Obecné informace

e Zadani musite splnit v casovém limitu 3 hodiny, ktery za¢ina po vysvétleni zadani a zodpovézeni
dotazim k zadani. Je mozné pokladat dotazy i béhem testu, ale tak, aby nerusily vase kolegy pfi préci.

e Vase feSeni bude testovano v prostiedi ReCodEx. Je tedy nutné dbat na detaily ze zadani (napf. co se
tyCe ptesného obsahu chybovych/informacnich hlaseni).

e Hodnoti se také tvar odevzdaného souboru, tedy navrhnéte vhodnou architekturu, dodrzujte
programatorské konvence, dbejte na Gpravu, piste hezky, dobte clenény a hlavné Citelny kod.
Programy bez rozumné dekompozice (napi. obsahujici pouze par metod), ptipadné programy s
necitelnymi zdrojovymi kody a jim podobné nebudou uznany!

¢ Je dovoleno pouzivat tisténé i elektronické materialy, pokud to neni piimo fesSeni dané (nebo podobné)
ulohy nebo jeji dil¢i ¢asti. Nezapomeiite, ze pokud kopirujete néjaky kod, ktery Vam nepatii, je nutné
uvést zdroj! Neni dovolena jakakoliv forma komunikace s kymkoliv z jakéhokoliv divodu (kromé
zkousejicich) - do toho se pocita i to, Ze neni dovolena komunikace s libovolnou umélou inteligenci
(AI) nad ramec standardni IntelliSense ve Visual Studiu (tj. je zakazano pouzivat sluzby jako
ChatGPT, GitHub Copilot, apod.).

e Az budete s Vasim fesenim spokojeni, pfihlaste se a vyckejte na zkousejiciho, ktery s Vami feSeni
projde. Pokud zkousejici najde ve Vasem feSeni n¢jaké problémy, mizete je v ramci ¢asového limitu
odstranit. Pokud ze zapoctového testu samovolné odejdete bez toho, aby zkousejici VaSe feSeni spolu s
Vami prochazel, tak jste zapoctovy test neslozili (a to i pokud Vam v ReCodExu prosly testy na 100%)
- osobni piedvedeni zkousejicimu na misté je povinnou soucasti testu.

e Reseni je nutné splnit na 100% spravnosti.

Zadani: Tower Defense Engine

Vasim ukolem je naprogramovat aplikaci, kterd simuluje strategickou hru typu Tower Defense. Aplikace na
standardnim vstupu piijima ptikazy, které manipuluji s hernim svétem (pfidavaji véze, neptatele) a posouvaji
herni ¢as. Ptikazy se provadi sekvencné v poradi, v jakém je uZivatel na standardnim vstupu zadava.

Predpokladejte, ze vstup je vZdy validni. Nemusite oSetfovat chybné vstupy, nezndmé piikazy ani chyby v
logice (napf. umisténi véze na policko mimo meze herni mapy).

Aplikace musi byt spustitelnd s jednim argumentem ptikazové fadky, ktery ur¢uje délku herni mapy.



Povinna struktura aplikace

Pro implementaci zpracovani piikazii musite vyjit z pripravené kostry kodu.

Stahnéte si kostru aplikace _ JE NA KONCI DOKUMENTU
Diilezité pokyny k implementaci:

e Vyuziti rozhrani ICommand a pfipravenych tfid je povinné.

¢ Kostru v§ak muzete (a budete muset) libovolné upravovat a rozsirovat.

e Vsimnéte si, Ze pfipravend metoda Execute nema pristup k herni mapé€. Je na vas, jak ji upravite
(zména parametrii metody, ptedani mapy v konstruktoru apod.), aby ptikazy mohly redln¢ ovliviiovat
hru.

e Nacitani vstupu a jeho parsovani (rozdéleni fadku na piikaz a argumenty) si musite naimplementovat
sami.

Specifikace herniho svéta

Hra se odehrava na jednorozmérné mapé o délce N, kde N je Cislo zadané jako argument pfi spusténi
programu (TrackLength). Pozice na mapé€ jsou indexovany od 0 do N-1.

e Nepratelé zacinaji vzdy na pozici 0 a pohybuji se smérem k N.
e VéZe jsou umistény na fixnich pozicich a utoc¢i na neptatele v dosahu.

e Konec hry: Pokud se jakykoliv Zivy nepfitel dostane na pozici >= N, hra kon¢i prohrou.

Na jedné pozici se mize vyskytovat vice entit (naptiklad vice neptatel nebo nepfitel a véz).
Herni smycka a vypis

Po zpracovani kazdého piikazu (at’ uz jde o pfidani entity nebo ukonceni kola) se na standardni vystup
vypise aktudlni stav hry (vice v sekci Format vystupu).

Simulace ¢asu probihé v kolech. Pfikaz END_ROUND ukon¢i aktualni kolo a provede nasledujici kroky v piesné
tomto poradi:

1. Pohyb nepiatel: VSichni neptatelé se posunou o svou aktudlni rychlost.

2. Utok vézi: Viechny véze provedou titok dle svych pravidel.

3. Odstranéni mrtvych: Nepfatelé, jejichz zivoty klesnou na 0 a méné, jsou odstranéni.

4. Vypis stavu: Vypise se aktuani pozice nepratel a vezi (vice ve "Format vystupu")

5. Kontrola prohry: Pokud je Zivy nepfitel mimo mapu, vypiSe se "Game Over!" a program konci.

Specifikace Entit
Nepratelé

Vrabec:

e Jméno: Sparrow
e HP: 10
e Rychlost: 2 policka za tah.

Jezek:

e Jméno: Hedgehog



e HP: 15

e Rychlost: 1 policko za tah.

e Schopnost: M4 krunyi. Kazdé obdrzené poskozeni se déli dvéma (celoc¢iselné déleni). Vzdy vsak utrzi
poskozeni alesponi 1.

Bobr:

e Jméno: Beaver

e HP:5

¢ Rychlost: Zacina na 1. Po kazdém pohybu se jeho rychlost zvysi o 1, az do maxima 3.
o (Priklad: 1. tah se posune o 1, 2. tah o 2, 3. tah 0 3, 4. tah o0 3...)

Véze
Véze stoji na zadané pozici.
Kaktus:

e Jméno: Cactus
e Dosah: Pouze policko, na kterém stoji.
e Utok: Ud¢li 5 poSkozeni vSsem neptatellim na své pozici.

Kanon na vrabce:

e Jméno: Cannon
* Dosah: Policko v&ze +/- 1 (celkem 3 policka).
e Utok: Ud¢li 3 poskozeni vSem Vrabciim (Sparrow) v dosahu. Ostatni ignoruje.

Vuvuzela:

Jméno: Vuvuzela

Dosah: 2 policka na kazdou stranu (Véz +/- 2).

Utok: Udéli 1 po§kozeni viem neptateliim v dosahu.

Mechanika prehrati (Cooldown): Po kazdém tspéSném utoku (pokud v tomto tahu nékoho zranila)
se Vuvuzela musi chladit a nasledujici 2 tahy nettoci.

Format prikazu
Jednotlivé argumenty vstupnich piikazi jsou oddé€leny jednou nebo vice mezerami.

ADD ENEMY enemyType

e Ptida na zacatek mapy (pozice 0) nového nepfitele typu enemyType.
e Povolené typy: HEDGEHOG, SPARROW, BEAVER.

PLACE _TOWER towerType position

e Postavi véz typu towerType na pozici position (celé ¢islo).
e Povolené typy: CACTUS, CANNON, VUVUZELA.

END ROUND

e Provede simulaci jednoho herniho kola.

Format vystupu



Po kazdém piikazu (vCetné ADD ENEMY atd.) vypiSte seznam nepratel a veéZzi.

e Pozice vypisujte vzdy jako tFimistné €¢islo zarovnané nulami (napi. 000, 005, 012). Hint: Ve
formatovacim retézci Ize pouzit "{0:D3}".

e Sekce Enemies: je vzdy prvni, nasleduje sekce Towers:.

o Uvnitt sekci musi byt polozky sefazeny abecedné (lexikograficky) podle jejich textové reprezentace
(celého tadku, ktery se tiskne).

e Hint: V C# se vam muze hodit metoda List<string>.Sort (), ktera radi textové fetézce
lexikograficky.

Vzhled radka:

o Nepfitel: [<pozice>][<Iméno>: HP=<Zivoty>]
e V¢Z: [<pozice>][<Iméno>]

Vizualizace: Pro snadnou kontrolu vaseho vystupu miizete pouzit tento vizualizator:
https://erunno.github.io/tower-defence-viz. Do vizualizatoru staci zkopirovat cely vystup vasi konzole.

Poznamka: Priklady nize Ize vioZit i se symboly > a <.
Priklady

Radky se znaménkem vétsi neZ (>) jsou ty, které program vypisuje na standardni vystup. Radky se
znaménkem mensi nez (<) jsou ty, které uzivatel piSe na standardni vstup.

Spusténi: TowerDefense.exe 10
Priklad 1: Zakladni mechaniky (Vsimnéte si, Ze stav se vypisuje po kazdém prikazu)

PLACE TOWER CACTUS 2
Enemies:

Towers:

[002] [Cactus]

ADD ENEMY HEDGEHOG
Enemies:

[000] [Hedgehog: HP=15]
Towers:

[002][Cactus]

END ROUND

Enemies:

[001] [Hedgehog: HP=15]
Towers:

[002][Cactus]

END ROUND

Enemies:

[002] [Hedgehog: HP=13]
Towers:

[002] [Cactus]

VVVVAVVVVAVVVVAVYVYVA

(Vysvétleni posledniho kroku: Jezek se posune na pozici 2. Kaktus utoci (5 dmg). Jezek redukuje poskozeni
(5/2 = 2 dmg). Jezkovi zbyva 13 HP)

Priklad 2: Vuvuzela a Cooldown

PLACE _TOWER VUVUZELA 4
Enemies:

Towers:

[004][Vuvuzela]

V.V VA


https://erunno.github.io/tower-defence-viz

Enemies:

[000] [Sparrow: HP=10]
Towers:

[004] [Vuvuzela]

END ROUND

Enemies:

[002] [Sparrow: HP=9]
Towers:

[004] [Vuvuzela]

END ROUND

Enemies:

[004] [Sparrow: HP=9]
Towers:

[004] [Vuvuzela]

VVVVAVVVVAVYVVYV

(Vysvetleni: V prvnim kole (END_ROUND) se Vrabec posune na pozici 2. Je v dosahu Vuvuzely (4 +/- 2).
Dostane 1 dmg a Vuvuzela se prehieje. V druhém kole Vrabec skoci na 4. Vuvuzela by ho zasahla, ale ma
cooldown, takze neutoci.)

Piiklad 3: Razeni vystupu (Pii pouziti lexikografického razeni je '001' (Beaver) pred '001' (Hedgehog),
protoze B je pred H. V druhém kole Bobr zrychli, predbéhne Jezka a vyhne se vezi.)

PLACE_TOWER CACTUS 2
Enemies:

Towers:

[002] [Cactus]

ADD ENEMY HEDGEHOG
Enemies:

[000] [Hedgehog: HP=15]
Towers:

[002] [Cactus]

ADD ENEMY BEAVER
Enemies:

[000] [Beaver: HP=5]
[000] [Hedgehog: HP=15]
Towers:

[002] [Cactus]

END ROUND

Enemies:

[001] [Beaver: HP=5]
[001] [Hedgehog: HP=15]
Towers:

[002][Cactus]

END ROUND

Enemies:

[002] [Hedgehog: HP=13]
[003] [Beaver: HP=5]
Towers:

[002][Cactus]

VVVVVAVVVVVAVVVVVAVVVVAVVYVA

(Vysvetleni posledniho kroku: Bobr zvysi rychlost na 2 a posune se na pozici 3 (1 + 2). Jezek se posune na
pozici 2. Kaktus utoci na pozici 2. Bobr je mimo dosah (v bezpeci). Jezek dostane zasah (zbyva 13 HP).
Vsimnéte si, Ze ve vypisu je nyni [002] pred [003].)

ReCodEx Testy

Vsechny testy jsou ke stazeni zde. Vsupni soubory jsou pomenované jako <test id> <track length>.in.

General Information


https://recodex.mff.cuni.cz/api/v1/uploaded-files/link/920a18f0-3aa7-4769-8114-d0c3e4155bb8

I

/ MANDATORY APPLICATION STRUCTURE

I

II'1. You MUST use this Command pattern in your solution to handle commands.
11'2. You are free (and expected) to EXTEND this skeleton as you like and need.

Il - You can change the Execute method parameters (e.g., to pass the GameMap).
Il - You can add constructors, fields, and properties.

Il - You will need to implement your own input parsing logic (not provided here).

I

public interface ICommand

{
Il Command identifier (e.g., "ADD_ENEMY")
public string Name { get; }

Il Method to execute the command.

/I NOTE: In this basic form, the method has no access to the game world.
Il ltis up to you to modify the signature or the class to allow

/I manipulation of the map, towers, and enemies.

public void Execute(string[] args);

}

public sealed class AddEnemyCommand : ICommand

{
public string Name =>"ADD_ENEMY";

public void Execute(string[] args)
{
I 'args[0] = enemyType
/I Add logic to create and add the enemy to the game here.
1
1

public sealed class PlaceTowerCommand : ICommand

{
public string Name =>"PLACE_TOWER";

public void Execute(string[] args)
{
I 'args[0] = towerType
I 'args[1] = position
/I Add logic to place the tower here.
}
}

public sealed class EndRoundCommand : ICommand

{
public string Name =>"END_ROUND";

public void Execute(string[] args)
{
Il args are empty
Il Add logic to advance the round (move, attack, cleanup) here.
1
1

class Program
{
static void Main(string(] args)
{
Il Implement here (or in another class) the main game loop:
II'1. Game initialization (read map size).
/1 2. Command registration.
11'3. Loop for reading input, parsing lines, and calling the correct Command.
}
}



