Prumeérné siteni diference

K odvozeni véty o prumérném §ifeni diference budeme potiebovat pojem autokorelace binarni
booleovské funkce.

Definice. Cross-korelace binarnich booleovskych funkei f, g € R,, je zobrazeni

Crq: Fy =R
u— C(f, g°7u)

kde 7, : FJ' — FJ' je posunuti o vektor u.

Pro cross-korelaci plati:
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Z toho napiiklad vidime, ze Cf, = Cy .
Lemma. Pro f,g € R,, plati
W(crq) =W(f)-W(7)

Diikaz. Pravé strana rovnosti je bodovy soucin spekter f a g. Pro u € F}':
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Definice. Zobrazeni T; = ¢y, se nazyva autokorelace binarni booleovské funkce f.
Véta (Wiener-Khintchine). W(Ty) = WQ(j?) .

Nyni muzeme popsat vztah matice siteni diference dané booleovské funkce a matice korela¢nich
potencialu. Tuto zavislost pak vyuzijeme k odvozeni véty o prumérném siteni diference pro klic
alternujici Sifru.

Definice. Pro booleovskou funkei f : F§ — FJ* definujeme matici korelacnich potencidli CPY
jako matici typu 2 x 2" se vstupy CP{;U = C%(py° f, Pu), kde v € F%, u € FJ'. Hodnotu CP{:U
jsme jiz diive definovali jako korelacni potencidl binarni booleovské funkce pue f ve v.

Nasledujici véta rika, ze pro n = m jsou matice Siteni diference a matice korelac¢nich potencialu
podobné.

Véta. Pro booleovskou funkci f: Fy — FJ* plati

Dp/ =7 .CP!. T,
kde T je matice pfechodu od ortogonalni baze znaménkovych funkci parit ke kanonické bazi
v prostoru R2".

Diukaz. Oznacime-li By ortogonalni bazi znaménkovych funkci parit v ]RQk, pak musi platit
T - {w}p, = w pro kazdy vektor w € R2". Tedy sloupce matice ‘.Tk musi byt vektory baze By,
tj. ve sloupci v € F% je vektor p,. Z ortogonahty By pak plyne: ‘J'k - T je diagonalni, hodnoty
na diagondle jsou rovny 2¥, tedy ‘I =27k ‘.Tk

Pokud plati znéni véty, pak vstupy matice siteni diference musi byt v nasledujicim tvaru:

DP!, = (27T, CP/ - T,)..
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Pokusme se tento tvar DP{;U odvodit pomoci vlastnosti autokorelace. Pokud oznac¢ime
dyp = f(w) + f(w + v), muzeme sifeni diference zapsat ve tvaru:

DP[, =273 27" (Bu,.:Du)
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Totiz skaldrni soucin (pq,,,DPu) je nenulovy pouze v piipadé d,, = u. V tomto piipadé se
jeho hodnota rovna 2™ a predchozi suma tedy udava pocet vektoru w € F3, pro které plati
f(w) + f(w+ v) = u. Rozepsanim skaldrniho souc¢inu dostaneme:
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kde 7, je posunuti (translace) o vektor v. Vysledek odvozeni je hodnota autokorelace T,y ve
vektoru v. Pro siteni diference tedy dostavame:

DPf, =2"" ) Pula) - Tp,o £(v)
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Zapiseme autokorelaci v ortogondlni bazi znaménkovych funkef parit: 3 ez W(Tp,e £)(b) - D.
Podle Wiener-Khintchinovy véty pro Walsh-Hadamardovu transformaci autokorelace plati

W(Tp,o £) = W2(pge f), tedy:
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Ted mame vie potiebné k ditkazu véty o primérném &ifeni diference. Pfed jejim vyslovenim
pripomeneme jiz dokazané tvrzeni o prumérném korela¢nim potencidlu. Ve znéni téchto tvr-
zeni chapeme kli¢ alternujici sifru f = f™eo ... o fM jako produkt kolovych kryptosystémn,
zatimco po dosazeni konkrétni (N + 1)-tice kolovych klicu dostdvdme booleovské funkce
[ fO N Fy — Fy

Véta (primérng korelacni potencidl). AL f = f™N) o o f(1 je kli¢ alternujici gifra. Pak pro
vektory u,v € F} plati

E(CPL,)= >  CU)
U lin. cesta nad f
odvku

kde E(CP{;U) je prumérny korela¢ni potencidl, tedy aritmeticky prumér hodnot CPQU na
mnoziné vsech (N + 1)-tic kolovych klicu.
O

Nasledujici lemma je pouze preformulaci definice ndsobeni (¢tvercovych) matic.

Lemma. At jsou M = MW . .. M® matice ¥ddu k nad libovolnym okruhem. Pak pro
i,7 €{0,...,k— 1} plati
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Diikaz. Pro N = 1 lemma plati. Piedpoklddejme, Ze plati pro N — 1 a odvod'me tvrzeni pro
soucin délky N:
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Véta (primérné sivent diference). AL f = fMN)o o f) je kli¢ alternujici sifra. Pak pro
vektory u,v € [y plati

BOPL) - 3 2
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kde E(DP’;’U) je prumeérné siteni diference, tedy aritmeticky prumeér hodnot DP{W na mnoziné
vsech (N + 1)-tic kolovych klicu.

Diikaz. Oznacme M matici typu 2" x 2" se vstupy M, , , u,v € Fy:
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Podle predchoziho lemmatu plati M = DP/™ . .. .DP. Pro aplikaci lemmatu nékteré cesty
v souctu chybi - v definici diferen¢ni cesty pozadujeme kompatibilitu sousednich diferenci.
Ptislusné scitance jsou ale pro vynechané cesty nulové.

Budeme-li E(DP/) chapat jako matici typu 2" x 2" se vstupy E(DP/),,, = E(DPi,U), pak ndm
zbyva ukazat:

E(DP/) =pp/™ . .. .DP/"

Oznacme fr,, .. ky,, booleovskou funkei ziskanou dosazenim kolovych klici do sifry f. Muzeme
psat:
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Podobné pro prumérny korela¢ni potencial:
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Vime, ze pro prumeérny korelacni potencial plati
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7 predchoziho lemmatu musi byt E(CPY) = cp/™ . epfY, Konjugaci obou stran této
rovnosti matici prechodu 7, od ortogonalni baze znaménkovych funkei parit ke kanonické bazi
postupné dostaneme:
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A také:
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Poznamka. V dikazu jsme pocitali s maticemi DP/ “ o cp/t pro kolové funkce f@, i kdyz
booleovské funkce z kolovych funkci ziskdme az dosazenim konkrétnich klicu. Postup je v
poradku, protoze hodnoty siteni diference i korelacniho potencialu na kolech kli¢ alternujici
Sifry nezavisi na klicich.

Poznamka. Jelikoz suma ze znéni predchozi véty je soucet kladnych ¢isel, pro kazdou cestu
U od v k u plati E(DP{:’U) > 27WWU) Podle predchozi véty tedy miizeme Fict, ze pokud nad
kli¢ alternujici Sifrou nalezneme diferen¢éni cestu od v k u s malou vahou, pak pro prumeérnou
(ndhodnou) volbu kolovych kli¢i bude hodnota sifeni diference DP{;U vyznamna. To lze chépat
jako zduvodnéni uspésnosti metody diferencni kryptoanalyzy a opravnénosti pozadavku na
odolnost soucasnych symetrickych algoritmu vuci konstrukei dobrych diferenc¢nich cest.



