
Pr̊uměrné š́ı̌reńı diference

K odvozeńı věty o pr̊uměrném š́ı̌reńı diference budeme potřebovat pojem autokorelace binárńı
booleovské funkce.

Definice. Cross-korelace binárńıch booleovských funkćı f, g ∈ Rn je zobrazeńı

ĉf, g : Fn
2 → R
u 7→ C(f, g ◦τu)

kde τu : Fn
2 → Fn

2 je posunut́ı o vektor u.

Pro cross-korelaci plat́ı:

ĉf, g(u) =
(f̂ , ĝ ◦τu)

‖ f̂ ‖ · ‖ ĝ ◦τu ‖

=
1

2n
·
∑
v∈Fn

2

f̂(v) · ĝ ◦τu(v)

=
1

2n
·
∑
v∈Fn

2

f̂(v) · ĝ(u+ v)

=
1

2n
· (f̂ ⊗ ĝ )(u)

Źıskali jsme rovnost

ĉf, g =
1

2n
· f̂ ⊗ ĝ

Z toho např́ıklad vid́ıme, že ĉf, g = ĉ g,f .

Lemma. Pro f, g ∈ Rn plat́ı

W( ĉf, g) = W(f̂ ) ·W( ĝ )

D̊ukaz. Pravá strana rovnosti je bodový součin spekter f a g. Pro u ∈ Fn
2 :(

W(f̂ ) ·W( ĝ )
)

(u) = W(f̂ )(u) ·W( ĝ )(u)

=
(f̂ , p̂u)

2n
· (ĝ , p̂u)

2n

=
1

2n
· 1

2n
·

∑
v∈Fn

2

f̂(v) · p̂u(v)

 ·
∑

w∈Fn
2

ĝ(w) · p̂u(w)


=

1

2n
· 1

2n
·
∑
v∈Fn

2

∑
w∈Fn

2

f̂(v) · ĝ(w) · p̂u(v + w)

1



(z= v+w)
=

1

2n
· 1

2n
·
∑
v∈Fn

2

∑
z∈Fn

2

f̂(v) · ĝ(z + v) · p̂u(z)

=
1

2n
·
∑
z∈Fn

2

 1

2n
·
∑
v∈Fn

2

f̂(v) · ĝ(z + v)

 · p̂u(z)

=
1

2n
·
∑
z∈Fn

2

(
1

2n
· (f̂ ⊗ ĝ )(z)

)
· p̂u(z)

=
1

2n
·
∑
z∈Fn

2

ĉf, g(z) · p̂u(z)

=
1

2n
· (̂cf, g , p̂u)

= W(̂cf, g)(u)
�

Definice. Zobrazeńı r̂f = ĉf,f se nazývá autokorelace binárńı booleovské funkce f .

Věta (Wiener-Khintchine). W( r̂f ) = W2(f̂ ) .

Nyńı můžeme popsat vztah matice š́ı̌reńı diference dané booleovské funkce a matice korelačńıch
potenciál̊u. Tuto závislost pak využijeme k odvozeńı věty o pr̊uměrném š́ı̌reńı diference pro kĺıč
alternuj́ıćı šifru.

Definice. Pro booleovskou funkci f : Fn
2 → Fm

2 definujeme matici korelačńıch potenciál̊u CPf

jako matici typu 2m × 2n se vstupy CPf
u,v = C2(pu

◦f, pv), kde v ∈ Fn
2 , u ∈ Fm

2 . Hodnotu CPf
u,v

jsme již dř́ıve definovali jako korelačńı potenciál binárńı booleovské funkce pu
◦f ve v.

Následuj́ıćı věta ř́ıká, že pro n = m jsou matice š́ı̌reńı diference a matice korelačńıch potenciál̊u
podobné.

Věta. Pro booleovskou funkci f : Fn
2 → Fm

2 plat́ı

DPf = T
−1

m · CPf · Tn

kde Tk je matice přechodu od ortogonálńı báze znaménkových funkćı parit ke kanonické bázi
v prostoru R2k .

D̊ukaz. Označ́ıme-li Bk ortogonálńı bázi znaménkových funkćı parit v R2k , pak muśı platit
Tk · {w}Bk

= w pro každý vektor w ∈ R2k . Tedy sloupce matice Tk muśı být vektory báze Bk,

tj. ve sloupci v ∈ Fk
2 je vektor p̂v. Z ortogonality Bk pak plyne: T

>

k · Tk je diagonálńı, hodnoty
na diagonále jsou rovny 2k, tedy T

−1

k = 2−k · T>k .

Pokud plat́ı zněńı věty, pak vstupy matice š́ı̌reńı diference muśı být v následuj́ıćım tvaru:

DPf
u,v = (2−m · T>m · CPf · Tn)u,v

= 2−m
∑
a∈Fm

2

(T
>

m)u,a · (CPf · Tn)a,v

= 2−m
∑
a∈Fm

2

p̂u(a) ·
∑
b∈Fn

2

CPf
a,b · (Tn)b,v

= 2−m
∑
a∈Fm

2

∑
b∈Fn

2

p̂u(a) · p̂v(b) · CPf
a,b

2



Pokusme se tento tvar DPf
u,v odvodit pomoćı vlastnost́ı autokorelace. Pokud označ́ıme

dw,v = f(w) + f(w + v), můžeme š́ı̌reńı diference zapsat ve tvaru:

DPf
u,v = 2−n

∑
w∈Fn

2

2−m · (p̂dw,v , p̂u)

Totiž skalárńı součin (p̂dw,v , p̂u) je nenulový pouze v př́ıpadě dw,v = u. V tomto př́ıpadě se
jeho hodnota rovná 2m a předchoźı suma tedy udává počet vektor̊u w ∈ Fn

2 , pro které plat́ı
f(w) + f(w + v) = u. Rozepsáńım skalárńıho součinu dostaneme:

DPf
u,v = 2−n 2−m

∑
w∈Fn

2

∑
a∈Fm

2

p̂dw,v(a) · p̂u(a)

= 2−m
∑
a∈Fm

2

p̂u(a) · (2−n
∑
w∈Fn

2

p̂dw,v(a))

Úpravou části zápisu źıskáme:

2−n
∑
w∈Fn

2

p̂dw,v(a) = 2−n
∑
w∈Fn

2

p̂f(w)(a) · p̂f(w+v)(a)

= 2−n
∑
w∈Fn

2

p̂a(f(w)) · p̂a(f ◦τv(w))

= 2−n
∑
w∈Fn

2

p̂a◦f(w) · ̂pa◦f ◦τv(w)

=
(p̂a◦f, ̂pa◦f ◦τv)

‖p̂a◦f‖ · ‖ ̂pa◦f ◦τv‖

= C(pa
◦f, pa

◦f ◦τv)

= r̂pa◦ f (v)

kde τv je posunut́ı (translace) o vektor v. Výsledek odvozeńı je hodnota autokorelace r̂pa◦ f ve
vektoru v. Pro š́ı̌reńı diference tedy dostáváme:

DPf
u,v = 2−m

∑
a∈Fm

2

p̂u(a) · r̂pa◦ f (v)

Zaṕı̌seme autokorelaci v ortogonálńı bázi znaménkových funkćı parit:
∑

b∈Fn
2

W(̂rpa◦ f )(b) · p̂b.
Podle Wiener-Khintchinovy věty pro Walsh-Hadamardovu transformaci autokorelace plat́ı

W(̂rpa◦ f ) = W2(p̂a◦f), tedy:

DPf
u,v = 2−m

∑
a∈Fm

2

p̂u(a) · (
∑
b∈Fn

2

W2(p̂a◦f)(b) · p̂b)(v)

= 2−m
∑
a∈Fm

2

p̂u(a) ·
∑
b∈Fn

2

W2(p̂a◦f)(b) · p̂b(v)

= 2−m
∑
a∈Fm

2

∑
b∈Fn

2

p̂u(a) · p̂b(v) · C2(pa
◦f, pb)

= 2−m
∑
a∈Fm

2

∑
b∈Fn

2

p̂u(a) · p̂v(b) · CPf
a,b

�
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Ted’ máme vše potřebné k d̊ukazu věty o pr̊uměrném š́ı̌reńı diference. Před jej́ım vysloveńım
připomeneme již dokázané tvrzeńı o pr̊uměrném korelačńım potenciálu. Ve zněńı těchto tvr-
zeńı chápeme kĺıč alternuj́ıćı šifru f = f (N) ◦ . . . ◦f (1) jako produkt kolových kryptosystémů,
zat́ımco po dosazeńı konkrétńı (N + 1)-tice kolových kĺıč̊u dostáváme booleovské funkce
f, f (1), . . . , f (N) : Fn

2 → Fn
2 .

Věta (pr̊uměrný korelačńı potenciál). At’ f = f (N) ◦ . . . ◦f (1) je kĺıč alternuj́ıćı šifra. Pak pro
vektory u, v ∈ Fn

2 plat́ı

E(CPf
u,v) =

∑
U lin. cesta nad f

od v k u

C2
p(U)

kde E(CPf
u,v) je pr̊uměrný korelačńı potenciál, tedy aritmetický pr̊uměr hodnot CPf

u,v na
množině všech (N + 1)-tic kolových kĺıč̊u.

�

Následuj́ıćı lemma je pouze přeformulaćı definice násobeńı (čtvercových) matic.

Lemma. At’ jsou M = M (N) · . . . · M (1) matice řádu k nad libovolným okruhem. Pak pro
i, j ∈ {0, . . . , k − 1} plat́ı

Mi, j =
∑

U∈{0, ... , k−1}N+1

U=(u(0), ... , u(N))

u(0)= j, u(N)= i

M
(N)

u(N), u(N−1) · . . . ·M
(1)

u(1), u(0)

D̊ukaz. Pro N = 1 lemma plat́ı. Předpokládejme, že plat́ı pro N − 1 a odvod’me tvrzeńı pro
součin délky N :

Mi, j = (M (N) · . . . ·M (1))i, j

=
k−1∑
l=0

M
(N)
i, l · (M

(N−1) · . . . ·M (1))l, j

=
k−1∑
l=0

M
(N)
i, l ·

∑
U∈{0, ... , k−1}N

U=(u(0), ... , u(N−1))

u(0)= j, u(N−1)= l

M
(N−1)
u(N−1), u(N−2) · . . . ·M

(1)

u(1), u(0)

=
k−1∑
l=0

∑
U∈{0, ... , k−1}N

U=(u(0), ... , u(N−1))

u(0)= j, u(N−1)= l

M
(N)
i, l ·M

(N−1)
u(N−1), u(N−2) · . . . ·M

(1)

u(1), u(0)

=
∑

U∈{0, ... , k−1}N+1

U=(u(0), ... , u(N))

u(0)= j, u(N)= i

M
(N)

u(N), u(N−1) ·M
(N−1)
u(N−1), u(N−2) · . . . ·M

(1)

u(1), u(0)

�
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Věta (pr̊uměrné š́ıřeńı diference). At’ f = f (N) ◦ . . . ◦f (1) je kĺıč alternuj́ıćı šifra. Pak pro
vektory u, v ∈ Fn

2 plat́ı

E(DPf
u,v) =

∑
U dif. cesta nad f

od v k u

2−w(U)

kde E(DPf
u,v) je pr̊uměrné š́ı̌reńı diference, tedy aritmetický pr̊uměr hodnot DPf

u,v na množině
všech (N + 1)-tic kolových kĺıč̊u.

D̊ukaz. Označme M matici typu 2n × 2n se vstupy Mu,v , u, v ∈ Fn
2 :

Mu,v =
∑

U dif. cesta nad f
od v k u

2−w(U) =
∑

U dif. cesta nad f
U=(u(0), ... , u(N))

u(0)=v, u(N)=u

DPf (N)

u(N),u(N−1) · . . . ·DPf (1)

u(1),u(0)

Podle předchoźıho lemmatu plat́ı M = DPf (N) · . . . ·DPf (1)

. Pro aplikaci lemmatu některé cesty
v součtu chyb́ı - v definici diferenčńı cesty požadujeme kompatibilitu sousedńıch diferenćı.
Př́ıslušné sč́ıtance jsou ale pro vynechané cesty nulové.
Budeme-li E(DPf ) chápat jako matici typu 2n × 2n se vstupy E(DPf )u,v = E(DPf

u,v), pak nám
zbývá ukázat:

E(DPf ) = DPf (N) · . . . ·DPf (1)

Označme fK1, ... ,KN+1
booleovskou funkci źıskanou dosazeńım kolových kĺıč̊u do šifry f . Můžeme

psát:

E(DPf ) =
1

2(N+1)·n ·
∑

K1, ... ,KN+1∈Fn
2

DPfK1, ... ,KN+1

Podobně pro pr̊uměrný korelačńı potenciál:

E(CPf ) =
1

2(N+1)·n ·
∑

K1, ... ,KN+1∈Fn
2

CPfK1, ... ,KN+1

Vı́me, že pro pr̊uměrný korelačńı potenciál plat́ı

E(CPf
u,v) =

∑
U lin. cesta nad f

od v k u

C2
p(U) =

∑
U lin. cesta nad f
U=(u(0), ... , u(N))

u(0)=v, u(N)=u

CPf (N)

u(N),u(N−1) · . . . · CPf (1)

u(1),u(0)

Z předchoźıho lemmatu muśı být E(CPf ) = CPf (N) · . . . · CPf (1)

. Konjugaćı obou stran této
rovnosti matićı přechodu Tn od ortogonálńı báze znaménkových funkćı parit ke kanonické bázi
postupně dostaneme:

T
−1

n · E(CPf ) · Tn = T
−1

n · (
1

2(N+1)·n ·
∑

K1, ... ,KN+1∈Fn
2

CPfK1, ... ,KN+1 ) · Tn

=
1

2(N+1)·n ·
∑

K1, ... ,KN+1∈Fn
2

T
−1

n · CPfK1, ... ,KN+1 · Tn

=
1

2(N+1)·n ·
∑

K1, ... ,KN+1∈Fn
2

DPfK1, ... ,KN+1 = E(DPf )
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A také:

T
−1

n · CPf (N) · . . . · CPf (1) · Tn = (T
−1

n CPf (N)

Tn) · (T−1

n CPf (N−1)

Tn) · . . . · (T−1

n CPf (1)

Tn)

= DPf (N) ·DPf (N−1) · . . . ·DPf (1)

�

Poznámka. V d̊ukazu jsme poč́ıtali s maticemi DPf (i)

a CPf (i)

pro kolové funkce f (i), i když
booleovské funkce z kolových funkćı źıskáme až dosazeńım konkrétńıch kĺıč̊u. Postup je v
pořádku, protože hodnoty š́ı̌reńı diference i korelačńıho potenciálu na kolech kĺıč alternuj́ıćı
šifry nezáviśı na kĺıč́ıch.

Poznámka. Jelikož suma ze zněńı předchoźı věty je součet kladných č́ısel, pro každou cestu
U od v k u plat́ı E(DPf

u,v) ≥ 2−w(U). Podle předchoźı věty tedy můžeme ř́ıct, že pokud nad
kĺıč alternuj́ıćı šifrou nalezneme diferenčńı cestu od v k u s malou vahou, pak pro pr̊uměrnou
(náhodnou) volbu kolových kĺıč̊u bude hodnota š́ı̌reńı diference DPf

u,v významná. To lze chápat
jako zd̊uvodněńı úspěšnosti metody diferenčńı kryptoanalýzy a oprávněnosti požadavku na
odolnost současných symetrických algoritmů v̊uči konstrukci dobrých diferenčńıch cest.
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