderately Complex
○ Článek o formálním popisu a verifikaci Multi-Paxosu

■ Cheap Paxos
● Tolerance havarujících uzlů při uzlech celkově𝐹 𝐹 + 1
● Potřeba dalších uzlů připravených v záloze𝐹

■ Fast Paxos
● Optimalizace doručovaných zpráv

■ Generalized Paxos
● Optimalizace pro komutativní operace

■ Byzantine Paxos
● Rozšíření pro záškodníky
● Ochrana před nekorektním chováním
● Mezi fáze Accept a Accepted je přidána verifikační fáze, kde se

zprávy ověřují
○ Paxos - aplikace

■ Jedním z prvních byl Google
■ Google Chubby

● Distribuovaný zamykací systém
■ Cluster management systémy
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● Google Borg
● Omega
● Kubernetes

○ Paxos - nedostatky
■ Téměř 20 let de-facto standardem pro distribuovaný konsensus
■ Těžko pochopitelný
■ Náročná implementace
■ Nekompletní popis

● Vůbec není jasné jak implementovat
■ Reálná implementace neverifikovatelná

Video 11
● Přestože je Paxos přes 20 let standardem, je velmi kritizovaný pro jeho

○ Komplikovanost
○ Náročnou implementaci
○ Nekompletní popis (kompletní popis existuje pouze pro základní verzi)

● RAFT (Replicated And Fault-Tolerant Protocol)
○ 3x byl článek odmítnut
○ Stal se populárním, protože hlavní motivací pro jeho vytvoření byla

■ Srozumitelnost
■ (relativní) snadnost implementace

● Implementace Paxosu jsou jednotky, rok po vydání RAFTu jich
bylo stovky

○ Reálně používaný v celé řadě frameworků, ačkoliv se jedná o mladý protokol
○ Role

■ 3 základní, jedna z nich je dočasná
■ Leader

● Primární replika, která navrhuje hodnoty
■ Follower

● Akceptuje hodnoty
● Jsou pouze pasivní (čekají na zprávu od leadera)

○ Hlídají, jestli pravidělně přichází heartbeat od leadera
■ Candidate

● Dočasně při volbě leadera
○ Hlavní komponenty

■ Volba leadera
● Alespoň jeden z followerů zdetekoval havárii (nedostal heartbeat)

■ Replikace logu
● Normální operace
● Leader přijímá požadavky od klientů, přidá je do vlastního logu
● Log replikuje followerům

■ Udržování konzistence
● Jednotlivé uzly se průběžně udržují konzistentní s tím co aktuální

leader si udržuje ve svém logu
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○ Term
■ Základ synchronizace
■ Vždy začíná volbou leadera

● Pokud je úspěšná, tak po celou dobu termu je leader jednoznačně
zvolený a schválený followerama

● Když se nepovede, tak term ani nezačne

■ V rámci termu mají všechny uzly, jednoznačně určeného leadera
■ Každý uzel si udržuje lokální , když se odlišuje od jakékoliv𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑒𝑟𝑚

zprávy, kterou dostane
● 𝐼𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝑇𝑒𝑟𝑚 > 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑒𝑟𝑚

○ Příjemce je zaostalý a promeškal volbu nového leadera
○ Potřebuje se zaktualizovat

● 𝐼𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝑇𝑒𝑟𝑚 < 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑒𝑟𝑚
○ Zprávu zahodí, protože to je zpráva od někoho

opožděného
○ Heartbeat

■ Leader periodicky zasílá zprávy followerům
■ Timeout → volba nového leadera

● Obvykle v řádech stovek ms

○ Normální průběh RAFTu
■ Klient pošle zprávu leaderovi
■ Leader si zprávu zapíše do logu
■ Všem followerům pošle zprávu a čeká𝐴𝑝𝑝𝑒𝑛𝑑𝐸𝑛𝑡𝑟𝑖𝑒𝑠

● Příkaz co má v logu neaplikuje, má ho jenom zapsaný
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■ Potom co na přijde odpověď od quora followerů (libovolná𝐴𝑝𝑝𝑒𝑛𝑑𝐸𝑛𝑡𝑟𝑖𝑒𝑠
většina followerů), tak záznam z logu se stane commitovaným a aplikuje
ho do svého lokálního stavového automatu

■ Leader oznamuje followerům commitované záznamy v následných
𝐴𝑝𝑝𝑒𝑛𝑑𝐸𝑛𝑡𝑟𝑖𝑒𝑠

■ Follower po přijmu commit provede příkaz ve svém stavovém automatu
● Postupně followeři následují přechody stavů leadera

○ Havárie nebo zpoždění followera
■ Leader přepošle zprávu opožděnému followeru𝐴𝑝𝑝𝑒𝑛𝑑𝐸𝑛𝑡𝑟𝑖𝑒𝑠

○ Při běžném provozu stačí jedna zpráva od leadera k followerům a její potvrzení
pro jednu operaci, která je vyvolaná klientem

○ Log
■ Pro vlastní synchronizaci
■ Každý uzel si eviduje svůj vlastní
■ Indexovaný
■ V každém záznamu je dvojce číslo termu, příkaz/data
■ Růst logu je nerovnoměrný
■ Persistentní

● Musí se zotavit po havárii

○ Udržování konzistence logu
■ Commit je pro udržování konzistence maximálně důležitý
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○ – jak přesně funguje𝐴𝑝𝑝𝑒𝑛𝑑𝐸𝑛𝑡𝑟𝑖𝑒𝑠
■ Kromě nové hodnoty v ní leader posílá i index a term předcházejícího

záznamu
■ Když tuto zprávu přijme follower, tak zkontroluje, že index a term souhlasí

s tím co si on eviduje, jinak ji odmítne
● Tím dojde ke kontrole, že má s leaderem stejný log

■ Leader potom pošle novou zprávu, kde bude více informací (předchozí
index a termy), zkrátka to, co příjemce neeviduje
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○ Volba leadera
■ V případě, kdy dojde k havárii → dostatečnou dobu nedojde heartbeat
■ Follower, který to zjistí se stane kandidátem
■ Zahájí se nová volba
■ Každý kandidát hlasuje sám pro sebe
■ Potom všem ostatním uzlům pošle zprávu 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑉𝑜𝑡𝑒
■ Zpráva obsahuje poslední zaznamenaný <index, term>𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑉𝑜𝑡𝑒

kandidáta
■ Příjmutí zprávy 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑉𝑜𝑡𝑒

● Zpráva obsahuje vyšší term než má příjemce → je𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑉𝑜𝑡𝑒
opožděn (nepřišli mu nějaké zprávy)

○ Přesune se do role followera
○ Pošle hlas

● Pokud je term žadatele neaktuální → odmítne dát hlas
■ Když přijde většinový počet hlasů (odpovědí na zprávu ), tak𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑉𝑜𝑡𝑒

se stane leaderem
■ Pokud nedojde k volbě za stanovený timeout tak nastane randomizovaná

pauza
● Všechny uzly si nastaví budík na čas (v řádu stovek ms)[𝑇, 2𝑇]

● Další protokoly
○ Existují i další protokoly kromě Paxosu a RAFTu
○ ZAB (Zookeeper Atomic Broadcast Protocol)

■ Založen na principech Paxosu
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■ Technické detaily jsou odlišné
○ Viewstamped Replication

■ Ještě horší než Paxos
● Využití konsensu

○ Replikace služeb
■ Základní motivace

○ Replikace logu
■ V DB a jiných distribuovaných úložištích

○ Synchronizační služby
■ Tradičně se to dělalo pomocí zámků
■ V Googlu postavili na Paxosu distribuovaný zámkový systém Chubby

○ Bariérová orchestrace
■ Když děláme výpočet na rozsáhlých datech
■ Slouží k synchronizace jednotlivých uzlů mezi fázemi výpočtu

○ Configuration management
■ Distribuovaná vysoce spolehlivá služba pro ukládání KeyValue párů

○ Obecně jsou algoritmy pro konsensus nejpoužívanějším a nejviditelnějším
výsledkem teorie distribuovaných systémů

Video 12
● Dnes distribuovaná sdílená paměť
● Paralelní výpočety

○ Multiprocesory
■ Malá škálovatelnost, hw náročné, drahé
■ Máme sdílenou paměť

○ Multicomputery
■ (typický distribuovaný systém, kde uzly jsou nezávislé)
■ Snadno dostupné

● Snadno implementovatelné
■ Komunikace a synchronizace není prakticky dobře zvládnutá
■ Nemáme distribuovanou paměť → implementace náročnějších

paralelních výpočtů není jednoduchá
● Museli bychom všechno řešit přes nějaké zprávy
● Pokus o řešení → distribuovaná sdílená paměť

○ 1986 Li & Hudak – DSM
■ Jeden z prvních článků

● Hlavně v 90. letech byl velký vývoj v oblasti distribuované sdílené paměti
● Nic prakticky použitelné

○ Hlavní překážka byla výkonnost
● Dnes jsou sítě již mnohem výkonnější

○ Masivním nárůstem cloudu a clusterových infrastruktur
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● Výkonný síťový HW, který podporuje RDMA
○ Remote Direct Memory Access

■ Síťová karta přímo umožní zapsat data do výsledného bufferu, kde jsou
očekávané

● Přenos po sítí je dnes o několik řádů rychlejší
● Latence je mnohem lepší
● Dnes distribuovaná sdílená paměť narůstá na popularitě

○ Součástí distribuovaných a cloudových frameworků
● Můžeme rozlišit tři úrovně, kde je distribuovaná paměť implementována

○ Distribuované stránkování
○ Distribuované sdílené proměnné
○ Distribuované objekty

■ Pro objektové frameworky
● Konzistenční model

○ Specifikace, co implementace musí splňovat vzhledem k operacím čtení a zápis
■ Co se přesně má stát při zápisu a čtení

○ Primitiva
■ Read, Write
■ Sdílený adresový prostor

● Striktní konzistence (někdy též atomická konzistence)
○ První konzistenční model, o kterém si budeme povídat
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○ Jakékoliv čtení z adresy x vrátí hodnotu uloženou při posledním zápisu na adresu
x

■ Tradičně intuitivně zajištěna na jednoprocesorových systémech
○ Zajišťuje absolutní časové uspořádání
○ Je nejsilnější ze všech modelů, o kterých si budeme povídat
○ Všechny zápisy jsou okamžitě všude viditelné
○ Podmínka: musí existovat přesný globální čas
○ Ideální pro programování → intuitivně ho očekáváme
○ V distribuovaném systému nedosažitelné

● Pro striktně konzistentní model platí následující

● Pro paměť, která není striktně konzistentní platí následující

● Sekvenční konzistence
○ O něco slabší model
○ Všechny operace na jednom uzlu jsou všemi uzly v distribuovaném systému

vnímané ve stejném pořadí
○ Všechny operace jsou seřazeny do nějakého jednoho rozvrhu, který všechny

uzly respektují
○ Distribuovaný systém se v zásadě chová jako centralizovaný systém

■ Oproti striktnímu modelu není v sekvenčním konzistenci nutná
synchronizace s fyzickým časem

○ Když se na dvou různých uzlech provede zhruba ve stejný fyzický čas nějaká
operace, tak implementace jednu z těchto operací prohlásí za dřívější (z hlediska
sekvenčního rozvrhu) a druhou za pozdější a je jedno, která byla fyzicky
provedena dříve

■ Na všech uzlech je ale dodržován stejný rozvrh operací
○ Stále se v něm ale dobře programuje (moc nepoznáme rozdíl oproti striktní

konzistenci)
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○ Implementace distribuované sdílené paměti v tomto modelu je v celku
jednoduchá → použitelné

○ Velikost zpoždění samotným modelem není nijak zaručena
■ Implementace tohoto modelu může pozdržet některé zápisy o několik

sekund/minut, to je nepříjemné chování, které může být problémové
○ Později uvidíme vylepšení tohoto modelu o synchronizaci s fyzickým časem
○ Níže je klasický případ race condition, který může nastat v tomto modelu

● Podíváme se na jednoduchý prográmek a jak se na něm sekvenční konzistence chová

● Signatura se používá pro zkoumání distribuovaných rozvrhů
● Signatura

○ Výstupy jednotlivých procesů v pevném pořadí
○ Pomůže ověřit, jestli výstup odpovídá sekvenční konzistenci
○ Konkrétní proložení instrukcí procesů, a tím i pořadí paměťových referencí
○ Např. neodpovídá žádnému sekvenčnímu rozvrhu000000

■ Každý rozvrh musí dodržovat to, že se nejdříve zapíšou hodnoty a pak se
přečtou
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○ První dvě nuly říkají, že proces P1 vytisknul nuly
○ Na začátku do proměnné a P1 zapsal jedničku a potom vytisknul dvě nuly
○ 10 znamená, že druhý proces vytisknul jedničku pro proměnnou a 0 pro𝑎

proměnnou 𝑐
○ Čtení muselo být rozvrženo před zápisem𝑐 𝑐 = 1
○ 01 znamená, že proces přečetl 0 z a, 1 z𝑐 𝑏
○ Formálně je dokázáno, že výkonnost sekvenční konzistence není příliš vysoká

■ Je možné optimalizovat buď pro čtení, nebo zápis
■ Vždy ale 𝑟 + 𝑤 ≥ 𝑡

● … čas čtení𝑟
● … čas zápisu𝑤
● … čas přenosu zprávy𝑡

■ Obvykle se optimalizuje pro operaci čtení (používá se mnohem více)
● Externí konzistence (externí jako synchronizace s externím časem)

○ Rozšíření sekvenční konzistence
○ Vhodné pro prostředí, kde nechceme obrovské zpoždění instrukcí oproti

fyzickému provádění
○ Synchronizace s externím časem
○ Na moderních clusterových systémech, kde synchronizace hodin je přesná,

zpoždění nabývá v sekvenčním rozvrhu oproti fyzickému času v řádu milisekund
○ Používá se pro distribuované databáze
○ Pro jakékoliv dvě transakce 𝑇

1
,  𝑇

2

■ Když začne operaci “dostatečně později” (tj. po tom, co ukončí𝑇
2

𝑇
1

operaci commit), tak potom logický čas logický čas𝑇
2

> 𝑇
1

● Kauzální konzistence
○ (Víceméně se hledali modely, které jsou výkonnější než sekvenční konzistence)
○ Kauzálně závislé zápisy musí být viděny všemi uzly ve stejném pořadí.

Konkurenční zápisy mohou být viděny v různém pořadí.
○ Oproti sekvenčnímu modelu není zapotřebí, aby všechny uzly dodržovaly jeden

stejný globální rozvrh
○ Všechny rozvrhy ale musí dodržovat kauzalitu
○ Zápis hodnoty do paměťového místa ~ odeslání zprávy
○ Čtení hodnoty z paměťového místa ~ doručení zprávy
○ Kauzálně závislé zápisy
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■ Pokud a (druhý proces) , pak je kauzálně𝑊(𝑥)𝑎 𝑅(𝑥) 𝑊(𝑦)𝑏 𝑊(𝑦)𝑏
závislý na (přes )𝑊(𝑥)𝑎 𝑅(𝑥)

○ Implementačně složitější
■ Vyžaduje udržování grafu závislostí zápisů na čtení

○ Potencionálně mnohem výkonnější → nemáme jeden globální rozvrh

● PRAM (Pipelined RAM) konzistence
○ Zápisy prováděné jedním uzlem jsou viděny ostatními uzly v pořadí provádění.

Zápisy různých uzlů mohou být viděny různými uzly různě.
○ Ukázalo se, že u kauzální konzistence ten nárůst výkonu není tak drastický a

implementace je o hodně složitější
○ Vymýšleli se další modely
○ Jednoduchý na implementaci
○ Žádný globální rozvrh neexistuje
○ Zápisy různých uzlů mohou být viděny v různém pořadí
○ Je nutné dodržovat pořadí zápisů z jednoho zdroje

■ Respektuje se lokální rozvrh instrukcí, ale proložení není
synchronizováno

○ Je možné to použít pro sdílení paměti ale ne pro synchronizační účely
● Slow Memory

○ Zápisy jedním procesem do jednoho místa musí být viděny ve stejném pořadí
○ Neřeší synchronizace mezi uzly
○ Zajišťuje uspořádání jenom do jednoho paměťového místa

● Existují ještě slabší modely
○ Eventual Consistency

■ “Když je příležitost, tak je to konzistentní”
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● Všechny předchozí konzistenční modely jsou určeny pro implementaci na úrovni virtuální
paměti, kde framework nemá k dispozici žádné další informace a musí propagovat
všechny zápisy všem procesům

● Málo efektivní
○ Ne všechny uzly musí sledovat všechny zápisy (natož jejich pořadí)

● Efektivněji je možné implementovat distribuovanou paměť na vyšší úrovni → knihovny a
frameworky

○ Značnou nevýhodou je ztráta transparentnosti narozdíl od distribuovaného
stránkování

● Konzistenční modely se synchronizační proměnnou
○ Speciální druh proměnné → synchronizační proměnná

■ Pouze používaná pro synchronizační účely
■ … synchronizace𝑆
■ … vstup do kritické sekce𝐴𝑐𝑞
■ … výstup z kritické sekce𝑅𝑒𝑙

● Weak consistency
○ Sdílená data jsou konzistentní po synchronizaci
○ 1. Přístup k synchronizačním proměnným je sekvenčně konzistentní
○ 2. Přístup k SP není povolen, dokud neskončí všechny předchozí zápisy
○ 3. Přístup k datům není povolen před dokončením všech předchozích přístupům

k SP

○ Není nutné propagovat všechny zápisy
○ Model neumožňuje rozlišit vstup a výstup z/do kritické sekce

● Release consistency (výstupní konzistence)
○ Sdílená data jsou konzistentní po opuštění kritické sekce
○ 1. Před přístupem k datům musí být úspěšně ukončeny předchozí procesu𝐴𝑐𝑞()
○ 2. Před provedením musí být ukončeny všechny předchozí zápisy i čtení𝑅𝑒𝑙()

prováděné procesem
○ 3. a musí být PRAM konzistentní𝐴𝑐𝑞() 𝑅𝑒𝑙()
○ Po jsou všechny lokální kopie aktuální𝐴𝑐𝑞()
○ Po jsou propagovány změny ostatním procesům𝑅𝑒𝑙()
○ Při správném párování a je výsledek výpočtu ekvivalentní sekvenčně𝐴𝑐𝑞() 𝑅𝑒𝑙()

konzistentní paměti
○ Za cenu ztráty transparentnosti je přístup k distribuované sdílené paměti

ekvivalentní k sekvenčně konzistentnímu modelu
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○ Možnosti implementace
■ Eager release consistency

● Po se propagují změny všem procesům𝑅𝑒𝑙()
● Optimalizace přístupové doby
● Náročnější na komunikaci po síti
● Optimalizace přístupové doby

■ Lazy release consistency
● Po se nic nepropaguje, až při jiného procesu𝑅𝑒𝑙() 𝐴𝑐𝑞()
● Optimalizace síťového provozu
● Pomalejší přístupová doba

● Entry consistency (vstupní konzistence)
○ Sdílená data vázaná na kritickou sekci jsou konzistentní při vstupu do kritické

sekce
○ Zavádí exkluzivní a neexkluzivní přístup k synchronizační proměnné
○ Operace a nejsou globální ale jsou lokální pro paměťový region𝐴𝑐𝑞() 𝑅𝑒𝑙()

■ Co je paměťový region je implementačně závislé (stránka, objekt, …)
○ 1. k SP není povolen, dokud nebyly provedeny všechny aktualizace𝐴𝑐𝑞()

sdílených dat
○ 2. Exkluzivní přístup k SP (zápis) je povolen pouze pokud žádný jiný proces

nepřistupuje k SP, a to ani neexkluzivně (čtení)
○ 3. Po exkluzivním přístupu k SP si příští neexkluzivní přístup libovolného procesu

k SP musí vyžádat aktuální kopii dat od předchozího vlastníka SP
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○ Jednotlivé regiony spolu nijak nekomunikují
○ Je možné přistupovat k různým paměťovým oblastem, aniž by se ovlivňovaly

■ Jeden zámek na všechny data = zbytečné prodlevy pro synchronizaci dat,
které spolu nesouvisí

○ Dáme logicky související data do jednoho paměťového regionu, ten je chráněn
pomocí a𝐴𝑐𝑞() 𝑅𝑒𝑙()

● Shrnutí konzistenčních modelů
○ Ukázali jsme si celou řadu modelů
○ 2 třídy

■ Bez SP
● Pro low level memory management na úrovni virtuální paměti
● Transparentní

■ S SP
● Na vyšší úrovni na úrovni middlewaru, frameworků a knihoven
● Ztratíme transparentnost
● Vyšší výkonnost

● Nyní se budeme věnovat možnostem implementace distribuované sdílené paměti a
distribuovanému stránkování

● Distribuované stránkování
○ Obdoba virtuální paměti

■ Operace čtení a zápisu jsou pro systém transparentní
■ Když proces přistupuje k nenamapované stránce nebo ke stránce, která

je pouze read-only a chce do jít psát, tak dojde k přerušení → obsluha
■ V obsluze se děje celá implementace distribuovaného stránkování

(synchronizace, načtení a koordinace s ostatními uzly)
○ Problémy

■ Jak nalézt stránku
● Stránka může migrovat mezi uzly, data se musí nalézt
● Navíc pro některé konzistenční modely mohou mít některé uzly

staré verze této stránky
● Centralizovaný manager
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○ Jeden centralizovaný prvek spravuje informace o tom, kde
se nachází stránky

○ Opět jsme se dostali k centralizovanému prvku → je nutné
si zde uvědomit, že sdílené stránkování budeme
pravděpodobně požadovat u menšího počtu uzlů, které
jsou velmi těsně spřažené

○ Nevhodné pro rozsáhlé systémy
● Replikovaný manager

○ Pokud by nám centralizovaný nestačil
○ Je jich více a každá z replik obsahuje jednu část ze

sdíleného virtuálního adresového prostoru
○ Jak najít vhodného managera?

■ Typicky jednoduché
■ Např. Spodní 4 bity adresy stránky mohou sloužit

jako index manageru, který je za stránku
zodpovědný

■ Nebo je možné použít hash stránky
● Broadcast

○ Opět jsme na lokálním malém prostředí
○ Obejdeme se bez managera

■ Správa kopií
● Co dělat s kopiemi při čtení / zápisu
● Copyset

○ Každý vlastník stránky udržuje množinu uzlů, která má tuto
stránky také namapovanou

○ Když je potřeba stránku upgradovat (došlo k zápisu) →
všem, co mají kopii pošlu zprávu (typicky invalidační)

● Broadcast
○ Když není copyset implementovaný

■ Uvolňování stránek
● Jakou stránku uvolnit?
● Pokud uzel má stránku, která není vlastněná a potřebuje uvolnit

místo, tak stránku bez jakékoliv synchronizace a komunikaci ji
zahodí

● Pokud jsme vlastníkem a víme (např. pomocí copysetu), že je
stránka replikovaná, tak můžeme přenést vlastnictví na jiný uzel a
stránku zahodit

● LRU strategie
■ Falešné sdílení

● Typický problém v distribuovaném prostředí
● Dvě různé sady dat jsou čistě náhodou umístěny na stejné stránce
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● Jde částečně řešit prevencí
○ Kompilátor a linker mohou umístit data, která spolu nijak

nesouvisí na dvou různých stránkách
● Sekvenčně konzistentní distribuované stránkování

○ V rámci jednoho distribuovaného systému je jeden globální rozvrh všech operací
čtení a zápisu

○ Stránka je namapována na zápis a vlastník je přímo ten uzel, ne kterém běží
proces, který chce přistoupit ke stránce

■ Nejjednodušší
■ Proces provede instrukci zápisu
■ Bez interakce s frameworkem

○ Stránka je namapována na čtení
■ Operace čtení proběhne stejně jako v předchozím případě
■ Je jedno, kdo je vlastníkem a kde všude ta stránku je
■ Operace zápisu vyvolá výpadek

● Pokud jsem vlastníkem
○ Framework povýší stránku na zápis

● Pokud nejsem vlastníkem stránky → pro zápis potřebuji vlastnictví
○ Vlastnictví se musí přenést
○ Často zahrnuje komunikaci s nějakým managerem stránek
○ Pak zbytek funguje stejně jako zápis do read-only

vlastněných stránek
○ Stránka není namapována

■ Synchronizace se ujme framework
■ V okamžiku, kdy najdu vlastníka

● Pokud vlastník ji má jenom na čtení, tak požádám o kopii
○ Pro čtení ze stránky stačí
○ Read-only kopií může být kolik chceme

● Pokud vlastník ji má namapovanou na zápis
○ Vlastníkovi se stránka přemapuje na read-only

■ Chceme zajistit, aby další zápisy vyvolaly
framework a my jsme se o nich dozvěděli

○ Zbytek stejně jako předchozí
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○ Případný další zápis od vlastníka vyvolá obsluhu
○ Stránka je vlastněna na uzlu, ale je pouze read-only a chci zapisovat, nikdo další

tuto stránku nemá
■ Dojde k výpadku a přerušení, ale obsluha pouze povýší tuto stránku na

zápis
○ Stránka je vlastněna na uzlu, ale je pouze read-only a chci zapisovat, existuje

uzel, který má tuto stránku
■ Než je stránka přemapována na zápis, tak si vlastník počká na potvrzení

od uzlů majících tuto stránku, že stránku zahodily
■ Dojde k povýšení frameworkem a zápisu

○ Je vidět, že pro provedení jedné instrukce, je zapotřebí nákladná anabáze
■ Řešení toho problém “kradení stránek” je viskozita

○ Viskozita
■ Operace čtení i zápisu jsou velice často prováděné v cyklu

● Co kdyby jeden uzel chtěl ze stránky číst a druhý do ní zapisovat?
● Potom výkonnost celého systému může jít rapidně dolů → na

jednu operaci bude potřeba obrovská režie
■ Viskozita využívá toho, že sekvenčně konzistentní model nemusí přesně

odpovídat fyzickému provádění instrukcí
■ V okamžiku, kdy nějaká stránka je na uzlu namapována, tak tam zůstane

ještě nějakou dobu navíc (i přes to, že by ji nějaký uzel chtěl odmapovat)
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● Kauzálně konzistentní distribuované stránkování
○ Implementace je o něco komplikovanější
○ Je potřeba evidovat graf kauzálních závislostí mezi procesy a stránkami
○ Budeme používat vektorové hodiny (jednotka kauzality jsou stránky)

■ … vektorové hodiny pro stránky𝑉𝑇
𝑆

● Každá stránka si eviduje na kterých jiných stránkách je kauzálně
závislá

■ … vektorové hodiny pro procesy𝑉𝑇
𝑃

● Ze kterých verzí stránek znám data
○ … stránka𝑉𝑇[𝑖] 𝑖
○ Oboje tyto vektorové hodiny slouží k synchronizace verzí stránek, aby kauzálně

vázané zápisy byly založené na datech, které jim kauzálně předchází
○ Základem synchronizace je výpadek stránky

■ Čtení do (jakkoliv) namapované stránky stejně jako zápis do stránky
namapované pro zápis jde mimo framework

○ Výpadek stránky – přenos dat
■ 𝑉𝑇

𝑃
= 𝑚𝑎𝑥(𝑉𝑇

𝑆
 , 𝑉𝑇

𝑃
)
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○ Zápis do stránky
■ Provedeme zápis do stránky s verzí 𝑉𝑇

𝑆

■ Stránka je odmapována a při namapování se inkrementuje odpovídající
složka 𝑉𝑇

𝑆
= 𝑖𝑛𝑐(𝑉𝑇

𝑃
)

○ Po aktualizaci se zneplatní stránky𝑉𝑇
𝑃

𝑖:  𝑉𝑇
𝑆

𝑖

[𝑖] < 𝑉𝑇
𝑃
[𝑖]

■ Když příjemce zjistí, že má u sebe stránku starší než jsou stránky, na
kterých kauzálně závisí obsah právě přijaté stránky, tak si tyto stránky
zneplatní

○ Problémy
■ Velká prostorová režie

● Na 1MB (256 stránek) sdíleného prostoru potřebujeme 512B na
jednu stránku

■ Jakým způsobem propagovat konkurentní zápisy
● Každý uzel si udržuje starou verzi stránky do té doby než je

vynucena její invalidace jinou stránkou
● Řešení pomocí timeoutů nebo explicitních synchronizačních

primitiv

● NOTE: Šíleně moc toho říkal k tomu obrázku, ale nedá se to rozumně zapsat
● Distribuované sdílené proměnné

○ Implementace na úrovni knihoven je výrazně jednodušší
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■ Na úrovni stránek jsme měli k dispozici pouze výpadek stránky a její
obsluhu

○ Výhody
■ Potenciálně lepší výkonnost

● Framework má přesnější informace o operacích na datech
○ Nevýhoda

■ Menší míra transparentnosti
● Distribuované objekty

○ NSWI080
○ Enkapsulace objektů

Video 13
● Dnes se budeme zabývat správou prostředků

○ Konkrétně detekce distribuovaných deadlocků
● Každý prostředek má typicky svého správce

○ Byli teoretické pokusy o distribuovanou správu prostředků → stejný problém jako
u distribuovaného vyloučení procesů

● Detekce deadlocků se redukuje na wait-for-grafu
● V distribuovaném systému nikdo nezná přesný aktuální stav → detekce, že došlo k

deadlocku je mnohem komplikovanější
● Časté řešení je pštrosí algoritmus

○ Deadlocky ignorujeme
○ Předpokládáme, že případné výskyty daného problému přinesou nižší náklady

než snaha problému předejít
● Ukážeme si několik algoritmů na detekci deadlocků, všechny jsou založené na

wait-for-grafu
○ Když algoritmus detekuje orientovanou kružnici, tak ohlásí deadlock

● Wait-for-graf
○ Eviduje závislosti mezi procesy

● Algoritmy detekce deadlocku (historie)
○ Kdysi vyšla hromada algoritmů, o kterých v dalších článku vyšlo, že nejsou zcela

korektní
● Korektnost algoritmu detekce deadlocku

○ 1.  každý existující deadlock je v konečném čase detekován
○ 2.  detekovaný deadlock musí existovat

● Metody konstrukce WFG
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○ centralizované řešení
○ 4 další způsoby distribuované

■ Path-pushing
■ Edge-chasing
■ Diffusing computation
■ Global state detection

● Centralizovaný algoritmus
○ Máme dedikovaný server, kterému všechny uzly, které žádají o přístup k

prostředku nebo uvolnění pošlou zprávu
○ Server tyto zprávy zpracovává a staví si svůj WFG → eviduje si stav celého

distribuovaného systému
○ Když ve WFG najde kružnici, tak to řeší

■ Nalezne v kružnici proces, který odpracoval nejmenší čas (nebo jinou
heuristikou) a proces zabije

○ Problém
■ Phantom deadlock = falešný deadlock kvůli zpoždění zpráv

○ Pokud máme k dispozici logické hodiny a kauzální doručování → řešení zdarma
○ Alternativní řešení je při detekci kružnice koordinátorem ji nechápat jako

zdetekovaný deadlock ale podezření na deadlock a vykomunikovat to s uzly
○ Pokud by tento algoritmus nevyhovoval z pohledu škálovatelnosti → existuje

rozšíření hierarchický algoritmus
■ Každému segmentu je přidělen jeden centralizovaný server
■ Množina centralizovaných serverů si vzájemně udržuje vztahy mezi

sebou
● Mohou mít nějakou hierarchii mezi sebou

● Path-pushing
○ Spíš metoda, kterou implementují hromady distribuovaných algoritmů
○ Každý uzel si udržuje svoji vlastní část WFG a vazby na ostatní uzly
○ Ve vhodných okamžicích (periodicky nebo po změně WFG) každý uzel přepošle

externí závislosti (redukovanou informaci o svým vlastním WFG) sousedním
uzlům
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○ Všechny uzly jsou nějak ohodnoceny (očíslovány)
■ Slouží po případné detekci deadlocku jako cena/náklad procesu pro

likvidaci
■ Dále také jako identifikátor toho, co mám zabít, pro případ, že by více

procesů detekovalo deadlock, tak aby všichni zabíjeli ten stejný proces
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● Edge-chasing
○ Opět spíše metoda
○ WFG je použitý pro zasílání zpráv podel hran
○ Uzel, který má podezření na možnosti deadlocku pošle podél hrany speciální

zprávu
○ Pokud proces na nic nečeká a běží → tato zprávu nezajímá a zahodí ji
○ Pokud tato zpráva dojde do počátku (uzlu, který ji vyvolal), tak je detekovaný

deadlock
○ Opět během přeposílání zpráv se detekuje nejvhodnější kandidát na zabití

■ Důležité opět pro případ, kdyby více uzlů se rozhodlo detekovat deadlock,
tak aby všichni zabíjeli ten stejný proces
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● Edge-chasing Chandy-Misra-Haas
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● Diffusing computation
○ Využití značkového algoritmu pro detekci ukončení
○ Příjem první zprávy znamená její propagaci
○ Příjem další zprávy znamená signál zpět
○ Když přijdou všechny signály, tak pošlu signál otci
○ Pokud se zpráva dostane až k iniciátorovi, tak se zpátky vracejí signály
○ Iniciátor se potom může rozhodnout, co s grafem udělá
○ Vhodné pro složitější modely

● Global state detection
○ Je možné přímo aplikovat značkový algoritmus pro detekci globálního stavu
○ (Použití pro detekci deadlocků bylo jednou z motivací pro jeho vytvoření)
○ Deadlock vznikne v konkrétním okamžiku → WFG se jednou konkrétní zprávou

uzavře
○ Jsme ale schopni detekovat pomocí značkového algoritmu kauzálně konzistentní

řez
○ Když deadlock vznikne, tak na nás počká → na každém uzlu počká na okamžik

kauzálně konzistentního řezu
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○ V okamžiku kauzálně konzistentního řezu je možné detekovat, jaké procesy jsou
vázané na které

○ Co se s touto informací dá dělat? → varianty
■ Odeslat celý WFG iniciátorovi
■ Kontrakce + zaslání externích závislostí iniciátorovi (path-pushing)

Video 14
● Správa procesů v distribuovaných systémech se skládá ze 3 úloh

○ Jak sdílet výpočetní sílu
○ Jak rozdělit zátěž na jednotlivé uzly
○ Jak synchronizovat procesy a evidovat jejich stav

● Cíle
○ Cluster – nabízení služeb vnějším klientům

■ Pro krátkodobé úlohy minimalizujeme latenci
■ Pro dlouhodobé úlohy maximalizujeme výkon
■ Typicky se používá centralizovaná, nebo centralizovaně hierarchická

správa procesů
○ Kooperativní systémy

■ Typicky rozsáhlejší distribuované výpočty
■ Nenabízíme služby, ale jde nám a nabízení čistého výpočetního výkon

pro rozsáhlý distribuovaný výpočet
■ Rovnoměrné sdílení výkonu
■ Správa a řízení je decentralizované / peer-to-peer

● Ukážeme si 3 pohledy na proces management v distribuovaných systémech
○ Load balancing (vyvažování zátěže)
○ Kooperativní systémy
○ Migrace procesů (dneska spíše virtuálních strojů a kontejnerů)

● Load balancing
○ Budeme se bavit o clusterovém load balancingu

■ Vyvažování výkonu v rámci homogenní skupiny uzlů, na které je
rozdělována množina úloh

■ Homogenní = uzly jsou stejně výkonné
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○ Clusterový load balancing
■ Několika málo úrovňový (viz obr)

■ Cluster management = master je typicky replikovaný
● Ovládá dost velkou množinu workerů, na které přiděluje úlohy
● Úlohy spolu zpravidla nekomunikují

■ Použití algoritmů pro distribuovaný konsensus
■ Vyvažovací strategie

● Round Robin
○ Každý následující požadavek je postupně přidělovaný

dalšímu workeru v pořadí (až množina dojde tak zase
dokola)

○ Jednoduché implementovat
○ Vhodné pro krátké a srovnatelné úlohy
○ Nesmí být rozdíly mezi workery

● Weighted Round Robin
○ Jednotlivým workerům je přidělen koeficient

● Dynamic Round Robin
○ Pro dlouhodobější a složitější úlohy
○ Periodické měření aktuální dostupné výkonnosti
○ Master potom vypočítá klouzavý průměr (vyhladí extrémy)

● Least Connections, Weighted LC
○ Nejmenší počet otevřených úloh

● Random, Threshold
○ Náhodné střílení (chráněné nějakým limitem)
○ Vhodné pro heterogenní prostředí
○ Master zadá workerovi, ten může odmítnout, když se mu

zdá, že je přetížen
● Agent-Based Adaptive Balancing

○ Chytřejší algoritmy založené na umělé inteligenci…
○ Náročnější implementovat
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○ Ne vždy efektivní
○ Výrazněji větší režie

● Vzdálené procesy v kooperativních systémech
○ Neřeší umístění nově příchozí úlohy na jeden z workerů
○ Řeší jakým způsobem je možné zapojit volně dostupné uzly do distribuovaného

výpočtu
○ Řeší jakým způsobem úlohy alokovat na dostupné uzly
○ Narozdíl od clusterových systémů je řízení a alokace distribuovaná (bez

centralizované komponenty)
■ Je ale zapotřebí nějaká evidenční komponenta

● Registruje jednotlivé volné uzly, jejich vlastnosti a kapacity

○ Spuštění vzdáleného procesu
■ Když je nějaký uzel volný, tak se zaregistruje v registru
■ V případě, kdy nějaký jiný uzel, který počítá úlohů, má potřebu svůj

výpočet přenést na jiný uzel, tak si může podat do registru žádost a ten
mu vrátí referenci na jeden/množinu uzel/uzlů, které splňují jeho
požadavky

■ Potom se uzly přímo mezi sebou dohodnou
■ A spustí se proces na volném uzlu

○ Ukončení vzdáleného procesu
■ Doběhnutí (neřešit)
■ Rollback transakce (pokud máme transakce k dispozici)
■ Zabití vzdáleně spuštěného procesu

● Kooperativní load balancing
○ Centralizované / hierarchické řízení přístupu

■ Manažeři skupin
● Starají se o svůj segment
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● Při nedostatku výpočetních kapacit propagují žádost
nadřazenému manažerovi

■ Up-down algoritmus
● Zajišťuje rovnoměrné sdílení výkonu
● Založen na koordinátoru

○ Obsahuje pro každý uzel tabulku s trestnými body
○ Podle této tabulky se vybírá uzel, kam se umístí nový

proces
● Tabulka trestných bodů

○ Při každé významnější události uzel pošle informace
koordinátoru

■ Za každý proces běžící na jiném uzlu má plus
trestné body (vzdáleně spuštěné procesy)

■ Za každý neuspokojený požadavek (touží vyslat
nějaký proces někam jinam, ale koordinátor to ještě
neumožnil) má mínus trestné body

■ Jestliže nic z tohoto tak jeho hodnota se snižuje k
směrem k nule

○ Distribuovaný heuristický algoritmus
■ Vysílající uzel si vybere náhodných výběrů𝑘
■ Podle odpovědí se rozhodne, kterému uzlu svůj proces svěří

○ Deterministický grafový algoritmus
■ Založen na dopředu známých vlastnostech procesů (jak moc spolu

komunikují, …)
■ Procesy jsou rozděleny na podmnožiny

● Ty, které spolu komunikují hodně jsou na jednom uzlu
● Aplikace standardních algoritmů pro toky v sítích

■ Optimální deterministický algoritmus
● Migrace procesů

○ Korektní a transparentní přenesení procesu během výpočtu
○ Motivace
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■ Vyvažování zátěže
○ Vyžaduje netriviální integraci s jádrem OS
○ Z dnešního pohledu spíše zastaralé (hodně se to zkoumalo v 90. letech)

■ Neděje se to na úrovni procesů, ale virtuálních strojů a kontejnerů
■ Takto je implementace výrazně jednodušší

○ Zkušenosti s implementací migrace procesů se zužitkovali pro metody a
implementaci migraci virtuálních strojů / kontejnerů

○ Ve slidech následuje hromada historických systémů, které Zavoral přeskočil
○ MOSIX (Multicomputer Operating System for Unix)

■ Clusterový systém
■ 1977-2017

● Používal se hrozně dlouho (40 let!)
● Unikát mezi distribuovanými systémy

○ T4
■ MFF UK (Bednárek, Merta, Yaghob, Zavoral) 1994-1997
■ Éra je dnes pryč
■ Zkoušeli na tom distribuovaně spouštět DOOM

○ Migrační load balancing
■ Je zapotřebí nějakou migrační jednotku zaživa odmigrovat na jiný uzel
■ Migrační jednotka

● Původně jeden proces
○ Neukázalo se býti praktické
○ Procesy bývají sdružné

● Skupina procesů / task
● Dnes virtuální stroj / kontejner

■ Párový algoritmus
● V celém distribuovaném systému se náhodně vytváření páry
● Pro každý pár se spočítá míra vylepšení

○ Za jak rychle by příslušné úlohy doběhli, kdyby byly
přesunuty (včetně režie migrace)

● Významné zlepšení stavu → migrace
■ Vektorový algoritmus

● Používal MOSIX
● Elegantní způsob evidence, distribuce a porovnávání zátěží
● Na základě informací o sobě sama a informací od vybrané

množiny ostatních uzlů
● Každý uzel má nějaký vektor zátěže

○ Na nulté položce vektoru je jeho vlastní zátěž
● V pravidelných intervalech si každý uzel

○ Měří vlastní zátěž
○ Zaznamenává si ji do nulté položky vektoru
○ Vezme první polovinu svého vektoru a pošle ji vybrané

množině uzlů
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○ Každý uzel, když mu přijde vektor, tak ho spojí se svým
vlastním starým vektorem jako zip

■ Došlý vektor se umístí na liché pozice
● Podle těchto vektorů se provádí vyvažování výkonu a spouštění

procesu
● Pozorování

○ V prvních položkách vektoru jsou nejaktuálnější informace
ohledně zátěže

○ Spodní polovina vektoru se zahazuje
■ Odesílatel ji neodesílá
■ Příjemce zipuje nový vektor a zahazuje druhou

polovinu svého starého vektoru

■ Existuje celá řada “inteligentních” algoritmů
● Neprosadili se pro komplikovanost a režii

■ Prakticky použitelné vyvažovací algoritmy
● Prosadili se centralizované a jednoduché algoritmy

(centralizovaný a hierarchický algoritmus)
● Lokální algoritmy

○ Každý uzel zná jenom svoji hodnoty zátěže, při překročení
prahové hodnoty shání ostatní uzly (náhodně) na pomoc

Video 15
● Posledním tématem je replikace
● Replikace dat / souborů = udržování více kopií na více db/fileserverech
● K čemu je replikace dobrá

○ Spolehlivost
○ Dostupnost
○ Výkonnost

● Jak ji implementovat (zajistit)
○ Explicitní replikace

■ Klient se sám stará o udržování konzistence jednotlivých replik
■ Typicky znamená, že je to implementované v knihovnách

○ Odložená replikace
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■ Přenecháme starost na server
■ Existuje jedna tzv. primární replika
■ S tou komunikuje klient jakoby to byla jedna jediná replika
■ Veškerou synchronizaci má na starost server, který všechny aktualizace

posílá dalším replikám
■ Ostatní repliky slouží jako záložní

○ Skupinová komunikace
■ Množina replik je uzavřena do skupiny a klient komunikuje přímo s tou

skupinou
■ Musí to podporovat náš distribuovaný framework

● Aktualizační protokoly
○ Kdy a které kopie budou aktualizovány

■ Primární kopie
● Primární kopie sdružuje všechny operace a sama je propaguje

dalším replikám
■ Většinové hlasování

● Všechny repliky jsou v množině a na celé množině jsou
ustanovená quora, quorum pro čtení a quorum pro zápis

○ Každé quorum je alespoň nadpoloviční
● Pro čtení je zapotřebí oslovit čtecí quorum replik
● Pro zápis je potřeba oslovit zápisové quorum replik
● Teprve po úspěšné operace na quoru je operace úspěšně

přečtena nebo zapsána
■ Vážené hlasování (většinové hlasování bylo speciální případ tohoto)

● Také zde jsou quora
● Nemusí být nadpolovičně velké
● Součet prvků čtecího a zápisového quora musí být větší než

celkový počet replik
● Dá se dokázat, že operace jsou ekvivalentní sekvenčnímu rozvrhu
● Dá se pomocí velikostí quora optimalizovat celý systém buď na

čtení nebo na zápis
● Klientocentrické konzistenční modely

○ https://www.ctfnote.com/computer-science/distributed-systems/consistency-and-r
eplication/client-centric-consistency

○ U distribuované sdílené paměti jsme si povídali o konzistenčních modelech
■ Specifikace toho co implementace musí splňovat
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○ Klienti nezávisle na sobě se připojují k nějaké replikované službě
■ Např. k různé vzhledem ke geolokaci

○ Klientocentrický model říká co se má dít za operace vzhledem k jednomu
klientovi a příslušným replikám

■ Jaké operace mají být vidět
○ Neříkají nic o tom, jaký je vztah mezi klienty → ty jsou nezávislý na sobě
○ Jde o vztah jednoho klienta k množině replik
○ Eventuální konzistence

■ Nejjednodušší klientocentrický konzistenční model
● Nezajišťuje téměř nic

■ Po ukončení všech zápisů budou všechny repliky v konečného čase
aktualizovány

● Nevíme: jak bude dlouhý čas, pořadí

■ A a B nejsou dva různí klienti, ale jeden klient, který je střídavě připojován
k různým replikám

■ Nejdříve nevidí operace, které se provedli na první replice, na druhou se
dostanou až se zpožděním

○ Monotónní čtení
■ Po přečtení hodnoty x všechna další čtení vrátí stejnou nebo novější

hodnotu
● Bez ohledu na kterou repliku jsme připojeni

■ Příklad: Při připojení k jiné replice klient vidí všechny ním dosud přečtené
zprávy
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○ Monotonní zápis
■ Zápis proměnná je proveden před jakýmkoliv následným zápisem této

proměnné
■ Udržuje se sekvenční posloupnost zápisu respektovaná na všech

replikách

■ Příklad: git commit na různých replikách
● Jedna replika v Asii, druhá v Evropě
● Když udělám commit na replice v Asii, tak na replice v Evropě

musí být všechny operace z předchozích commitů
○ Čtení vlastních zápisů (Read your writes consistency)

■ Kombinuje čtení a zápisy
■ Zápis proměnné je proveden před jakýmkoliv následným čtením této

proměnné

■ Příklad: po aktualizace webové stránky si neprohlížím kopii z cache
● Musí se zařídit, aby aktualizace byla propagována na všechny

klienty
○ Zápisy následují čtení (Writes follow reads consistency)

■ Kombinuje čtení a zápisy
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■ Zápis proměnné po předchozím čtení této proměnné je proveden na
stejné nebo novější hodnotě

■ Příklad: zápis odpovědi do diskuzního fóra se provede tam, kde je
příspěvek, na který je reagováno

○ Naivní Implementace
■ Máme množinu replik
■ Ke každému zápisu je přiřazen globální jednoznačný identifikátor 𝑊𝐼𝐷
■ 𝑊𝐼𝐷 = 𝑟𝑒𝑝𝑙_𝑖𝑑 + 𝑙𝑜𝑐_𝑖𝑑

● … identifikátor repliky𝑟𝑒𝑝𝑙_𝑖𝑑
● … lokální identifikátor v rámci repliky (jednoduché𝑙𝑜𝑐_𝑖𝑑

sekvenční číslo – čítač)
■ Každý klient si udržuje dvě množiny identifikátorů

● 𝑟𝑒𝑎𝑑_𝑠𝑒𝑡
○ Identifikace čtených dat

● 𝑤𝑟𝑖𝑡𝑒_𝑠𝑒𝑡
○ Identifikace zápisu

■ Monotónní čtení
● Replika serveru při čtení ověří podle klienta aktuálnost𝑟𝑒𝑎𝑑_𝑠𝑒𝑡

svých zápisů
○ Při chybějících zápisech provede synchronizace nebo

forwarduje čtení
● Klient si po čtení aktualizuje svůj podle repliky, ze které𝑟𝑒𝑎𝑑_𝑠𝑒𝑡

četl
■ Monotonní zápis

● Replika serveru při zápisu ověří podle aktuálnost svých𝑤𝑟𝑖𝑡𝑒_𝑠𝑒𝑡
zápisů

○ Chybějící zápisy si zapíše
● Klient si po zápisu aktualizuje svůj podle repliky𝑤𝑟𝑖𝑡𝑒_𝑠𝑒𝑡

■ Čtení vlastních zápisů
● Při čtení replika serveru ověří podle aktuálnost svých𝑤𝑟𝑖𝑡𝑒_𝑠𝑒𝑡

zápisů
■ Zápisy následují čtení

● Aktualizace repliky podle 𝑟𝑒𝑎𝑑_𝑠𝑒𝑡
● Aktualizace i klienta𝑟𝑒𝑎𝑑_𝑠𝑒𝑡 𝑤𝑟𝑖𝑡𝑒_𝑠𝑒𝑡

■ Problém – neomezený růst a𝑟𝑒𝑎𝑑_𝑠𝑒𝑡 𝑤𝑟𝑖𝑡𝑒_𝑠𝑒𝑡
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■ Pro prakticky použitelnou implementaci je nutné vymyslet efektivní
implementaci a𝑟𝑒𝑎𝑑_𝑠𝑒𝑡 𝑤𝑟𝑖𝑡𝑒_𝑠𝑒𝑡

○ Efektivní implementace
■ Jedna z možností je to neřešit technicky ale organizačně
■ Celá aplikace je rozdělena na krátké relace (session)
■ Po relaci se množiny smažou
■ Reprezentace množin - vektorové hodiny

● V zásadě vektorové hodiny fungují úplně stejně jak jsme si je
ukazovali u jiných použití

■ a jsou reprezentovány vektorovými hodinami𝑟𝑒𝑎𝑑_𝑠𝑒𝑡 𝑤𝑟𝑖𝑡𝑒_𝑠𝑒𝑡
● … vektorové hodiny klienta pro𝑉𝑇(𝑅𝑆) 𝑟𝑒𝑎𝑑_𝑠𝑒𝑡
● … vektorové hodiny klienta pro𝑉𝑇(𝑊𝑆) 𝑤𝑟𝑖𝑡𝑒_𝑠𝑒𝑡

■ Každá replika si udržuje vektorové hodiny𝑆
𝑖

𝑅𝐶𝑉(𝑖)

● … časová značka poslední operace zápisu přijatá od𝑅𝐶𝑉(𝑖)[𝑗] 𝑆
𝑖

𝑆
𝑗

■ Při přijetí žádosti o čtení nebo zápis replika vrátí aktuální klientovi𝑅𝐶𝑉(𝑖)
■ Po přijetí si klient aktualizuje nebo𝑅𝐶𝑉(𝑖) 𝑟𝑒𝑎𝑑_𝑠𝑒𝑡 𝑤𝑟𝑖𝑡𝑒_𝑠𝑒𝑡

● Čtení: 𝑉𝑇(𝑅𝑆)[𝑗] = 𝑚𝑎𝑥(𝑉𝑇(𝑅𝑆)[𝑗],  𝑅𝐶𝑉(𝑖)[𝑗])   ∀𝑗
● Zápis: 𝑉𝑇(𝑊𝑆)[𝑗] = 𝑚𝑎𝑥(𝑉𝑇(𝑊𝑆)[𝑗],  𝑅𝐶𝑉(𝑖)[𝑗])   ∀𝑗

● Epidemické protokoly
○ Slouží k implementaci a optimalizaci komunikace ve

○ Neřeší konflikty
○ Při výzkumu synchronizace se začala hodit teorie epidemií

■ Epidemiologové se snaží co nejvíce zabránit rozšíření infekční nákazy
■ Co nejvíce ohniska izolovat
■ Informatici poznatky využili v obráceném smyslu

● Potřebujeme informaci co nejrychleji rozšířit ideálně mezi všechny
○ Antientropie

■ Server náhodně vybere server k výměně dat𝑃 𝑄
■ Možné výměny

● Push 𝑃 → 𝑄
○ Nechává aktivitu pro komunikaci na straně uzlu, který se

snaží hodnotu propagovat ostatním uzlům
○ Uzel oslovuje další uzly a hodnotu jim předá
○ Dobře funguje v počátcích epidemie
○ Není nejefektivnější na dokončování (doručení všem)
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■ Uzel by musel být náhodně vybraný𝑄
● Pull 𝑃 ← 𝑄

○ Aktivita je na straně uzlu, který potencionálně touží po
informaci

○ Aktivně se ptají svých sousedů, jestli pro ně nemají novou
informaci

○ Dobře funguje pro dokončování nákazy
● Push/Pull 𝑃 ↔ 𝑄

○ Kombinovaná metoda
○ Protože předchozí dvě funguje jedna na začátku a druhá

na konci
○ Spojíme je dohromady

■ Problém (systémů založených na antientropii)
● Kdy uzel má přestat infikovat? (Kdy už všichni ví informaci?)

○ Gossiping
■ Tentokrát sociologie (sociální chování lidí)
■ Při nákaze už jednou infikovaného uzlu se s pravděpodobností 1/𝑘

(nějakou definovanou) uzel uvede do klidového stavu
● Někomu povím informaci, kterou už vím
● Pak mě přestane bavit zkoušet oznamovat informaci, když už ji

všichni budou vědět
■ Oblíbená kombinace

● Gossiping + periodický Pull
○ Obecně podporují velice dobře masivní škálovatelnost
○ Pro snazší rozšiřování informací je výhodnější strukturovaná topologie

■ Pokud se uzly vybírají zcela náhodně, tak můžou vzniknout oblasti, které
jsou přehlcené a oblasti, které jsou neinfikované

■ Když se celá množina hierarchicky rozdělí na domény a každý uzel
nejříve infikuje správce domény a ten infikuje další správce domény tak
se infekce rozšiřuje mnohem rychleji a rovnoměrněji

○ Problém mazání dat
■ Pokud kromě distribuce dat chceme i data smazat
■ Nestačí pouze poslat operaci smazání

● Zase z jiné strany by se smazaná data přepsali daty
propagovanými

■ Recept je z DB
● Smazaná data se nemažou, ale dá se k nim cedulka, že neplatí →

certifikát smrti
■ Certifikáty smrti se propagují na všechny uzly distribuovaného systému
■ Certifikáty smrti mohou růst nekonečně

● Je to možné řešit mazáním certifikátů za nějaký TTL, který musí
být delší než doba rozšiřování informace

○ Aplikace - agregace dat
■ Trénujeme mouchy
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■ Moucha = entita s vlastním procesorem (umí instrukce)
■ Mouchy náhodně létají
■ Mouchy se mohou náhodně srazit

● Vždy se srazí dvě mouchy
● Při srážce si mohou předat celý nebo část svého stavu

■ Chceme implementovat
● Mouchy, spočítejte se!

○ Chceme alespoň řádově
○ Nejprve vyřešíme podúlohu → spočítáme průměr

■ Při srážce dvou much si mouchy vymění svoje
hodnoty

■ Každá moucha veme průměr dvou much
■ Na každé mouše konverguje hodnota k celkovému

průměru celého hejna
○ Vybereme jednu mouchu, té dáme hodnotu 1, ostatním

mouchám dáme hodnotu 0
○ Necháme mouchy dlouho létat
○ Potom si najdeme libovolnou mouchu a dostaneme z ní její

hodnotu → převrácená hodnota musí být zhruba počet
much

● Která jste největší?
○ Každá moucha má na začátku vlastní váhu
○ Při srážce si mouchy vemou maximum
○ Pak stačí odchytit libovolnou mouchu

● Kolik dohromady vážíte?
○ Máme

■ Průměrná moucha
■ Velikost stáda

○ Vynásobíme
● Poprvé tato přednáška byla v roce 1994

○ Pokud by platil Moorův zákon, tak by se vlastnosti počítačů zvýšili zhruba 4.3 mil
krát

○ Realita je asi 200 000 krát
■ 100 MB vs 20 TB

○ HW vývoj je znatelný ve vývoji distribuovaných systémů
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