Principy distribuovanych systému
2021/2022

\\\'

Prednasejici: Filip Zavoral
Sepsal: repetent za u€elem slozeni zkousky

Obsah

Video 1
Video 2
Video 3
Video 4
Video 5
Video 6
Video 7
Video 8
Video 9
Video 10
Video 11
Video 12
Video 13
Video 14
Video 15

15
19
29
32
37
47
53
57
66
71
85
91
96

Video 1

e Distribuované algoritmy jsou zakladech jakéhokoliv cloudu
e Distribuovany systém propojeni mnoziny nezavislych uzll, ktery poskytuje uzivateli
dojem jednotného systému
o Uzly jsou nezavislé pocitaCe s vlastnim procesorem a paméti
o Komunikuji pomoci sitového rozhrani
e Cela Skala provedeni distribuovanych systému
o Cloud (dnes moderni)
o Mnozina pocitacd v ramci racku
e 199x distribuované operacni systéemy
o Amoeba
o T4 (vznikl na MFF UK)
o Podpora pro komunikaci pfimo soucasti jadra OS
m Neexistoval rozdil mezi lokalni a distribuovanou aplikaci
m PFimo jadro OS komunikaci a synchronizaci feSilo samo bez aplikaci
o NeosvédCilo, slozité komplexni problémy — nedotaZzeno do pouzitelného stavu
m Skondcilo to jako akademicky proof-of-concept
o Vyvoj téchto OS skoncil a Sel jinym smérem
e 200x distribuované frameworky a aplikace
o Distribuovanost se pfesunula vné jader
o Nad jadrem OS byla vrsta middleware, nad nim fungovaly distribuované aplikace
m Lokalni aplikace
e P¥imo pfistupuje k nativnimu rozhrani OS
m Distribuovana aplikace
e Pfistupuje k middlewaru
e 201x cloud computing
o Service-oriented computing (SaaS, PaasS, laaS)
o Spojeni virtualizace + aplikace distribuovanych algoritma + webové rozhrani
e HPC (High Performance Computing)
o Velmi ¢asta aplikace distribuovanych systému
o Vypocty, kde by jeden uzel nestacil nebo nemél dostate¢nou vykonnost
o Cluster Computing
m Cluster = mnozina uzlU, které jsou jednotné z hlediska HW a OS
e Propojeny standardni siti
m Casto se pouziva sdilena pamét, RDMA
m V jednom datovém centru nebo laborce
m Tésné propojeni siti s nizkou latenci
e \/ysoka spolehlivost
o Grid Computing
m Rozvolnéni vazeb mezi uzly
o Sirsi geografické rozprostieni
e OdlisSny HW a SW
m Z&dné tésné vazby
m Daleko vétsi latence

o Cloud Computing
m Vyuziva oba dva koncepty (Cluster Computing i Grid Computing)
m Propojuje je
e Rozsahlejsi informacéni systémy
o Distribuovany neni vypocet ale data
o Vice info viz pfedmét NDBI040
e Pervasivni systémy
o “Chytré domacnosti”
o Velky pocet rychle se ménicich malych uzlt
m Senzory, loT
e Proc€ vlastné délame distribuované systémy?
o Kdyz vime, Ze to je komplikované
o Penize
m Sit béZnych PC muzZe nabidnout srovnatelny vykon se superpocitatem
za mnohem mensi penize (souvisi s vertikalni a horizontalni
Skalovatelnosti viz pfedmét NSWI150)
o Rozsifitelnost
m Nejdfiv ndam nas pocita¢ dostaCoval, protoze jsme si ho koupili s néjakou
rezervou
m Uz nam ale nestaci
m Vyhodit a koupit novy?
e Finan¢né narocné
m Vedle tohoto pocitaCe si koupit dalsi
e Jak rozloZit zatéz?
e Distribuované systémy
o Spolehlivost
m Mame jeden pocitac, ten vypadne, je konec
m Kdyz mame 100 uzlG a 2 vypadnou, tak se sice snizi vykon, ale prezijeme
to
o Vykon
m Zpusob, kterym muzeme porazit technologické limity
m Je mozné dosahnout vétdiho vykonu nez nejvykonnéjsi technologicky
mozny pocitac
o Distribuovanost
m “Inherentni” distribuovanost problému
m Ne&které problémy jsou sami od sebe svoji povahou distribuované
e Cile navrhu
o Transparentnost
m Aby na vysSich vrstvach SW distribuovanost nebyla vidét
o Prizplsobivost
m Kazdy uzel je schopny samostatné funk&nosti
e Nespolehlivé sité, HW, ...
e Slozity problém, vice si povime v kapitole o distribuovaném
konsensu

https://is.cuni.cz/studium/predmety/index.php?do=predmet&kod=NDBI040
https://is.cuni.cz/studium/predmety/index.php?do=predmet&kod=NSWI150

m Kazdy uzel vykonava rozhodnuti nezavisle na ostatnich

e Jakakoliv komunikace s ostatnimi uzly je o mnoho radu pomalejsi
nez jakakoliv operace v ramci uzlu
m Otevienost

e Specifikovat rozhrani, ale implementace mlze byt na kazdém uzlu

jina
e Podpora riznych OS napfi¢ distribuovanym systémem
m Migrace procesu a prostiedk
e Zuzlu na uzel
e Transparentné

e Hodi se, kdyZ potfebujeme odstavit néjaky uzel
o Spolehlivost

m Mnoha desetileti palCivy problém
m S poctem uzl(by spolehlivost méla rust
e Dlouho spiSe opacné

m V posledni dekadé zlepSeni spolehlivost diky Cloud Computingu a

nasazeni a implementaci algoritmt pro distribuovany konsensus
o Skalovatelnost

m Je jiné vymyslet systém pro desitky nebo stovky uzli oproti systému pro

sto miliony uzld

o Nekteré algoritmy techniky, které jsou pouZitelné pro rozumny

pocet uzli ¢asto nejsou aplikovatelny nad néjaky limit
m Vyhnout se éemukoliv centralizovanému
e Neexistuji pfesné globalni hodiny
e Vypadek jednoho uzld nesmi zpUsobit nefunkénost celého
systému
o Vykonnost

m Teorie: vice uzlu — vys$si vykon
m V praxi vykon nestoupa linearné
e Vyrazné vzriista komunikace a synchronizace mezi uzlu
U spousty distribuovanych systémi mizeme narazit na hranici,

kdy v ramci jeho technologii pfidani daldiho uzlu uz nepfinese
zadny dalSi vykon

e Vyhnout se algoritmim, které vyzaduji synchronizace vSech uzld,

pokud mame rozsahly distribuovany systém
e Chyby navrhu distribuovanych systému
o Sit je spolehliva

Sit je zabezpecena
Nulova latence
Topologie se neméni
Jeden administrator
o Neomezena kapacita sité
Paralelni architektury
o Budeme délit podle jejich tésnosti spfazeni
o Tésné sprazené
m Maji néjakou sdilenou pamét’
m Rika se jim multiprocesory
o Volné sprazené
m Uzly maji vlastni pamét
m Nemame zadnou sdilenou pameét
m Rika se jim multicomputery
o Hrubé déleni, protoze mezi jima existuje $eda zéna, kde néjaka sdilena pamét je
m S kym je ale sdilena? (ne se vSemi uzly)

O O O O

Paralelni architektury

Volné sprazené
oosely coupled)

Tésné sprazené
(Tightly coupled

S

()

Multicomputery
(vlastni pamét)

Multiprocesory
(sdilena pamét)

Bus Switched Bus Switched

o Multiprocesory (bus — sbérnicova architektura)
m Nejbéznéjsi z ¢eho mizeme vyrobit distribuovany systém
m Mame nékolik procesort, které jsou sbérnici pfipojeny k paméti
m Kdyz procesor potiebuje pfistup, tak po sbérnici poSle poZadavek a
pamétovy modul po ni vrati data
m KdyZ mame vice nez jeden procesor, tak velkou roli v efektivité hraje
cache
e Redukuje potfebu pfili§ Castého pfistupu ke sbérnici
e Vjednom Case totiz miize na sbérnici byt pouze jeden pozadavek
m Vynika velice malou Skalovatelnosti

o

CPU CPU CPU

|cache | |cache cache |

Pamét

Sbérnice

Multiprocesory (switched — pfepinaCova architektura)

Procesory jsou umistény nezavisle na sobé jako pamétové moduly
Od kazdého procesoru i pamétového modulu vede &ast sbérnice
Na vSech kfiZzovatkach jsou crosspoint switche, které umoznuji pfepnout
na pfislusnou odbocku
Pokud nedochazi k ¢astému promichani tokd (pfepinani) tak je to o dost
efektivnéjsi nez sbérnicova architektura
Hodné finan&né narocné
e Misto jedné sbérnice mame CPU - MEM sbérnic a kvadraticky
pocet switch(
e Neni sériova vyroba — drazsi
Problémy v SW
e Pfichazime o transparentnost (musime mit na paméti, ze vyvijime
SW pro tuto architekturu se znalosti jeji konfigurace)
Paméti

M M| (M| | M

=)
=
=

p

Procesory /I

Crosspoint switch

Omega network
e Misto kvadratického poctu crosspoint switchl existuje feSeni
pouzivajici n - log n switchd
Je to levnéjsi
Zvyseni latence pfi vy§88im poctu Urovni

Procesory Paméti

el 1M

P M
F M
P M

| i
/
2x2 switch

o Obecné specializované multiprocesorové architektury jsou dost drahé a
nezvySuji miru Skalovatelnosti vyrazné, v praxi se nepouZivaji
o SpiSe se pouzivaji razné hybridni architektury, které umozniuji pfistup do paméti
jinych uzld — NUMA
o Multicomputery (bus — sbérnicova architektura)
m Zakladem typickych distribuovanych systémii
m Uzel ma svUj vlastni procesor a lokalni pamét, ktera je vyhradné
pfistupna tomu procesoru
m Uzly komunikuji pomoci sité
m Levné a vyrazné vice Skalovatelné
e “Normalni” pocitace

e Blady v DC
Lokalni pamét Lokalni pamét Lokalni pamét
Procesor Procesor Procesor

Sit

o Multicomputery (switched — pfepinacova architektura)
m Mfizkova architektura
e Vhodné pro feSeni dvourozmérnych problém
o Grafy, analyza obrazu

m Hyperkrychle

e n-rozmérna krychle (obvykle ale 4)
e VétSina sou€asnych superpocitacu

10010 0110 0011 0111

s

1000 1100 1001 1101

0000 0100 0001 0101

o NUMA (Non Uniform Memory Access)
m Vracime se do Sedé zény (viz prvni obrazek Paralelni architektury)
m K mensi mnoziné procesoru je pfipojen pamétovy modul
e Téchto bloku je nékolik
e VSechny jsou propojeny siti/sbérnici
m Nebudeme se o nich bavit - NPRG042, NSWI[143

T ...
©

Interconnection Network

]
o GPGPU
m Obecné pocitani na grafickych kartach
m Dost odliSné od bézného paralelniho poditani
e CPU ma “par” jader, kazdé jadro mizeme separatné ovladat
e GPU ma tisice jader, tisice jader ovladame jednim kédem
o Programovani neni jednoduché a dost se odliSuje
o NPRGO058

Video 2

e Neexistence sdilené paméti
o Prfedavani informaci pomoci zasilani zprav
m Nizkouroviové primitivum
o Dnes existuji mechanismy vysSi urovné (RPC)
e Klienti nerozliSuji lokalni a distribuovany pfistup
o Komunikaci fe$i middleware, jadro nebo néco jiného
o Je nutné ale poditat s latenci, pfipadné vzdalena komunikace muze selhat

—8—

https://is.cuni.cz/studium/eng/predmety/index.php?do=predmet&kod=NPRG042
https://is.cuni.cz/studium/predmety/index.php?do=predmet&kod=NSWI143
https://is.cuni.cz/studium/eng/predmety/index.php?do=predmet&kod=NPRG058

e TCP
o Spolehlivy
o Komplikovany (velka rezie komunikace)

V prostfedi, kde nepotfebujeme fesit nespolehlivou komunikace nevyhodné
m V ramci racku, kde mame spolehlivou a rychlou sit mezi servery
m Vypadek je velmi vyjimecny

o Obecné neni vhodny

= Nema limit na max dobu doruceni zpravy

o Neékteré algoritmy vyZaduji, aby existovala spolehlivda metoda na

detekci toho, jestli zprava pfisla, nebo ne
e Specializované protokoly

o Snazi se redukovat systémové a synchronizacni zpravy

m Vyrazné navySeni rychlosti
m SniZeni latence
o Casto se pouziva piggybacking
m Rizné systémové a synchronizacni zpravy jsou pfilepeny k uzite€nym
zpravam
m (Normalné by tyto zpravy byly samostatné)
o Prfiklad: TCP/FO (TCP Fast Open)
e Zaijisténi spolehlivosti komunikace
o Pfimo sitovym HW
o Na SW urovni
m Duplicita nebo pfedbihani zprav
e V8echny zpravy mezi kazdym odesilatelem a pfijemcem jsou
postupné ocislovany
Kdyz pfijemce vidi zpravu se stejnym &islem, tak ji zahodi
e Kdyz se zpravy predbéhly tak je zahodi nebo bufferuje
m Nepfijata zprava
e Kiient vyslal Zadost a Ceka ...
Mohla se ztratit zprava se zadost/odpovédi
Nebo se nic neztratilo a kanal je zahlcen a zprava jesté nedorazila
Zakladni oSetfeni tohoto je (timeout, ACK, repeat)
o Nastavim si timeout a pokud nedostanu do timeoutu ACK,
tak poSlu zpravu znova
Obvykle je vhodné na SW urovni zajistit spolehlivost a Skalovatelnost
jednoduchosti néjakého feSeni nez vytvarenim teoreticky dokonalym protokolem,
ktery by monhl byt pfili§ komplikovany
e Pienos dlouhych zprav
o Doposud jsme povazovali za jednotku pfenosu zpravu
m Kdyz se zprava posle, tak potvrzeni na celou zpravu
Kdyz je zprava prili§ dlouha (pfeposlani celé DB, celého videa)
m Rozdélime zpravu na packety
m Co ale potvrzovat?
o Potvrzovani kazdého packetu

o

O

m Neumérné vzroste rezie
m Na spolehlivych lokalnich siti zbyte¢né
e Rezie pfi spravném pfenosu!
o Potvrzovani celé zpravy
m Rezie pfi Spatném prenosu!
o Davky (blast, burst, bufty)
m Budeme potvrzovat davky (definovany pocet packeti)
m Po uspesdného pieposlani davky se posle potvrzeni
m Pfi Spatném pfenosu se opakuje pouze davka (zalezi ale na protokolu —
nékteré mohou byt chytfejSi a opakovat pouze Cast davky)
e Dostanu neocekavany packet
e timeout
m Jak spravné urcit velikost davky?
e Pevné davky
o Jednoduché ale neadaptibilni
m Kdyz je sit pod vétsi zatézi muze mit vétsi
chybovost
m Kdyz je nezahlcena, tak mGze mit lepSi spolehlivost
e Dynamické davky
Velikost davky je upravovana podle aktualni situace
n-krat spravny pfenos — zvétseni
Spatny pfenos — zmenseni
O kolik zmenSovat a zvétSovat je implementacné zavislé
m ZmenS$eni obvykle vyrazné (na polovinu)
m ZvétSeni obvykle postupné pomalé
o Slozitéjsi implementovat, je potfeba jasny konsensus mezi
obéma stranami o velikosti davky
Nespolehlivost serveru / sluzeb
o Nespolehlivost nemusi byt pouze na komunikaénim kanalu, ale i na konkrétni
uzlu
o Klient odesle zpravu, ¢eka a nic se nestane
m Komunikaéni problém nenastal
m Problém je, Ze klient nevi jestli havarie pfisla pfed zpracovanim zpravy
nebo az po

\REO\) \RE%
Prijem Prijem
Zpracovani

No REP | |Crash No REP

o

o

o

(b) (c)

o Obecné nejde zjistit, zda se operace provedla
m | kdyz Ize, tak to pro nékteré sluzby je pfili§ naro¢né (transakce)
o Abychom se s tim mohli vyporadat, tak je dulezity koncept idempotentnich sluzeb

— 10—

e |dempotentni sluzby
o Nevadi opakované provedeni sluzby
o Secti 1+1
m Ztratime jenom trochu vypoé&etniho vykonu, protoZe operaci server
provede vicekrat
o Vyber $1 000 000 z mého uctu
m (u mé je idempotentni, protoze se mi z uctu stejné nic nevybere, kdyz tam
milion nemam 2)
o Exactly once sémantika
m Idedlni
m Kazdy poZadavek se provede pravé jednou
m Pro nékteré sluzby to nejde
o At-least-once sémantika
m SluZzba se urcité alespori jednou provede
m Negarantujeme, Ze provede praveé jednou
m Nevadi, pokud jsou sluzby idempotentni sluzby
e P¥i velké chybovosti ztracime maximalné vykon
o At-most-once sémantika
m Nutné, pokud nemame k dispozici idempotentni sluzby
m Sluzba se urcité neprovede vicekrat
m Sem patfi vybér z uctu
m Nelze zajistit, Ze se provede
e Havarie klienta
o Kromé serveru mohou havarovat i klienti
o Klient odeSle pozadavek a umfe
o Server pocita a pocita a déla vypoclet pro mrtvého klienta
o Typicky to, Ze umfel klient néjaké bézici sluzby se nefesi
m Obvykle se nejedna o dlouhotrvajici vypodcty
o Toto by mohl byt problém v distribuovanych systémech, kde se provadé;ji
dlouhotrvajici vypocty
m Kdyby nikdo neodebiral vypocet, tak by to byl problém (finanéni)
o Pokud to stoji za feSeni v naSem distribuovaném systému tak feSeni existuji
m Exterminace
e Zodpovédnost klienta
e Klient ma persistentni log
e Kdyz se zrovna narodi, tak prozkouma svdj log, jestli nahodou
nemél rozpracovany job
e Rozhodne se, jestli mu sluzba k né€emu bude nebo ne
o Pfipadné zrusi sluzbu
m Reinkarnace
e ZaloZeno na pojmu epocha
e Zodpovédnost klienta i serveru
o Evidence (epocha, sluzba) je na strané serveru

https://emojipedia.org/rolling-on-the-floor-laughing/

o Klient ma evidenci epochy a spolehlivou inkrementaci na
starost
o Jednoduché celé &islo
Klient po svém narozeni inkrementuje svoji epochu
S kazdym pozadavkem klient zaroven posila i svoji epochu
nez je u sluzeb, které jesté zpracovava, tak zrusi vSechny sluzby,
které spadaji do pfedchozich epoch

m Expirace

Klient nemusi mit pfedstavu jak dlouho vypocet bude trvat, tak
vypoctu pfidéli tolik, kolik je ochoten utratit

Kazda uloha ma pfidélené quantum ¢asu

Server pocita jenom pokud ma quantum ¢asu

Kdyz vyprsi, tak server vrati zpravu, Ze Zije a Ze pocita, ale Ze to
nestihl a vyzada si pro dalSi vypocet dalSi quantum Casu

Klient si vyZzada pokracovani vypoctu se specifikaci nového
guanta Casu

Komunikace pomoci zprav je z pohledu programatorského rozhrani komplikovana
o RPC (Remote Procedure Call)
m Popularni, uZiteCné a prakticky pouzivané
m Idea: Pfizpusobit mechanismus na volani funkci/metod
m Dvé Casti stub a skeleton

Stub u klienta
Skeleton u serveru
Oboje automaticky vygenerované ¢asti
o Zajistuji komunikaci mezi klientem a serverem

m Jak to probiha

vV v

Klient zavola bé&zné lokalni funkci

Tim se zavola klientsky stub

Zabali se parametry zpravy

Zprava se posle

Server pfijme zpravu, zprava se dostane do skeletonu
Skeleton zavola vykonou funkci na serveru

Po zpracovani server vrati vysledek do skeletonu

Ze skeletonu se zprava posle

Klient pfijme zpravu, zprava se dostane do stubu
Stub ji rozbali a vrati ji klientovi

— 12—

stub skeleton
/lxgabalem' zbaleni\\\sj\
Klient Server
\\ J.
Rozbalen abaleni
A
/ \..
Jadro Jadro
m Spojeni
e Jiny uzel uchovava tabulky server(a sluzeb, které jsou
poskytovany

3. Look up server

Client machine

O

o

Tzv. directory server
e Nové nastartovany server vzdy
Vytvofi endpoint do své tabulky

o Zaregistruje si svoji sluzbu na directory serveru
e Kdyz klient potfebuje néjakou sluzbu
o Zepta se directory serveru, kdo poskytuje sluzbu, kterou
potfebuje, directory server mu odpovi
o Spoji se serverem, ktery poskytuje sluzbu, a pozada ho o
endpoint, server mu odpovi
o (Potom muze klient provadét RPC)

Directory machine

Directory
server |y

2. Register service

Server machine

Client

_J_J_iECfEC_______, Server 1. Register endpoint

-

4. Ask for endpoint

Endpoint
table

™ bcE
daemon
m Rozhrani

e Obvykle se definuje v IDL (Interface Description Language)
o Jazyk nezavisly na programovacich jazycich slouzici k
popisu rozhrani
m Problémy
e Transparentnost
o Stale musime mit na paméti, Ze tato funkce neni lokalni

— 13—

Neexistuje sdilena pamét — Zzadné globalni proménné
Z&adné predavani ukazateld
(Mozné feSeni DSM — distribuovana sdilena pamét,
téZzkopadné)
e Reprezentace dat
o Problém pokud mame distribuovany systém na bazi gridu
o Big-endian vs Little-endian
e Komunikacni chyby
o Kazdy klientu by mél byt pfipraveny na to, Ze jakakoliv
sluzba mlize byt nedostupna
e Skupinova komunikace (jeden odesilatel, vice pfijemcu)
o Nepodporuje
m RPC systémy
e Vznikali nékde od roku ‘87 az do ted
e Cisco RPC/XDR (‘87)
e Google FlatBuffers (‘14)
e Skupinova komunikace
o Jeden odesilatel, vice pFijemcu
o Atomicita
m Dorucéeni vSem &lentim, nebo nikomu
e Neni vubec trivialni
e Uzly vznikaji a zanikaji, maji havarie
m Jak fesit — virtualni synchronie (Pfednaska 7)
o Synchronizace
m Poradi doruceni je dulezité zachovat podle pofadi odesilani
e Co kdyz jeden uzel poSle serveru x += 2 a druhy x *= 2
m Na strané pfijemce je nutné rozliSovat mezi pfijmem zpravy a doru¢enim
zpravy
e Pfijem zpravy
o Néjaka spodni komunikacéni vrstva fyzicky pfijme zpravu a
zaradi ji do bufferu
e Doruceni zpravy
o Zprava se z internich komunikaénich buffer(i dostane do
SW, ktery na tuto zpravu Ceka
m Dorucovaci protokoly
e Urcuji podminky pro doruceni pfijatych zprav
o Definuji sémantiku, jak komunikace funguje
o Budeme se bavit o celé fadé
m Kauzalni sémantika
m Sekvencni doruovani
|
o Organizace skupin
m Uzaviena skupina

— 14 —

e VSechny uzly, které se maji u€astnit komunikace, jsou nékde
registrovany
e Vhodné pro kooperativni algoritmy
o Mnozina uzll spolupracuje na feSeni distribuovaného
vypoctu
e Mohou do ni odesilat zpravy pouze jeji Elenové
m Oteviena skupina
e Definovana pfijemci
e Zaslat zpravu mize kdokoliv (i nékdo vné skupinu)
e Vhodné pro distribuované sluzby a replikované servery
m Prekryvajici se skupiny
e V ramci samostatnych skupin je doruovani zprav
synchronizované
e Zpravy, které jsou zasilany uzlim, které jsou soucasti i jinych
skupin, tak mohou byt nesesynchronizovany

o Budeme si povidat o doru€ovacich protokolech pro skupinové komunikace
mnohem podrobnéji (Pfednaska 6), nejprve ale potfebujeme probrat
synchronizacni algoritmy

Video 3

e Proc je synchronizace potfeba a proc je tak dllezita
o Nemame ani bit sdilené paméti
m Veskera komunikace pomoci zprav
o Neexistuje moznost mit na jednom misté vSechny informace ohledné
distribuovaném systém(— rozprostfené informace mezi uzly
o Vylou€eni havarijnich komponent
m Umét se vyporadat s tim, ze néjaky uzel odesila i nesmysly
o Neexistence spolecnych hodin
e Synchronizace hodin s fyzickym ¢asem
o Jak sesynchronizovat lokalni hodiny kazdého uzlu
o Jak sesynchronizovat hodiny mezi sebou
e Fyzické hodiny (obecné)
o Astronomické méfeni
m Puvodné se ¢as méfil podle zdanlivého pohybu Slunce okolo Zemé
m 1 solarni sekunda = 1/86400 solarniho dne

— 15—

m Dlouho to staCilo (az do 2. sv. valky)
o 1948 - atomové hodiny
m 1s =9 mld pfechodl atomu cesia 133
o 1950 — TAI (temps atomique international)
m Atomové hodiny mohou mit néjakou drobnou nepfesnost

m prumér z 50 (dnes 200) laboratofi
e Kazda laboratof ma svoje atomoveé hodiny
e 1 sekunda je prumér z naméfenych hodnot (s vylou¢enim
extrému)
m 1 TAl den je cca o 3 ms kratSi nez solarni den

o UTC (Universal Coordinated Time)

Kdyz rozdil napocitaného TAI €asu oproti pozorovatelnému

astronomickému Casu zaloZzenymu se odchyli o vice nez 600ms, tak se v
urCity ¢as vlozi/odebere do TAI asu prestupna sekunda
Synchronizace fyzickych hodin (co to znamena)
o Kazdy uzel ma hw hodiny C, fyzicky ¢as t
o Hodiny na pocitaCip v Case t je Cp(t)
o Presné hodiny (tikajici podle TAI sekund): Cp(t) =t Vt

m tedy % = 1 (derivace hodin podle ¢asu je 1)
o BohuZel tak jednoduché to neni, protoze HW ma v sobé nepfresnost danou
vyrobni technologii
m Mira nepfesnostip: 1 — p S% <1l+op

e p je odchylka od standardniho ¢asu

dC
e
ar:
rychle
hodiny - g_c<1
C // t
(lokalni hodiny) il ,
7 pomalé
e hodiny
//
B -~
i
e
t(UTC)

o Dvoje hodiny se za né&jaky ¢as miizou rozsynchronizovat maximalné o 2pAt
m My bychom chtéli, aby se nam zadné dvoje hodiny nerozsynchronizovali
0 maximalni tolerovatelnou odchylku &
m Potom musime zafidit, aby se nam vSechny hodiny, které chceme

sefizovat sesynchronizovavaly max v intervalu zip

Ukazeme si nékolik algoritmd pro synchronizaci ¢asu

— 16 —

e Cristianav algoritmus

o

o

o

T

T Cutc

Kdyz uzel potfebuje zjistit, jak moc se jeho hodiny odliSuji od aktualniho ¢asu, tak
posle zpravu jednomu time serveru (povazovany za ¢asovou autoritu — typicky
napojen na UTC ¢as)
Server mu vrati skute¢ny ¢as
Kdyz se klientovi hodiny odliSuji o vice nez né&jakou maximalni odchylku, tak si
hodiny upravi

m Je potieba uvazovat dobu pfenosu zprav a dobu zpracovani zadosti

0

| - doba zpracovani zadosti

_ T1_To_1
T = TUT T 5
Nikdy nepfrefizovat najednou

m Zrychlovat nebo zpomalovat lokalni ¢as

e Berkeley algoritmus

@)
O

Synchronizace hodin vig¢i (aktivnimu) serveru, ktery ale nema pfesny zdroj ¢asu
V pravidelnych intervalech se aktivni server zepta vSech ostatni uzl(kolik maiji
hodin (zaroven jim posle svoje hodiny)

m Zase se néjak uvazuje doba pfenosu a zpracovani zprav
Server potom co dostane odpovédi tak zahodi extrémy (nesmysly) a spocita
prameér
Spocita pro jednotlivé uzly (v€etné sebe) rozdily o kolik by se méli upravit hodiny
Odesle zpravu se zménou jednotlivym uzlim, které si hodiny zas upravi (zpomali
nebo zrychli)

e Intersection algoritmus

o

Zajimavy a Casto pouzivany koncept v distribuovanych systémech je, Ze Cas se
nechape jako jeden pfesny bod — je to interval

m Cas od do (nebo stfedni hodnota a n&jaka odchylka)
Upravena verze se pouziva pro NTP
Funguje Cisté distribuované, Zadny centralni server
VSechny uzly v pravidelnych intervalech rozesilaji informace o jejich ¢asu a jakou
si evidujou odchylku
Jakmile pfijdou na uzel zpravy o Case, tak zahodi extrémy a spocita primér mezi
Casy a vnitfni hodiny si prefidi

e Pouziti intervalového ¢asu

@)
O

o

Cela fada frameworkl a knihoven
DCE (Distributed Computed Environment) — 33 knihovnich funkci
Google TrueTime (2012)

— 17 —

Logické hodiny

Fyzické hodiny neni mozné dostateCné presné sesynchronizovat
Dulezité ale je poradi udalosti, nikoliv pfresny ¢as
Nekomunikujici procesy nemusi byt sesynchronizovany

Na zakladé tohoto Leslie Lamport zadefinoval kauzalni zavislost

p
e — e
1 2

o O O

O

o

m Uspofadani udalosti v ramci procesu/uziu p
m Udalost e se udala dfive/pfed udalosti e, na procesu/uziu p

send(m), rcv(m) je odeslani/pfijem zpravy m
«+ Kauzalni zavislost (znaCime -)

m Jestlize Ip: el—>pe2 potom e e,

m Vm: send(m) - rcv(m)

[Jestllzee1—>e2 A ez—>e3potome1—>e3

Rikame: kauzalné vazané, kauzalné zavislé, kauzalné prfedchazi
V distribuovanych systémech je typicky mnoho udalosti, které nejsou kauzalné
vazané, jsou tzv. konkurentni

o Konkurentni udalosti znacime: ere,

o Def logickych hodin
m Jednoduchy ¢&itac
m Musi platit nasledujici
m Udalost a, ¢as C(a)
m Jestlizea - b pak C(a) < C(b)

e Hodiny musi byt porovnatelné
Synchronizace logickych hodin

o Synchronizace podle pfijimani zprav
m VSechny udalosti na kazdém uzlu maiji pfifazenou ¢asovou znacku
m V okamziku, kdy komunikuji, tak pfilepi Casovou znacku odeslani zpravy
m Pokud proces i vysila v Case Ci(a) zpravu m tak potom Tm = Ci(a)

° Tm je znacka zpravy

Synchronizace pfichazi v okamziku pfijmu zpravy
Pokud proces j pfijme zpravu m v Case Cj(b) tak potom

Cj = max(Cj(b), T + 1)

e Proces si upravi hodnotu svych logickych hodin
e + 1 je technicky detail

m Tady narozdil od sefizovani fyzickych hodin dochazi k pfenastaveni ¢asu

ihned
e Na hodnotu logického ¢asu neni nic jiného navazaného
e Vzdycky pouze dopiedu
o Zuplnéni
m Neékdy se tomu fika “byrokratické uspofadani”

—18 —

m Pro ucely nékterych algoritmd (zejména synchronizacnich algoritmu) je
dilezité, aby dvé udalosti, které jsou odlisné, méli dvé ridzné hodnoty
logickych hodin

m Nesmi platit, Ze Casové znacky dvou riznych udalosti se mohou shodovat

m Udalost a v procesu i, udalost b v procesu j

m C(a) =C(b) A P < Pj = (C'(a) < C'(b)

e Logické hodiny a kauzalita

o Plati
m Jestlize a » b pak C(a) < C(b)
o Neplati

m Jestlize C(a) < C(b) pak by bylo hezké aby a — b
m Pfitom tohle by se ndm hodilo, protoze potfebujeme detekovat kauzalitu,
vime jenom hodnotu logickych hodin

A B C
1@ 1
2 2
3 @3
B
/
A1 » C3

Video 4

e Vzajemné vylouceni procesl = jakym zplUsobem zajistit exkluzivni pfistup k nécemu
o Nemame pamét, takze Zadny semafor

e Je tfeba vzit v uvahu
o Havarie, vypadky, prodlevy v komunikaci

e Slozity problém

e ZpUsoby feSeni

— 19—

o Centralizované feSeni
m Néjaky server fesi pfistup k prostfedku
o Permission-based
m Distribuované kazdy uzel kontroluje podminku
m KdyZ je podminka splnéna, tak potom algoritmus povoli vstup
konkrétnimu procesu
m VSechny uzly musi disledné dodrzovat onu podminku
m Algoritmy
e Lamport (3n)
e Ricart-Agrawala (2n)

o Rl (\n)
o 1985%
e Agrawal-ElAbadi (log n)
o Token-based
m Existuje néco jako token (peSek)
m Jenom ten, kdo ma token muze vstoupit do kritické sekce
m Algoritmy
e Suzuki—-Kasami
e Raymond
Centralizovany algoritmus
o Na kazdou kritickou sekci bude server, ktery pfijima zadosti od klientl a eviduje
si je ve fronté a prvniho pusti do kritické sekce
Kdyz vystoupi klient z kritické sekce, tak tam poSle dalSiho
Nékolik riznych obdobnych implementaci
Ideové nevhodné — centralni komponenta
m Single-point-of-failure
m Spatné se $kaluje
o Zminime jeden z hromady problému
m Havarie klienta potom, co se klient dostal do kritické sekce
e Mozné fesit napf. pomoci ¢asovych kvét a timeoutd

O 06006 ONONO,

Zamitnuti
zadost | | OK Zadost Uvolnéni| OK
/s

© © ©

Zasobnik

Lamportlv algoritmus
o Cisté distribuovany algoritmus, v&echny uzlu jsou si rovny
o Proces kdyZ chce vstoupit do kritické sekce, tak poSle zpravu vSem ostatnim a
Ceka jednak az
m dorazi odpovédi od vSech ostatnich

— 20—

m a vSechny zadosti v jeho fronté€ maji vétsi Casovou znacku
e (kazda zprava ma Casovou znacku a vstup do kritické sekce je
fizen ¢asovymi znaCkami)
o Casové znacky
m Forma logickych hodin, synchronizuji se pfi pfijmu zpravy
m KdyZ pfijde zprava s vy§3i Casovou znackou nez jakou mam, tak
pfijimajici proces si nastavi své lokalni logické hodiny na alespor takovou
hodnotu jako je asova znacka pfijaté zpravy
o Existuji tfi typy zprav
m release
e Uvolnéni kritické sekce
m request
e Pozadavek na vstup do kritické sekce
m ack
e Potvrzeni pro vstup do kritické sekce
o Existuji tfi akce se zpravami

m send

e Odeslani zpravy
m add

e Pfidani zpravy do své prioritni fronty (prioritni dle znacek)
m del

e Smazani zpravy z mé fronty
o Jak to funguje

Udalost Akce procesu p

Zédost Mp send Mp={req,p,Tp} /[uloZeni Zadosti

= R . a odpovéd s vlastnim casem
Prijeti Zadosti Mi add Mi; send{ack,p,Tp}
Prijeti potvrzeni Ai add Ai

:| od vSech pfislo novéjsi potvrzeni

Podminka vstupu Mp | Vv ixp 3 {ack,i,Ti} : Tp<Ti |

& V {req,i=p,Ti } : Tp<Ti k"‘—l‘J neeviduju staréi Zadost

Uvolnéni Rp send {rel,p,Tp} \

Prijeti uvolnéni Ri del {req,i,Tk}: Tk < Ti po pfijeti uvolnéni smazu starsi

Zadosti tohoto procesu

oS o synchronizace!
wunikacni slozitost: 3(n-1) 4

o n — 1 je procesU, ze kteryma kazda Zadatel komunikuje
o 3 jsou zpravy

m Zprava se zadosti

m Zprava zpatky s potvrzenim

m Zprava o uvolnéni kritické sekce

o 3(n — 1) je hodné, tak byly publikovany riizné algoritmy, které komunikacni
slozitost optimalizuji
e Ricart & Agrawala
o Hlavni rozdil je ve vyznamu potvrzeni
m U Lamporta potvrzeni znamena — jo vidim tvoji zpravu, potvrzuji, ze jsem
dostal zpravu se zadosti
m Tady znamena — ano souhlasim s tim, aby si vstoupil do kritické sekce
o Zpravy s zadosti i potvrzenim existuji také
o Jak to funguje
m Proces chce vstoupit do kritické sekce
e ZaSle Zzadost s Casovou znackou a ¢eka na odpovédi s potvrzenim
m Proces pfijme zpravu ze Zadosti
e Neni v kritické sekci a ani do ni nechce vstoupit — poSle potvrzeni
e Je v kritické sekci — neodesle potvrzeni, pozadavek zaradi do své
fronty
e Neni v kritické sekci, chce ale vstoupit
o Porovna ¢asovou znacku s vlastni zadosti
m Vlastni zadost ma mensi ¢asovou znacku (je starsi)
— neodesle potvrzeni a zafadi odesilatele do fronty
m Zadost odesilatele ma mensi ¢asovou znadku
(vlastni je mlad$i) — posle potvrzeni

po dokonceni B
pokracuje A

A a B konkurentné pozdejsi A se
dobrovolné vzdava

Zadaji o vstup

e Princip voleb (stale vylouCeni proces()
o Zakladni princip (stejny pro vdechny algoritmy)
m Kazdy proces ma jeden hlas
e Muze ho dat sobe (kdyz touzi po vstupu do kritické sekce)
e Nebo ho da jinému Zadateli
m Procesy se snazi ziskat hlasy ostatnich procesi
e Kdyz chci vstoupit do kritické sekce, tak si pozadam o hlasy
m Kdyz proces dostane vice hlasu nez ostatni, tak muazu vstoupit do kritické
sekce, jinak ¢ekam tak dlouho nez dostanu dostatecny pocet
o Jednotlivé algoritmy se liSi v tom

m Jak se pozna zda néjaky proces dostal vice hlasu nez jiny
m Jak hlasovat a pocitat vysledky
m Kdy proces vi, Ze vyhral
o Naivni algoritmus
m P¥i zadosti jiného proces da proces hlas (pokud jesté nehlasoval)
m Odolny proti vypadkim
e \ydrzi vypadek az poloviny procesu
m Komunikaéni slozitost 0(n)
e Neni jinak lepSi nez algoritmy, které jsou zaloZené na porovnani
znacek
m Rychle mGze dojit k deadlocku
e Vice procesu muze dostat stejny pocet hlasu
A1)l (19854F)
o Kazdému procesu p je pfidéleny volebni okrsek Sp

[Sp je néjaka dobfe definovana mnozina ostatnich procesu

o V okamziku, kdy néjaky proces dostane vSechny hlasy vlastniho okrsku, tak
muze vstoupit do kritické sekce
o Podminky pro volebni okrsky
m Korektnost
e Vp, q procesy : Sp N Sq * 0

o Kazda dvojce kandidatu musi mit alespon jednoho
spole¢ného volice
o P¥iremize, alespori jeden spole¢ny voli¢ rozhodne —
kazdy proces muaze volit pouze jednou
m Spravedinost
e Vp, q procesy: |Sp| = |Sq| =K
o Velikost volebnich okrsku je stejna
m Zodpovédnost
e Vp, g procesy: #Si = #Sj = D,kdep € Si aqe Sj

o p je obsazen ve stejném poctu D volebnich okrski
o Kazdy proces ma stejnou zodpovédnost za to jakym
zpusobem jednotlivé procesy vstupuji do kritické sekce
o Ddusledek (podminek)
m Komunikaéni slozitost algoritmu, ktery respektuje podminky je 0(|Sp|)

m Proces nepotfebuje komunikovat se vSemi ostatnimi procesy, pouze s
vlastnim volebnim okrskem, kde sbira hlasy

m Potiebujeme minimalizovat volebni okrsky, abychom minimalizovali
komunikacni sloZitost

o Znaceni

m N ... pocet okrski

m K ... velikost okrsku

m M ... poCet procesl

— 23

m D ... vkolika okrscich je kazdy proces ¢lenem
o Rozdéleni okrsku
m Jak velké okrsky?
m V kolika okrscich ma byt kazdy proces?
N-K=D-M
Proces ~ okrsek
m Kazdy proces musi ziskat vSechny hlasy vlastniho okrsku
m N=M>=>K-=1D
m Velikost okrsku ~ pocet okrsku, ve kterych je proces ¢lenem
o Kazdy proces p z okrsku Sq je obsazen v D — 1 jinych okrscich
m Tim padem max pocet okrsku je (D — 1)K + 1
o M=KK -1 +1=K=0GM
m Komunikaéni slozitost
o Jak ale skladat okrsky?
m Optimalni algoritmus, ktery by pfesné vyuzival M = K(K — 1) + 1je
slozity
e \/yzaduje restrukturalizace pfi zméné poctu Clenstvi
m Existuje suboptimalni algoritmus pro K = 0(\/M)
e Prakticky pouzitelny
e Jednoduchy

S OlOIOIONOX0,
DWW ®®
BW ® W @ ®

WO ®W
ey OWO® ®®
DR ®E® ® @®

m V3Sechny procesy usporfadame do “Ctverce”
m Volebni okrsek kazdého procesu je sjednoceni vertikaly a horizontaly
m Na obr. je zvyraznény volebni okrsek procesu 14

— 24—

Maekawa - deadlock a jeho reseni

v o

[Soutézi P3 a P23

S

(=)
&

EHEIEO
BB

Ry
(o)
N

N
MoZnost deadlocku
P21 voli P23

P5 voli P3 o

Nelze ziskat
vSechny hlasy
DEADLOCK

OOEI®OE
®EERI®E
LB
BEERGE

o Mduze se stat, ze P5 bude volit P3 a P21 bude volit P23
o P3 [P23 oba dostanou N — 1 potfebnych hlast a ¢ekaji v deadlocku

o Zachrani nas logické hodiny — prevence deadlocku
m Kazda Zadost je oznacovana logickymi hodinami jejiho odesilatele
m V okamziku, kdy pfijde zprava se Zadosti procesu r s TS, (Casovou

znackou procesu r)
e Ma volny hlas
o Odesle potvrzeni ACK procesu p
e DaljiZ hlas jinému procesu g
o Pokud TSq <TS tak zafadi do fronty

o Pokud TSq > TSr tak poSle zpravu REJECT procesu g

m Pokud jiz q je v kritické sekci, tak ho ignoruje a
pracuje dal a az opusti kritickou sekci tak zpatky da
potvrzeni a funguje to jako v pfedchozim pfipadé

m Pokud g jeSté nema vSechny hlasy, vrati hlas
procesu p a ten ho pfeda procesu r

e TOHLE JE REGULERNI RACE
CONDITION
m Jak race condition vyiesil giJI|
e Je to race condition, protoZe zalezi jestli se proces stihne nebo
nestihne vratit do kritické sekce
e Nevadi nam to, cilem algoritmu neni pfesny deterministicky
postup, v kterém procesy maji v jakém poradi jit do kritické sekce

— 25

e Jedinym cilem porovnavani ¢asovych znacek je, aby nedoslo k
deadlocku
e V okamziku, kdy je néjaky proces (byt neopravnéné) je zvoleny a
je schopny se dostat do kritické sekce, tak potom uz nemuizeme
byt v deadlocku a to nam staci
Agrawal & El Abbadi (1991)
Lepsi komunikaéni slozitost nez gifJI|
Slozitost O(log n)
Volebni okrsky jsou uspofadany podél stromu
Procesy jsou organizovany binarnim stromem
Kazdy proces potiebuje ziskat cestu od kofene kK listu
m Potfebuje komunikovat s logaritmickym poctem uzlu
o Specialné navrzeny pro dosazeni fault tolerantnosti
m V pfipadé kdy vypadne jakykoliv uzel, tak hlas jednoho uzlu je mozné
nahradit dvéma cestami

O ¥k

® e O @

©e e 0@e @@
o Quorum = cesta od kofene kK listu
o Nikdy nenaS$el praktické uplatnéni
m Nespliuje podminku symetrie
m Jak vypadaji quora?
e Kofen je obsazen ve vSech volebnich okrscich
e Ugastni se v8ech voleb, je maximalné pretizen
o Existuji rzné vylepSeni tohoto algoritmu
m Strom je postupné otadi...
m Spis obskurni
Raymond (1989)
o VSechny pfedchozi algoritmy, které jsme rozebirali byly permission-based
m ZaloZené na podmince, kdy uzel zkouma podminku a kdyZ je spinéna, tak
muze vstoupit do kritické sekce
o Tento algoritmus je token-based
m ZaloZen na pfedavani tokenu
V celém systému je jedna specialni entita, ktera se pfesouva mezi uzly
Pouze ten uzel, ktery ma tuto entitu (token), tak mize vstoupit do kritické sekce
V8echny procesy jsou organizovany do orientovaného stromu
Uzel, ktery ma token je v kofenu, vSechny orientované hrany vedou k tomuto
kofenu

O O O O O

o O O O

— 26—

o Kdyz jakykoliv proces potfebuje zazadat o vstup do kritické sekce, tak zadost
preposle podél orientovanych hran blize k uzlu ke kofeni, az zprava dojde do
kofene
Zaroven uzel s tokenem (kofen) udrzuje frontu zadosti na vstup do kritické sekce
Kdyz uzel s tokenem vystoupi z kritické sekce, tak se podiva na frontu a prvnimu
ve fronté poSle token a celou frontu

m Neposle mu to pfimo, ale proti sméru orientovanych hran sousednimu
vrcholu

m V kazdém kroku se obrati orientace hrany

m Takhle se token s frontou budou preposilat a otacet hrany nez se dostane
ke spravnému vrcholu, z kterého se udéla novy kofen

e Suzuki-Kasami
o (Token-based algoritmu byla publikovana cela fada)
o Tohle je jeden z prvnich publikovanych
o VyZzaduje broadcast zpravu vSem uzlim
m NepouzZitelné pro rozsahlé distribuované systémy
m Hodi se spiSe do clusterového prostredi
Broadcast se posila, kdyz proces vyzaduje vstup do kritické sekce
Proces, ktery drzi token, broadcast zpracuje (vlozi si Zzadost do fronty), ostatni ho
ignoruji
o AZ proces bude chtit opustit kritickou sekci, tak pfeposle token s frontou tomu
procesu, ktery je na prvnim misté
o Umoznuje prioritné fadit do fronty (s kazdym pozadavkem muze byt evidovana
cena)
e Token ring
o Jiny typ token-based algoritmu

o Logicky kruh, ktery nevyZaduje broadcast pro funkénost

Komunikace pouze mezi dvojici uzll

Token postupné putuje mezi procesy po kruhu

KdyZ proces dostane token tak se podiva, jestli chce vstoupit do kritické sekce
m Pokud ano, tak si token necha
m Pokud ne, tak ho posle dal

o Dost vytéZuje sit' i kdyZ nikdo nechce vstoupit do kritické sekce (specialné kdyz

chranime spoustu kritickych sekci)

m Dokola budou litat prazdné tokeny

Porovnani algoritmi vzajemného vylouceni

Algoritmus Pocet zprav | Problémy
Centralizovany 3 havarie koordinatora, klienta
Lamport 3(n-1) vypadek libovolného uzlu
Ricart & Agrawala 2(n-1) vypadek libovolného uzlu
Maekawa 2Vn vypadek libovolného uzlu
Agrawal & EIAbbadi | 2Inn vypadek uzlu zvétsuje kvorum a sloZitost
Raymond 2Inn vypadek uzlu - rekonfigurace
Token ring 1az ztrata peska, vypadek uzlu

e Zpravy

o Nejlépe na tom je centralizovany algoritmus
e Havarie

o U centralizovaného velky problém havarie koordinatora
o Agrawal & El Abbadi
m (ten stromovy algoritmus)
m Jediny navrzeny pro dosazeni funkénosti pfi havariich
m ZvétSuje se ale quorum
m (jak vime neni ale symetricky)
o Havarie uzlu u vSechny ostatnich vyjma Raymond algoritmu zpUsobi totalni
nefunkénost
Chtéli jsme nevyhovuijici centralizovany algoritmus nahradit né¢im distribuovanym
Vysledek je, ze vSechny distribuované algoritmy jsou horSi nez centralizované feSeni
Jak je mozné, Ze néco distribuovaného je horsi nez centralizované feSeni, kdyz jsme si
fikali, ze pravé centralizované feSeni jsou plivodem veskerého zla

— 28 —

S

.

~
Moudro:;:

Obvykle nema smysl resit centralizovany probléem

distribuovanym algoritmem 3

-

g
Nevhodny neni centralizovany algoritmus,

ale centralizovany problém!

Problém neni v implementaci, ale v problému samotném

V distribuovaném systému bychom neméli mit nic takového jako kriticka sekce
Kriticka sekce je pfikladem centralizované sluzby

V distribuovanym algoritmech/systémech vyhnout se potiebé centralizované
komponenty i v podobé kritické sekce

Kriticka sekce vyrazné snizuje Skalovatelnost feSeni

Neni vhodné fesit centralizovany problém distribuovanym algoritmem —
centralizovanost zUstane, jenom se pfesune

Video 5

Budeme se zabyvat algoritmy pro vybér koordinatora (leader election)
Velice Casty a bézny problém
Koordinator / leader je dulezity pro celou fadu distribuovanych algoritmu
o Distribuovany konsensus, load balancing
e Implementace algoritmu pro vybér koordinatora je typickou soucasti cloudovych
framework0
Dulezita korektnost — nemuze byt vice nez jeden leader
Dva pfistupy k feSeni tohoto problému
o Detekce extrému
m Uzly jsou viceméné rovnopravné, ale néjak rozliSitelné byt musi —
obvykle jsou olislovany
m Algoritmy se snazi v ramci identifikatort najit takovy, ktery ma
nejmensi/nejvétsi identifikaci a zaroven neni havarovany
o Race-condition (+ randomizace)
m RAFT
m ZaloZeno na nahodé
m ZjednoduSené: Uzel, kterému se néco povede stihnout dfive, tak se stava
koordinatorem
e Bully algoritmus
o Ma netrivialni pfedpoklady
m Nejdeldi mozna doba pfenosu zpravy je omezena konstantou

—29__

m To samé pro dobu zpracovani a pfipravu odpovédi
m Rikame, Ze predpoklada synchronni systém
Uzel poSle zpravu se zadosti a o¢ekava odpovéd
KdyZ odpovéd nedojde do doby 2x ¢as pfeposilani zpravy + ¢as na jeji
zpracovani, tak vi, ze je néco Spatné
m Nefunguje komunikace
m Uzel havaroval
Nejde pouzivat napf. na siti, ktera vyuziva TCP/IP protokol
Pouzitelné v rychlych a spolehlivych sitich v clusterovém prostfedi s pouzitim
vlastniho lokalniho protokolu pro komunikaci
Kdyz se proces rozhodne volit koordinatora
m Typicky se déje na zaCatku vypoctu, nebo kdyz komunikace se stavajicim
koordinatorem selze
m Proces zaSle zpravu vSem procesim s vySsi identifikaci a ¢eka na
odpovéd
m KdyZ od nich pfijde odpovéd tak proces skonci (prohral)
m Kdyz nepfijde nic, proces vyhral a stava se novym koordinatorem, posle
zpravu vSem ostatnim
KdyZ proces pfijme zpravu o volbé
m Vrati zpét odpovéd a vysle tu samou zadost vSem proceslim s vySSim
Cislem identifikace
m Toto druhé kolo rozhodne o vitézi
e Druhé kolo rozhodne, rozdil mezi prvnim a druhym kolem volby je
v tom, kdy se o volbé dozvi novy koordinator (ten co se nim stane)
V prvnim béhu né&jaky uzel zjisti, Ze je zapotiebi nova volba
Obeznami vSechny kandidaty
se o to nezajima
e V druhém kole uz budouci vyherce uz o volbé vi (z prvniho kola).
V druhém kole nedostane zadnou odpovéd

Invitation algorithm

Pfedpoklada asynchronni systém
m Nelze predpokladat nic o délce udalosti
Bully algoritmus nebude fungovat, protoze pfi pfekroCeni ¢asovych limitl budeme
mit vice koordinatoru
Mnohem Iépe odpovida pozadavkim realného prostredi
m Rozsahlejsi distribuované systémy na nespolehlivych sitich
VSechny uzly jsou rozdéleny na segmenty, které mezi sebou komunikuji
Kdyz se pferusi komunikace s néjakym uzlem nebo mnozinou uzld, tak se
segmenty rozpoji a kazdy segment funguje nezavisle na sobé
V ramci kazdého segmentu se ustanovi koordinator, ktery pravidelné komunikuje
s ostatnimi uzly v segmentu
Jak funguje

m Koordinator posila heartbeaty
e V pravidelnych kratkych subsekundovych intervalech posila
zpravu véem ostatnim v segmentu
e Pokud pfijme zpravu nékdo, kdo si sam mysili, Ze je
koordinatorem, tak dojde k propojeni (dfive rozdélenych)
segmentu
e Novym koordinatorem se stane ten kdo ma vétsi identifikaci
m Pokud uzel neobdrZi do timeoutu heartbeat
e Uzel odvodi, Ze uz neni ve stejném segmentu jako jeho pavodni
koordinator
o Nefesi jestli koordinator havaroval nebo jestli nejde spojeni k
nému
e Sam za sebe vytvori novy segment (jednoprvkovy) a prohlasi se
za koordinatora (a posila vSem ostatnim heartbeaty)

e Le Lann, Chang & Roberts (1979)

o

o

O

Zastupce tzv. kruhovych algoritmu
Tenhle je jeden z téch jednodussich
Uzly nemusi znat identifikaci vSech ostatnich ¢lenl skupiny, dokonce ani nemusi
védét, kdo vSechno je ve skupiné
m Vhodnéjsi pro rozsahlejsi distribuované systemy
m Staci, aby uzel znal svého naslednika a existovala mozZnost jak zjistit
nasledovnika havarovaného uzlu

V okamziku, kdy uzel detekuje havarii (na obr. uzel 3) tak iniciuje volbu
PoSle ve sméru naslednika zpravu, ve které bude

m Jeho vlastni identifikace (aby se poznalo, ze zprava obkrouzila kole¢ko)

m Aktudlni nejlepSi kandidat na koordinatora

e V okamziku odeslani tam da sebe sama

m Az zprava obkrouZzi kole¢ko bude obsahovat Cislo nového koordinatora
Detekci havarovaného uzlu mize najednou provést vice uzll, takze téchto zprav
tam muUze probihat vice (maximalné n, coz je pocet uzl()
Zprava probéhne n krat

— 31—

o

o

Celkova sloZitost 0(n°)
Existuje cela vylepSeni tohoto kruhového algoritmu

HS algoritmus

o

@)
O

o O O

o

Hirschberg & Sinclair (1980)

VylepSeni pfedchoziho

Kdyz néjaky uzel zasila zpravu o nové volbé, tak tato zprava neobkrouzi celé
kolecCko, ale okoli se exponencialné zvétSuje

Do dal$iho kola postoupi jenom ten kandidat, ktery v ramci lokalniho okoli vyhral
Celkova slozitost je O(n log n)

Velmi implementaéné naroény

Velka konstanta schovana uvnitf 0

Randomizované protokoly

o

V pfedchozich algoritmech se deterministicky hledal uzel, ktery ma nejvétsi
hodnotu identifikace
Tady je uplné jedno, ktery kandidat zvitézi, podstatné je, aby zvitézil pouze jeden
Typickou pouzivané v prostfedi, kde je rychla lokalni sit’ s malou latenci a
pomérné malym pocétem aktivnim uzlG
Velmi €asto se pouziva pro protokoly distribuovaného konsensu

m 3, nebo 5 uzll se ucastni
Pro randomizovanou volbu leadera jsou jednotlivé uzly ve tfech rdznych rolich
Dosavadni koordinator se nazyva leader

m Posila heartbeat v pravidelnych intervalech
KdyZ néjaky uzel nedostane heartbeat po dosazeni timeoutu

m Prohlasi sam pro sebe dosavadniho leadera za havarovaného a ziniciuje

novou volbu — stava se kandidatem

V ramci kazdého kola voleb ma kazdy uzel jeden hlas (uzel, ktery inicioval volbu
tak voli sam sebe), vSem ostatnim uzlim posle zpravu RequestVote
Kdyz jiny uzel dostane tuto zpravu a jesté nehlasoval, tak svidj hlas odevzda
tomuto kandidatovi
Kdyz jakykoliv kandidat dostane nadpolovi¢ni pocet hlas(, tak se dalSi zpravou
prohlasi za nového leadera
Stejny zisk hlast (potencionalni deadlock) se feSi pomoci timeoutu a nové volby

m Ukazalo se jako lepsi feSeni nez u i)l
Kdyz do timeoutu neobdrzi kandidat pfisluSny pocet hlasu, tak vSechny uzly
randomizované pockaji ¢as [T, 2T]

m Kde T > (nejdel§i) doba pfenosu zpravy

m Kdyz T je vhodné zvoleno, tak se algoritmus chova dobfe
Pokud uzly maiji implementovany 2-fazovy commit, tak je mozné provést volbu
jinym zpusobem, napf. pomoci generatoru nahodnych Cisel

m 2-fazovy commit zajisti, Ze volbu vyhraje jen jeden

m Apache Zookeeper

— 32—

Video 6

e Budeme se zabyvat doru€ovacimi protokoly skupinové komunikace
e |dealni stav je globalni usporadani

o

o

Zpravy jsou doru€ovany v poradi odesilani
JiZ vime, Ze nelze — neexistence globalnich hodin

e Sekvencni usporadani

o

O

(slabsi forma dorucovani)
V8echny zpravy jsou pomysiné sefazeny do jednoho rozvrhu, véechny uzly
doruci zpravy v ramci tohoto rozvrhu
Doruceni nezavisi nutné na ¢asu odesilani
Dulezité je pouze dodrzeni sekvencnosti
m VSechny uzly dodrzuji stejny rozvrh
Ukazeme si dva algoritmy
m Distribuovany a centralizovany (total-order protokol, sekvencer)

e Pokud bychom sekvenéni doru€ovani doplnili o zaru€eni spolehlivost — Fikame tomu
atomicky multicast
e Ted si budeme povidat o kauzalnim doru€ovanim

o

o

@)

Ne vzdycky je potfeba, aby vSechny zpravy byly sefazeny do jedné sekvence
Obvykle stac¢i uspofadani, kde ve spravném poradi jsou doru¢ovany na vSech
uzlech jen ty zpravy, které jsou na sebe kauzalné vazané

Ostatni (konkurentni) zpravy mohou byt doru¢eny v libovolném pofadi

e Kauzalni uspofadani doruéovanych zprav

o

O

O

@)

dest(m) ... mnozina uzlQ, kterym je zaslana zprava m
deliverp(m) ... je udalost doruceni zpravy m uzlem p

1
m Jestlize je m, je zprava kauzalné zavisla na m, potom na vSech uzlech,

m, -m, = Vp€ dest(ml) N dest(mz): deliverp(ml)%pdeliverp(mz)

kterym budou doruéeny obé tyto zpravy, bude zachovano poradi doruceni
Problém: jak poznat, ze m, - m,

m Navic kdyz jesté m, nebyla dorucena

m Reseni: vektorové hodiny

e Vektorové hodiny

o

O

o O O O

Vektor je organizovany podle vSech procesu

Kazdy proces ma svUj vektor, slozky odpovidaji jednotlivym procesum ve skupiné
m Vektor délky n, kde n je poc€et procesul ve skupiné

VT(p) ... Casova znacka procesu

VT(m) ... Casova znacka zpravy

S kazdou zpravou jde pfibaleny vektorovy ¢as (znacka)

Pravidla aktualizace ¢asovych znaCek
m Pristartu je VT(pl,) nulovy

m Po kazdé kdyz proces P, odesle zpravu m, tak VT (m) = ++VT(pi)[i]

=P pfi doru€eni m upravi své VT(pj) takto:
e Vkel.n: VT(pj)[k] = max(VT(p],)[k],VT(m)[k])

o Po sloZkach maxima ze stavajiciho a pfijatého vektoru
m vm, m., i+ j: VT(mi) * VT(m],)

o Porovnavani ¢asovych znacek
m VT < VT, & Vi VT [i] < VT [i]

m VT <VT, & VI <VT, A 3i: VT [i] < VT[]

Kauzalni doru€ovaci protokol
o V okamziku odeslani zpravy m uzlem P,

m VT(p)[i]++
B VT(m) « VT(pi)
o V okamziku pfijeti zpravy m uzlem P, od odesilatele p,

m Pfijeti = zprava fyzicky pfijde ze sitového rozhrani
m Proces P, pozdrzi doru€eni m dokud neplati oboje
o VT(m)[i] = VT(pj)[i] +1
o Pravé pfijata zprava musi byt nejblizsi vyssi
o Pfedchozi zpravy musi byt pfijaté
o VT(m)[k] < VT(pj)[k] prok # i

o Prijimajici vektor musi byt alespon tak velky jako jsou
hodnoty pfislusnych slozek vektoru v pfijimané zpravé
o PFijemce musi od ostatnich procest mit alespori takové
informace, které mél odesilajici proces pfi odesilani
pavodni zpravy
m Prijemce v okamziku doru¢eni musi mit pfijaté
alespon ty zpravy od v8ech ostatnich procesu,
které pfedchazely odeslani nyni pfijimané zpravy
o Po doruceni zpravy m uzlem P,

m Doruéeni = po spInéni vSech podminek danych protokolem je zprava
schvalena pro dalsi zpracovani
m Vkel.n VT(pj)[k] = max(VT(pj)[k], VT (m)[k])

e Po slozkach se vemou maxima
Kauzalni doru€ovani a prekryvajici se skupiny

— 34—

O

o

o

| kdyZz mame sesynchronizované doru€ovani v ramci jedné skupiny, tak kdyz
posilame zpravy na procesy, které jsou v praniku, tak zpravy vzajemné (vici
cervené a zelené) skupiné nejsou sesynchronizovany
m Muze i nemusi nam to vadit
Jedna moznost co s tim délat
m V3Sechny skupiny, které maji neprazdny prunik, tak bychom sjednotili do
jedné velké skupiny
m Kauzalitu doru€ovani bychom zarudili v jedné velké skupiné
Vyhoda je, Ze protokol je stejné jednoduchy jako predtim
Takhle tranzitivné by se nam pfi sjednocovani skupin mohli dostat do
jedné skupiny procesy, které spolu vibec nesouvisi
e Mohlo by dochazet ke ztraté vykonu, kvili synchronizaci zprav,
které spolu nesouvisi
Pokud nam zaleZi na synchronizace mezi procesy, které jsou soucasti nékolika
skupin, tak se to da délat nasledujicim zplsobem

Kauzalni doru€ovaci protokol pro pfekryvajici se skupiny

o

o

O

O

Vektorové hodiny si rozSifime na maticové hodiny
Matice ma tolik vektort, kolik je skupin
VT ... Casova znacka skupiny g,

VTa[i] ... poCet zprav uzlu P, do skupiny g,
S kazdou zpravou, kterou proces odesila posle ¢asovou znacku v§ech skupin,
kterych je Clenem
Kdyz uzel P, odesila do skupiny g,
m VT (p)li]++

m VT(m) = Ug VTb(pL,)

b: piegb

e Do zpravy pfibali vSechny vektory, jejichz je odesilajici proces
Clenem
Prijeti zpravy m uzlem P, (od P, do ga)

m Uzel P, * D, pozdrzi m dokud neplati (prvni dvé jsou uplné stejné jako v

pfipadé jedné skupiny)
o VT (mIi] = VT (p)[i] + 1

o Vektoroveé hodiny odpovidajici skuping, do které je zprava
odeslana maji na slozce vektoru, ktera odpovida
odesilajicimu procesu nejbliz8i vys8i hodnotu

o Vk(p,€g, Ak #D: VT (m)k] < VTa(pj)[k]

o Kauzalita vzhledem ke skupinég, do které byla zprava

zaslana
° Vb(pj €g,): VT,(m) < VTb(pj)

o Kauzalita vzhledem k ostatnim skupinam, kterych je
prijemce ¢lenem

o PFijemce musi v okamziku doruceni zpravy mit doru€eni
zpravy od ostatnim skupin, kterych je sam ¢lenem

o Nova podminka

o Po doruceni zpravy m si uzel P, upravi vSechny VTa(pj)

| VTa(pj) = max(VTa(pj), VTa(m)) Va: P, €y,

To bylo povidani o kauzalnich protokolech, ted si ukazeme dva protokoly pro sekven&ni
doruc€ovani
o Sekvenéni dorucovani spociva v tom, ze vSechny uzly respektuji jeden rozvrh,
kde nemusi nezbytné platit, Ze doruc€eni zprav odpovida fyzickému Casu
o U sekvenc¢niho doru€ovani nepotfebujeme detekovat kauzalitu
o Sta¢i nam jedna €asova fada, nepotfebujeme vektorové ani maticové hodiny —
jednoduché skalarni hodiny
Distribuovany total-order protokol
o Funguje dvou fazové
o Kazdy odesilatel nejprve odesle zpravu v§em pfijemcum, ty ji pfijmou ale zatim
nedorucuji
o Na kazdou pfijatou zpravu odpovi zpravou TS(Rl,) s potvrzenim, ktera obsahuje

Casovou znacku pfijmu zpravy, kterou potvrzuji
m P¥i pfijmu zpravy se logické hodiny sesynchronizuji
o Ve chvili kdy odesilatel dostane zpatky vSechny potvrzeni, tak odesle finaliza¢ni
zpravu s finaliza¢ni asovou znackou TSF = max(TS(R))

m Maximum ze v8ech Casovych znacek

Po pfijmu finalizaéni zpravy doruéi pfijemce zpravu podle TSF

Casovy znadky pfijemctl urduji poradi dorugeni zprav
m Nutnost jednoznaénych Casovych znacek — byrokratické usporadani

o Komunikacni sloZitost: 3n
m Datova zprava, potvrzeni, finalizaéni zprava
m NeSlo by to udélat elegantnéji? — sekvencer
Jiny zpUsob pro sekvenéni doru€ovani je pouziti sekvenceru

Sekvencer je néjaky uzel, ktery posloucha jak se mu dorucuji zpravy
Jakykoliv uzel, ktery chce rozeslat skupinovou zpravu, tak posle jenom jednu
zpravu sekvenceru
o Sekvencer podle toho v jakém pofadi mu dojdou zpravy, tak jim postupné dava
o Forma centralizovaného feSeni
m Stejné jako u protokoll pro vzajemné vylouceni
m VylepSeni pomoci distribuovanych feseni jsou jenom horsi
m Nyni je centralizovanou komponentou rozvrh — sekvenénost doru€ovani,
na kterym se musi vSichni shodnout
e Sekvencni doru€ovani je jedna z forem centralizované komponenty — pokuste se ji
vyhnout
o Pokud ho nutné potfebujeme, tak nejjednodussi implementace je pomoci
centralizované komponenty — sekvencer

Video 7

Doposud jsme nefesili spolehlivost, pfedpokladali jsme, Zze zprava bude doru€ena
Spolehlivost na Urovni komunikaénich kanalu se da vyfesit na sitové vrstvé vhodnym
HW (Fibre Channel, ...)
e Daleko vétsi problém jsou vypadky uzlu
o Mudze vypadnout pfijemce
o Muize vypadnout odesilatel (to je jesté horsi)
m Ktery mohl odeslat zpravu poloviné pfijemcu (druhou polovinu nestihl a
umfel)
Vypadek muze byt do€asny, nebo trvaly
Distribuované transakce
o Jedna z moznosti jak to FeSit
o Doruceni zpravy dobéhne az po commitu
o P¥ili$ striktni pro ucely skupinové komunikace
o Chtéli bychom néco slabsiho/jednodussiho
e Spolehlivé kauzalni doru€ovani
o Zaplavovy algoritmus
m Kdyz pfijemce pfijme zpravu, kterou nevidél, tak ji pfeposle vsem
ostatnim ve skupiné
VSichni zpravu dostanou n krat, pokud nedoslo k havarii
Robustni a spolehlivé
m Velmi neefektivni
m Potfebujeme n’ pocet zprav
o ldea algoritmu s potvrzovanim
m Preposilat zpravy by se nemélo automaticky véem, ale jenom tém
potfebnym
= P odesilatel zpravy, P, ostatni ¢lenové skupiny (pfijemci), P, je

havarovany uzel

— 37—

m P odesle zpravu vSem ¢lenim skupiny a zpravu si uchova do té doby,

nez obdrzi potvrzeni od v8ech uzll skupiny, nebo zjisti od jinych uzlu, ze
P, havaroval

= P pfi pfijmu zpravy poSle potvrzeni uzlu p,a pfijatou zpravu si uchova do

té doby nez zjisti, Ze zpravu pfijali vdechny uzly ve skupiné
m Pokud P, zjisti, ze P, havaroval, tak zpravu odes$le vSem uzlim, o kterych
nevi, ze zpravu pfijaly
m Jak uzel p zjisti, které uzly zpravu pfrijaly?
Trans algoritmus
m Protokol pro spolehlivé kauzalni doru¢ovani
m Na kazdém uzlu implementovan graf zavislosti
e Pro ucely potvrzovani zprav (Ack(m))
m Invariant
e Kdyz p rozesila Ack(m), tak nim potvrzuje vSechny kauzalné
predchazejici zpravy (tomuto se fika transitive acknowledgment)
o Nemusi potvrzovat kazdou individualni zpravu zvlast
m Stabilni zprava = zprava, ktera je pfijata vSemi ¢leny skupiny
m Graf zavislosti ¢ (nékdy téz graf kauzality)
Jedna se o DAG
Je grafem kauzality celé skupiny
Kazdy uzel si graf vytvafi sam
RGzné uzly si ho mizou vytvaret v odliSném poradi, ale ve
vysledku je distribuované stejny
e Pokud néjaka zprava m potvrzuje m' pak (m,m") € E(G)
o Orientace ve sméru potvrzovani, ne kauzality
e Umozniuje zachytit i nepfijaté zpravy
m 3 komponenty
e Pfijem potvrzeni a vypocet viastnich potvrzeni
e Detekce nepfijatych zprav
e Ukladani zprav a detekce stabilnich zprav
m Jak P, zjisti, které uzly zpravu pfijaly?

e Flooding
o Rozesilani potvrzeni véem uzlim ve skupiné

o Neefektivni, mnoho potvrzeni zbyte€nych — O(nz)
e Vyuziti kauzality zprav a piggybackingu potvrzeni
o Piggybacking
m Misto specialni individualni zpravy jenom s
potvrzenim, se k bézné datové zpravé pfidaji
dodatky, které oznacduji potvrzovani uz néjakych
existujicich zprav

A B C [®] + D mize po pfijmu a, b+Ack(a), c+Ack(b) odvodit:

e B prijal a
multicast b e Cprijalaib
s Ack(a)

A B C [L + D mize po pfijmu b+Ack(a), c+Ack(b) odvodit:
e B prijal a

-\@ e Cprijalaib
D neprijme a e A odeslal a -> Zadost o zaslani

m P¥i korektnim kauzalnim doru€ovani jsou potvrzeni zprav tranzitivni
m Implementace
o Kazdy uzel ma
o ack_list ... seznam zprav, které pfijal, ale musi na né jesté
odeslat ACK
o nak_list ... seznam zprav, které uzel nepfijal, ale z
pfijatych potvrzeni od ostatnich uzll vi, Ze existuji
o undelivered_list ... seznam pfijatych zprav, které ale jesté
nejsou doruceny
m Typicky proto, ze jsou kauzalné vazané a
predchldce jesté nepfrisel
e Navic si kazdy uzel jesté eviduje v ramci grafu
o Které zpravy jsou kauzalni
o Které jsou stabilni
e Zpravu uzel vzdy odesila vCetné jeho ack_listu a nak_listu
e Odeslani zpravy m

Trans_ send (m) /’/f
m += nack list \
m += ack_list%
ack list = m /_’/_[
G +=m -
send m to every node

nak_list z8stava aZ do pfijmu zpravy

vycisténi ack_listu, pfidat m

m do grafu kauzality

e Pfijem zpravy m (jenom zhruba)

Nejdfiv se podiva na naky pfilepené s m

Pokud tyto zpravy ma, tak je odesilateli zasle

Potom se podiva na acky pfilepené s m

Pokud mezi nima vidi zpravu, kterou nema ve svém grafu
zavislosti, tak si ji pfida do nak_listu

o Pokud zpravu m ma v nak_listu, tak ji z ného odebere

o

o

o

o Zatim zpravu m nedoruéuje — nevime jestli mame pfijaté
a dorucené vSechny kauzalni pfedchidce
o Zpravu m si pfida do svého grafu a undelivered_listu
Ted fesi, kdy je mozné dorucit zpravy z undelivered_listu
m Kazdou zpravu je mozné dorucit, pokud byly
vSechny kauzalné pfedchazejici zpravy doruéeny
m V okamziku, kdy vSechny kauzalné predchazejici
zpravy jsou doruc€eny, tak zpravu doruéi a vyhodi z
undelivered_listu
o Kazdou zpravu z G, ktera nebyla potvrzena, ale vSechny
kauzalni pfedchddci byli doruéeni, pfida do ack_listu
o VSechny stabilni zpravy smaze z ¢
m Stabilni zprava = od vSech ostatnich uzll na ni
dostal potvrzeni

Trans_Receive (m)

foreach nak(n) € m preposlani vyzadanych zprav véem

if n € Gp

: véetné ACK!
multicast n

ifm € Gp exit

foreach ack(n) e m && n ¢ Gp

. detekce nepfijaté zprav
nak list += n ik]

if m e nak_list

1

nak list -=m
undellvered_llSt F=.m vSechny kauzalné predchazejici
Gp += m byly doruceny
foreach n € undelivered list && causal (n)

undelivered list -=n

deliver n viechny kauzalni zpravy
foreach n € Gp && causal (n) které nebyly tranzitivné potvrzeny

&& neex(n': causal(n') && (n',n) € Gp)

ack list +=n
foreach n € Gp && stable (n) n'->n, n’potvrzuje zpravu n

Gp -= n it e i :
\L vycisténi vsech stabilnich zprav

m Pozorovani
e Kazdy uzel postupné posouva kauzalni a stabilni hranici
e Rzné uzly mohou délat posuny v rizném poradi

— 40 —

e Kazda nové pfichozi zprava je mimo kauzalni hranici a v pfipadé,
ze jsou doruceny vSechny jeji kauzalni pfedchldci, tak ji je mozné
dorucit

e KdyzZ zpravu doru€ime spolehlivému uzlu, tak potom pomoci ACK
a NAK je zprava nakonec doru¢ena kazdému nezhavarovanému
uzlu
ACK rozesila informace o tom, které zpravy jsou k dispozici
NAK slouzi k tomu, aby si pfijemci, ktery dany zpravy nepfijali, si o
né mohli Fict
Zpravy jsou dorucovany v kauzalnim poradi
Jestlize uzel havaruje, tak pamétova narocnost protokolu je

neomezena
o Kazdy uzel si schovava zpravy, které nebyly dorueny
vSem uzlim

o Slabina, pro praktické pouziti musi byt trans protokol
doplnén protokolem pro zménu ¢lenstvi ve skupinach
o Kdyz je néjaky uzel dostatec¢né davéryhodné narceny z
toho, Ze havaroval, tak ostatni uzly si musi pfislusny uzel
vyfadit z evidence
e Virtualni synchronie
o Abychom mohli podrobnéji zkoumat chovani doru€ovacich protokolu v prostiedi,
kde dochazi v vypadku uzlim, tak se seznamime s virtualni synchronii
o Aktualni mnozina uzll ve skupiné = group view (nebo pouze view)
m Cesky pohled
o Znaceni
m L
m Spodni index — jak pohled vnima konkrétni proces
m Horni index — verze konkrétniho pohledu
o Definice

m P, g procesy € L [
e piq jsou soucasti dvou po sobé nasledujicich pohledd

m install pr < deliverp(m) < install pr+1 = install qu < deliverq(m) < install qu+1
e Pokud néjaka zprava je na uzel p doru¢ena v ramci pohledu pr

(po instalaci pohledu pr, ale pred instalaci pr+1 z pohledu uzlu p

), tak potom to samé plati pro vSechny ostatni procesy, které jsou
soucasti dvou nasledujicich pohledu
o Takovato komunikace se nazyva synchronni vici pohledu

o Pokud je zprava m odeslana skupiné s L pfed zménou na L
m Bud m dorugi véechny uzly z L* pfed provedenim zmény na L™

v 7 , x . v x+1 . v
m Nebo zadny uzel z L ktery provede zménu na L~ zpravu m nedoruci

— 41—

VSechny definice (i rizné alternativni) dodrzuji podminku vzajemné
konzistence
m pE Lq =q€ Lp (musi platit pro vSechny procesy, které jsou ¢lenem

néjakého konkrétniho pohledu)
e VSechny uzly ve skupiné udrzuji stejny pohled L
e Instaluji si nové pohledy ve stejném poradi (a jsou v nich
vzajemné obsazeni)
Pokud havaruje odesilatel zpravy, tak Ze havarie bude rychlejSi nez jeho
odeslani, tak se nic nestane — nejde rozeznat havarii pfi “snaze o odeslani
zpravy” se stavem beze snahy
Pokud se to povede odeslat zpravu alespon jednomu uzlu a pak umfe,
komunikac¢ni mechanismu potom musi zafidit, ze zpravu musi dorucit vSem
ostatnim preziv§im uzlim pohledu
Je nepfipustné
m Aby zprava po havarii odesilatele byla doru€ena v nasledujicim pohledu
e V nasledujicim pohledu uz havarovany odesilatel neni pfitomny
m Aby jedna zprava byla doru¢ena nékterym uzlim v jednom pohledu a
jinym v nasledujicim pohledu
Transis algoritmus
m Spolehlivy kauzalni multicast
m RozSifuje protokol Trans o detekci havarovanych komponent a reakci na
zpravy o jejich detekci
Navic oproti Trans algoritmu podporuje ¢lenstvi ve skupinach
Monoténnost protokolu
e \/ynucena nemoznosti dosazenim spolehlivého
distribuovaného konsensu
e Paranoia

o V Socialistickém/komunistickém zakonodarstvi uz jenom
podezieni a spachani trestniho €inu proti rezimu stacilo ke
zbaveni vSech funkci, vyhod a zafazeni (i kdyz se potom
nic neprokazalo)

o Funguje podobnég, staci jenom podezieni jednoho uzlu, ze
néjaky uzel je havarovany a ostatni uzly toto podezfeni
musi respektovat

o Kjejimu vyvolani staci pouze jedna zprava, ktera je
zpozdéna nad timeout (nerozeznatelné od havarie)

e Jednosmérnost

o Procesy, které jsou paranoicky vyloucené, se zpatky
automaticky nevraci, ale mohou se explicitné pfipojit
(stejnym zplsobem jako Uplné nové procesy)

m Idea protokolu
e Kauzalni hranice pohledu
o Doruceni pfedchazejicich zprav
o Pozdrzeni zprav kauzalné nasledujicich

— 42 —

V3echny uzly si postupné instaluji pohledy
V8echny zpravy jsou doru¢ovany v ramci konkrétniho pohledu
Pohledy jsou instalovany na jednotlivé uzly ve stejném poradi
PFi detekci havarie (at' uz faktické nebo domnélé)
o Kazdy proces posila vSem zpravu FAULT
o Po detekci FAULT zprav si uzly instaluji takové hranice,
aby
m VSechny zpravy, které pfisly pfed FAULTem
kauzalné pfedchazely zméné hranice pohledu
m VSechny zpravy, které pfiSly po FAULTu kauzalné
nasledovaly na informaci o zméné pohledu
o Pokud uzel obdrzel FAULTy od vSech procest, tak
m Instaluje novy pohled
m Dorudi zpravy, které kauzalné nasleduji zméné
hranici pohledu
e Detekci havarii mize byt zarover nekolik v ramci jednoho pohledu
Scenario
e Uzel E je oznaCeny uzlem A jako havarovany (A je prvnim, ktery
zjistil havarii)
Zpravu o havarii pfeposle ostatnim
KdyZ uzel pfijme zpravu o havarii, tak okamzik pfijmu je pro ného
hranice pohledu
o Kazdy uzel si takto nastavi svoji lokalni hranici
e Zpravy, které uzel pfijal pred okamzikem pfijmu zpravy o havarii,
které kauzalné predchazeji doruci v pivodnim pohledu
e Zpravy, které kauzalné nasleduji doruceni zpravé o havarii, jsou
pozdrZzeny do dalSiho pohledu — po instalaci jsou doru¢eny

— 43—

doruceni v Lx+1

kauzalné nasleduje
po detekci F
Zahodit

pied
detekci F
dorugdit

m Implementace (detekci havarie)

G ... graf kauzalnich zavislosti (stejny jako u Trans algoritmu)

L ... aktualni pohled — mnozinu uzld

F ... mnozina uzl(oznaéenych za havarované

FAULT(q) ... zprava s detekci havarie uzlu g

blocked ... blokované zpravy (k doruceni v nasledujicim pohledu)
e Last[i] ... uzly oznaCené procesem i za havarované

Transis failure (q)

m Detekce havarie
<[detekce havarie uzlu q

F += g

Last[self] = F

Trans_ send (FAULT, F)
m Doruceni

— 44 —

Transis_deliver (m, sender) J doruteni FAULT
lf(m = FAULT (fSEt)) { _—_—‘—-—-—-—-_._\ fset = havarované uz|y

Last[sender] = fset

if(fset-F # @) { _______[nové havarované uzly }
deliver msgs from blocked \—'L zpravy patici do Lx J
F += fset

________,_,_f

Trans_send (FAULT ,F) L potvrzeni/ propagace J

}

if(Last[i]==Last[]j] Vi,jeL-F) { % mam FAULT od véech Zijicich

install L -= F

deliver all from blOCN instalace nového pohledu Lx+1
F =0

foreach(ielL) Last[i] = & doruéeni pozdrzenych,vygisténi

}

} else { 1 pfijem normalni zpravy

if((m,FAULT(F'))eG) {
if(sendereF) XL nasleduje po FAULT = pro Lx+1 J
discard m]]
od havarovaného = zahodit }
else
blocked += m \ jinak zpravu pozdrzet do Lx+1 ‘

} else

deliver (m, sender)
} \\[jinak normalni doruéeni - Trans]

o ISIS protokol
m Zakladem protokoll Trans a Transis je kauzalni potvrzovani zprav
m Tento protokol funguje jinak a pouziva maticové hodiny (MT)
(Opakovani) vektorové hodiny
) VTp_[i] ... vlastni odeslané zpravy uzlu P,

° VTp [k] pro k # i ... zpravy pfijaté od ostatnich uzlu

m S kazdou zpravou je odeslan vektor
* odesle MTp []]*]

m Kazdy uzel udrzuje matici, ktera je slozena ze vSech vektort vSech
ostatnich uzlU
m Kazdy uzel zna posledni informace, které mu pfiSly zarover se zpravou
od vSech odesilatelt
[MTp‘[j] [k] ... co uzel P, vi o doru€eni zprav uzlu P, od P,
e Jeho vlastni vektor je MTP []1*]

= P pfi pfijmu zpravy od P, aktualizuje
o MT L[] = VT[]

— 45—

o Aktualizuje si vlastni hodiny
o MT [jI[*] = VT [

o Aktualizuje hodiny odesilatele
m Podle maticovych hodin mohou byt detekovany stabilni zpravy
e Na kazdy uzel jsou doruéeny vektorové hodiny v§ech &lenu
skupiny, které odpovidaji odeslané zpravé
m Clenstvi ve skupinach — jak funguje
e Cil: Pfed instalaci nového pohledu musi byt doru¢eny vSechny
zpravy, které byly doru€eny alespon jednomu pfeZiv§imu procesu
e Kazdy uzel v L si udrzuje vSechny zpravy, které zatim nejsou
stabilni (pozna podle maticovych hodin)
e Potom co uzel dostane zpravu o instalaci nového pohledu
o Typicky potom co néjaky jiny uzel zdetekuje havarii
Tak preposle vSechny nestabilni zpravy vSem ostatnim uzliim
Potom poSsle specialni FLUSH zpravu
o Timto oznamuje, Ze je pfipraven pfejit na novy pohled
o Zatim neinstaluje
Ceka na pfijeti FLUSH zprav od v8ech ostatnich uzli
AZ dostane FLUSH zpravy od v8ech uzll muZze instalovat novy
pohled
e Zpravy od havarovanych uzl(
o Kazdy uzel si udrzuje svij seznam “havarovanych uzl(”
o S kazdou zpravou rozesila jejich seznam, pfi pfijmu
sjednoti s vlastnim
o Zpravy od havarovanych uzl(se zahazuji
m Realné tento protokol byl nasazen
o Porovnani ISIS a Trans
m ACK Trans algoritmu je mozné povazovat za urcitou formu komprimace
maticovych hodin
e Ale vyZaduje slozitéjSi datové struktury a slozitéjsi doruCovaci
algoritmus
Shrnuti doru€ovacich protokolt

— 46 —

‘;\i Dorucovaci protokoly - shrnuti

Shrnuti problém{ dorucovacich protokol(

principy a protokoly, které je resi

problem protokol

sekvencni dorucovani skalarni hodiny
sekvencer

kauzalni dorucovani vektorové hodiny

prekryvajici se skupiny maticové hodiny

nespolehliva komunikace, Trans

stabilni zpravy

virtualni synchronie, Transis - tranzitivni ack

zména pohledu Isis - maticové hodiny

Pro sekvenéni doru€ovani jsme si ukazovali dva protokoly, jeden distribuovany za pouZiti
skalarnich hodin a druhy centralizovany se sekvencerem.

Pro kauzalni dorucovani jsme si uvadéli nékolik protokolu, pokud jsme nefesili
prekryvajici se skupiny, stacili nam vektorové hodiny, jinak jsme pouZzivali maticové
hodiny.

Pro zajisténi komunikace v nespolehlivém prostfedi a pro detekci stabilnich zprav jsme
si ukazali algoritmus Trans

Pro implementaci virtualni synchronie jsme si ukazali Transis a ISIS

Video 8

Budeme si povidat o globalnim stavu v distribuovanych systémech a o dosazeni
konsensu
o Tyto dvé témata spolu uzce souvisi
Konsensus = néco na ¢em se vSechny uzly distribuované dohodnou
Diffusing Computation
o Jednoduchy model pro distribuované vypocty
o Uzly jsou vzajemné propojeny jednosmérnymi komunika&nimi kanaly
o Dvousmérny se namodeluje dvéma komunikacnimi kanaly na obé strany

— 47 —

Signalni kanal

o V opa¢ném smeéru oproti datovym kanalim jsou signalni kanaly
m Nejsou uréeny pro aplikacni data
m Pouze pro signaly v ramci synchronizaénich protokold (pro synchronizaci
uzlda)
o Ukazeme si jak se poc€ita dynamicka kostra (pocita se dynamicky béhem
vypoctu)
m Déje se to elegantné béhem distribuovaného vypoctu
m Uzel u pfeda prvni zpravu uzlu v
e v oznali u za svého otce v ramci kostry
Kazdy uzel je v aktivnim nebo pasivnim stavu
Aktivni stav
m Néco pocita
m Béhem vypoctu mize pomoci komunikaénich kanall posilat zpravy
dal$im uzldm
m PFijemci mohou byt v aktivnhim nebo pasivnim stavu — po pfijmu zpravy
se uzel dostane do aktivniho stavu
o Pasivni stav
m Dostane se do ného, kdyz néjaky vypocet skoncil a uz nema, co by
pocital
e V diffusing computation se daji délat rizna zjiSténi
o Kdy cely distribuovany vypocet skongi?
e Problém ukonceni distribuovanych procesu
o Protokol pro detekci ukon&eni distribuovaného vypoctu by mél detekovat konec
vypoctu v kone€ném &ase po tom, co v8echny uzly jsou v pasivnim stavu
e Dijkstra-Scholten (DS) algoritmus
o Detekce ukonCeni distribuovaného vypoctu
o Pokud vlastni graf vypoctu je strom
m Trivialni
m Kazdy listovy proces pfi pfechodu do pasivniho stavu poSle signal otci
m Pokud mezilehly uzel dostane signaly od v§ech svych synd, tak také
posle signal svému ofci
m Cely vypocet bézi tak dlouho, nez se signaly dostanou ke kofenu
o Pokud graf vypoctu je DAG
m Plvodni stromovy algoritmus se da vylepsit drobnym vylepsenim —
pfidame deficit

— 48 —

o

Deficit je jednoduchy cCita€ asociovany s kazdou hranou
e Rozdil mezi pottem zprav, které dosly touto hranou a poctem
signall poslanych signalnim kanalem zpét
m Proces, ktery je v pasivnim stavu poCka nez jeho vystupni kanaly maji
deficit nulovy = pfisly vSechny signaly
m V okamziku, kdy je deficit nulovy na vystupnich kanalech, tak posle tolik
signalll, aby na vstupnich kanalech byl deficit nulovy
(Funguje to, protoze v DAGu existuje vrchol, ktery nema zadné vystupni
hrany — to bude ten, ktery bude ukon&en jako prvni)

m Zesloziténi oproti stromové varianté spocita v tom, Ze jeden uzel mize
mit nékolik otcl a deficity se fesi to, kolik kterymi kanaly pfiSlo zprav,
abychom zpatky poslali stejny poCet zprav (v obraceném sméru)

Pokud graf vypoctu je obecny orientovany graf

m Nemame listové uzly

m Pfijde nam vhod dynamicky vytvaiena kostra
e Otcem v ramci kostry je uzel, od kterého pfiSla prvni zprava

m Kazdy proces
e Posle signal vdemi signalnimi kanaly kromé kanalu k otci
e Pocka na signaly od vSech komunikacnich kanalu (vystupnich

hran)

e Potom co dostane pfislusny pocet signalu tak posle signal otci

m Kdyz se signaly dostanou od vSech synu kofene, tak konec vypoctu

Huanguyv algoritmus

o

O O O O

O O O O

Vyuziva vahy
Kazda zprava ma vahu
Iniciator ma celkovou vahu (néjaké velké cislo)
Ostatni procesy maji na za¢atku vahu nulovou
Kdyz néjaky proces (iniciator) chce po jiném néco pocitat, posle mu zpravu a do
zpravy da Cast své vahy
Pfi pfijmu zpravy si kazdy pfijemce pfiCte vahu zpravy ke své vaze
Proces, kdyz je ukoncen, tak posle iniciatoru zpravu s celou vlastni vahou
Pokud se iniciator dostane na svoji plvodni vahu — konec vypoctu
Problémy

m Délitelnost vah

m Havarie procesu = ztrata vahy

Znackovy (TM) algoritmus (detekce ukon&eni vypoctu)

o

Kromé béznych zprav je zde specialni zprava odliSitelna od béZnych zprav —
znacka
V okamziku, kdy iniciaCni uzel ma podezieni na ukonceni distribuovaného
vypoctu, tak posle znacku na vSechny vystupni kanaly

m Trochu obdobné protokolu ISIS
PFijem prvni znacky

m Prohlasi kanal za kostru

e \/yuziva principy dynamické kostry

— 49 —

m Uzel je aktivni
e Posle negativni signal
m Uzel je pasivni
e Propaguje znacku v8emi vystupnimi kanaly
o PFijem dalSi znacky
m Posle signal zpatky pfichozimu kanalu, kdyZz mu ze v8ech vystupnich
kanalu pfisly signaly
m Jinak posle negativni signal zpatky pfichozimu kanalu
o Pfijem negativniho signalu
m Posle negativni signal prvni zadosti
o Kdyz uzel pfijme v3echny signaly na svoje znacky
m Posle signal své prvni zadosti
Kdyz se signaly dostanou zpatky k iniciatorovi, tak konec vypoctu
Tento algoritmus je pouze aplikace obecnéjSiho (znackového) algoritmu na
detekci globalniho stavu
e Konzistentni stav
o Nejprve si povime, co to vlastné konzistentni stav je
m Budeme ho chtit zjistovat
E ... mnozina udalosti v systému
Rez c je rozdéleni E na dvé disjunktni mnoziny P aF, (past, future)

o

m Rez je pravé hranice mezi minulosti a budoucnosti
o (Kauzalné) konzistentni fez ¢
[Splr'lujea—>b/\a€FC:>b€FC

e Minulost nemizeme ovlivnit jakoukoliv udalosti v budoucnosti
Stav distribuovaného vypoctu je mnoZina udalosti, které se b&hem vypoc&tu udaly
(Kauzalné) konzistentni stav S = P, kde c je (kauzalné) konzistentni fez

m (Kauzalné) konzistentni stav odpovida né&jakému (kauzalné)
konzistentnimu fezu

Stav distribuovaného vypoctu je mnozina udalosti, které se béhem vypoctu udaly
(Kauzalné) Konzistentni stav S = P, kde cje konzistentni rez

S konzistentni stav, e: S' = S U e je konzistentni stav:
S—eS' (S'je dosazitelny z S)
Posloupnost udalosti s = (ey, e, ..., €,) se nazyva rozvrh (schedule), jestlize

S elS, »e2S, .., S, oS, Znacime S —»s S,
Zrejmé platiS »sS, = Sc S,
o Vyuziti

m Detekce deadlocku

m Garbage collection

m Detekce globalnich vlastnosti
e Konzistentni fez

¢ — konzistentni fez

Pc c Fc
A1 I A2
Proces A ///
B1 B2 B4
Proces B 53

Proces D

TC\7

stay, ktery 'fyzicky' nikdy nenastal

¢ — konzistentni rez

Pc c Fc
A1 I = A
Proces A
B1
Proces B
Proces C
Proces D

c¢'— nekonzistentni rez

e Znackovy algoritmus detekce globalniho stavu

o Jeho vysledkem je zaznamenani stavu uzlu a kanalt

m Stavu uzlu a kanalti dohromady definuje kauzalné konzistentni stav
systému

m = stav, ktery odpovida kauzalné konzistentnimu fezu

o Stav uzlu
m MnoZina pfijatych a odeslanych zprav

o Stav kanalu

— 5 —

m MnoZina zprav, které byly do kanalu odeslany v minulosti, ale pfijaty
budou az v budoucnosti (jesté nebyly doruceny)
o Jak funguje
m Existuje specialni zprava (znacka)
m Iniciator, kdyZ se rozhodne detekovat globalni stav, tak v8emi vystupnimi
kanaly poSle znacku
m Kazdy uzel v okamziku pfijmu prvni znacky ze svych vstupnich kanalu si
zapamatuje svUj aktualni stav (okamzik fezu)
m Dale si uzel oznaéi vSechny vstupni kanaly jako prazdné a ¢eka na pfijem
znacky z téch kanalu, ze kterych jesté nepfisla
m Uzel propaguje znacku podél vSech vystupnich kanalu
m Ceka dokud mu ze vstupnich kanald nepfijdou dal$i zpravy se znackou
m KdyZz mu pfijde zprava (ne znacka) z kanalu, ze kterého jesté znacka
nepfisla
e Zapamatuje si tuto zpravu (bude ji potfebovat pro stav kanalu)
m KdyZ mu pfijde znacka z kanalu, ze kterého jesté nepfisla
e Definuje stav tohoto kanalu jako zpravy doslé mezi pfijmem prvni
znacky a této znacky
m Kdyz ze v3ech vstupnich kanalu dostal znacku, tak pro tento uzel
algoritmus skoncil, takze svému otci (v proti sméru) posSle svij stav
o Mnozina zaznamenanych stavl uzl(a kanall definuje kauzalné konzistentni stav
systému
o Aplikace
m Obecné detekce libovolnych globalnich vlastnosti
m Deadlock, garbage collection, ...
Modely distribuovanych vypocta
o VétSinou jsme si ukazovali kauzalni ¢asové diagramy
m Kazdy proces ma svoji asovou osu
m Jednotlivé udalosti jsou na Casové ose znazornény
o PouzZivaji se ale i jiné modely nez kauzalni Casové diagramy
m Pro zkoumani distribuovanych algoritmu a jejich viastnosti
m UmoZhuje znazornit pfechody mezi stavy
m Kazdy stav je identifikovany

— 52—

000 -——_

5 5 . e — source
P4 P P 100 010

w
-
N
w
-—
-
N
N
N
-
N

Video 9

e Armadni tématika
e Budeme se vénovat distribuovanému konsensu
e Problém dvou armad
o Jsme generalem vétsi armady B
Armada je rozdélena na pllku na dvou mistech
Bojujeme proti armadé W
o W je mensi, ale je koncentrovana na jednom misté
o Nedokazeme porazit W pouze jednou &asti nasi armady, vime, Ze vyhrajeme
pouze pokud synchronné obé nase armady zautoCi

o O

I
hiee

o Zajimavy vojensky strategicky problém
o Jedina mozna komunikace mezi armadou je pomoci tajnych kuryrl pfes uzemi
nepfritele

m Nepfatelské uzemi je hlidané a chranéné
m Pokud by nepfitel pfiSel na naSeho kuryra, tak ho zajme...
m Zprava nebude doru€ena druhé &asti nasi armady
o Jaké vymyslet feSeni “protokol”, aby se obé armady dohodly
m Ze bud obé& armady zautodi spoleéné
m Nebo neutocit
o 'V fedi informatiky
m Mame dvé komponenty, které komunikuji pomoci zasilani zprav
m Zasilani zprav je nespolehlivé
m Potfebujeme protokol, kde obé ¢asti budou spolehlivé védét
e Ze zprava byla doruéena
e Druha komponenta bude védét o tom, Ze prvni komponenta vi o
tom, Ze zprava byla dorucena

Striktni reseni NEEXISTUJE !!!

A1->A2: Attack! (Al nevi, jestli zpravu A2 dostal)
A2->A1: ACK (A2 nevi, jestli A1 dostal potvrzeni)
Al->A2: ACK (A1 nevi, jestli A2 dostal potvrzeni)
A2->Al: ACK (A2 nevi, jestli Al dostal potvrzeni)

Al->A2: ACK (Al nevi, jestli A2 dostal potvrzeni)

A2->A1: ACK (A2 nevi jestli A1 dostal potvrzen;)

W B e s L formalni dikaz indukci

o Cela fada disledku
m Napf. paranoia u Transis algoritmu
o Prakticka feSeni
m Agresivni strategie
e Prvni general vysle vétsi mnozstvi zprav oznamuijici ¢as utoku
o Bude doufat, aby alespon jeden kuryr dorazil
e A zautoCi
e (druhy general nemusi ani odpovidat)
m Pravdépodobnostni strategie
e Spociva ve zkoumani prostfedi a propustnosti terénu
e Prvni general vySle vétSi mnozstvi zprav a kazdému kuryrovi
poslano
e Kdyz alesponi jeden kuryr dojde na druhou stranu, tak to samé
udéla druha strana zpatky a kdyz se kuryr dostane zpatky k prvni
armadeé (pokud se dostane), tak oba generalové védéji néjakou
pravdépodobnost, Ze se zprava dostane do cile
o Tohle je problematika spolehlivych uzl, ale nespolehlivé komunikace
e Problém Byzantskych generalu
o Jednotlivé uzly nejsou spolehlivé = néktefi generalové jsou zradci
o Nazev pochazi z historie — duvéryhodnost byzantskych generall byla nizka
m Nepfestane plnit rozkazy, ale zaéne se chovat zakefné

— 54 —

Bezpecnost distribuovaného systémy oproti umysinym Skadcam
Vsichni loajalni generalové se museji rozhodnout stejné
Kazdy general se rozhoduje na zakladé informaci obdrzenych od ostatnich
generall
o BUNO se problém da zjednodusit
m Pouze 1 general a ostatni jsou dustojnici
m General i distojnici mohou byt zradci
m General vyda rozkaz, dustojnici ho predaji ostatnim
m Kazdy velitel vyda rozkaz, ktery bude vydan na zakladé vétsiny
o Cil protokolu

m C1
e VSichni loajalni distojnici vydaji stejny rozkaz
e (Uzly se shodnou na jedné hodnoté)
m C2
e Je-li general loajalni, pak kazdy loajalni dustojnik vyda rozkaz
generala

e (Pokud hodnota navrhl nehavarovany uzel, uzly se shodnou na
této hodnoté)

o Zradce general
% COMMANDER /

“attack’ “retreat’”

“he said ‘retreat’”’
=

m 1 general a 2 dlstojnici
m R0zné rozkazy dastojnikim
e Dustojnici si predaji zpravu a z jedné strany je utok a z druhé
ustup
m Pokud by general dal stejny rozkaz, tak by se jeho neloajalnost
neprojevila
o Zradce dustojnik

COMMANDER

- . ‘retreat’” / //

m General zaveli na obé strany utocit a zradce duastojnik by preposlal Ustup
m Zase jeden dastojnik by z kazdé strany dostal jinou informaci
e Z jeho pohledu opét nerozhodnutelné

% Redeni pro 3 uzly s 1 zrddcem neexistuje
Obecné: Pro m zradcd, pak neexistuje reseni pro n < 3m uzl{

o Zradce general (zvétSime pocet uzll)

z
m To nejhorsi co general mize udélat je vydat na kazdou stranu rozdilny
rozkaz
e Ddstojnici se shodnou, zZe general je zradce
m Pokud vyda alespon dva stejné rozkazy (dUstojnici se zafidi podle
vétSinového rozkazu)
o Zradce dustojnik (zvétSime pocet uzll)

COMMANDER

i e
/LIEUTENANT /
3 1

m NejhorSi co dustojnik mize udélat je pfedani faleSného rozkazu véem
ostatnim dustojnikim
e Ostatni dustojnici si vzajemné posSlou zpravu co dostanou od
generala
e Snadno odvodi, ze dlstojnik se Spatnou zpravou je zradce
o Reseni pro 4 uzly s jednim zradcem existuje
o Obecné: Pro m zradcu existuje feSeni pron > 3m + 1 uzll
m Existuje algoritmus, ktery tento problém feSi
m Podle poctu zradcul ale exponencialné roste pocet zprav
e Jeho nevyhoda je tedy exponencialni sloZitost
m Vzajemneé si dlstojnici preposilaji vSechny informace, co jim pfisly
o Praktické rfeseni problému
m Pfedchozi popsané feSeni se (uz jenom z hlediska efektivity) nepouziva
m Resime pomoci kryptografie, digitalni podpis

Video 10

e Nyni se budeme zabyvat protokoly pro dosazeni distribuovaného konsensu, které jsou
pouzitelné v realném prostfedi
e Realné prostredi
o Nespolehliva sit
o Neomezena doba doruceni zpravy
o Ztrata zpravy, duplikace, poradi
o Nespolehlivé uzly, nahlé havarie
o Nepredpokladaji se byzantské uzly, vSichni dodrzuji protokol

— 57 —

Co

O 0O O O O ©O

Klasika mezi konsensualnimi protokoly
Cela rodina protokolu
Vypadek neni vyjimka, ale bézny stav
Kdyz chceme tolerovat vypadek F uzlu, tak potfebujeme 2F + 1 uzll celkové
Zaklad modernich distribuovanych systému (cloudt)
Autor: Leslie Lamport
m 1989 odmitnut
e Napsal ¢lanek o zakonodarcich na ostrové Paxos
e Clanek byl pojat jako pohadka se spoustou Feckych nazvi v
fectiné
e Velmi obtizné Cist
m Nastval se a ¢lanek schoval do Supliku
m Na univerzité bylo cela fada spolupracujicich kolegl a o ¢lanku védéli a
na jeho zakladé délali rizné experimentalni systémy — akorat je nemohli
publikovat, protoze si nikdo nedovolil vydat ¢lanek
m 1998 se Lamport nechal pfemluvit a vydal specialni vydani v pdvodnim
znéni
m 2001 Paxos Made Simple (pfepsany ¢lanek)
e In ‘plain’ English
e Podle Zavorala to neni uplné jednoduché c&teni

vlastné znamena distribuovany konsensus?

@)
O

o

Typické vyuziti je pro replikovany stavovy automat
Klient komunikuje se serverem a potfebuje, aby server byl absolutné spolehlivy
Uzly, které implementuji funk&nost sluzby jsou replikované (nebé&zi jeden uzel ale
3 uzly, nebo vice podle urovné sluzby)
Klient komunikuje s jednim uzlem, ktery je oznacen jako primarni (leader)

m Preda mu néjaky pokyn

o

o

o

o

Pokyny postupné méni stav celého systému
Cilem je tyto pokyny replikovat na jednotlivych uzlech
m VSechny uzly budou mit stejnou posloupnost pfikazl a stejny stav
Distribuovany stavovy automat (jak funguje)
m Klient kontaktuje primarni repliku, ta si jeho pokyn zapiSe do logu a posle
zpravu o zméné stavu ostatnim replikam
m Ty si zapiSou taky zménu do svého stavu a zpatky potvrdi primarni
replice, Zze zpravu dostali
m Potom co primarni replika dostane dostate¢ny po&et shodnych odpovédi
(vice jako V%), tak zaznam, ktery ma v logu povazuje za schvaleny a na
zakladé ného si muze upravit svuj vnitfni stav
m Aplikace
e Cluster management systémy (Borg u Googlu)
Cilem protokoll je z pohledu klienta, aby klient komunikoval s celou mnozinou
distribuovanych uzll jako s jednim spolehlivych stavovym automatem

Part-Time Parliament

Paxos

Vratime se k Lamportové ¢lanku na urovni pohadky
Poslanci
m Schvaluji zakony
Posli&ci
m Dorucuji zpravy mezi poslanci
Poslanci i posli¢ci jsou nespolehlivi
m Mohou na Cas i na trvalo odejit
Poslicci jsou davéryhodni
m KdyZ doruéi, tak neméni zpravu
Posli¢ek muze dorucit zpravu nékolikrat
Poslanci nejsou ochotni zlistat na celé jednani
Poslanci si zapisuji nesmazatelnym inkoustem vSechny zakony, o kterych jednali
m (V informatice perzistentni datové ulozisté)

Role (jednotky v ramci algoritmu, nejsou to uzly, jeden uzel ma obvykle vice roli)
m Client

e Zadava pozZadavky na zménu (primarné komunikuje s
proposerem)
m Proposer
e Navrhuje nové stavy
e Resi konflikty
e Jsou replikované
e V kazdém okamZziku je jeden proposer primarni
o Primary proposer = Leader
o Resi, které navrhy jsou pravé platné
m Acceptor
e P¥fijimaji nebo odmitaji navrhy
e Jsou sdruzeni v quoru (viz nize)
m Learner
e Reprezentuji repliky, které provedou zménu dle zadaného pfikazu
o Quorum
m Libovolna nadpolovi¢ni podmnozina Acceptort
m Libovolna zprava je platna az po pfijmu celym quorem
o Ballot numbers
m Pro detekci konflikth a uspofadani pfikazl jsou pouzité sekvenéni Cisla
m Jedna se o dvojici [num, process id]
e Hlasovaci Cislo, proposal number
o [n,p]>[n,p)]l
o n >n, Vv (n1=n2/\p1>p2)
e Jednoznaéné definované globalni usporadani
m Volba Ballot
e Kazdy uzel si eviduje posledni znamy Ballot [n, p]
e Pak proces p voli [n + 1,p]
m Procesy akceptuji pouze zpravy s nejvyssim Ballotem
o Kazda role si udrzuje (lokalné) nékolik udajd
m Posledni znamy Ballot (LastBallot)
e (navrh)
m Posledni akceptovany Ballot (AcceptBallot)
e (potvrzen quorem acceptor()
m Posledni akceptované hodnota (AcceptValue)
e (udrzuje se s poslednim akceptovanym Ballotem)
o Zakladni Paxos protokol
m Tohle je made simple of made simple
Rozdélen na dveé faze
V prvni faze jde hlavné o zvoleni leadera
V druhé fazi jde o propagaci hodnoty
Kazda faze ma dvé Casti
e Kazda ¢ast zhruba znamena zaslani zpravy
1. Faze

e Proposer
o Zvoli si novy ballot Ballot < [Ballot.num + 1, myld]
o PoSle zpravu Prepare s Ballot vSem acceptorum (staci
odeslat alespon quoru)
e Kdyz acceptor pfijme zpravu Prepare
o Tak se podiva podle ballotu jestli to neni zastarala zprava
— kdyz jo, tak mu vrati Reject
m Zprava je zastarala, pokud bal < LastBallot
Zapamatuje si ballot Cislo (LastBallot < bal)
Vrati zpatky proposeru zpravu Promise s hodnotami
bal, AcceptBallot, AcceptValue
e Cilem je, aby proposer, ktery poSle nékolik zprav Prepare, dostal
alespon quorum Promisti — prohlasi se za vitéze voleb a
pokracuje druhou fazi
m 2. faze
e Akceptace hodnoty
e Proposer potom, co dostane dostatecny pocet Promisu, tak posle
zpravu Accept s Ballot a myVal vSem acceptorim
o Musi respektovat nejvySsi navrh
m myVal « AcceptValue s nejvy3Sim AcceptBallot
o Pokud zadny navrh od acceptort na hodnotu neni, tak
muze pouzit vlastni navrh na hodnotu
e Acceptofi kdyz dostanou takovu zpravu Accept
o Zapamatuji ballot i hodnotu v ni poslanou bal, val
o Dale tyto hodnoty preposlou vSem proposeriim a
learneriim ve zpravé Accepted, pokud bal > LastBallot
(ballot pfijmuty ve zpravé Accept neni zastaraly)

— 61—

ﬂ\b, Zékladni Paxos prOtOkOI [... made simple of made simple]

® 1. faze - volba Leadera

Proposer if isLeader s =
podminka: alespon
: Prepare Ballot < [Ballot.num+1,myId] %I: Quoru Acceptort
J

send Prepare(Ballot) Acceptorim

Acceptor receive Prepare(bal) ;:‘::fi‘;t’r’:y
: Promise if bal = LastBallot p : {
posledni
LastBallot « bal akceptovana hodnota |
send Promise(bal, AcceptBallot, AcceptValue)
*® 2, faze - akceptace hodnoty —| opt.: else Reject]
Proposer Quorum * receive Promise(bal, ab, av) T e
: Accept if 3av# @ myVal < av s nejvyssSim ab nejvyssi navrh
else myVal «— :'L jinak vlastni navrh J
send Accept (Ballot, myVal) Acceptoriim
Acceptor recieve Accept(bal, val) o —
: Accepted if bal = LastBallot i L

R AcceptBallot « bal; AcceptVal «— val“% akceptace navrhu]
presisien .
send Accepted(bal, val) véem Proposerlim a Learnerlim

Paxos - zakladni komunikace

client proposer acceptor learner
l—> Request

- Prepare(1)

——T <« | Promise(1,0,0)

¥—) > Accept(1,x) ’

$ T2 33 Accepted(1,x)
< * Response

m Vypadky

Kdyz vypadne jeden acceptor tak se nedé&je vubec nic
Béh algoritmy by byl pozastaven, pokud acceptofi by nebyli
schopni dat dohromady quorum
Uplné stejné se chova vypadek learnera
o Dokud je k dispozici alespori jeden learner
Kdyz vypadne primarni proposer
o Zvoli se novy leader, ktery bude mit ballot o jedna vétsi
Jesté je problém, kdyby se stary proposer, ktery dostal quorum
Promist probudil potom co novy dostal také quorum Promisa (ani
jeden z nich nestihl odeslat Accept
o Viz obr. nize
o Algoritmicky neni zaru¢ena konec€nost pfi nejhorSim
mozném zpusobu prokladani
o Konecénost neni deterministicka, ale dochazi k
randomizaci, takze to nékdy prosté skonci
o Prakticky to je OK

client proposer acceptors

Prepare(1)
<€ ? Promise(1)
.] L > P i
Gvodni > repare(2)
pLeader € 9 Promise(2)
oziven ¢ > Prepare(2)
< T Reject(2)
- > Prepare(3)
< 7 Promise(3)
o = Accept(2,vb)
€« Reject(3)
L > Prepare(4)
D m— Promise(4)
& > Accept(3,va)
< G T Reject(4)

m Pozorovani
o Faze1
o Neslouzi k zasilani hodnot
o Slouzi k detekovani leadera
o Faze?2
o Leader navrhuje hodnoty s nejvy38im Ballotem z faze 1
e Aby cely protokol fungoval je nutné po dobu vypadku zachovat
stav roli
o Perzistentni ulozisté (nesmazatelny inkoust)
e Jakym zplsobem posilat Accepted zpravy learneriim
o Dvé moznosti
m Kazdy learner ma pfidéleného acceptora
m Kazdy acceptor posila Accepted zpravu kazdému
learnerovy (kvadraticka komunikacéni slozitost)
Existuje formalni dikaz v TLA basic varianty Paxosu
Je potieba znat princip algoritmu a chovani pfi vypadcich jednotlivych roli
na zkousku i statnice
Pouziti v distribuovaném planovagci
m Implementujeme cluster management system
m Umoznuje spousténi jobu

— 64—

m Mame nékolik replik
e Kazda zastava vSechny role (proposer, acceptor, learner)

bézny bezchybovy pribéh:

1. Leader posle ostatnim replikam Prepare s novym cislem jobu

2. ostatni repliky vrati Promise (pokud nevidéli job s vétsim cislem)
3. Leader pridéli jobu prostredky a posle Accept

4. ostatni odpovi Accepted a zaznamenaji stav, Leader spusti job

o Zakladni verze Paxosu je velmi malo pouzitelnd — nepouzivana
m Slouzi ke konsensu pouze jedné hodnoty
m Projiného klienta musi cely protokol probéhnout znovu
o VylepSeni Paxosu
m Multi-Paxos
Kontinualni opakovani
Zaklad typické implementace
2. faze se opakuje tak dlouho, dokud nedojde k n&jaké havarii
ZaloZen na pozorovani, Ze prvni faze je nutna jenom v pfipadé
havarie
e Rozhodli se v Googlu implementovat
o Misto 1 az 2 tydnu jim to trvalo 3/4 roku
e 2008 Paxos Made Live
o C¢lanek o tom, jak je realna implementace odliSna od
abstraktniho popisu
e 2015 Paxos Made Moderately Complex
o Clanek o formalnim popisu a verifikaci Multi-Paxosu
m Cheap Paxos
e Tolerance F havarujicich uzld pfi F + 1 uzlech celkové
e Potfeba dalSich F uzll pfipravenych v zaloze
m Fast Paxos
e Optimalizace doru¢ovanych zprav
m Generalized Paxos
e Optimalizace pro komutativni operace
m Byzantine Paxos
e RozSifeni pro zaSkodniky
e Ochrana pfed nekorektnim chovanim
e Mezifaze Accept a Accepted je pfidana verifikaéni faze, kde se
zpravy oveéfuji
o Paxos - aplikace
m Jednim z prvnich byl Google
m Google Chubby
e Distribuovany zamykaci systém
m Cluster management systémy

e Google Borg
e Omega
e Kubernetes
o Paxos - nedostatky
m Témér 20 let de-facto standardem pro distribuovany konsensus
m TéZko pochopitelny
m Narocna implementace
m Nekompletni popis
e Vlbec neni jasné jak implementovat
m Realna implementace neverifikovatelna

Video 11

e PrestozZe je Paxos pfes 20 let standardem, je velmi kritizovany pro jeho
o Komplikovanost
o Naro¢nou implementaci
o Nekompletni popis (kompletni popis existuje pouze pro zakladni verzi)
e RAFT (Replicated And Fault-Tolerant Protocol)
o 3x byl ¢lanek odmitnut
o Stal se popularnim, protoZe hlavni motivaci pro jeho vytvofeni byla
m Srozumitelnost
m (relativni) snadnost implementace
e Implementace Paxosu jsou jednotky, rok po vydani RAFTu jich

bylo stovky
o Realné pouzivany v celé fadé frameworkU, ackoliv se jedna o mlady protokol
o Role
m 3 zakladni, jedna z nich je doCasna
m Leader
e Primarni replika, ktera navrhuje hodnoty
m Follower
e Akceptuje hodnoty
e Jsou pouze pasivni (Cekaji na zpravu od leadera)
o Hlidaji, jestli pravidéIné pfichazi heartbeat od leadera
m Candidate

e Docasné pfi volbé leadera
o Hlavni komponenty
m Volba leadera
e Alespori jeden z followert zdetekoval havarii (nedostal heartbeat)
m Replikace logu
e Normalni operace
e Leader pfijima pozadavky od klient(, pfida je do vlastniho logu
e Log replikuje followerim
m Udrzovani konzistence
e Jednotlivé uzly se prubézné udrzuji konzistentni s tim co aktualni
leader si udrzuje ve svém logu

o Term
m Zaklad synchronizace
m VZdy zacCina volbou leadera
e Pokud je uspésna, tak po celou dobu termu je leader jednoznacné
zvoleny a schvéleny followerama
e Kdyz se nepovede, tak term ani nezacne

(Term 1

<
[neuspésna volba J

m V ramci termu maji vSechny uzly, jednoznaéné uréeného leadera
m Kazdy uzel si udrzuje lokalni CurrentTerm, kdyz se odliSuje od jakékoliv
zpravy, kterou dostane
e [ncomingTerm > CurrentTerm
o PFijemce je zaostaly a promes$kal volbu nového leadera
o Potfebuje se zaktualizovat
o [ncomingTerm < CurrentTerm
o Zpravu zahodi, protoze to je zprava od nékoho
opozdéného

o Heartbeat
m Leader periodicky zasila zpravy followerim
m Timeout — volba nového leadera
e Obvykle v fadech stovek ms

1 start

.~ Follower

’
! ‘L no heartbeat
1 - <
! | Candidate |
‘ |
3 v

\'[Leader]

o Normalni pribéh RAFTu
m Klient posle zpravu leaderovi
m Leader si zpravu zapise do logu
m VSem followerim posle zpravu AppendEntries a ¢eka
e Piikaz co ma v logu neaplikuje, ma ho jenom zapsany

— 67 —

m Potom co na AppendEntries pfijde odpovéd od quora followeru (libovolna
vétsina followert), tak zdznam z logu se stane commitovanym a aplikuje
ho do svého lokalniho stavového automatu

m Leader oznamuje followerm commitované zaznamy v naslednych
AppendEntries

m Follower po pfijmu commit provede pfikaz ve svém stavovém automatu

e Postupné followefi nasleduji pfechody stav(l leadera
o Havarie nebo zpozdéni followera
m Leader pfeposle zpravu AppendEntries opozdénému followeru

o PFi bézném provozu staci jedna zprava od leadera k follower(m a jeji potvrzeni

pro jednu operaci, ktera je vyvolana klientem
o Log
Pro vlastni synchronizaci
Kazdy uzel si eviduje svUj vlastni
Indexovany
V kazdém zédznamu je dvojce Cislo termu, pfikaz/data
Rust logu je nerovnomérny
Persistentni

e Musi se zotavit po havarii

w 1 2 3 4 log index]
S1 T
---- A Leager-tem3)

S2 1 il
add3 mul 2 subl d|v3

3
~add3 mul 2 subl d|v3

S4 1

ss | 1 2 2
add3 mul2 sub1l div3
< = >
[committed -]

Followers]

o Udrzovani konzistence logu
m Commit je pro udrzovani konzistence maximalné dualezity

<
1
S1 1

add 3
S2 1
add 3
S3 1
add 3
S4 il
add 3
S5 ‘ 1
add 3

2 3

il 2
mul2 subi1

1 2
mul2 subl

|l 2
'mul2 sub1
mul2 subl

| Leader - term 2 l

Mozné nekonzistence

® havarie - preruseni komunikace

® Leader - zaznamy bez potvrzeni

® jinde mozny novy term

4 log index]
2 I

dIV 3

---- =

Followers]

2 2 2 2
div3 mul3 add1l div2

predpoklada spravnost

Konzistence log(
® zaznam se stejnym indexem a termem
» vzdy shodna hodnota
« vSechny predchazejici hodnoty shodné
® commitovany zaznam
* vSechny p‘r’edcha’zejl’ci hodnoty shodné
» vSichni budouci Leadefi ho musi obsahovat

o AppendEntries — jak pfesné funguje
m Kromé nové hodnoty v ni leader posila i index a term pfedchazejiciho
zadznamu
m Kdyz tuto zpravu pfijme follower, tak zkontroluje, Ze index a term souhlasi
s tim co si on eviduje, jinak ji odmitne
Tim dojde ke kontrole, Ze ma s leaderem stejny log
m Leader potom posle novou zpravu, kde bude vice informaci (pfedchozi
index a termy), zkratka to, co pfijemce neeviduje

AppendEntries - kontrola konzistence

<index, term> predchazejicicho zaznamu
Follower: <index, term> musi souhlasit, jinak reject

- -+ | eader: nova zprava s nizsim indexem
- obsahuje vSechny novéjsi zaznamy

1 2
1 1
leader a3 m2
follower 1 1
pred as m2
po 1 1
a3 m2

Volba leadera

o
|

o

O

4 1 2 3| 4 5 1 2 3 4 5
1 1 2 1 P 2
a3 m2 si a3 m2 si
1 1 @ 1 1 1 q:i) 1 1 1
a3 m2 m3 s2 a3 d2 m3 s2
3 1 1 1 1 1 1 1 2 3
al a3 m2 d2 m3 s2 a3 m2 sl | al

V pripadé, kdy dojde k havarii — dostate¢nou dobu nedojde heartbeat

Follower, ktery to zjisti se stane kandidatem

Zahaji se nova volba

Kazdy kandidat hlasuje sdm pro sebe

Potom v8em ostatnim uzlim posle zpravu RequestVote

Zprava RequestVote obsahuje posledni zaznamenany <index, term>

kandidata

PFijmuti zpravy RequestVote

Zprava RequestVote obsahuje vySsi term nez ma pfijemce — je

opozdén (nepfisli mu n&jaké zpravy)

Pfesune se do role followera

Posle hlas

Pokud je term Zadatele neaktualni — odmitne dat hlas

Kdyz pfijde vétSinovy podet hlasli (odpovédi na zpravu RequestVote), tak

se stane leaderem

Pokud nedojde k volbé za stanoveny timeout tak nastane randomizovana

pauza
[J

[]
©)

O

V8echny uzly si nastavi budik na €as [T, 2T] (v fadu stovek ms)

DalSi protokoly
Existuji i dalSi protokoly kromé Paxosu a RAFTu
ZAB (Zookeeper Atomic Broadcast Protocol)

m ZaloZen na principech Paxosu

— 70—

m Technické detaily jsou odlidné
o Viewstamped Replication
m Jesté horsi nez Paxos

e \yuZiti konsensu

Video 12

o Replikace sluzeb

m Zakladni motivace
o Replikace logu

m V DB ajinych distribuovanych ulozistich
o Synchronizagni sluzby

m Tradi¢né se to délalo pomoci zamki

m V Googlu postavili na Paxosu distribuovany zamkovy systém Chubby
o Bariérova orchestrace

m Kdyz délame vypocet na rozsahlych datech

m SlouZi k synchronizace jednotlivych uzli mezi fazemi vypoctu
o Configuration management

m Distribuovana vysoce spolehliva sluzba pro ukladani KeyValue paru
o Obecné jsou algoritmy pro konsensus nejpouzivanéjSim a nejviditelnéjSim

vysledkem teorie distribuovanych systému

e Dnes distribuovana sdilena pamét
e Paralelni vypocCety

o Multiprocesory
m Mala sSkalovatelnost, hw naroéné, drahé
m Mame sdilenou pamét
o Multicomputery
m (typicky distribuovany systém, kde uzly jsou nezavislé)
m Snadno dostupné
e Snadno implementovatelné
m Komunikace a synchronizace neni prakticky dobfe zvladnuta
paralelnich vypoctl neni jednoducha
e Museli bychom vSechno fesit pres néjaké zpravy
e Pokus o feSeni — distribuovana sdilena pamét
o 1986 Li & Hudak — DSM
m Jeden z prvnich &lankad

e Hlavné v 90. letech byl velky vyvoj v oblasti distribuované sdilené paméti

e Nic

prakticky pouzitelné
o Hlavni pfekazka byla vykonnost

e Dnes jsou sité jiZ mnohem vykonnéjsi

o Masivnim narlstem cloudu a clusterovych infrastruktur

— 71—

Copy
operations

| 4
i 4

v

»

Server: Initiator Server: Target \ (Server: Initiator f Server: Target

Application ~ @ Application m Application
(I sockets TGS Sockets
w Transport Protocol Driver Transport Protocol Driver
NIC Driver NIC Driver NIC Driver NIC Driver
\ // \ \ \ / \ Vi
b . B RDMANIC 3 by RDMANIC 3o
Network Network

Vykonny sitovy HW, ktery podporuje RDMA
o Remote Direct Memory Access
m Sitova karta pfimo umozni zapsat data do vysledného bufferu, kde jsou
oCekavané
Pfenos po siti je dnes o nékolik Fadd rychlejsi
Latence je mnohem lepsi
Dnes distribuovana sdilena pamét narista na popularité
o Soucasti distribuovanych a cloudovych framework(
Muzeme rozlisit tfi rovné, kde je distribuovana pamét implementovana
o Distribuované strankovani
o Distribuované sdilené proménné
o Distribuované objekty
m Pro objektové frameworky
Konzisten¢ni model
o Specifikace, co implementace musi splfiovat vzhledem k operacim &teni a zapis
m Co se pfesné ma stat pfi zapisu a ¢teni
o Primitiva
m Read, Write
m Sdileny adresovy prostor

Znacen:

W(x)a zapis hodnoty a do proménné x
R(x)a pri ¢teni z proménné x je vracena hodnota a

S synchronizace

Acq vstup do kritické sekce (Acquire)
Rel vystup z kritické sekce (Release)
Pi proces i

Striktni konzistence (nékdy téz atomicka konzistence)
o Prvni konzisten¢ni model, o kterém si budeme povidat

o O O O O ©O

a=1;

Jakékoliv ¢teni z adresy x vrati hodnotu uloZenou pfi poslednim zapisu na adresu
X
m Tradi¢né intuitivné zajisténa na jednoprocesorovych systémech
Zajistuje absolutni Casové usporadani
Je nejsilngjSi ze vSech modelu, o kterych si budeme povidat
V38echny zapisy jsou okamzité vSude viditelné
Podminka: musi existovat presny globalni ¢as
Idealni pro programovani — intuitivné ho oCekavame
V distribuovaném systému nedosaZitelné

a—2; pPEiRL{g) ; — J

\L vytiskne vzdy 2

e Pro striktné konzistentni model plati nasledujici

P1: W(x)1
P2: R(x)1

‘ striktni konzistence J

e Pro pamét, ktera neni striktné konzistentni plati nasledujici

P1: W(x)1
P2: R(x)0 R(x)1

[pamét’, ktera neni striktné konzistentni J

e Sekvencéni konzistence

o

o

O néco slabsi model
V8echny operace na jednom uzlu jsou vdemi uzly v distribuovaném systému
vnimané ve stejném poradi
V8echny operace jsou sefazeny do né&jakého jednoho rozvrhu, ktery vSechny
uzly respektuji
Distribuovany systém se v zasadé chova jako centralizovany systém

m Oproti striktnimu modelu neni v sekvenénim konzistenci nutna

synchronizace s fyzickym ¢asem

Kdyz se na dvou riznych uzlech provede zhruba ve stejny fyzicky ¢as néjaka
operace, tak implementace jednu z téchto operaci prohlasi za dfivéjsi (z hlediska
sekvenéniho rozvrhu) a druhou za pozdéjsi a je jedno, ktera byla fyzicky
provedena dfive

m Na vSech uzlech je ale dodrzovan stejny rozvrh operaci
Stale se v ném ale dobfe programuje (moc nepozname rozdil oproti striktni
konzistenci)

— 73—

o

Implementace distribuované sdilené paméti v tomto modelu je v celku
jednoducha — pouZitelné
o Velikost zpozdéni samotnym modelem neni nijak zaruéena
m Implementace tohoto modelu mize pozdrzet nékteré zapisy o nékolik
sekund/minut, to je nepfijemné chovani, které muze byt problémové

Pozdéji uvidime vylepSeni tohoto modelu o synchronizaci s fyzickym ¢asem

Nize je klasicky pfipad race condition, ktery mize nastat v tomto modelu
P1: W(x)1 P1: W(x)1
P2: R(x)0 R(x)1 P2: R(x)1 R(x)1

dvakrat spustény tentyz program — muze dat rizné vysledky

e Podivame se na jednoduchy programek a jak se na ném sekven&ni konzistence chova

P1: P3:
a=1; c=1;
print(b,c); print(a,b):;

Sest instrukci - 6!=720 moznych usporadani
pouze 3*(5!1/4)=90 nenarusuje konzistenci

a=1l; a=1l;
print(b,c) ; c=1; a=1l;
print(a,b); c=1;
print(b,c);
c=1; c=1; a=1; print(b,c) ;
print(a,b) ; print(a,b) ; print(b,c); print(a,b) ;

Vystup: (skutecny vystup, napf. na obrazovce)

001011 1011 010111 1111
Signatura: (vystupy jednotlivych procesl v pevném poradi)
001011 101011 110101 111111

e Signatura se pouziva pro zkoumani distribuovanych rozvrha
e Signatura
Vystupy jednotlivych procesti v pevhém poradi
PomUze ovéfit, jestli vystup odpovida sekvenéni konzistenci
Konkrétni prolozeni instrukci procesq, a tim i pofadi pamétovych referenci
Napf. 000000 neodpovida zadnému sekvenénimu rozvrhu
m Kazdy rozvrh musi dodrZovat to, Ze se nejdfive zapiSou hodnoty a pak se
prectou

o O O O

— 74 —

e napr. 000000, 001001 neodpovidaji Zzadnému sekvencnimu prolozeni instrukci

P1: W(a)l R(b)0 R(c)0
P2: W(b)1 R(a)l R(c)0
P3: W(c)1 R(a)0 R(b)1

Prvni dvé nuly Fikaji, Ze proces P1 vytisknul nuly
Na zacatku do proménné a P1 zapsal jedniCku a potom vytisknul dvé nuly
10 znamena, Ze druhy proces vytisknul jedni¢ku pro proménnou a a 0 pro
proménnou ¢
Cteni c muselo byt rozvrzeno pred zapisem ¢ = 1
01 znamena, Ze proces c pifeCetl0za, 1z b
Formalné je dokazano, ze vykonnost sekvencni konzistence neni pfilis vysoka
m Je mozné optimalizovat bud pro ¢teni, nebo zapis
m Vidyaler +w>t
e 1 ... Cas Cteni
e w ... Cas zapisu
e t ... Cas pfenosu zpravy
m Obvykle se optimalizuje pro operaci ¢teni (pouziva se mnohem vice)
e Externi konzistence (externi jako synchronizace s externim ¢asem)
o RozSifeni sekvenéni konzistence
o Vhodné pro prostfedi, kde nechceme obrovské zpozdéni instrukci oproti
fyzickému provadéni
Synchronizace s externim ¢asem
Na modernich clusterovych systémech, kde synchronizace hodin je pfesna,
zpozdéni nabyva v sekvenénim rozvrhu oproti fyzickému €asu v fadu milisekund
Pouziva se pro distribuované databaze
Pro jakékoliv dvé transakce T, T,

m Kdyz T, zacne operaci “dostate¢né pozdé&ji” (tj. po tom, co T, ukon¢i
operaci commit), tak potom logicky ¢as T,> logicky Cas T,

e Kauzalni konzistence
o (Viceméné se hledali modely, které jsou vykonnéjSi nez sekvencni konzistence)
o Kauzalné zavislé zapisy musi byt vidény vdemi uzly ve stejném porfadi.
Konkurenéni zapisy mohou byt vidény v rizném poradi.
o Oproti sekvencnimu modelu neni zapotfebi, aby vSechny uzly dodrZzovaly jeden
stejny globalni rozvrh
VSechny rozvrhy ale musi dodrZovat kauzalitu
Zapis hodnoty do pamétového mista ~ odeslani zpravy
Cteni hodnoty z pamétového mista ~ doruéeni zpravy
Kauzalné zavislé zapisy

o O O O

— 75—

m Pokud W(x)a a (druhy proces) R(x) W(y)b, pak W(y)b je kauzalné
zavisly na W(x)a (pfes R(x))
o Implementacné slozitéjsi
m VyZzaduje udrzovani grafu zavislosti zapisu na ¢teni

o Potencionalné mnohem vykonnéjSi — nemame jeden globalni rozvrh

P1: W(x)1
P2: W(x)2
P3: R(x)2 R(x)1
P4: R(x)1 R(x)2

‘ kauzalné konzistentni rozvrh]

port

P1: W(x)1
P2: R(x)1 W(x)2
P3: R(x)2 R(x)1
P4: R(x)1 R(x)2

‘ neni kauzalné konzistentni]

e PRAM (Pipelined RAM) konzistence
o Zapisy provadéné jednim uzlem jsou vidény ostatnimi uzly v poradi provadéni.
Zapisy ruznych uzli mohou byt vidény riznymi uzly rizné.
o Ukazalo se, ze u kauzalni konzistence ten narlst vykonu neni tak drasticky a
implementace je o hodné slozitéjsi
Vymysleli se dalsi modely
Jednoduchy na implementaci
Zadny globalni rozvrh neexistuje
Zapisy ruznych uzld mohou byt vidény v rizném poradi
Je nutné dodrzovat poradi zapisu z jednoho zdroje
m Respektuje se lokalni rozvrh instrukci, ale proloZzeni neni
synchronizovano
o Je mozné to pouzit pro sdileni paméti ale ne pro synchronizacni ucely
e Slow Memory
o Zapisy jednim procesem do jednoho mista musi byt vidény ve stejném poradi
o NefeSi synchronizace mezi uzly
o Zajistuje usporadani jenom do jednoho pamétového mista
e Existuji jesSté slabsi modely
o Eventual Consistency
m “KdyZ je pfilezitost, tak je to konzistentni”

o O O O O

— 76 —

e VSechny pfedchozi konzistenéni modely jsou uréeny pro implementaci na arovni virtualni
paméti, kde framework nema k dispozici zadné dalSi informace a musi propagovat
vSechny zapisy vSem procesim

e Malo efektivni

o Ne v8echny uzly musi sledovat vSechny zapisy (natoz jejich pofadi)
e Efektivnéji je mozné implementovat distribuovanou pamét na vyssi urovni — knihovny a

frameworky
o Znacnou nevyhodou je ztrata transparentnosti narozdil od distribuovaného
strankovani

e Konzistenéni modely se synchronizaéni proménnou
o Specialni druh proménné — synchronizaéni proménna
m Pouze pouzivana pro synchronizaéni ucely
m S ... synchronizace
m Acq ... vstup do kritické sekce
m Rel ... vystup z kritické sekce
e Weak consistency
Sdilena data jsou konzistentni po synchronizaci
1. PFistup k synchronizacnim proménnym je sekvencéné konzistentni
2. Pristup k SP neni povolen, dokud neskonci v§echny predchozi zapisy
3. Pristup k datdim neni povolen pred dokoncenim v8ech pfedchozich pristuptim
k SP

+ zavedeni synchronizacni proménné (synchronizacni operace)

o

O O O

e bod 1: vSechny procesy vidi vSechny pristupy k SP ve stejném poradi
e bod 2: pred pristupem k SP budou dokonceny vsechny predchozi zapisy
e bod 3: pred ¢tenim dat jsou dokonceny vsechny predchozi pristupy k SP

+ provedenim synchronizace pred ¢tenim se zajisti aktualni verze dat

o Neni nutné propagovat vSechny zapisy
o Model neumozriuje rozlisit vstup a vystup z/do kritické sekce
e Release consistency (vystupni konzistence)
o Sdilena data jsou konzistentni po opusténi kritické sekce
o 1. Pfed pristupem k datum musi byt tspésné ukonceny predchozi Acq() procesu
o 2. Pfed provedenim Rel() musi byt ukonéeny v8echny pfedchozi zapisy i ¢teni
provadéné procesem
3. Acq() a Rel() musi byt PRAM konzistentni
Po Acq() jsou vSechny lokalni kopie aktualni
Po Rel() jsou propagovany zmény ostatnim procesum
Pfi spravném parovani Acq() a Rel() je vysledek vypoctu ekvivalentni sekvenéné
konzistentni paméti
o Za cenu ztraty transparentnosti je pfistup k distribuované sdilené paméti
ekvivalentni k sekvenéné konzistentnimu modelu

o O O O

P1: Acq W(x)1 W(x)2 Rel

P2: Acq R(x)2 Rel

P3: R(X)l
release consistency J ﬂ

L bez pfistupu k SP J

libovolné stara hodnota

o MoZnosti implementace
m Eager release consistency
e Po Rel() se propaguji zmény vSem procesim
e Optimalizace pfistupové doby
e Naroc¢néjsi na komunikaci po siti
e Optimalizace pfistupové doby
m Lazy release consistency
e Po Rel() se nic nepropaguje, az pfi Acq() jiného procesu
e Optimalizace sitového provozu
e Pomalejsi pfistupova doba
e Entry consistency (vstupni konzistence)
o Sdilena data vazana na kritickou sekci jsou konzistentni pfi vstupu do kritické
sekce
Zavadi exkluzivni a neexkluzivni pfistup k synchronizaéni proménné
Operace Acq() a Rel() nejsou globalni ale jsou lokalni pro pamét'ovy region
m Co je pamétovy region je implementacné zavislé (stranka, objekt, ...)
o 1. Acq() k SP neni povolen, dokud nebyly provedeny vSechny aktualizace
sdilenych dat
o 2. Exkluzivni pFistup k SP (zapis) je povolen pouze pokud Zadny jiny proces
nepristupuje k SP, a to ani neexkluzivné (Eteni)
o 3. Po exkluzivnim pfistupu k SP si pristi neexkluzivni pfistup libovolného procesu
k SP musi vyZadat aktuélni kopii dat od predchoziho viastnika SP

+ sdilena data jsou vazana na SP, pfi pristupu se synchronizuji pouze tato data
+ pristup k datim a SP mdze byt exkluzivni (RW) nebo neexkluzivni (RO)
+ kazda SP ma vlastnika - proces, ktery k ni naposledy pristupoval

+ vlastnik mze opakované vstupovat a vystupovat z k.sekce bez nutnosti komunikace
+ proces, ktery neni vlastnikem, musi pozadat o vlastnictvi

P1. Acq(Lx) W(x)1 Rel(Lx)
P2: Acq(Lx) R(x)1

P3:
[Nezavisla data x a y E/

— 78 —

bez

. SP

- S P -

o Jednotlivé regiony spolu nijak nekomunikuji
o Je mozné pfistupovat k riznym pamétovym oblastem, aniz by se ovliviiovaly
m Jeden zamek na v8echny data = zbyte€né prodlevy pro synchronizaci dat,
které spolu nesouvisi
o Dame logicky souvisejici data do jednoho pamétového regionu, ten je chranén
pomoci Acq() a Rel()
Shrnuti konzistenénich modelu
o Ukazali jsme si celou Fadu modelt
o 2 tfidy
m BezSP
e Pro low level memory management na urovni virtudlni paméti
e Transparentni
m SSP
e Na vys$Si urovni na drovni middlewaru, frameworkd a knihoven
e Ztratime transparentnost
e V/y38i vykonnost

Konzistence | Vlastnosti

.| Strict Absolutni Casove usporadani

Sequential | Vsechny udalosti jsou vidét ve stejném poradi, mozna synchronizace s ext. casem

Causal Kauzalné vazané udalosti jsou vidét ve stejném poradi

PRAM Udalosti jednoho uzlu jsou vidét ve stejném poradi

Slow mem | Zapisy jednoho uzlu na jedno misto jsou vidét ve stejném poradi

Y\ | Weak Sdilena data jsou konzistentni po synchronizaci
‘ Release Sdilena data jsou konzistentni po opusténi kritické sekce
Entry Sdilena data vazana na kritickou sekci jsou konzistentni pri vstupu do kritické sekce

Nyni se budeme vénovat moznostem implementace distribuované sdilené paméti a
distribuovanému strankovani
Distribuované strankovani
o Obdoba virtualni paméti
m Operace &teni a zapisu jsou pro systém transparentni
m Kdyz proces pfistupuje k nenamapované strance nebo ke strance, ktera
je pouze read-only a chce do jit psat, tak dojde k pferuSeni — obsluha
m V obsluze se déje cela implementace distribuovaného strankovani
(synchronizace, nacteni a koordinace s ostatnimi uzly)
o Problémy
m Jak nalézt stranku
e Stranka mulze migrovat mezi uzly, data se musi nalézt
e Navic pro nékteré konzistencni modely mohou mit nékteré uzly
staré verze této stranky
e Centralizovany manager

— 79—

o Jeden centralizovany prvek spravuje informace o tom, kde
se nachazi stranky
o Opét jsme se dostali k centralizovanému prvku — je nutné
si zde uvédomit, ze sdilené strankovani budeme
pravdépodobné pozadovat u men$iho poctu uzlu, které
jsou velmi tésné spfazené
o Nevhodné pro rozsahlé systémy
e Replikovany manager
o Pokud by nam centralizovany nestacil
o Jejich vice a kazda z replik obsahuje jednu ¢ast ze
sdileného virtualniho adresového prostoru
o Jak najit vhodného managera?
m Typicky jednoduché
m Napf. Spodni 4 bity adresy stranky mohou slouzit
jako index manageru, ktery je za stranku
zodpovédny
m Nebo je mozné pouzit hash stranky
e Broadcast
o Opét jsme na lokalnim malém prostfedi
o Obejdeme se bez managera

Sprava kopii
e Co délat s kopiemi pfi &teni / zapisu
e Copyset

o Kazdy vlastnik stranky udrzuje mnozinu uzld, ktera ma tuto
stranky také namapovanou

o Kdyz je potfeba stranku upgradovat (doSlo k zapisu) —
vSem, co maji kopii poSlu zpravu (typicky invalidaéni)

e Broadcast

o Kdyz neni copyset implementovany
Uvolfiovani stranek

e Jakou stranku uvolnit?

e Pokud uzel ma stranku, ktera neni vlastnéna a potfebuje uvolnit
misto, tak stranku bez jakékoliv synchronizace a komunikaci ji
zahodi

e Pokud jsme vlastnikem a vime (napf. pomoci copysetu), ze je
stranka replikovana, tak mizeme prenést vlastnictvi na jiny uzel a
stranku zahodit

e LRU strategie

Falesné sdileni
e Typicky problém v distribuovaném prostredi
e Dvé rlizné sady dat jsou Cisté nahodou umistény na stejné strance

Sdilena s‘[rénka\ Nezavislé pro mélmé\

\

A _...._I\J—\ |

B i B i
Kod pristupugici k A Kod pristupujici k B

e Jde Castelné feSit prevenci

o Kompilator a linker mohou umistit data, ktera spolu nijak
nesouvisi na dvou riznych strankach
e Sekvencné konzistentni distribuované strankovani
oV ramci jednoho distribuovaného systému je jeden globalni rozvrh véech operaci
¢teni a zapisu
o Stranka je namapovana na zapis a vlastnik je pfimo ten uzel, ne kterém bézi
proces, ktery chce pfistoupit ke strance
m Nejjednodussi
m Proces provede instrukci zapisu
m Bez interakce s frameworkem
o Stranka je namapovana na ¢teni
m Operace Cteni probéhne stejné jako v pfedchozim pfipadé
m Je jedno, kdo je vlastnikem a kde vSude ta stranku je
m Operace zapisu vyvola vypadek
e Pokud jsem vlastnikem
o Framework povysi stranku na zapis
e Pokud nejsem vlastnikem stranky — pro zapis potfebuiji vlastnictvi
o Vlastnictvi se musi pfenést
o Casto zahrnuje komunikaci s n&jakym managerem stranek
o Pak zbytek funguje stejné jako zapis do read-only
vlastnénych stranek
o Stranka neni namapovana
m Synchronizace se ujme framework
m V okamziku, kdy najdu vlastnika
e Pokud vlastnik ji ma jenom na Cteni, tak pozadam o kopii
o Pro ¢teni ze stranky staci
o Read-only kopii mize byt kolik chceme
e Pokud vlastnik ji ma namapovanou na zapis
o Vlastnikovi se stranka pfemapuje na read-only
m Chceme zajistit, aby dalSi zapisy vyvolaly
framework a my jsme se o nich dozvédéli
o Zbytek stejné jako pfedchozi

— 81—

o Pfipadny dal$i zapis od vlastnika vyvola obsluhu
Stranka je vlastnéna na uzlu, ale je pouze read-only a chci zapisovat, nikdo dalsi
tuto stranku nema
m Dojde k vypadku a pferuSeni, ale obsluha pouze povysi tuto stranku na
zapis
Stranka je vlastnéna na uzlu, ale je pouze read-only a chci zapisovat, existuje
uzel, ktery ma tuto stranku
m NeZ je stranka pfemapovana na zapis, tak si vlastnik poCka na potvrzeni
od uzll majicich tuto stranku, zZe stranku zahodily
m Dojde k povySeni frameworkem a zapisu
Je vidét, Ze pro provedeni jedné instrukce, je zapotfebi nakladna anabaze
m Reseni toho problém “kradeni stranek” je viskozita
Viskozita
m Operace Cteni i zapisu jsou velice ¢asto provadéné v cyklu
e Co kdyby jeden uzel chtél ze stranky ¢ist a druhy do ni zapisovat?
e Potom vykonnost celého systému muze jit rapidné doli — na
jednu operaci bude potfeba obrovska rezie
m Viskozita vyuziva toho, Ze sekvencné konzistentni model nemusi pfesné
odpovidat fyzickému provadéni instrukci
m V okamziku, kdy néjaka stranka je na uzlu namapovana, tak tam zlstane
jesté néjakou dobu navic (i pfes to, Ze by ji néjaky uzel chtél odmapovat)

— 82—

¢teni

viastnik

®

L]

vlastnik

O [

=

vlastnik

oND

=

viastnik

®

Kopie

| =]

vypadek J/ '

vlastnik vlastnik

Degradace,
kopie

®

=

kradeni - viskozita /

e Kauzalné konzistentni distribuované strankovani
Implementace je o néco komplikovangjsi
Je potfeba evidovat graf kauzalnich zavislosti mezi procesy a strankami
Budeme pouzivat vektorové hodiny (jednotka kauzality jsou stranky)
[VTS ... vektorové hodiny pro stranky

o

@)
O

[| VTP...

Kazda stranka si eviduje na kterych jinych strankach je kauzalné
zavisla
vektorové hodiny pro procesy

Ze kterych verzi stranek znam data

VTIi] ... stranka i

Oboje tyto vektorové hodiny slouzi k synchronizace verzi stranek, aby kauzalné

vazané zapisy byly zaloZzené na datech, které jim kauzalné pfedchazi
Zakladem synchronizace je vypadek stranky
m Cteni do (jakkoliv) namapované stranky stejné jako zapis do stranky
namapované pro zapis jde mimo framework
Vypadek stranky — pfenos dat
| VTP = max(VTS,VTP)

zapis

Povyseni

Invalidace,
povyseni

Invalidace,
zména vlastnika,
povyseni

Invalidace, kopie,
Zména vlastnika,
povySeni

Invalidace, kopie,
zména vlastnika,
povySeni

o Zapis do stranky
m Provedeme zapis do stranky s verzi VTS

m Stranka je odmapovana a pfi namapovani se inkrementuje odpovidajici
slozka VT = inc(VT))

o Po aktualizaci VT, se zneplatni stranky i: VT [i] < VT [i]

m KdyZ pfijemce zjisti, Ze ma u sebe stranku starsi nez jsou stranky, na
kterych kauzalné zavisi obsah pravé pfijaté stranky, tak si tyto stranky
zneplatni

o Problémy
m Velka prostorova rezie
e Na 1MB (256 stranek) sdileného prostoru potfebujeme 512B na
jednu stranku

m Jakym zpUsobem propagovat konkurentni zapisy

e Kazdy uzel si udrZzuje starou verzi stranky do té doby nez je
vynucena jeji invalidace jinou strankou
e Reseni pomoci timeouttl nebo explicitnich synchronizaénich

primitiv
VT proces;_] L\mapovénl' } hodnota][VT strénk}lj}strénky]
op |P1] A/ op |P2| a4 ||/B"|op|P3| 4 | B
00 | RO 00 00RO ut
WA1 | 10 | 1qW1 wB1 | 01 01WJ_ 1=
oiR1 | rB1 |01 91C1
_
wB2 | 02 02W2 /
--------- --®
Rl 12 | oW1 | oc2 R 0oR2 | rB1 /
" A
WA2 /22 2oW2,|......... . / l
...................... V. Y.
/ 22 | »R2 rA2 (22| 5,C2 2"

/ [

aktualizace VT procesu] [Cteni starsi verze - konkurentni zapisy } [zneplatnéni dle VTp

[W - pravo zapisu, R - r/o vlastnik, C - r/o kopie]

e NOTE: Silené moc toho fikal k tomu obrazku, ale neda se to rozumné zapsat

e Distribuované sdilené proménné
o Implementace na urovni knihoven je vyrazné jednodussi

— 84—

m Na urovni stranek jsme méli k dispozici pouze vypadek stranky a jeji
obsluhu
o Vyhody
m Potencialné lepSi vykonnost
e Framework ma pfesnéjSi informace o operacich na datech
o Nevyhoda
m MenSi mira transparentnosti
e Distribuované objekty
o NSWI080

o Enkapsulace objektu

Video 13

e Dnes se budeme zabyvat spravou prostiedki
o Konkrétné detekce distribuovanych deadlocku
e Kazdy prostfedek ma typicky svého spravce
o Byli teoretické pokusy o distribuovanou spravu prostredkl — stejny problém jako
u distribuovaného vylouceni procesu
Detekce deadlocku se redukuje na wait-for-grafu
V distribuovaném systému nikdo nezna pfesny aktualni stav — detekce, Ze doslo k
deadlocku je mnohem komplikované;jsi
e Casté feSeni je pstrosi algoritmus
o Deadlocky ignorujeme
o Pfedpokladame, ze pfipadné vyskyty daného problému pfinesou niZsi naklady
nez snaha problému pFedejit
e Ukazeme si nékolik algoritmu na detekci deadlocku, vSechny jsou zalozené na
wait-for-grafu
o Kdyz algoritmus detekuje orientovanou kruznici, tak ohlasi deadlock
o Wait-for-graf
o Eviduje zavislosti mezi procesy
+ WFG — Wait-For-Graph
e orientovany graf (procesd, transakci)
e P1 — P2 proces P1 je blokovan procesem P2

e P >R proces P zZada o prostredek R

e R - P proces P drzi prostredek R ““

e orientovana kruznice — deadlock

e Algoritmy detekce deadlocku (historie)
o Kdysi vySla hromada algoritm0, o kterych v dalSich ¢lanku vyslo, Ze nejsou zcela
korektni
e Korektnost algoritmu detekce deadlocku
o 1. kazdy existujici deadlock je v koneéném &ase detekovan
o 2. detekovany deadlock musi existovat
e Metody konstrukce WFG

https://is.cuni.cz/studium/predmety/index.php?do=predmet&kod=NSWI080

o centralizované feSeni
o 4 dalsi zpUsoby distribuované
m Path-pushing
m Edge-chasing
m Diffusing computation
m Global state detection
e Centralizovany algoritmus
o Mame dedikovany server, kterému vSechny uzly, které Zadaji o pfistup k
prostfedku nebo uvolnéni poslou zpravu
o Server tyto zpravy zpracovava a stavi si svllj WFG — eviduje si stav celého
distribuovaného systému
o Kdyz ve WFG najde kruznici, tak to resi
m Nalezne v kruznici proces, ktery odpracoval nejmensi ¢as (nebo jinou
heuristikou) a proces zabije
o Problém
m Phantom deadlock = faleSny deadlock kvulli zpozdéni zprav

fyzické poradi: rel r->B, acq B->t J

doruceni: acq B->t, rel r->B

Koordinator

Pokud mame k dispozici logické hodiny a kauzalni doru¢ovani — fedeni zdarma
Alternativni FeSeni je pfi detekci kruZznice koordinatorem ji nechapat jako
zdetekovany deadlock ale podezfeni na deadlock a vykomunikovat to s uzly
o Pokud by tento algoritmus nevyhovoval z pohledu Skalovatelnosti — existuje
rozSifeni hierarchicky algoritmus
m Kazdému segmentu je pfidélen jeden centralizovany server
m Mnozina centralizovanych serveru si vzajemné udrzuje vztahy mezi
sebou
e Mohou mit n&jakou hierarchii mezi sebou
e Path-pushing
o Spi§ metoda, kterou implementuji hromady distribuovanych algoritmu
o Kazdy uzel si udrzuje svoji vlastni ¢ast WFG a vazby na ostatni uzly
o Ve vhodnych okamzicich (periodicky nebo po zméné WFG) kazdy uzel preposle
externi zavislosti (redukovanou informaci o svym vlastnim WFG) sousednim
uzlim

Uzel A Uzel B
all— B] A j=—| bt
a2|—i B | A= b2

kontrahovany vzdaleny proxy-uzel J

o V8echny uzly jsou néjak ohodnoceny (o€islovany)
m SlouZi po pfipadné detekci deadlocku jako cena/naklad procesu pro

likvidaci

m Dale také jako identifikator toho, co mam zabit, pro pfipad, Ze by vice
procesu detekovalo deadlock, tak aby vSichni zabijeli ten stejny proces

D

h 4

A

kandidat [

— 87—

Path-pushing algorithms. Build some simplified form of global wait-
for graph at each site. Each site sends its copy to a number of neigh-
bors every time a deadlock detection is performed. Update local copy

that is then passed along. This process is repeated until some site
has a sufficiently complete picture of the wait-for graph to make a
decision (deadlock or no deadlock). Unfortunately, many algorithms
of this type are incorrect mnainly because the portions of the wait-
for graph that are transmitted may not represent a consistent view
of the global wait-for graph since each site takes its snapshot asyn-

chronously.

Edge-chasing

o Opét spiSe metoda

o WFG je pouzity pro zasilani zprav podel hran

o Uzel, ktery ma podezieni na moznosti deadlocku poSle podél hrany speciaini
zpravu
Pokud proces na nic neCeka a bézi — tato zpravu nezajima a zahodi ji
Pokud tato zprava dojde do pocatku (uzlu, ktery ji vyvolal), tak je detekovany
deadlock

o Opét béhem pieposilani zprav se detekuje nejvhodnéjsi kandidat na zabiti

m Ddlezité opét pro pfipad, kdyby vice uzli se rozhodlo detekovat deadlock,
tak aby vSichni zabijeli ten stejny proces

Edge-chasing algorithms. The presence of a cycle in a distributed

graph structure can be verified by propagating special messages called
probes along the edges of the graph. When an initiator (there may be
several) receives a matching probe, it knows that it is on a cycle in
the graph.

— 88—

"Specialni zpravy (probes) jsou zasilany po WFG
+ proces rozesle zpravu véem procestim, kterymi je blokovan
+ pokud se zprava vrati odesilateli — deadlock (orientovana kruznice)
¢ zprava zaroven detekuje kandidata
¢ paralelni spusténi - overkill

(1.91)

i (15.7) b
(1.3.4) 5 7
o2 T
6 T (168) @

e [Edge-chasing Chandy-Misra-Haas

123)
e —e= ()22 (») (rs)

Site (137 Site
{1.6.1)

Site

FIGURE 5.10
An example of Chandy et al.’s algorithm.

5.7.1 Chandy, Misra, and Hass’s algorithm for the AND
model

This is an example of edge-chasing algorithms where the distributed dead-
lock detection algorithm uses a special probe signal that is forwarded on the
wait-for graph from process to process (site to site). A deadlock is detected
if the signal comes back to the initiator. In [3], Chandy et al. uses a signal
called a probe which is a triplet (i,7,k) denoting that it belongs to a dead-
lock detection initiated from process P; and is sent by the home site of F;
(the site where P; locates) to the home site of Py. Figure 5.10 shows such
an application. If process P; initiates deadlock detection, the controller of
the home site of Py sends probe (1, 2, 3) to the controller at the home site of
P;. A deadlock is detected if a process receives a signal that was initiated
from itself. In Figure 5.10 process P, detects a deadlock when it receives
signal (1,6, 1) from process F.

In the above algorithm two or more processes may independently detect
the same deadlock. If every process that detects a deadlock resolves it,
it will be inefficient because several processes will be aborted to resolve a
deadlock. Another problem is that although a process detects a deadlock, it
does not have information on which processes are involved. For example, in
Figure 5.10 processes Py, Py, P3, Py, P5, Ps form a cycle. Process P, detects
this deadlock but does not have information about the involved processes.

e Diffusing computation
Vyuziti znackového algoritmu pro detekci ukonceni
Pfijem prvni zpravy znamena jeji propagaci
Pfijem dalSi zpravy znamena signal zpét
Kdyz pfijdou vSechny signaly, tak poslu signal otci
Pokud se zprava dostane az k iniciatorovi, tak se zpatky vraceji signaly
Iniciator se potom muze rozhodnout, co s grafem udéla

o Vhodné pro slozitéjSi modely

e Global state detection

o Je mozné pfimo aplikovat znackovy algoritmus pro detekci globalniho stavu

o (Pouziti pro detekci deadlocku bylo jednou z motivaci pro jeho vytvoreni)

o Deadlock vznikne v konkrétnim okamziku — WFG se jednou konkrétni zpravou
uzavie

o Jsme ale schopni detekovat pomoci znackoveho algoritmu kauzalné konzistentni
fez

o Kdyz deadlock vznikne, tak na nas po¢ka — na kazdém uzlu po¢ka na okamzik
kauzalné konzistentniho fezu

O 0O O O O ©O

V okamziku kauzalné konzistentniho fezu je mozné detekovat, jaké procesy jsou
vazané na které
Co se s touto informaci da délat? — varianty

m Odeslat cely WFG iniciatorovi

m Kontrakce + zaslani externich zavislosti iniciatorovi (path-pushing)

deadlock kauzalne konzistentni rez
W
.
o =
"
acq .
A
i
Video 14

e Sprava procesu v distribuovanych systémech se sklada ze 3 uloh

Jak sdilet vypocetni silu
Jak rozdélit zatéz na jednotlivé uzly
Jak synchronizovat procesy a evidovat jejich stav

Cluster — nabizeni sluzeb vnéjSim klientim
m Pro kratkodobé ulohy minimalizujeme latenci
m Pro dlouhodobé ulohy maximalizujeme vykon
m Typicky se pouziva centralizovand, nebo centralizované hierarchicka
sprava procesl
Kooperativni systémy
m Typicky rozsahlejsi distribuované vypocdty
m Nenabizime sluzby, ale jde nam a nabizeni €istého vypocetniho vykon
pro rozsahly distribuovany vypocet
m Rovnomérné sdileni vykonu
m Sprava a fizeni je decentralizované / peer-to-peer

e Ukazeme si 3 pohledy na proces management v distribuovanych systémech

@)
O

o

Load balancing (vyvazovani zatéze)
Kooperativni systémy
Migrace procesuU (dneska spiSe virtualnich stroju a kontejnert)

e Load balancing

o

Budeme se bavit o clusterovém load balancingu
m VyvaZovani vykonu v ramci homogenni skupiny uzlG, na které je
rozdélovana mnoZina uloh
m Homogenni = uzly jsou stejné vykonné

— 91—

o

Clusterovy load balancing

Nékolika malo urovihovy (viz obr)

-~
J
~
S

front-end e
master .,

" ‘gp ‘adnpnuseiul

worker

cluster management
load balancer
task scheduler

Cluster management = master je typicky replikovany

Ovlada dost velkou mnozinu workert, na které pridéluje ulohy
Ulohy spolu zpravidla nekomunikuiji

Pouziti algoritmu pro distribuovany konsensus

m \yvazovaci strategie

Round Robin
o Kazdy nasledujici poZzadavek je postupné pfidélovany
dalSimu workeru v pofadi (az mnozina dojde tak zase
dokola)
o Jednoduché implementovat
o Vhodné pro kratké a srovnatelné ulohy
o Nesmi byt rozdily mezi workery
Weighted Round Robin
o Jednotlivym workertiim je pfidélen koeficient
Dynamic Round Robin
o Pro dlouhodobég;jsi a sloZité&jsi ulohy
o Periodické méfeni aktualni dostupné vykonnosti
o Master potom vypocita klouzavy prGmér (vyhladi extrémy)
Least Connections, Weighted LC
o Nejmensi pocet otevienych uloh
Random, Threshold
o Nahodné stfileni (chranéné néjakym limitem)
o Vhodné pro heterogenni prostfedi
o Master zada workerovi, ten mize odmitnout, kdyz se mu
zda, Ze je pretizen
Agent-Based Adaptive Balancing
o ChytfejSi algoritmy zaloZené na umélé inteligenci...
o Naroénéjsi implementovat

—92 —

o Ne vzdy efektivni
o Vyraznéji vétsi rezie
Vzdalené procesy v kooperativnich systémech
o Nefesi umisténi nove pfichozi ulohy na jeden z workeru
o Resijakym zplisobem je mozné zapoijit volné dostupné uzly do distribuovaného
vypoctu
Resi jakym zpGsobem ulohy alokovat na dostupné uzly
Narozdil od clusterovych systémd je fizeni a alokace distribuovana (bez
centralizované komponenty)
m Je ale zapotfebi néjaka evidencni komponenta
e Registruje jednotlivé volné uzly, jejich vlastnosti a kapacity

Registr
load
balancing \'
2. Zadost a 1. Registrace
odpoved 4. Odregistrovani
DomovskyAizel |3 Ajokace procesoru olny uzel

5. Nastaveni prostiedi
6. Nastartovani procesu
9. Zprava o ukonceni

7. Béh procesu
8. Ukonceni procesu

o Spusténi vzdaleného procesu
m Kdyz je néjaky uzel volny, tak se zaregistruje v registru
m V pfipadé, kdy néjaky jiny uzel, ktery poc¢ita ulohu, ma potfebu svij
vypocet pfenést na jiny uzel, tak si mdze podat do registru zadost a ten
mu vrati referenci na jeden/mnozinu uzel/uzll, které splfiuji jeho
poZadavky
m Potom se uzly pfimo mezi sebou dohodnou
m A spusti se proces na volném uzlu
o Ukonéeni vzdaleného procesu
m Dobéhnuti (nefesit)
m Rollback transakce (pokud mame transakce k dispozici)
m Zabiti vzdalené spusténého procesu
Kooperativni load balancing
o Centralizované / hierarchicke fizeni pfistupu
m Manazefi skupin
e Staraji se o svlj segment

e P¥i nedostatku vypocetnich kapacit propaguji Zadost
nadifazenému manazerovi
m Up-down algoritmus
e ZajiStuje rovhomérné sdileni vykonu
e ZaloZen na koordinatoru
o Obsahuje pro kazdy uzel tabulku s trestnymi body
o Podle této tabulky se vybira uzel, kam se umisti novy
proces
e Tabulka trestnych bodu
o P¥i kazdé vyznamnéjsi udalosti uzel posle informace
koordinatoru

m Za kazdy proces bézici na jiném uzlu ma plus
trestné body (vzdalené spusténé procesy)

m Za kazdy neuspokojeny pozadavek (touzi vyslat
néjaky proces nékam jinam, ale koordinator to jesté
neumoznil) ma minus trestné body

m Jestlize nic z tohoto tak jeho hodnota se snizuje k
smérem k nule

/ Ukonceni

procesu

Trestné body

Pozadavek
na pl'OCeSOI'

Béh na vzdaleném
uzlu

— Alokace

procesoru

o Distribuovany heuristicky algoritmus
m Vysilajici uzel si vybere k nahodnych vybéru
m Podle odpovédi se rozhodne, kterému uzlu svuj proces svéri
o Deterministicky grafovy algoritmus
m ZaloZen na dopfedu znamych vlastnostech procesu (jak moc spolu
komunikuiji, ...)
m Procesy jsou rozdéleny na podmnoziny
e Ty, které spolu komunikuji hodné jsou na jednom uzlu
e Aplikace standardnich algoritmu pro toky v sitich
m Optimalni deterministicky algoritmus
e Migrace procesl
o Korektni a transparentni pfeneseni procesu béhem vypoctu
o Motivace

— 94—

m Vyvazovani zatéze
Vyzaduje netrivialni integraci s jadrem OS
Z dnedniho pohledu spide zastaralé (hodné se to zkoumalo v 90. letech)
m Nedéje se to na Urovni procesu, ale virtualnich stroju a kontejneru
m Takto je implementace vyrazné jednodussi
Zkusenosti s implementaci migrace procesu se zuzitkovali pro metody a
implementaci migraci virtualnich stroju / kontejnert
Ve slidech nasleduje hromada historickych systému, které Zavoral preskodil
MOSIX (Multicomputer Operating System for Unix)
m Clusterovy systém
m 1977-2017
e Pouzival se hrozné dlouho (40 let!)
e Unikat mezi distribuovanymi systémy
T4
m MFF UK (Bednarek, Merta, Yaghob, Zavoral) 1994-1997
m Eraje dnes pryé
m ZkouSeli na tom distribuované spoustét DOOM
Migracni load balancing
m Je zapotiebi néjakou migracni jednotku zaziva odmigrovat na jiny uzel
m Migracni jednotka
e Pdvodné jeden proces
o Neukazalo se byti praktické
o Procesy byvaji sdruzné
e Skupina procesu / task
e Dnes virtualni stroj / kontejner
m Parovy algoritmus
e V celém distribuovaném systému se nahodné vytvareni pary
e Pro kazdy par se spocita mira vylepSeni
o Za jak rychle by pfislusné ulohy dobéhli, kdyby byly
presunuty (v€etné rezie migrace)
e Vyznamné zlepSeni stavu — migrace
m Vektorovy algoritmus
e Pouzival MOSIX
e Elegantni zpusob evidence, distribuce a porovnavani zatézi
e Na zakladé informaci o sobé sama a informaci od vybrané
mnoziny ostatnich uzld
e Kazdy uzel ma néjaky vektor zatéze
o Na nulté polozce vektoru je jeho vlastni zatéz
e V pravidelnych intervalech si kazdy uzel
o Méfi vlastni zatéz
o Zaznamenava si ji do nulté polozky vektoru
o Vezme prvni polovinu svého vektoru a posle ji vybrané
mnoziné uzll

o Kazdy uzel, kdyZz mu pfijde vektor, tak ho spoji se svym
vlastnim starym vektorem jako zip
m Dosly vektor se umisti na liché pozice
e Podle téchto vektort se provadi vyvazovani vykonu a spousténi
procesu
e Pozorovani
o V prvnich polozkach vektoru jsou nejaktualnéjsi informace
ohledné zatéze
o Spodni polovina vektoru se zahazuje
m Odesilatel ji neodesila
m Pfijemce zipuje novy vektor a zahazuje druhou
polovinu svého starého vektoru

Stary vektor Novy vektor Dosly vektor

zbytek se
zahodi

s

prirozena aktualizace
nejaktudlnéjsi data nahore

m Existuje cela fada “inteligentnich” algoritmu

e Neprosadili se pro komplikovanost a rezii
m Prakticky pouZitelné vyvazovaci algoritmy

e Prosadili se centralizované a jednoduché algoritmy

(centralizovany a hierarchicky algoritmus)
e Lokalni algoritmy
o Kazdy uzel zna jenom svoji hodnoty zatéze, pfi prekroceni
prahové hodnoty shani ostatni uzly (nahodné&) na pomoc

Video 15

m Prenechame starost na server

m Existuje jedna tzv. primarni replika

m S tou komunikuje klient jakoby to byla jedna jedina replika

m VesSkerou synchronizaci ma na starost server, ktery vSechny aktualizace
posila dalSim replikam

m Ostatni repliky slouzi jako zalozni

o Skupinova komunikace

m MnozZina replik je uzaviena do skupiny a klient komunikuje pfimo s tou
skupinou

m Musi to podporovat nas distribuovany framework

TN
(s1)
(O—# =2
Mo

e Aktualiza¢ni protokoly
o Kdy a které kopie budou aktualizovany
m Primarni kopie
e Primarni kopie sdruzuje vSechny operace a sama je propaguje
dalSim replikam
m VétSinové hlasovani
e VSechny repliky jsou v mnoziné a na celé mnoziné jsou
ustanovena quora, quorum pro ¢teni a quorum pro zapis
o Kazdé quorum je alespori nadpoloviéni
e Pro Cteni je zapotiebi oslovit Cteci quorum replik
Pro zapis je potfeba oslovit zapisové quorum replik
Teprve po uspésné operace na quoru je operace uspesné
prectena nebo zapsana
m VazZené hlasovani (vétSinové hlasovani bylo specialni pfipad tohoto)
e Také zde jsou quora
e Nemusi byt nadpolovi¢né velké
e Soucet prvkl ¢teciho a zapisového quora musi byt vétsi nez
celkovy pocet replik
Da se dokazat, Ze operace jsou ekvivalentni sekvenénimu rozvrhu
Da se pomoci velikosti quora optimalizovat cely systém bud na
¢teni nebo na zapis
e Klientocentrické konzisten¢ni modely

o https://www.ctfnote.com/computer-science/distributed-systems/consistency-and-r

eplication/client-centric-consistency
o U distribuované sdilené paméti jsme si povidali o konzistenénich modelech

m Specifikace toho co implementace musi splfiovat

https://www.ctfnote.com/computer-science/distributed-systems/consistency-and-replication/client-centric-consistency
https://www.ctfnote.com/computer-science/distributed-systems/consistency-and-replication/client-centric-consistency

o Klienti nezavisle na sobé se pfipojuji k néjaké replikované sluzbé
m Napf. k rizné vzhledem ke geolokaci
o Klientocentricky model fika co se ma dit za operace vzhledem k jednomu
klientovi a pfislusnym replikdm
m Jaké operace maji byt vidét
Nefikaji nic o tom, jaky je vztah mezi klienty — ty jsou nezavisly na sobé
Jde o vztah jednoho klienta k mnoziné replik
Eventualni konzistence
m Nejjednodussi klientocentricky konzistenéni model
e Nezajistuje témér nic
m Po ukonceni vSech zapist budou v8echny repliky v koneéného ¢ase
aktualizovany
e Nevime: jak bude dlouhy &as, pofadi

Znaceni:
X; hodnota proménné x na replice L;
W(x;) prvotni zapis hodnoty x;
S(x;) posloupnost operaci na L; vedouci k hodnoté x;
S(xi ; X;) posloupnost x; pfedchazi x; , S(x;) < S(x;)
Woho klienta k réiznym replikam ’
A: S(x1) R(X1) =~enn., o ~
B: S(x2) R(x2) T S(x1;x2);

Priklad: pri pfipojeni k jedné replice uZivatel vidi zpravy, po pripojeni k jiné replice nektere
zpravy (které jiZ videl) Jesté’ nevidi
m A a B nejsou dva rlzni klienti, ale jeden klient, ktery je stfidavé pfipojovan
k riznym replikam
m Nejdfive nevidi operace, které se provedli na prvni replice, na druhou se
dostanou az se zpozdénim
o Monotoénni ¢teni
m Po pfecéteni hodnoty x vdechna dalsi ¢teni vrati stejnou nebo novéjsi
hodnotu
e Bez ohledu na kterou repliku jsme pfipojeni
m Priklad: Pfi pfipojeni k jiné replice klient vidi vSechny nim dosud pfectené
zpravy

=

2

=

&

=3

=

S(x1)

S(x1)

R(x1) ﬁ Vyhovuje monoténnimu cteni }
S(hdl12) R(x2)

ﬁ Nevyhovuje monoténnimu ¢teni }

R(x1) o
{S(x2)} R(x2)} S(x1;x2)

~

Smm- .

o Monotonni zapis

W(x1)

W(x1)

m Zapis proménna je proveden pfed jakymkoliv naslednym zapisem této
proménné

m Udrzuje se sekvencni posloupnost zapisu respektovana na vSech
replikach

ZL Vyhovuje monotdnnimu zapisu]

S(x1) W(x2)

ZL Nevyhovuje monotdnnimu zapisu]

———

O W)
m PFiklad: git commit na rGdznych replikach
e Jedna replika v Asii, druha v Evropé
e Kdyz udélam commit na replice v Asii, tak na replice v Evropé

musi byt vSechny operace z pfedchozich commit(

o Cteni vlastnich zapisti (Read your writes consistency)

W(x1)

W(x1)

m Kombinuje ¢teni a zapisy
m Zapis proménné je proveden pred jakymkoliv naslednym c¢tenim této
proménné

ﬁ Vyhovuje €.v.z.]

SOxl) R(x2)

ﬁ Nevyhovuije €.v.z.]

{S(x2); R(x2)
m PFiklad: po aktualizace webové stranky si neprohlizim kopii z cache
e Musi se zafidit, aby aktualizace byla propagovana na vSechny

klienty

o Zapisy nasleduji ¢teni (Writes follow reads consistency)

m Kombinuje Cteni a zapisy

=

2

S(x1)

S(x1)

o

Zapis proménné po predchozim &teni této proménné je proveden na
stejné nebo novéjsi hodnoté

R(x1) ﬁ Vyhovuje z.n.&.

S(x1;x2) W(x2)

ﬁ Nevyhovuje z.n.c.

R(x1)

{5(x2); W(x2)

-

Priklad: zapis odpovédi do diskuzniho féra se provede tam, kde je
prispévek, na ktery je reagovano

Naivni Implementace

Mame mnozinu replik
Ke kazdému zapisu je pfifazen globalni jednoznacny identifikator WID
WID = repl_id + loc_id
e repl_id ... identifikator repliky
e loc_id ... lokalni identifikator v ramci repliky (jednoduché
sekvengéni Cislo — &itac)
Kazdy klient si udrzuje dvé mnoziny identifikatort
e read_set
o ldentifikace ¢tenych dat
® write_set
o Identifikace zapisu
Monotonni Eteni
e Replika serveru pfi €teni ovéfi podle read_set klienta aktualnost
svych zapisu
o P¥i chybéjicich zapisech provede synchronizace nebo
forwarduje Cteni
e Kiient si po ¢teni aktualizuje svUj read_set podle repliky, ze které
Cetl
Monotonni zapis
e Replika serveru pfi zapisu ovéfi podle write_set aktualnost svych
zapisl
o Chybégjici zapisy si zapiSe
e Klient si po zapisu aktualizuje svlj write_set podle repliky
Cteni vlastnich zapist
e P¥i éteni replika serveru ovéfi podle write_set aktualnost svych
zapisu
Zapisy nasleduji ¢teni
e Aktualizace repliky podle read_set
o Aktualizace read_set i write_set klienta
Problém — neomezeny rust read_set a write_set

— 100 —

m Pro prakticky pouzitelnou implementaci je nutné vymyslet efektivni
implementaci read_set a write_set
o Efektivni implementace
m Jedna z moznosti je to nefeSit technicky ale organizacné
m Cela aplikace je rozdélena na kratké relace (session)
m Po relaci se mnoziny smazou
m Reprezentace mnozin - vektorové hodiny
e V zasadé vektorové hodiny funguji Upiné stejné jak jsme si je
ukazovali u jinych pouZiti
m read_set a write_set jsou reprezentovany vektorovymi hodinami
e VT(RS) ... vektorové hodiny klienta pro read_set
o VT(WS) ... vektorové hodiny klienta pro write_set
m Kazda replika S, si udrzuje RCV (i) vektorové hodiny

e RCV(i)[j] ... Casova znacCka posledni operace zapisu pfijata Si od

S
J
Pfi pfijeti Zadosti o éteni nebo zapis replika vrati aktualni RCV (i) klientovi
Po pfijeti RCV (i) si klient aktualizuje read_set nebo write_set
o Cteni: VT(RS)[j] = max(VT(RS)[j], RCV(D[j]) Vj
o Zapis: VT(WS)[j] = max(VT(WS)[j], RCV(D[j]) Vj

e Epidemické protokoly
o Slouzi k implementaci a optimalizaci komunikace ve

e

E L M I rozsahlych systemech

o Nefesi konflikty
o Pfi vyzkumu synchronizace se zacala hodit teorie epidemii
m Epidemiologové se snazi co nejvice zabranit rozSifeni infekéni nakazy
m Co nejvice ohniska izolovat
m Informatici poznatky vyuzili v obraceném smyslu
e Potfebujeme informaci co nejrychleji roz§ifit idealné mezi vdechny
o Antientropie
m Server P nahodné vybere server Q k vymeéné dat
m Mozné vymény
e PushP - Q
o Nechava aktivitu pro komunikaci na strané uzlu, ktery se
snazi hodnotu propagovat ostatnim uzl(im
Uzel oslovuje dal8i uzly a hodnotu jim pfeda
Dobfre funguje v pocatcich epidemie
Neni nejefektivnéjSi na dokon€ovani (doruceni vSem)

— 101 —

O

o

o

O

o

m Uzel Q by musel byt nahodné vybrany
e PullP«Q
o Aktivita je na strané uzlu, ktery potencionalné touzi po
informaci
o Aktivné se ptaji svych sousedu, jestli pro né nemaji novou
informaci
o Dobfe funguje pro dokon&ovani nakazy
o Push/PullP & Q
o Kombinovana metoda
o Protoze pifedchozi dvé funguje jedna na zaCatku a druha
na konci
o Spojime je dohromady

m Problém (systému zaloZzenych na antientropii)
e Kdy uzel ma prestat infikovat? (Kdy uz vSichni vi informaci?)
Gossiping
m Tentokrat sociologie (socialni chovani lidi)
m P¥i nakaze uz jednou infikovaného uzlu se s pravdépodobnosti 1/k
(néjakou definovanou) uzel uvede do klidového stavu
e Nékomu povim informaci, kterou uz vim
e Pak mé prestane bavit zkouSet oznamovat informaci, kdyz uz ji
vSichni budou védét
m Oblibena kombinace

e (Gossiping + periodicky Pull

Obecné podporuji velice dobfe masivni Skalovatelnost
Pro snazs$i rozSifovani informaci je vyhodnéjsi strukturovana topologie

Pokud se uzly vybiraji zcela nahodné, tak mGzou vzniknout oblasti, které
jsou pfehlcené a oblasti, které jsou neinfikované

Kdyz se cela mnozina hierarchicky rozdéli na domeény a kazdy uzel
nejfive infikuje sprdvce domény a ten infikuje dalSi spravce domény tak
se infekce rozSifuje mnohem rychleji a rovhomeérnegji

Problém mazani dat

Pokud kromé distribuce dat chceme i data smazat
Nestaci pouze poslat operaci smazani
e Zase zjiné strany by se smazana data pfepsali daty
propagovanymi
Recept je z DB
e Smazana data se nemaZzou, ale da se k nim cedulka, Ze neplati —
certifikat smrti
Certifikaty smrti se propaguji na vSechny uzly distribuovaného systému
Certifikaty smrti mohou rust nekone¢né
e Je to mozné feSit mazanim certifikatd za néjaky TTL, ktery musi
byt delSi nez doba rozsifovani informace

Aplikace - agregace dat

Trénujeme mouchy

— 102 —

m Moucha = entita s vlastnim procesorem (umi instrukce)
m Mouchy nahodné létaji
m Mouchy se mohou nahodné srazit
e VZdy se srazi dvé mouchy
e P¥i srazce si mohou predat cely nebo ¢ast svého stavu
m Chceme implementovat
e Mouchy, spocitejte se!
o Chceme alespori fadové
o Nejprve vyfeSime podulohu — spocitame primér
m P¥i srdzce dvou much si mouchy vymeéni svoje
hodnoty
m Kazda moucha veme primér dvou much
m Na kazdé mousSe konverguje hodnota k celkovému
priméru celého hejna
o Vybereme jednu mouchu, t¢ dame hodnotu 1, ostatnim
moucham dame hodnotu 0
Nechame mouchy dlouho létat
Potom si najdeme libovolnou mouchu a dostaneme z ni jeji
hodnotu — pfevracena hodnota musi byt zhruba pocet
much

¢ podproblém: spocitejte primeér
e uzel i: x; = inicialni (libovolna) hodnota
e epidemicky: (xi, xk) = (Xi + Xk) / 2
® X; — avgvn(Xn)
¢ iniciator X; = 1, ostatni X; = 0
® X — 1 / N

e Ktera jste nejvétsi?
o Kazda moucha ma na zacatku vlastni vahu
o P¥i sraZce si mouchy vemou maximum
o Pak staci odchytit libovolnou mouchu
e Kolik dohromady vazite?
o Mame
m Prdmérna moucha
m Velikost stada
o Vynasobime
Poprvé tato pfednaska byla v roce 1994
o Pokud by platil Moortv zakon, tak by se vlastnosti pocitact zvysili zhruba 4.3 mil
krat
o Realita je asi 200 000 krat
s 100 MBvs 20 TB
o HW vyvoj je znatelny ve vyvoji distribuovanych systému

— 103 —

